
Chapter 3: Chapter Name · Page 61

Chapter #3: Tilt with the Memsic Accelerometer

Acceleration is a measure of how quickly speed changes. Just as a speedometer is a
meter that measures speed, an accelerometer is a meter that measures acceleration. You
can use an accelerometer's ability to sense acceleration to measure a variety of things that
are very useful to electronic and robotic projects and designs. Here are some examples.

• Acceleration
• Tilt and tilt angle
• Incline
• Rotation
• Vibration
• Collision
• Gravity

Accelerometers are already used in a wide variety of machines, specialized equipment
and personal electronics. Here are just a few examples:

• Self balancing robots
• Tilt-mode game controllers
• Model airplane auto pilot
• Car alarm systems
• Crash detection/airbag deployment
• Human motion monitoring
• Leveling tool

Once upon a time, accelerometers were large, clunky and expensive instruments that did
not lend themselves to electronic and robotic projects. This all changed thanks to the
advent of MEMS, micro-electro-mechanical-systems. MEMS technology is responsible
for an ever increasing number of formerly mechanical devices designed right onto silicon
chips.

Page 62 · Smart Sensors and Applications

The accelerometer you will be working with in the forthcoming activities is the Parallax
Memsic 2125 Dual Axis Accelerometer module shown in Figure 1. This module
measures less than 1/2” X 1/2” X 1/2”, and the accelerometer chip itself is less than 1/4” X
1/4” X 1/8”.

Figure 3-1 Accelerometer Module and MX2125 Chip

People naturally sense acceleration on three axes, forward/backward, left/right and
up/down. Just think about the last time you were in the passenger seat of a car on a hilly
and curvy road. Forward/backward acceleration is the sensation of speeding up and
slowing down. Left/right acceleration involved making turns, and up down acceleration
is what you felt going over hills.

Up/down acceleration is also the way we sense gravity. When on the ground, people tend
to sense gravity as their own weight. In free-fall, they sense gravity as weightlessness.
In physics terms, gravity is a form of acceleration. When an object is on the ground,
gravity is sometimes called static acceleration. When an object is rolling down hill or
falling, gravity becomes dynamic acceleration.

Instead of the three axes people sense, the MX2125 accelerometer senses acceleration on
two axes. The acceleration it senses depends on how it’s positioned. By holding it one
way, it can sense forward/backward and left/right. If you hold it a different way, it can
sense up/down and forward/backward. Two axes of acceleration is enough for many of
the applications listed earlier. While you can always mount and monitor a second
accelerometer to capture that third axis, three-axis accelerometers are also common.

Chapter 3: Chapter Name · Page 63

THE MX2125 ACCELEROMETER – HOW IT WORKS
The MX2125’s design is amazingly simple. It has a chamber of gas with a heating
element in the center and four temperature sensors around its edge. Just as hot air rises
and cooler air sinks, the same applies to hot and cool gasses. If you hold the
accelerometer still, all it senses is gravity, and tilting it gives us an example of how it
senses static acceleration. When you hold the accelerometer level, the hot gas pocket
rises to the top-center of the accelerometer’s chamber, and all the temperature sensors
measure the same temperature. Depending on how you tilt the accelerometer, the hot gas
will collect closer to one or maybe two of the temperature sensors.

Figure 3-2 Accelerometer Heated Gas Pocket

Both static acceleration (gravity and tilt) and dynamic acceleration (like taking a ride in a
car) are detected by the temperature sensors. For example, if you take the accelerometer
for a car ride, the hotter and cooler gasses slosh around in the chamber in a manner
similar to a container that is partially filled with water.

In most situations, making sense out of these measurements is a simple task thanks to the
electronics inside the MX2125. The MX2125 converts the temperature measurements
into signals (pulse durations) that are easy for the BASIC Stamp microcontroller to
measure and decipher.

Page 64 · Smart Sensors and Applications

ACTIVITY #1: CONNECTING AND TILT-TESTING THE MX2125
In this activity, you will connect the accelerometer module to the BASIC Stamp, run a
test program, and verify that it can be used to sense tilt.

Accelerometer Parts

The parts you will need for this activity are listed here, and Figure 3 shows their
drawings.

Parallax
Part Number Quantity Description
800-00016 (2) 3-inch Jumper wires
150-02210 (2) Resistor – 220 Ω
28017 (1) Memsic MX2125 Dual-Axis Accelerometer

Figure 3-3 Accelerometer Part Drawings

Accelerometer Electrical and Signal Connections

Figure 4 shows how to connect the accelerometer module to the Board of Education's
power supply along with the BASIC Stamp I/O pin connections you will need to make to
run the example program.

√ Connect the accelerometer module using the schematic and wiring diagram as your

guides.

Chapter 3: Chapter Name · Page 65

Figure 3-4 Accelerometer Schematic and Wiring Diagram

Listening to the Accelerometer's Signals with the BASIC Stamp

The two axes the MX2125 uses to sense gravity and acceleration are labeled x and y in
Figure 5. It will help if you set your board flat on the table in front of you as shown in
the figure. That way, the x and y axes point the same directions they do on most xy plots.
For room temperature testing, you can get a pretty good indication of tilt by just
measuring the high times of the pulses sent by the MX2125’s Xout and Yout pins with
the PULSIN command. Depending on how far you tilt the board and in which direction,
the PULSIN time measurements should range from 1875 to 3125. When the board is
level, the PULSIN command should store values in the neighborhood of 2500.

Page 66 · Smart Sensors and Applications

Figure 3-5 Accelerometer Axis Pulse Measurements

√ Make sure your board is sitting flat on the table, oriented with its x and y axes as

shown in the Figure 5.

Chapter 3: Chapter Name · Page 67

√ Enter and run SimpleTilt.bs2.

' SimpleTilt.bs2
' Measure room temperature tilt.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word

DEBUG CLS

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 DEBUG HOME, DEC4 ? X, DEC4 ? Y

 PAUSE 100

LOOP

√ Check to make sure the Debug Terminal reports that the x and y variables are both

storing values around of 2500.

Figure 3-6 Debug Terminal Output

√ Grab the edge of the board with the Y-Axis label and gradually lift it toward you.

The y value should increase as you increase the tilt.

Page 68 · Smart Sensors and Applications

√ Keep tilting the board toward you until it's straight up and down. The Debug
Terminal should report that the y variable stores a value near 3125.

√ Lay the board flat again.
√ Next, instead of tilting the board toward you, gradually tilt it away from you. The y-

axis value should drop below 2500 and gradually decrease to 1875 as you tilt the
board until it’s straight up and down.

√ Lay the board flat again.
√ Repeat this test with the x-axis. As you tilt the board up with your right hand, the x

value should increase and reach a value near 3125 when the board is vertical. As you
tilt the board upward with your left hand, the x value should approach 1875.

√ Finally, hold your board in front of you, straight up and down like a steering wheel.
√ As you slowly rotate your board, the x and y values should change. These values

will be used in another activity to determine the rotation angle in degrees.

ACTIVITY #2: MOBILE MEASUREMENTS
This activity demonstrates displaying the Memsic Accelerometer's measurements on the
Parallax Serial LCD. Provided you're using a battery, you can disconnect from your
computer and take the setup to remote locations of your choosing.

Connecting Both Modules to the BASIC Stamp

Both the Memsic Accelerometer and the Serial LCD can fit on your board at the same
time, so there will be no need for extension cables unless you chose to mount the Parallax
Serial LCD near the board of education or in a project box.

Parts List

(1) Memsic 2125 Accelerometer
(1) Parallax Serial LCD (2×16)
(5) Jumper Wires
(2) 220 Ω resistors (red red brown)

Building the Accelerometer and LCD Circuits

The schematics shown in Figure_Next are identical to the ones that have been used for
the Memsic accelerometer and Parallax Serial LCD in previous activities.

Figure_ - Ping))) and Parallax Serial LCD Schematics

Chapter 3: Chapter Name · Page 69

The wiring diagrams for the Memsic Accelerometer and Parallax Serial LCD in
Figure_Next are a combination of the two earlier wiring diagrams for the individual
modules.

√ Build the wiring diagram on the left first, then insert the Parallax Serial LCD as

shown on the right.

Figure_Accelerometer and LCD Wiring

LCD Tilt Display

Modifying any of the accelerometer example programs from this chapter to make them
display measurements on the LCD is typically a matter of adding the LCD initialization
routine and then replacing DEBUG commands with SEROUT commands that will
display the information on the LCD.

Always remember to add this initialization, either before the main routine, or in small
programs, before the first DO keyword. That will keep the initialization from being

Page 70 · Smart Sensors and Applications

repeated over and over again in the DO...LOOP with the rest of the program. Make sure
to keep it out of the main DO...LOOP because it could cause the display to flicker.

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

Next, the DEBUG commands need to be changed to SEROUT commands. Here is the
DEBUG command from SimpleTilt.bs2.

 DEBUG HOME, DEC4 ? X, DEC4 ? Y

The HOME control should be replaced with 128, which is the LCD's home character.
The ? directive displays the variable name, and then a carriage return (CR) character
afterwards. Remember from Chapter #1 that CR is the one control character that happens
to be the same for both the Debug Terminal and the Parallax Serial LCD? Because of
this, we can leave the ? directive in the SEROUT commands to the LCD. Here is a
SEROUT command that does the equivalent display on the Parallax Serial LCD.

 SEROUT 14, 84, [128, DEC4 ? X, DEC4 ? Y]

Example Program: SimpleTiltLcd.bs2

This program is a modified version of SimpleTilt.bs2 from the previous activity. Instead
of displaying its measurements in the Debug Terminal, it displays them in the Parallax
Serial LCD.

√ Connect a battery to your board.
√ Enter, save and run SimpleTiltLcd.bs2.
√ Disconnect the serial cable, and take your board with you to wherever you want

to test the Memsic Accelerometer's measurements.

' SimpleTiltLcd.bs2
' Measure room temperature tilt and display it with the
' Parallax Serial LCD.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word

' DEBUG CLS

Chapter 3: Chapter Name · Page 71

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

' DEBUG HOME, DEC4 ? X, DEC4 ? Y
 SEROUT 14, 84, [128, DEC4 ? X, DEC4 ? Y]

 PAUSE 100

LOOP

Your Turn - Customizing the Display

The carriage return (CR) that's built into the ? operator makes it more difficult to display
information after the x or y values. You can rewrite the DEBUG and SEROUT to
perform the same operations like this.

 DEBUG HOME, "x = ", DEC4 x, CR, "y = ", DEC4 y

This SEROUT command displays the same information on the Parallax Serial LCD.
Notice how the 128 places the cursor on Line-0, character-0. Instead of a CR control
character, 148 places the LCD's cursor on Line-1, Character-0.

 SEROUT 14, 84, [128, "x = ", DEC4 x, 148, "y = ", DEC4 y]

 With this modified SEROUT command, it's easier to display characters after each value.
For example, here is a SEROUT command that multiplies each measurement by 2 and
displays us afterwards.

 SEROUT 14, 84, [128, "x = ", DEC4 (2 * x), " us",
 148, "y = ", DEC4 (2 I y), " us"]

While "us" isn't really the same as "µs" because we are using u instead of the Greek
character mu, most people take its meaning. You can also make a custom character for
mu. This will involve adding a SEROUT command to the beginning of the program that
defines a custom character. Then, you will have to display that custom character where
"u" is currently displayed.

Page 72 · Smart Sensors and Applications

ACTIVITY #3: SCALING DOWN AND OFFSETTING INPUT VALUES
When working with the MX2125 and BASIC Stamp 2, tilt measurements range between
1875 and 3125. This range may have to be scaled and offset any number of ways. For
example, Activity #4 scales this to a range of −100 to 100. Activity #5 scales it to −127
and 127.

Introducing an offset into a range of values is easy, and typically involves an addition or
subtraction operation. Scaling can be a little trickier, especially with a processor like the
BASIC Stamp, which does all its calculations with integer math. This activity introduces
the simplest and most accurate way to scale a larger range of values into a smaller range
with a PBASIC program. The technique introduced here helps prevent errors from
creeping into your sensor measurements with each successive PBASIC calculation, and it
will be used and re-used in many of this book's activities.

Scale and Offset Example

In this first example, we'll take an input value that could be anywhere between 1875 and
3125, and scale and offset it to a corresponding output value that falls in a range from
−127 to 127. Figure_Next shows how this should work. The position of the value in the
output scale should be proportional to the position of the value in the input scale. For
example, if the input value is 2500, which is half way between 1875 and 3125, we should
expect the output value to be 0, which is half way between −127 and 127.

To apply scale and offset in PBASIC, remember these three steps:

1) Apply offset to align the input scale to zero.
2) Apply the scale.
3) Apply any additional offset that is needed for our output scale.

Figure_Next shows how to apply these steps with a single PBASIC command that
performs scaling and offset. Keep in mind that PBASIC calculations work from left to
right unless they are overridden with parentheses. So the first thing this calculation does

Chapter 3: Chapter Name · Page 73

is subtract 1875 from the input value. The new range is now 0 to 1200 instead of 1875 to
3215. Next, ** 13369 scales value down to 0 to 254. After the range has been scaled,
127 is subtracted from it resulting in −127 to 127.

 Figure_ Scaling the Value Variable

Choosing the Right ** Constant for Scaling

The value 13369 used with the ** constant to scale (0 to 1250) to (0 to 254) was
determined by substituting the number of elements in the input and output scales into this
equation. The number of output scale elements is 255, including 0, and the number of
input scale elements is 1251, also including 0. Use this equation whenever you need to
fit a larger scale into a smaller one with the ** operator.

Always round your ScaleConstant result down, even if the result is already an
integer! Otherwise, the largest value in your input scale might be one value outside the
output scale's range.

Clamping the Input Range

The best way to make sure the output values do not exceed the output range is to make
sure the input values do not go outside the input range. For example, if you do not want
the output of this command to go outside −127 to 127, the most convenient approach is to

Page 74 · Smart Sensors and Applications

make sure that the input values do not go below 1875 or above 3125. Here is a modified
version of value = value - 1875 ** 13369 - 127 that prevents the problem.

value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127

Before subtracting 1875 from the value variable, this command uses MIN 1875 MAX
3125 to make sure value stores something in this range. If the value variable is storing a
number in this range, the MIN and MAX operators leave it alone. However, if it's storing
something less than 1875, MIN 1875 will change value to 1875. Likewise, if it's storing
something above 3125, MAX 3125 changes it to 3125.

Example Program: TestScaleOffset.bs2

Figure 3-7 shows what the Debug Terminal looks like as the next example program is
tested. When you enter input values (separated by commas) into the Debug Terminal's
transmit windowpane, the program displays the scaled and offset equivalent in the Debug
Terminal's receive windowpane.

Chapter 3: Chapter Name · Page 75

Figure 3-7 Scaling Test

√ Enter, save, and run TestScaleOffset.bs2
√ Enter this sequence into the Debug Terminal's transmit windowpane:

1875,1876,1879,1880,1881,2496,2497,2498,2499,2500,2501,2502,2503,2504,31
19,3120,3121,3124,3125.

√ Test various other values that range from 1875 to 3125, and verify with a
calculator that the output value 's position in the output range is proportional to
the input values position in the input range.

' TestScaleOffset.bs2
' Test scaling from an input range of 1875 to 3125 to an output
' range of -127 to + 127.

'{$STAMP BS2}
'{$PBASIC 2.5}

Transmit
Windowpane

Receive
Windowpane

Page 76 · Smart Sensors and Applications

value VAR Word

DEBUG CLS, "Enter values (1875 to 3125)...", CR

DO

 DEBUG ">"

 DEBUGIN DEC value

 value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 DEBUG "scaled to ", SDEC value, CR

LOOP

Your Turn - A Closer Look at the ScaleConstant and ** Operator

For small input and output ranges, we can examine them with a calculator, pencil and
paper. Let's take 0 to 10 as our input scale, and 0 to 2 as our output scale. The first step
is to figure out what the constant for the ** operation should be using the ** scale
constant equation.

 <<<scale constant>>>

There are three elements in the output scale, 0, 1, and 2. There are 11 elements in the
input scale, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Remembering to round down to the nearest
integer, the result is 19660 which is the constant to use with the ** operator.

The term value = value ** 19660 multiplies the value variable by

 19660 ÷ 65536 ≈ 0.29999 ---> value = value × 0.29999

Chapter 3: Chapter Name · Page 77

Table_Next shows some examples of the BASIC Stamp's calculations for each of the
values in the input range for value = value ** 19660. Keep in mind that it's about the
same as multiplying value by 0.29999 with a calculator. Since the BASIC Stamp is an
integer math processor, it truncates any result to an integer value, effectively rounding
down. Notice how the first four input values result in outputs of zero. Then, when the
input value is 4, the result is 1.19996, which gets rounded to 1. As you perform the rest
of the calculations in the table, notice how the output scale of 2 receives four input
elements. If −1 was not used in the denominator, it would only receive one input
element. <<<This needs to be double-checked>>>

√ Finish the calculations in Table_Next for input values from 5 to 10.

√ Save TestScaleOffste.bs2 as TestScaleOffsetYourTurn.bs2.
√ Modify the program so that you can test Table_Previous with the BASIC Stamp

and Debug Terminal.
√ Compare the Debug Terminal results to your table.

ACTIVITY #4: SCALING TO 1/100 G
The standard measure of gravity on the earth's surface is abbreviated g. This activity
demonstrates how to use the techniques introduced in the previous activity to display the
number of hundredths of a g acting on the accelerometer's x and y axes.

Page 78 · Smart Sensors and Applications

From PULSIN to 1/100 g

The goal here is to modify the example program from Activity #1 so that it displays the x
and y axis measurements in terms of 1/100 g instead of 2 µs units. It's another scaling
and offset problem, but this time, we want to fit the 1875 to 3125 input scale into an
output scale of −100 to 100 as shown in Figure_Next.

 Figure_Scaling and Offset for 1/100 g.

Your Turn - Developing the Program

The goal here is to use the scaling techniques from Activity #3 to modify the program
from Activity #1 so that it displays the x and y-axis measurements in terms of 1/100 g.
Figure_Next shows the approximate readings you should expect after your modifications.

√ Open SimpleTilt.bs2 from Activity #1 and save it as CentigravityTilt.bs2
√ Follow the steps for scaling from Activity #3 and determine the ** scale

constants.
√ Add lines of code to the program that scale the x and y values down to g/100.
√ Modify the display so that it shows in the Debug Terminal.
√ Test according to Figure_Previous and trouble-shoot if necessary.

Chapter 3: Chapter Name · Page 79

ACTIVITY #5: MEASURING 360° VERTICAL ROTATION
The MX2125 has a built-in feature that allows you to use both the x and y axis tilt
measurements to calculate the accelerometer's angle of rotation in the vertical plane, as
shown in Figure_Next. There are lots of applications where vertical tilt is useful,
including virtual steering wheels for video games and counting bicycle wheel revolutions.
This activity demonstrates how to calculate tilt on the vertical plane with the PBASIC
ATN operator.

 Figure_BOE Tilt on the Vertical Plane

Calculating Arctangent with PBASIC

The tangent of an angle theta (θ) in a right triangle is the ratio of the opposite side of a
right triangle (y) divided by the adjacent side (x). If you know the values of x and y, you
can use the inverse tangent or arctangent to figure out the angle θ. The most common
notations for arctangent are tan−1 and arctan.

 Figure_Tangent and Arctangent

The arctangent function can be used to determine the accelerometer's rotation angle with
its x and y measurements. PBASIC has an operator called ATN you can use for
calculating tan−1(y/x). To calculate the arctangent of y/x and store it in a variable named
angle, use the command angle = x ATN y.

Page 80 · Smart Sensors and Applications

Figure_Next is from the BASIC Stamp Editor's Help file, and it shows ATN works. Both
the x and y variables have to be scaled to values between −127 and 127. The result of the
ATN operator is the angle in binary radians, which is abbreviated brads. With brads, a
circle is split up into 256 segments in the same way that degrees splits a circle into 360
segments.

 Figure_ATN Diagram From Help File

Converting from Brads to Degrees with */

In the previous activity, we used the ** operator to scale values down from a larger range
to a smaller range. Converting from brads to degrees involves scaling a smaller scale of
0 to 255 to a larger scale of 0 to 359. The PBASIC */ operator is designed for this job.

When you use a command like value = ScaleConstant */ value, the ScaleConstant term is
the number of 256ths you want to multiply the value variable by. For example, let's say
you want to multiply value by 2.5. Multiply 2.5 by 256 and the result is 640. Now, if
value starts as 10, the result of value = 640 */ value will be 25.

Chapter 3: Chapter Name · Page 81

Remember

The ** operator multiplies by a number of 65536ths.

The */ operator multiplies by a number of 256ths.

The rules of integer math for scaling from one scale to another still apply, even though
we are converting from a smaller scale to a larger one. The only thing that will change is
the scale constant, which is a numerator of 256 for */, instead of 65536 for **.

The input scale is 0 to 255, which has 256 elements, and the output is 0 to 359, which has
360 elements. The result after substituting these values into the */ scale constant
equation is 361.

This demonstrates that, if the angle variable stores a measure of brads, and you want to
store a measure of degrees instead, use this command.

angle = 361 */ angle

Most documents recommend angle = 360 */ angle. However, using a */ scale constant of
361 is slightly more accurate over the input/output ranges. Try comparing the BASIC
Stamp's results to this equation for a calculator or spreadsheet.

 angledegrees = (360/256) × anglebrads

Round the result of angledegrees to the nearest integer. If the result has a fractional
component of 0.5 or higher, round up. Otherwise, round down. Then compare it to the 256
possible Debug Terminal outputs with 360 */ angle, then repeat with 361 */ angle. A
spreadsheet is useful for this comparison. If you try it, you'll se that the rate of integer value
matches is much higher with 361 */ angle.

Page 82 · Smart Sensors and Applications

Example Program: TestAtn.bs2

This example program calculates angles based on the y and x values you enter into the
Debug Terminal's transmit windowpane.

To calculate x and y values to enter into the Debug Terminal, use these equations.

For example, let's say that h = 127 and θ = 45°, then the x and y values to be entered into
the Debug Terminal are both 90. If h = 100 and θ = 315°, the y value to enter into the
Debug Terminal will be −71, and the x value will be 71. If h = 100 and θ = 180°, y will
be 0 and x will be −127.

Chapter 3: Chapter Name · Page 83

√ Enter, save, and run TestAtn.bs2
√ Click the Debug Terminal's transmit windowpane. When prompted for the x

value, type 90 and press the carriage return. When prompted for y, type 90 and
the carriage return again.

√ Verify that the result is 32 brads = 45°.
√ Repeat for the other x and y values just discussed.
√ Use your calculator to determine the x and y values that correspond with various

h and angle values. Compare your calculated results to the Debug Terminal's
results.

Some values will be lower than you predict. For example, when h = 100 and θ = 30°, y =
50 and x = 87. The Debug Terminal will display 21 for the brad angle, which is correct, but
29 for the degree angle is not correct. It should be 30. This happens occasionally when
scaling from a smaller range to a larger range. The 21 brads measurement corresponds to
29° and 22 brads corresponds to 31°.

' TestAtn.bs2
' Test BASIC Stamp arctangent calculations.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
x VAR Word
y VAR Word

DO

 DEBUG "Enter y: "
 DEBUGIN SDEC y
 DEBUG "Enter x: "
 DEBUGIN SDEC x

 angle = x ATN y

Page 84 · Smart Sensors and Applications

 DEBUG "brad ", SDEC ? angle

 angle = angle */ 361

 DEBUG "degree ", SDEC ? angle, CR

LOOP

Your Turn - Testing Brad to Degree Conversion

As mentioned earlier, the ideal integer result comes from calculating angledegrees =
(360/256) × anglebrads, and then rounding up if the value to the right of the decimal point
is 5 to 9 or down if it is 1 to 4. You can generate a list of all 256 brad to degree
conversions with this program.

' BradsToDegrees.bs2
' Display brad to degree conversions for */ 360 and */ 361.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
brads VAR Word

DEBUG CLS, "brads */ 360 */ 361", CR

FOR brads = 0 TO 255

 DEBUG DEC3 brads

 angle = brads */ 360
 DEBUG " ", DEC3 angle

 angle = brads */ 361
 DEBUG " ", DEC3 angle, CR

NEXT

END

√ Enter, save and run BradsToDegrees.bs2.
√ Use a spreadsheet or calculator to generate the a list with this forumal.

 angledegrees = (360/256) × anglebrads formula.

Chapter 3: Chapter Name · Page 85

Remember to round up if the value to the right of the decimal point is 5 to 9 or
down if it's 1 to 4.

√ Compare your results to the Debug Terminal display. How many exact matches
occurred for */ 360? How many occurred for */ 361?

Measuring Tilt Angle On the Vertical Plane

The angle of your board's clockwise rotation in the vertical plane (θ) shown in
Figure_Next is the arctangent of the gravity's effect on the MX2125's y-axis (Ay) divided
by its effect on its x-axis (Ax).

 Figure_Equation for Clockwise Vertical Rotation

Here are a few examples of what the accelerometer detects and how it relates to the
arctangent of the ratio of Ay to Ax. Figure_Next shows what the accelerometer senses at
the 0° mark. If θ is 0°, then Ay senses 0-gravity (g), and Ax senses 1 g, the arctangent of
0/1 is 0°.

 Figure_Accelerometer Rotated 0°

Page 86 · Smart Sensors and Applications

When the accelerometer is rotated 30° clockwise, shown in Figure_Next, the component
of gravity acting on the accelerometer's x-axis is approximately √3/2 g. The component
of gravity acting on the y-axis is 1/2 g, and the arctangent of √3/2 ÷ 1/2 is 30°.

 Figure_Accelerometer Rotated 30 Clockwise°

When the accelerometer is rotated to 135° clockwise, the component of gravity acting on
the accelerometer's x-axis is Ax = -1/√2, and the component acting on its y-axis is 1/√2.
The arctangent of 1/√2 ÷ (−1/√2) is 135°.

 Figure_Accelerometer Rotated 135° Clockwise

Chapter 3: Chapter Name · Page 87

The General Case

The angle of rotation (θ) is the inverse tangent or arctangent of the acceleration acting on
the y-axis (Ay) divided by the acceleration acting on the x-axis (Ax). Figure_Next shows the
MX2125 tilted at an angle θ, which rotates both sensing axes by θ. By applying a couple of
geometry identities, θ is also inside the two triangles that show the components of gravity
acting on each of the accelerometers sensing axes (xm and ym). The component of gravity
acting on xm is Ax = g cosθ, and the component acting on ym is Ay = g sinθ. After applying
the trig identities shown on the right, it demonstrates that the angle of rotation θ is in fact the
arctangent of Ay/Ax.

 Figure_Gravity Acting on the Accelerometer Axes

Example Program: VertWheelRotation.bs2

This program displays your board's angle of rotation as shown in (Figure_BOE Tilt on
the Vertical Plane) at the beginning of this activity.

√ Enter, save, and run VertWheelRotation.bs2.
√ Hold the board in front of you like a steering wheel. As you rotate the board

clockwise, watch the angle measurement grow. Verify that the display angle
ranges from 0 to 359.

' VertWheelRotation.bs2
' Mount accelerometer on a vertical wheel and measure
' the rotation angle.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
x VAR Word
y VAR Word

DO

Page 88 · Smart Sensors and Applications

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 angle = x ATN y
 angle = angle */ 361

 DEBUG HOME, CLREOL, SDEC ? x,
 CLREOL, SDEC ? y,
 "angle = ", CLREOL,
 DEC angle,
 176 ' ASCII 176 is degree symbol

 PAUSE 100

LOOP

Your Turn - Debug Terminal Behavior

This DEBUG command below displays signed values of x and y followed by the angle
and the degree symbol, which is the ASCII code 176. The reason CLREOL comes
before each number is to prevent characters that don't disappear on the right of some
measurements. For example, if one measurement is −105, and the next measurement is
076, it will display as 0755 if the CLREOL doesn't clear the previous value before
displaying the new one. Although CLS can fix this problem too, the Debug Terminal
flicker that results is not pleasant to examine for any length of time. CLREOL erases to
the right of the cursor on a given line. While it still causes a little bit of flicker in each
value, you'll likely agree that it's much easier to look at than the CLS version.

 DEBUG HOME, CLREOL, SDEC ? x,
 CLREOL, SDEC ? y,
 "angle = ", DEC3 angle,
 176 ' ASCII 176 is degree symbol

√ Save VertWheelRotation.bs2 as VertWheelDisplayTest.bs2.
√ Replace HOME with CLS in the debug command and run the program.
√ Change CLS back to home and run the program again. Do you see an

improvement in the display?
√ Remove the CLREOL control characters and note the effect on the display as

you rotate the board. Extra digits will appear at the end of non-negative values.

Chapter 3: Chapter Name · Page 89

√ Put the CLREOL control characters back in and run the program again. Those
pesky extra digits that don't disappear should be gone.

Your Turn - LCD Display

The Debug Command has three lines of display, and the degree symbol will need a
custom character. Here is an initialization command for the LCD that does three things:
(1) start the LCD, (2) display text that doesn't change, and (3) defines custom character 7
as the degree symbol °.

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

SEROUT 14, 84, [130, "angle = ", DEC angle, 7,
 150, "x=", SDEC x,
 157, "y=", SDEC y]

SEROUT 14, 84, [255, ' Define custom character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

Custom Character Definitions

Remember, 248 defines custom character 0. 249 defines custom character 1. 250 defines
custom character 2, and so on, up to 255, which defines custom character 7.

The DEBUG command that the SEROUT command has to replace uses three lines in the
Debug Terminal. The SEROUT command below only uses two. To minimize LCD
display flicker, only the digits are erased before the new digits are printed. The SEROUT
places the cursor at 138 (line-0, character-10), then overprints the previous measurement
with five spaces. Then, it places the cursor at 138 again and displays the new degree
measurement with DEC angle. Then, it prints the degree sign with custom character 7.
This is repeated for the x and y measurements, but there only need to be four spaces
between quotes following cursor positions 152 and 159.

' LCD Display Routine
SEROUT 14, 84, [138, " ", 138, DEC angle, 7,

Page 90 · Smart Sensors and Applications

 152, " ", 152, SDEC x,
 159, " ", 159, SDEC y]

√ Save VertWheelRotation.bs2 as VertWheelRotationLcd.bs2.
√ Insert the initialize LCD routine between the variable declarations and the DO

keyword.
√ Replace the DEBUG command in the DO...LOOP with the LCD Display

Routine.
√ Change PAUSE 100 to PAUSE 350.
√ Run the program and test your LCD rotation display.

Your Turn - Rotation in the Opposite Direction

Diagrams that show the rotation angle increasing as the object rotates counterclockwise,
like Figure_Next are quite a bit far more common.

 Figure_Angle Measurement Increases with Counterclockwise Rotation

To reverse the angle of rotation the program displays, all you have to do is use −Ay istead
of Ay. Take a look at Figure_Next. If you rotate the accelerometer counterclockwise,
Ay is −1/2, and the arctangent turns out to be 330°. By taking the arctangent of −Ay/Ax,
the result is 30°.

 Figure_Reversing Direction of Rotation with −Ay

Chapter 3: Chapter Name · Page 91

This change is easy to make in the program. Simply insert a negative sign before the y in
angle = x ATN y.

√ Save VertWheelRotation.bs2 as VertWheelRotationCounterclockwise.bs2
√ Change angle = x ATN y to angle = x ATN −y.
√ Run the program and verify that the rotation angle now increases as you rotate

the board counterclockwise.

ACTIVITY #6: MEASURE TILT FROM THE HORIZONTAL
This activity measures how far the Board of Education is tilted from the horizontal.
Figure_Next shows the Board of Education with the Memsic Accelerometer on the
breadboard. The accelerometer's acceleration sensing axes (xm and ym) point toward the
top and left of the Board of Education. This activity develops a program that displays the
tilt angle for each axis. When the board is held level, the tilt angle is 0° for both the xm
an ym axes. If you tilt the board so that ym points up, the program will report a positive
tilt angle for the y-axis. If you tilt it so that ym points down, it will report a negative tilt
angle. The same applies for xm; point it up for a positive tilt angle or down for a negative
tilt angle. If you tilt the board towards one of its corners, the program will report tilt for
both the xm and ym axes.

 Figure_Accelerometer Tilt Axes on Board of Education

Sine and Cosine

Figure_Next shows the relationship between the sides of a right triangle and the sine, and
cosine functions. The sine of an angle is the opposite side of the triangle (y) multiplied
by the hypotenuse (h). If you know h and y, and want to know the angle (θ), use arcsine
(sin−1). The cosine of the angle is the adjacent side (x) divided by h. If you want to know
the angle given x and h, use arccosine (cos−1).

Figure_Sine, Cosine, Arcsine and Arccosine

Page 92 · Smart Sensors and Applications

Note from the equations for Figure_Previous that the x value can be at most the same as h
when θ = 0°. Likewise, the y value can be at most 1 when θ = 90°. For angles between 0
and 90°, the ratio of x/h and y/h are both less than 1. It doesn't matter how large the
triangle is, the ratio will always be between 1 and 0.

The unit circle is a common device for describing the sine and cosine functions. The
triangle's hypotenuse becomes the radius of the circle. The unit circle is so named
because the length of the hypotenuse is 1 (one unit). As the hypotenuse is rotated
clockwise, the angle θ becomes larger, or smaller if it is rotated counterclockwise. The
cosine is determined by drawing a vertical line from the point where the hypotenuse
meets the circle down (or up if the hypotenuse is below) to the x-axis. Whatever the x
value is, that's the cosine. The sine of the angle is determined by drawing a line from the
end of the radius, horizontally to the y-axis.

Figure_Unit Circle Sine and Cosine Examples (Label a, b, and c)

The range from 0 to 90° is the unit circle's quadrant 1. When θ is in quadrant 1, both the
cosine and sine of the angle will be positive numbers. When θ is between 90 and 180°
(quadrant 2), the cosine becomes negative but the sine is still positive. In quadrant 3,
both sine and cosine are negative, and in quadrant 4, the sine is still negative but cosine is
positive again. Notice in Figure_Previous (c) that a negative value of θ (between 0 and
−90) can be in quadrant 4 just as a value between 270 and 360°. One other thing to keep
in mind here is that the minimum value for both sine and cosine is −1, and the maximum

Chapter 3: Chapter Name · Page 93

value is 1. For example, when θ = 0°, cos θ = 1, and sin θ = 0. If θ = 90°, sin θ = 1 and
cos θ = 0. At θ = 180°, cos θ = −1 and sin θ = 0.

Figure_Next shows the BASIC Stamp's version of a unit circle for its SIN and COS
operators. Instead of results that range from −1 to 1, the results for SIN and COS range
from −127 to 127. Angles for the SIN and COS operators are in terms of brads. So,
instead of 45°, use 32 brads. Instead of 90°, use 64 brads, and so on. To convert from
brads to degrees with a calculator, number of brads by 360/256. To convert from degrees
to brads, use 256/360.

 Figure_Unit Circle for the PBASIC SIN and COS Operators

 .

i-box: The next example program converts from degrees to brads with ** 46733, which is
derived using the procedure in Activity #3.

Example Program: SineCosine.bs2

This example program displays the BASIC Stamp's integer calculations for sine and
cosine. You can divide these values by 127 to get an approximation of the actual sine or
cosine values.

√ Enter, save and run SineCosine.bs2
√ Compare the results (divided by 127) to calculated values of sine and cosine.

' Smart Sensors and Applications - SineCosine.bs2
' Display BASIC Stamp sine and cosine values.

' {$STAMP BS2}
' {$PBASIC 2.5}

degrees VAR Word
brads VAR Word
sine VAR Word

Page 94 · Smart Sensors and Applications

cosine VAR Word

DEBUG "Degrees Brads Cosine Sine", CR

FOR degrees = 0 TO 359 STEP 15

 brads = degrees ** 46733
 sine = SIN brads
 cosine = COS brads
 DEBUG " ",
 SDEC3 degrees, " ",
 SDEC3 brads, " ",
 SDEC3 cosine, " ",
 SDEC3 sine, CR

NEXT

END

Your Turn - Program Modifications

√ Try modifying the FOR...NEXT loop's STEP argument to get different values.
√ Try modifying the program so that it prompts you for a degree value with the

DEBUGIN command and then displays the result.

Arcsine and Arccosine Subroutines

While the sine is a ratio of y/h for a given angle, arcsine (sin−1) is the reverse. (See
Figure_Next.) Given the ratio y/h, arcsine tells you the angle. Likewise, cosine is the
ratio of x/h for a given angle, and arccosine (cos−1) is the angle for a given ratio of x/h.

 Figure_Sine, Arcsine, Cosine, and Arccosine

While the BASIC Stamp does not have ASIN and ACOS operators, Tracy Allen, Author
of Applied Sensors, published some very nice subroutines that perform these functions on
his web site www.emesystems.com. The next example program uses modified versions
of these subroutines.

Chapter 3: Chapter Name · Page 95

Remember that the SIN and COS operators return values between −127 and 127. If you
divide the result by 127, you'll get a value between −1 and 1 that is an approximation of
the actual sine (y/h) or cosine (x/h) ratios. With the Arcsine and Arccosine subroutines,
you can set a variable named side to a value between −127 and 127, and the subroutine
will store the degree measurement results in the angle variable.

If you want the Arcsine and Arccosine subroutines to return brads instead of degrees,
just comment the line of code that converts from brads to degrees in the Arccosine
subroutine.

' angle = angle */ 361 ' Convert brads to degrees

Example Program: TestArcsine.bs2

This next program sweeps sine values from −127 to 127, and its Arcsine subroutine
converts these sine values back to degree angles. Keep in mind that this is the reverse of
the calculations in the previous example program. The previous example program
displayed sine values for given angles. This one displays angles for given sine values.

√ Enter, save, and run TestArcsine.bs2
√ Compare the results to the sine values calculated in the previous example

program.

' -----[Title]--
' Smart Sensors and Applications - TestArcsine.bs2
' Test arcsine for sine values from -127 to 127.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

' -----[Constants]--

Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[Variables]--

sine VAR Word ' sine in circle r = 127
side VAR Word ' trig subroutine variable
angle VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

' -----[Initialization]---

Page 96 · Smart Sensors and Applications

DEBUG CLS ' Clear Debug Terminal
sine = -128 ' Start y at -128

' -----[Main Routine]---

DO UNTIL sine = 127 ' Sweep from y = -127 to y = 127
 sine = sine + 1 ' Increment by 1
 side = sine ' Set side to y
 DEBUG "sine = ", SDEC sine, " " ' Display sine value
 GOSUB Arcsine ' Calculate arcsine
 DEBUG SDEC ? angle ' Display the result angle
LOOP ' Repeat DO...LOOP

END ' End program

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angle = 90 - angle ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine
 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angle = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop
 IF (COS angle <= side) THEN EXIT ' Done when COS angle <= side
 angle = angle + 1 ' Keep increasing angle
 LOOP
 angle = angle */ 361 ' Convert brads to degrees
 IF sign = Negative THEN angle = 180 - angle' Adjust if sign is negative.
 RETURN

Your Turn - Testing the Arccosine Subroutine

Here are some modifications you can make to TestArcsine.bs2 to make it test the
Arccosine subroutine instead.

Chapter 3: Chapter Name · Page 97

√ Save TestArcsine.bs2 as TestArccosine.bs2.
√ Update the comments in the title section. Cosine values will be swept from 127

to −127.
√ Change sine VAR Word to cosine VAR Word in the Variables section.
√ Change sine = −128 to cosine = 128 in the Initialization section
√ Modify the Main Routine so that it looks like this

DO UNTIL cosine = -127
 cosine = cosine - 1
 side = cosine
 DEBUG "cosine = ", SDEC cosine, " "
 GOSUB Arccosine
 DEBUG SDEC ? angle
LOOP

END

√ Run the modified test program. As cosine sweeps from 127 to -127, the angle
should sweep from 0 to 180°.

Displaying Accelerometer Tilt Angle

Figure_Next shows the Board of Education with a Memsic Accelerometer. The figure
also shows a close-up of the accelerometer module and its xm and ym acceleration sensing
axes. These sensing axes detect components of the earth's acceleration due to gravity.
As you tilt a given axis toward vertical, larger components of the earth's 1 g acts on the
axis.

Figure_Tilting the Board of Education, Tilting the Memsic Accelerometer

Figure 3-8 shows how arcsine can be used to determine the tilt angle. Looking at the
Memsic Accelerometer Module from the side, the component of gravity acting on its xm
is the x-axis acceleration (Ax), which is g × sin θ. Since sin θ is equal to Ax / g, θx can be
determined by taking the arcsine of Ax / g. In terms of an equation, that's θx = sin-1(Ax/g).

Page 98 · Smart Sensors and Applications

The same principle applies to the accelerometer's ym axis, and the result is θy = sin-

1(Ay/g).

Figure 3-8 Determining Tilt Angle with Arcsine

With the MX2125, a measurement of 1875 is −1 g, and a measurement of 3125 is 1 g. In
Activity #3, we scaled this to a range of −127 to 127. Remember that −127 is the
equivalent of −1 for the Arcsine subroutine, and 127 is the equivalent of 1. Anything
between −127 and 127 is the equivalent of a fraction, and coming from the MX2125, it's
actually sin θ. So, once the MX2125's measurement has been scaled to −127 to 127, all
you have to do is use the Arcsine subroutine to determine the tilt angle (the value of θ).

The simplest way to write a tilt program is to start with the previous example program,
TestArcsine.bs2. Then, incorporate the accelerometer measurement and scaling and
offset commands from TestScaleOffset.bs2 and the accelerometer measurements from
VertWheelRotation.bs2. This program's main routine boils down to two commands for
measuring the x and y axes, two commands for scaling, and two small routines that call
the Arcsine routine and display the result.

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

Chapter 3: Chapter Name · Page 99

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 side = x
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angle, CR

 side = y
 GOSUB Arcsine
 DEBUG "y tilt angle = ", CLREOL, SDEC3 angle

 PAUSE 100

LOOP

Example Program: HorizontalTilt.bs2

This example program displays your board's tilt in terms of degrees from horizontal.

√ Enter, save and run HorizontalTilt.bs2.
√ Compare various tilt angles to the Debug Terminal's axis display.

' -----[Title]--
' Smart Sensors and Applications - HorizontalTilt.bs2
' Test arcsine for sine values from -127 to 127.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

' -----[Constants]--

Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[Variables]--

x VAR Word ' Memsic x-axis measurement
y VAR Word ' Memsic y-axis measurement

side VAR Word ' trig subroutine variable
angle VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

' -----[Initialization]---

DEBUG CLS ' Clear Debug Terminal

' -----[Main Routine]---

Page 100 · Smart Sensors and Applications

DO

 PULSIN 6, 1, x ' x-axis measurement
 PULSIN 7, 1, y ' y-axis measurement

 ' Scale and offset x and y-axis values to -127 to 127.
 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 ' Calculate and display Arcsine of x-axis measurement.
 side = x
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angle, CR

 ' Calculate and display Arcsine of y-axis measurement.
 side = y
 GOSUB Arcsine
 DEBUG "y tilt angle = ", CLREOL, SDEC3 angle

 PAUSE 100 ' Pause 1/10 second

LOOP ' Repeat DO...LOOP

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angle = 90 - angle ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine
 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angle = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop
 IF (COS angle <= side) THEN EXIT ' Done when COS angle <= side
 angle = angle + 1 ' Keep increasing angle
 LOOP
 angle = angle */ 361 ' Convert brads to degrees
 IF sign = Negative THEN angle = 180 - angle' Adjust if sign is negative.

Chapter 3: Chapter Name · Page 101

 RETURN

Your Turn - LCD Display

Modifying the example program to display the tilt measurements on the Parallax Serial
LCD is still a matter of adding an initialization routine and porting DEBUG commands to
SEROUT commands. As with the program from Activity #5, this program displays
characters that don't change in the initialization routine to prevent display flicker.

√ Save HorizontalTilt.bs2 as HorizontalTiltLcd.bs2
√ Replace the DEBUG command in the Initialization routine with this.

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

SEROUT 14, 84, [128, "x-tilt=",
 148, "y-tilt="]

SEROUT 14, 84, [255, ' Define custom character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

√ Replace the first DEBUG command in the Main Routine's DO...LOOP with the
SEROUT command below. Make sure there are four spaces between the
quotation marks. The four spaces are needed to erase the maximum of four
characters that the command might send to the LCD: a negative sign, two digits,
and the custom character 7 degree symbol.

SEROUT 14, 84, [135, " ", 135, SDEC angle, 7]

√ Replace the second DEBUG command in the Main Routine's DO...LOOP with
this. Again, make sure to put four spaces between the quotation marks to erase
the previous value.

SEROUT 14, 84, [155, " ", 155, SDEC angle, 7]

Page 102 · Smart Sensors and Applications

√ Change PAUSE 100 to PAUSE 350.
√ Run the program and test the display.

Your Turn - Adjustments

If your display did not go all the way to 90° when you held your board with a particular
axis vertical, you can customize your scaling and offset to get it to fit. This will involve
determining your accelerometer's actual output scale. If it's really 1865 to 3100, repeat
the steps in Activity #3 to make the scaling and offset corrections.

Chapter 3: Chapter Name · Page 103

SUMMARY
This chapter focused on sensing the acceleration due to gravity with the Memsic 2125
Dual Axis Accelerometer. Sensing gravity makes it possible to measure both tilt and
rotation. The Memsic Accelerometer transmits pulses that indicate the acceleration
acting on its x and y axes. At room temperature, the pulses range from 3750 to 6250 µs,
which can be used to measure a range of −1 to 1 g with either one of the accelerometer's
two sensing axes. The PULSIN command is used to measure these pulses, and since it
measures time in 2 µs units, the range programs have to examine is 1875 to 3125.

Accelerometer measurements can be displayed with the Parallax Serial LCD. If the
program has already been tested with the Debug Terminal, displaying measurements with
the serial LCD is typically a matter of adding an LCD initialization routine the beginning
of the program and using SEROUT commands in place of DEBUG commands. Custom
characters come in handy for displaying the degree symbol (°), and the Greek letter mu
(µ).

The accelerometer can be used to measure rotation in the vertical plane. To do this, the
BASIC Stamp must calculate the arctangent of the accelerometer's y-axis measurement,
divided by its x-axis measurement. The x and y axis measurements have to be scaled and
offset to fit in a range of −127 to 127, which is what the PBASIC ATN operator needs to
return an angle, measured in binary radians. While degrees separate a circle into 360
segments, binary radians separate it into 256 segments. The PBASIC */ operator can be
used to convert a given binary radian measurement to degrees.

The accelerometer can also be used to measure tilt angles. Since the component of
gravity acting on each of the accelerometer's sensing axes is the sine of the tilt angle, the
inverse sine or arcsine can be used on an axis' measurement to determine the tilt angle.
An Arcsine subroutine can be used to calculate the angle (in degrees) given a value that
ranges from −127 to 127. This range corresponds to sine values of −1 to + 1.

Since both the ATN operator and the Arcsine subroutine expect a value between −127
and 127, techniques for scaling and offsetting the accelerometer measurements were
introduced. The range of measurements the BASIC Stamp collects from the
accelerometer are on a scale of 1875 to 3125. The most efficient way to scale these
values to a range of −127 to 127 involves subtracting 1875 zero-align the range, then
using the ** operator to reduce the scale, then subtracting 127. This is the resulting line

Page 104 · Smart Sensors and Applications

of code: value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127. The
value 13369 is determined by the ** scale constant equation in Activity #2.

Questions

1. What are seven quantities you can measure with an accelerometer?
2. What are seven applications an accelerometer can be used in?
3. What does MEMS stand for?
4. What kind of acceleration do you sense in an elevator?
5. What moves inside the MX2125 when you tilt it?
6. What is it about the MX2125 that relates acceleration to temperature?
7. Can gravity be considered a form of acceleration?
8. What kind of electronic signals does the MX2125 send?
9. What do you have to do to a program that displays measurements in the Debug

Terminal to make it display measurements in a serial LCD instead?
10. What's the equation for the ** scale constant?
11. How can you restrict a variable to a range of values?
12. How do the signals the MX2125 send relate to units of gravity? What signal

corresponds to −1 g, 0 g, and 1 g?
13. How can you orient your board to apply 1 g to the accelerometer's x-axis?
14. How can you orient your board to apply −1 g to the accelerometer's y-axis?
15. How can you orient your board to apply 0 g to both axes.
16. What does the arctangent calculation tell you?
17. What's the difference between a binary radian and a degree?
18. What's the equation for the */ scale constant?
19. What range of values do the SIN and COS operators accept? What do these

values represent?
20. What range of values will the SIN and COS operators return? What do these

values represent?
21. How can you convert from brads to degrees?
22. How can you convert from degrees to brads?
23. What range of values does the ATN operator accept? What do these values

represent?
24. What range of values does the ATN operator return? What do these values

represent?
25. Why can you use ATN to calculate your board's angle of rotation?
26. What's the radius of a unit circle?
27. What range of values is the Arccosine subroutine designed to accept? What do

these values represent?

Chapter 3: Chapter Name · Page 105

28. What range of values is the Arccosine subroutine designed to return? What do
these values represent?

29. What range of values is the Arcsine subroutine designed to accept? What do
these values represent?

30. What range of values is the Arcsine subroutine designed to return? What do
these values represent?

31. Why is it necessary to use the Arcsine subroutine to determine tilt angle?

Exercises

1. Write a command that receives the acceleration measurement from the
accelerometer's y-axis output pin is connected to P10.

2. Write a command that receives the acceleration measurement from the
accelerometer's x-axis output pin is connected to P9.

3. Write a command that converts the x-axis measurement to microseconds.
4. Write a command that converts the x-axis measurement to milliseconds.
5. Write a line of PBASIC code that scales a range from 0 to 100 to a range of 20 to

32.
6. Write a line of PBASIC code that scales a range from 40,000 to 50,000 to a

range of −17 to 17
7. Write a command that prevents a variables value from going below 100 or above

1000.
8. Write a command that prevents a variable's value from going below −100 or

above 100. Hint: The MIN and MAX operators are not designed for negative
numbers. Sift the range to 1 to 201 before limiting the values, then shift back.

9. Write a command that receives a signed decimal values from the Debug
Window's transmit windowpane and stores it in a variable named temp.

10. Write a command that multiplies a variable named temp up by 10.13.
11. Calculate how many brads are in 45°.
12. Calculate how many brads are in 355°.
13. Calculate how many degrees are in 20 brads.
14. Calculate how many degrees are in 250 brads.
15. If the result of the SIN operator is 63, what must have been the value it received?
16. If the result of the COS operator is -127, what must have been the value it

received?
17. If the result the ATN operator returned is 128, what can you say about the two

arguments it received?
18. If the result of the ATN operator returned is 160, what can you say about the two

arguments it received?

Page 106 · Smart Sensors and Applications

Projects

1. Design a device that counts the number of vertical circles it has rotated. Try
putting it inside a tire and rolling it down a hill.

2. Design a device that you can hang from a pendulum and it counts the number of
swings.

3. Mount your board on a standard servo's horn, and program it to stay level as you
rotate it.

4. Mount your board on a standard servo so that it rotates the board in the vertical
plane. Use the Ping))) detector to report the angle of the closed object. Cause
the servo to sweep every 10 seconds and then point at the closed object.

5. To make a self calibrating unit, you can cause the LCD to point in four different
directions (up, down, left, right). Each time the LCD points in a given direction,
the user should rotate the unit until the arrow on the LCD is pointing straight up.
Then, the user should press a button, let go and hold it there for a second. The
unit should beep when it is done testing the accelerometer's measurement. The
program should then develop it's own scale factors so that it displays an accurate
scale as you tilt it.

