
Debug Support on the ColdFire Architecture

William Hohl, Joe Circello, Klaus Riedel

Motorola, Inc.
High Performance Embedded Systems

6501 William Cannon Drive West
Austin, Texas 78735

Motorola, Inc.
Phoenix Design Center

432 North 44th St., Suite 200
Phoenix, Arizona 85008

ABSTRACT

Debug support on the ColdFire architecture is designed to
be well-suited to embedded systems, and provides both real-
time and background debugging techniques. A dedicated
port for real-time information and a serial port allow users
to read and write to memory, address and data registers, set
up complex, multi-level breakpoints and trace execution
paths of instructions. The debug module also includes new
features such as concurrent debug and core operations and
programmable real-time trace support visible on a parallel
output port.

1. INTRODUCTION

There are a number of methods in use today among embed-
ded microprocessors for system emulation and debug sup-
port, such as OnCETM and COPTM. The desire to examine
register contents, memory and on-chip peripherals in a non-
intrusive fashion has provided an impetus for developing a
debug architecture that can access all of these system re-
sources but that does not tie up any user resources, such as a
bus or the system configuration registers. The difficulties in
examining resources in an embedded environment stem
from the inaccessibility of the data and/or address bus. Sys-
tem configurations such as the one shown in Fig. 1, where
processor status bits and all data and address busses are
available, allow logic analyzers and emulators to gain suffi-
cient visibility to the internal operations of the core and do
not require any additional debugging mechanism.

As is the case with many embedded cores, however, the pro-
cessor might be connected to a number of internal devices,
such as DMAs, A/D converters or parallel ports, and the bus
may not be visible to the external debugger. As the block di-
agram in Fig. 2 shows, custom logic may be present with in-
ternal memory, which may make emulation difficult because
of proprietary design considerations. This scheme would re-
quire an invasive technique in order to determine register
and memory contents.

In the development of a new debug unit for the ColdFire

family of embedded processors, real-time applications were
considered heavily in the design. Limitations from static de-
bug monitors arise from having to stop the application from
executing to read internal kernel resources or change the
state of a task [1]. Engine controllers, disk drive controllers
and other time-critical applications may not be able to with-
stand the suspension of the operating system because of
physical limitations, e.g., a disk drive head being damaged.
Although systems may not be able to completely halt to
evaluate register conditions or modify memory, some may
be able to tolerate small intrusions in their instruction
streams, small enough to allow an interrupt routine to save
register values and other essential variables to memory. Ad-
ditionally, being able to trace the dynamic execution path of
the instruction stream provides developers with the resourc-
es necessary to monitor and pinpoint any programming
problems.

The debug architecture of the ColdFire processors attempts
to address these issues of real-time debug functionality
across a wide range of possible microprocessor implemen-
tations through the use of separate I/O connections. In this
manner, a consistent interface between the external develop-
ment system and the ColdFire microprocessor is main-
tained, regardless of the type, protocol or presence of an
external bus. Real-time operating systems benefit from the
introduction of a parallel output port for monitoring the dy-
namic execution path of instructions. In addition to provid-
ing support for real-time debug functions, the ColdFire
debug unit is designed to provide a migration path for cur-
rent emulator packages. By supporting a proper subset of
the 683xx family background debug mode (BDM) instruc-
tions, emulators can reuse their existing interface.

In keeping with the design methodology of the ColdFire
family [2], the debug module is a fully synchronous, edge-
triggered design. Since the hardware is completely synthe-
sized, the scalable design can be targeted toward higher fre-
quencies with process improvements. The logic associated
with debugging operations occupies approximately twenty-
five percent of the core’s die area.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2. ARCHITECTURE

The emergence of the PowerPC architecture for desktop
and high-performance embedded applications has created
an opportunity for the 68000 family to refocus entirely on
cost-sensitive, deeply embedded systems. The ColdFire
architecture is the result of this development and repre-
sents a new approach targeted specifically for the
emerging class of advanced consumer electronics
applications.

Within the domain of cost-driven embedded systems,
there are several salient requirements. First, the processor
core must be small to permit cost-effective integration of
on-chip memories and other system modules and peripher-
als. Second, a high-density instruction set can minimize
memory requirements. In many designs, the cost of the
memory system exceeds the microprocessor cost, so this
factor can significantly impact overall system cost. The
ColdFire processor architecture addresses these require-
ments through a variable-length instruction set to
maximize code density implemented in a RISC-based
approach to provide a very efficient silicon design.

The ColdFire architecture uses a synthesis-driven, tools-
based design approach. This methodology allows for the
simple addition of optional hardware modules to provide
custom functions, and provides design independence

across different process technologies that target a range of
operating frequencies and voltages.

The ColdFire processor core is implemented with two,
independent and decoupled pipelines: a 2-stage instruction
fetch pipeline for prefetching instructions and a 2-stage
operand execution pipeline to perform the actual instruc-
tion execution. A 12-byte instruction buffer serves as the
FIFO queue between the two pipelines and provides the
decoupling mechanism. The operand execution pipeline is
based on the traditional RISC compute engine structure
with a dual read-ported register file feeding the ALU. Reg-
ister-to-register instructions are executed in a single
pipeline cycle utilizing hardwired control of the proces-
sor's resources. For instructions reading operands from
memory, each stage of the operand execution pipeline is
used twice: first, for operand address generation and sec-
ond, for the actual execution of the instruction. The
resulting execution of these “embedded-load” instructions
provides good performance while minimizing the proces-
sor's implementation size.

Thus, the ColdFire processor architecture provides near-
68040 levels of performance at a given frequency in a
core size smaller than the original 68000 design [2].

The ColdFire design provides a series of hierarchical inter-
nal buses, each providing the appropriate bandwidth based
on location within the architecture. The position of the
debug unit in relation to the core is shown in Fig. 3. The
debug unit connects to the K-Bus, a high-speed, single-
cycle bus connecting the processor core to internal memo-
ries (e.g., cache, RAM, etc.). Other peripheral devices,
like a DMA controller, timer or serial communication
interface, are connected to the processor through the M-
Bus (master bus).

A simplified block diagram of the debug unit is shown in
Fig. 4. The ColdFire processor provides real time trace func-
tionality through a parallel output port that delivers encoded

Custom
Logic

Core Memory

Core

External
CacheMemory

System Board

System Board

Internal A/D Bus

Internal A/D Bus

Serial Port
JTAG Port
Status

Serial Port
JTAG Port
Status

Custom I/O

Fig. 1Board configuration with bus visibility

Fig. 2 Board configuration without bus visibility

Core On-ChipK-Bus
MMU/Controller

Debug
Module

M-Bus

Serial I/O{DDATA, PST}

Memory

Fig. 3 Processor/Memory complex with Debug Module

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

processor status and data. This port is partitioned into two 4-
bit sections: one nibble displays the execution status of the
core (PST), while the other displays operand data (DDATA).
The nibble-wide DDATA port is connected to the K-Bus by
a two entry FIFO buffer. The FIFO buffer consists of two 32-
bit storage registers that capture K-Bus information - target
addresses and operand data - and displays it on the DDATA
port continuously. The execution speed of the processor is
affected only when both storage elements have valid data
waiting to be dumped onto the DDATA port. When this oc-
curs, the processor is stalled until one storage element be-
comes available.

The remaining datapath is for background debug and real-
time debug operations. It contains two control registers: the
configuration status register (CSR) and the trigger definition
register (TDR). The CSR defines the operating configu-
ration for the processor and memory subsystem, as well as
reflecting the status of the breakpoint logic. The TDR con-
figures the breakpoint logic and defines the type of action
taken in response to hardware breakpoints. The available
breakpoint and comparison registers are the upper and lower
address breakpoint registers (ABHR, ABLR), the attributes
register (AABR) which contains a mask in the upper eight
bits, the data breakpoint register (DBR) and its mask
(DBRM), and the program counter breakpoint register
(PBR) and its mask (PBRM). One additional register
(RDATA) resides in the debug unit to hold incoming data
from the data bus during certain instructions like reads and
core-initiated writes to the debug module.

In order to minimize transistor count as much as possible, a
number of debug resources are shared between real-time
support and background debug mode. While in BDM, the

breakpoint registers are used to hold address and operand in-
formation to be driven on the bus during reads and writes.
These same registers also hold breakpoint configurations
during real-time debug operations. The use and operation of
these registers is described in more detail in sections 4 and 5.

Enhanced Instruction Set. Several new instructions were
added to the existing 68000 family instruction set [3] to ac-
commodate the debug unit: HALT, PULSE, WDDATA and
WDEBUG. The core can execute the HALT instruction to
suspend processor activity and allow for background debug-
ging. Before halting operation, all previous instructions and
bus cycles are completed in the core. The processor then re-
sumes execution once it receives a GO command from the
debug unit.

The PULSE command creates a unique processor status,
which is useful for generating a trigger to external logic dur-
ing debug or performance characterization.

To capture data and display it on the DDATA port, the
WDDATA instruction fetches the operand defined in the ef-
fective address, then places the appropriate number of nib-
bles on the DDATA output pins, independent of any debug
configuration.

Finally, the core can load all internal debug registers with
the WDEBUG instruction. This instruction forces memory
reads on the bus which are monitored by the debug unit. The
two consecutive longwords which are fetched contain a 48-
bit debug command: the first 16-bits are the debug opcode,
and the last 32-bits are the immediate operand to be loaded
into the destination debug control register (DRc). To make
the debug unit aware that these operands contain debug reg-

TDR

CSR

Control RegistersC
O
N
T
R
O
L

ABLR
Hardware registers

DBR

ABHR

DBMR

PBR PBMR

AABR RDATA

C
O
N
T
R
O
L

FIFO

MUXES

Serial Port

KDATA KADDR Stall to CPU

DDATA PST

KDATA
PST

from CPU

CLK DSI DSO

Fig.4 ColdFire debug module block diagram, showing real-time and background debug datapaths.

KADDR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ister information, the core assertscpu_wrt_drc in the debug
module. Once the bus access receives a transfer acknowl-
edge (kta), the instruction is loaded into the RDATA register,
then sent to the serial block. The debug unit then interprets
this instruction as if it were a background debug command,
routing the first half of the data into the appropriate debug
register. The second half of the data follows in the second
longword that is fetched. The process is illustrated in Fig. 5.
Since there are no hardware interlocks to prevent the core
and the debug unit from accessing the registers at the same
time, it is left to the user to ensure that simultaneous access-
es do not occur.

3. REAL-TIME TRACE SUPPORT

When connected to an external development system, the
PST/DDATA port provides a useful debug utility in tracking
the dynamic execution path of instructions. Since most
branch instructions in the ColdFire instruction set specify
PC-relative or absolute addressing, the PST indication of a
“taken branch” can be used with an external program image
to track the dynamic path. However, other change-of-flow
operations cannot be tracked using only this approach.
These difficult cases use some form of variant addressing,
where a program-visible register or memory location is used
in the calculation of the target instruction address. Examples
of this type of opcode include the JMP instruction through a
“jump table”, subroutine return, and all exceptions. Change-
of-flow operations using variant addressing can easily be
followed with the unique synchronization between the PST
lines displaying a taken branch, and the DDATA pins dis-
playing the target address. Two types of data can be option-
ally traced and identified: branch target addresses and
operand data. Control bits in the CSR define the number of
bytes of target address to display, as well as which type of
operand data to capture (read, write, or no data at all). Tables
1 and 2 show the possible configurations.

Tracing the flow of captured target addresses is done in the
following manner. The PST lines identify that a taken
branch was executed with an encoding of $5. The lines then

display a marker, signaling that the target address is to be
displayed on the DDATA pins. This marker also identifies
the number of bytes that will be displayed. Marker values of
$8, $9, $A, $B are used to quantify the contents of the
DDATA port. Possible PST markers and their definitions are
given in Table 3. On the subsequent cycle, the target address
is available, and it is then displayed on the DDATA pins,
least significant nibble to most significant nibble. The
DDATA port can be configured to display the lower 16 bits,
24 bits or the entire 32 bits of the target address. Depending
on the state of the FIFO, the marker may or may not be dis-
played on the cycle immediately following the taken branch
encoding on the PST port (PST = $5). Tracing the flow of
captured operand data is identical to the situation for target
addresses, except the marker is displayed after the PST
value signalling that the given instruction has started execu-
tion.

Fig. 6 shows the execution of an indirect JMP instruction
with the lower 16 bits of the target address being displayed
on the DDATA output. In this diagram, the indirect JMP
branches to address “target”. Note the processor internally
forms the PST marker ($9) one cycle before the address be-
gins to appear on the DDATA port, which is then displayed
for four consecutive clocks, starting with the least-signifi-
cant nibble. The processor continues execution, unaffected
by the DDATA bus activity.

One additional concept which is very important to the real-
time trace functionality is the notion of strict synchroniza-

Table 1: CSR Configuration for Operand Data Capture

CSR[12:11]
Data Captured and displayed on DDATA
port

00 no operand data

01 all M-Bus write data

10 all M-Bus read data

11 all M-Bus read and write data

Table 2: CSR Configuration for Target Address Capture

CSR[9:8]
Number of branch target address bytes to
be displayed on DDATA port

00 no branch target address

01 lower 2 bytes of the target address

10 lower 3 bytes of the target address

11 entire 4 byte target address

clk

kaddr

kdata

kta

cpu_wrt_drc

rdata

ea ea+4

c(ea) c(ea+4)

c(ea) c(ea+4)

Fig. 5 Core-initiated writes to debug registers

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

tion between the executed instruction stream, as defined by
the PST signals, and the availability of the captured data on
the DDATA signals. There is always a strict ordering such
that DDATA can be easily associated with the appropriate
instruction. A sample of code showing the PST/DDATA out-
put is given in Fig. 7, where the CSR is configured to display
two bytes of branch target address, all operands generate M-
bus accesses, and both read and write operands are captured.
Although the figure shows no overlap between non-zero
PST and DDATA values, in reality, overlap does exist.

4. REAL-TIME DEBUG FUNCTIONALITY

Real-time debug is applicable to systems that cannot be
completely halted to evaluate register or memory condi-
tions, but that can tolerate a small intrusion into real-time
operations. For these cases, the ColdFire architecture pro-
vides real-time debug capability by allowing the user to pro-
gram a wide range of breakpoint configurations and the type
of response that the debug unit provides. These options can
be configured by loading the various control registers
through either the serial port or the use of WDEBUG in-
structions directly from the core.

The ColdFire debug unit includes hardware breakpoint reg-
isters to define single and double-level triggers, with a pro-
grammable trigger response. Essentially, the breakpoint
mechanism operates in the following manner:

• Single-level trigger
if (condition == breakpoint register)

then Trigger
• Double-level trigger

if (condition1 == breakpoint register1)
then if (condition2 == breakpoint register2)

then Trigger

Both the single- and double-level triggers can be pro-

grammed using a combination of address, data and program
counter values.

Address values can be assigned to trigger on exactly one val-
ue, within a range, or outside of a range, where the high and
low values are stored in ABHR and ABLR. Attributes such
as transfer type and operand size may be factored into the
comparison.

Data breakpoints can be assigned to trigger on any one of
the four bytes within a long word, on a particular word in a
long word, or the entire 32-bit value. There is an additional
bit that allows the logical sense of the data breakpoint com-
parators to be inverted. A trigger based on the occurrence of
a data value not being equal to the programmed value is also
possible. To completely define the data breakpoint, a 32-bit
mask register is combined with the DBR value, where each
bit of the mask register affects the corresponding bit of the
breakpoint register. If a bit is set in the mask, then the corre-
sponding bit in the comparison is ignored. The data break-
point can be used for both aligned and misaligned operand
references.

Program counter breakpoints are allowed for regions out-
side of a programmed value or for the value itself, and a 32-
bit mask register is used in conjunction with the breakpoint
register. Since the actual program counter lies within the

Table 3: PST Marker Definitions for DDATA Transfers

PST[3:0] Marker Definition

1000 Begin 1-byte transfer on DDATA port

1001 Begin 2-byte transfer on DDATA port

1010 Begin 3-byte transfer on DDATA port

1011 Begin 4-byte transfer on DDATA port

DSOC AGEX

DSOC AGEX

IAG IC DSOC AGEX

IAG IC DSOC AGEX

$5 $9 $0 target

$0 $0 3:0 7:4 11:8 15:12

$5 $9 $0 target

$0 $0 3:0 7:4 11:8 15:12

Last

JMP (A0)

Target

Target + $4

Internal PST

Internal DDATA

PST Pins

DDATA Pins

Fig. 6Pipeline timing example with DDATA output

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ColdFire core, the core does the comparison of the break-
point register with the program counter of the instruction in
the Decode & Select/Operand Cycle (DSOC) stage of the
Operand Execution Pipeline [2]. After factoring in the mask
register, if a breakpoint occurs, the processor immediately
suspends execution until the defined trigger response can
take place. The trigger always occurs before the given in-
struction is executed to allow a precise interrupt for these
program counter breakpoints. This contrasts with the ad-
dress and/or data breakpoint triggers, which are imprecise.

For these triggers, the processor core may have executed

several additional instructions before the trigger is recog-
nized. This requirement was strongly encouraged by third-
party emulator vendors.

All of the breakpoints can be combined to create complex or
filtered triggers [4] that can greatly simplify real-time de-
bugging. As an example of a double-level trigger, a first-lev-
el breakpoint can be set if a user-mode operand word write
of any value other than $1234 occurs to address $3000. A
second-level breakpoint and trigger fires if this is followed
by the execution of the program counter equal to $8030. The
current state of the breakpoints can be read at any time from
a four-bit field in the CSR register. Table 4 shows all possi-
ble values for the field which provides read-only status in-
formation.

The trigger definition register contains two fields for config-
uring and enabling the two levels of breakpoints and one
field for defining the debug unit’s response once the break-
point has been encountered. Three types of trigger responses
are provided, and by their very nature, should interfere as lit-
tle as possible with normal operations. The first type of re-
sponse, and the least intrusive, is to show the trigger on the
DDATA output port and cause no internal response. When
the bus is not busy displaying captured data, the DDATA
lines will always show a trigger even if other options are
chosen.

The trigger can also generate a debug interrupt to the proces-
sor. This interrupt is considered higher in priority than all
other interrupts and causes the processor to vector to a
unique exception handler while executing in emulator
mode. As an example, this handler may save the state of all
of the program-visible registers, as well as the current con-
text, into a reserved memory area. Once the processor exits
this debug interrupt service routine, the memory area can be
read using the serial port and BDM commands. While exe-
cuting in emulator mode, the processor ignores all I/O inter-
rupt requests and all memory references may be mapped
into a special “alternate” space under control of a bit in the
CSR. By default, these references are simply mapped into

Table 4: Breakpoint Status Field Definition

CSR[31:28] Breakpoint Status

0000 no breakpoints enabled

0001 waiting for level 1 breakpoint

0010 level 1 breakpoint triggered

0101 waiting for level 2 breakpoint

0110 level 2 breakpoint triggered

Inst Address Instruction
00001316 movq #1, d0
00001318 mov.b d0, (-4,a6)
0000131c pea (-68,a6)
00001320 lea Func2, a0
00001326 jsr (a0)
0000115c mov.l d7, -(a7)

PST DDATA Description
$1 -- Begin inst @ 1316

 $1 -- Begin inst @ 1318
 $8 -- Write operand for inst @ 1318
 0 [3: 0] Bits from write operand for inst @ 1318
 0 [7: 4] Bits from write operand for inst @ 1318
 $1 -- Begin inst @ 131c
 $b -- Write operand for inst @ 131c
 0 [3: 0] Bits from write operand for inst @ 131c
 0 [7: 4] Bits from write operand for inst @ 131c
 0 [11: 8] Bits from write operand for inst @ 131c
 0 [15:12] Bits from write operand for inst @ 131c
 0 [19:16] Bits from write operand for inst @ 131c
 0 [23:20] Bits from write operand for inst @ 131c
 0 [27:24] Bits from write operand for inst @ 131c
 0 [31:28] Bits from write operand for inst @ 131c
 $1 -- Begin inst @ 1320
 $5 -- Begin taken-branch inst @ 1326
 $9 -- Target address for inst @ 1326
 0 $c Bits from target address (115c)
 0 $5 Bits from target address (115c)
 0 $1 Bits from target address (115c)
 0 $1 Bits from target address (115c)
 $b -- Write operand for inst @ 1326
 0 $8 Bits from return address for inst @ 1326
 0 $2 Bits from return address for inst @ 1326
 0 $3 Bits from return address for inst @ 1326
 0 $1 Bits from return address for inst @ 1326
 0 $0 Bits from return address for inst @ 1326
 0 $0 Bits from return address for inst @ 1326
 0 $0 Bits from return address for inst @ 1326
 0 $0 Bits from return address for inst @ 1326
 $1 -- Begin inst @ 115c

Fig. 7Sample code showing PST/DDATA synchronization

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

supervisor instruction and data spaces. Emulator mode is
exited when a Return from Exception (RTE) instruction is
performed. Note that emulator entry and exit are signalled
on the PST outputs.

The third and final response to a trigger is to enter back-
ground debug mode and halt the processor. The halted con-
dition is also displayed on the PST lines.

To help support real-time debug functions, the ColdFire ar-
chitecture allows simultaneous operation of the processor
core and the debug module. Background debug commands
which reference memory must first request the bus from the
core in order to perform the access. Included in this concur-
rent operation is an internal bus arbitration scheme which
effectively schedules bus cycles for the debug module by
stalling the processor’s instruction fetch pipeline and then
waiting until all operand requests have been serviced before
granting the bus to the debug module. The debug module
completes one bus transaction before releasing the bus back
to the processor. Registers within the debug module can be
loaded without interfering with core operations; however,
address and data registers within the core are not accessible
while the processor is running.

5. BACKGROUND DEBUG FUNCTIONALITY

The ColdFire processors support most of the BDM func-
tionality found on the 683xx family of parts, plus new in-
structions to access the debug module. This mode of
gathering information is primarily intended for background
operations, since the core is halted while the commands are
issued and executed.

Background debug mode can be entered by a variety of
methods. The first source of entry is theBKPT pin which is
sampled by the processor once during the execution of each
instruction. If there is a pending halt condition at the sample
time, then the processor suspends execution and enters the
halted state. The HALT opcode, which is considered a su-
pervisor instruction in the ColdFire instruction set, can also
force the processor to suspend execution. If a catastrophic
fault-on-fault condition occurs, such as a double bus fault,
then background debug mode is automatically entered. The
last way to enter BDM is through the use of the hardware
breakpoint registers. The hardware breakpoints that were
discussed in Section 4 can be configured to generate a pend-
ing halt condition in a manner similar to the assertion of the
BKPT signal. Regardless of the method used to enter BDM,
the fact that the core is halted is reflected on the processor
status lines and the method by which BDM was entered is
available in the CSR.

Once BDM is entered, commands are issued to the debug

unit via a full-duplex serial interface consisting of an input
pin (DSI), an output pin (DSO) and a system clock
(DSCLK). The external development system serves as the
master of the serial communication channel and is responsi-
ble for the generation of DSCLK. The operating range of the
serial channel is DC to 1/2 the frequency of the processor
clock. For ColdFire parts, two modes of clocking are al-
lowed - free-running or pulsed. A free-running DSCLK al-
lows commands to be shifted into the part at any point; the
development system, though, must be able to correctly inter-
pret NOT READY responses from the debug unit while it is
still processing a command. For the latter clocking scheme,
a command is entered, then the DSCLK is disabled for a cer-
tain period while the command (e.g., a read or write opera-
tion) is performed. Once the clock is enabled again, the
response can be shifted out.

For all ColdFire debug operations, the commands consist of
a variable number of 17-bit packets of information, one bit
for status/control and the remaining 16 bits for the
command/address/data. Typically, a read operation will in-
clude one packet defining the operation, followed by two
packets defining the address. Write operations include one
packet defining the operation, two packets for the address
and one or two packets containing the operand data. Table 5
lists the available commands. It was decided in the early
stages of the design that the entire 683xx command set was
not needed. Unlike the original 683xx debug routines that
exist as microcode, the new module sits apart from the core.
Implementing a CALL function is more difficult, since it is
involved in fundamental core operations. Third-party devel-
opers also felt that this function was unnecessary. Since the
debug module has the exact same addressability as the pro-
cessor itself, the commands to cause a RESET in any mod-
ule are available. Our “simple is better” philosophy dictated
that the RESET command be eliminated from the instruc-
tion set. Two of the original instructions were modified, and
two new instructions were added to the set.

Memory reads and writes are supported through the READ,
WRITE, DUMP, and FILL commands. Byte, word and
longword sizes are permitted, and all addresses are automat-
ically justified to natural boundaries - words on 0-modulo-2
addresses and longwords on 0-modulo-4 addresses. To illus-
trate the debug’s operational sequence, consider the case of
a read memory command. The first part of the instruction is
serially shifted into the serial port where it is decoded. The
ABLR register is then loaded with the second and third op-
words of the instruction. Since the debug unit and the core
can both be masters of the internal K-bus, a request is made
to the core for its control. Once the debug unit has been
granted the bus, it completes its access and relinquishes the
bus back to the core. The data which was read from memory

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

is then loaded into the RDATA register, transferred to the se-
rial register, and then serially shifted out.

Core address and data registers are accessed through the
RAREG and RDREG commands respectively. When per-
forming reads and writes to registers which reside in the
CPU, either address registers or data registers, the debug
unit actually uses the internal K-bus for these operations. A
write command to register D0, for example, converts the
BDM opcode into an address, and generates a special
“CPU-space” reference on the K-bus. The MMU/Controller
module decodes this special access, and signals the proces-
sor core of the required operation. The desired operand data
is driven onto the data portion of the K-bus by the debug
unit, captured by the processor and eventually written to the
D0 register after a fixed-length sequence.

Two existing commands were modified to access processor
control registers - RCREG and WCREG. Since there is a
large number of registers associated with the ColdFire archi-
tecture, the BDM commands use a new set of operation en-
codings to reference them. The second and third words of
the command effectively form a 32-bit address used by the
debug module to generate a special bus cycle to access the

targeted control register. The low-order 12 bits of the ad-
dress used to access the register are identical to the encoding
used by the processor’s MOVEC (Move Control Register)
instruction.

To load the debug unit’s control and breakpoint registers
from the processor, the new WDREG instruction is execut-
ed. Since the core and serial port can both write to debug
registers, once a breakpoint is configured by the emulator,
the core could potentially overwrite the setup. Therefore, a
mechanism was added so that once the debug registers are
configured, a bit in the configuration status register could be
set to inhibit any processor-initiated writes to the debug
breakpoint registers. This bit can only be modified through
commands from the external development system. At this
time, only one debug register can be read through the serial
port, the CSR register, and the instruction used for reading
it is RDREG.

Some detail should be given concerning the use of BDM
during reset, since the ColdFire operation differs slightly
from other embedded processors. A common situation is
one where a system is normally booted from an external
ROM. During development it may be desirable to couple the
embedded core with on-chip RAM so that an image of the
code can be loaded before reset, allowing the developer to
easily modify code during testing. The debug architecture
allows an external breakpoint to halt the processorbefore re-
set exception processing has begun. When the external reset
pin is asserted, all control registers in the microprocessor are
initialized. After the pin has been negated, there is a window
of time where the core remains idle before starting the reset
exception processing. During this time, the external devel-
opment system may assert a BKPT to the processor to con-
figure the system. The processor samples for the breakpoint,
and if asserted, suspends the reset exception processing. At
this point, the processor signals a halt status on the PST out-
put pins, and the external development system may down-
load memory and configure any hardware registers. Once
this is completed, the core is restarted using the GO com-
mand. The processor's response to this command is depen-
dent on the BDM operations performed while halted. If the
core's program counter wasnot modified, then the suspend-
ed reset exception processing simply continues. However, if
the program counter was loaded, then the normal reset ex-
ception processing is bypassed and the processor passes
control to the instruction address contained in the PC.

6. CORE OPERATIONS

As noted previously, the occurrence of a breakpoint trigger
can be programmed to generate a special debug interrupt.
This interrupt is processed at a higher priority than all other
interrupts and places the processor in a special emulator

Table 5: BDM Command Summary

Mnemonic Description

READ
Read the sized data at the memory lo-
cation specified by the longword ad-
dress.

WRITE
Write the operand-data to the memory
location specified by the longword ad-
dress.

DUMP
Used in conjunction with the READ
command to dump large blocks of
memory.

FILL
Used in conjunction with the WRITE
command to fill large blocks of memo-
ry.

GO
The pipeline is flushed and refilled be-
fore resuming instruction execution at
the current PC.

NOP NOP performs no operation and may
be used as a null command.

WCREG Write the operand data to the system
control register.

RCREG Read the system control register.

WDREG
Write the operand data to the Debug
Module register.

RDREG Read the Debug Module register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

mode of operation. In addition to this method of entry, there
are several other ways to enter this mode. Using control bits
in the CSR, the processor can be forced to initiate reset ex-
ception processing in emulator mode. Additionally, another
CSR bit allows the occurrence of a trace mode to force entry
into emulator mode. This feature can be useful in develop-
ing a single-step debugger in conjunction with an external
development system. In all cases, the processor remains in
emulator mode until the execution of an RTE instruction.

Finally, the CSR provides a number of additional bits for
controlling processor core operation. One bit provides for a
single-step mode where the processor executes one instruc-
tion and then halts automatically, while another bit enables
a non-pipelined mode operation. With this mode enabled,
the processor essentially executes a single instruction at a
time with no pipeline overlap.

7. CONCLUSIONS

Proper support for debug functionality was a notable goal of
the ColdFire design, since it is viewed as critical for wide-
spread adoption of this family of microprocessors. We have
attempted to define an architecture that addresses the need
for real-time trace and debug, preserves the existing 683xx
family BDM functions and provides a consistent interface
between the microprocessor and the external development
system across a wide variety of potential configurations.
The ColdFire architecture maintains compatibility with the
large base of embedded development toolsets and takes ad-
vantage of the knowledge base of engineers and program-
mers throughout the world. With over 100 million 68K
family microprocessors shipped, the ColdFire architecture
provides an exciting new direction to allow Motorola to con-
tinue its leadership role as the premier provider of 32-bit
embedded solutions.

8. REFERENCES

[1] E. Kuzara, “Real-Time Debugging of Embedded Oper-
ating Systems,” inProc. of Second Annual Embedded Sys.
Conf. East, April 1994, pp. 241-250.
[2] J. Circello, “ColdFire: A Hot Processor Architecture”,
Byte, vol. 20, no. 5, pp. 173-174, May, 1995.
[3] M68000 Family Programmer’s Reference Manual, Mo-
torola, Phoenix, AZ, 1992.
[4] J. Liband and T. Blakeslee, “Techniques for Real-Time
Debugging,” inProc. of Fifth Annual Embedded Sys. Conf.,
Oct. 1993, pp. 121-138.

William Hohl is a systems architect with Motorola’s High
Performance Embedded Systems Division. He received the
BSEE and MSEE degrees from Texas A&M University, and
specialized in digital speech processing and digital systems.
He previously worked on the 68040 microprocessor and was

lead designer of the debug unit for the ColdFire architecture.

Joe Circello is a microprocessor architect for Motorola’s
High Performance Embedded Systems Division. With 20
years of experience in mainframes to microprocessors, he is
a veteran designer specializing in pipeline organization and
performance analysis. While at Motorola, he was pipeline
architect for the 68060 and has developed the ColdFire ar-
chitecture.

Klaus Riedel is a system designer with Motorola’s High
Performance Embedded Systems Division. He received a
BSEE degree from the University of Texas at Austin. He has
previously worked on Motorola’s first ColdFire part - the
MCF5102 - and designed the real-time functionality logic
on the debug unit.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	freescale.com
	http://www.freescale.com/files/dsp/doc/white_paper/MCF5XXXDBWP.pdf

