
 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 1
 http://www.machineBus.com 866 864-8100 (toll free)

Product Datasheet: MCI-100P

Microcontroller/CAN Interface for use with the Parallax BASIC Stamp

Revised: March 8, 2005

Features

• Designed specifically for the Parallax BASIC Stamp

• Minimizes the memory requirements and processing burden on the Stamp

• Maximizes the data transfer rate

• Can be powered off of the Stamp’s on-board power regulator

• Field programmable to support future changes and enhancements

• Controller Area Network (CAN) port

• CAN 2.0A & 2.0B compliant

• Compatible with the ISO 11898-2 standard

• High speed (up to 1 Mbit/sec)

• Supports both 11-bit and 29-bit identifiers

• UART port

• Communication speeds up to 115,200 bits/sec

• Direct UART to UART connection. No transceiver necessary

• 240 byte internal receive buffer

Description

The MCI-100P Microcontroller/CAN Interface is a low-power, high-performance CAN co-processor designed for use

with the Parallax BASIC Stamp. The MCI-100P minimizes the memory requirements and processing burden on the
Stamp while maximizing the data transfer rate. The low-level CAN hardware details are encapsulated in an easy-to-
use, PBasic software interface. The MCI-100P has the capability of being reprogrammed in the field, making it
possible to support custom applications and higher layer CAN protocols such as CANopen and DeviceNet.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 2
 http://www.machineBus.com 866 864-8100 (toll free)

Block Diagram

CAN Controller

CAN Transceiver

Processor

UART

Memory

Vcc

C
A

N
_

L

C
A

N
_

H

R
x

T
x

C
T

S

R
F

R

Figure 1. Block Diagram

Pin Configuration

JP1

L
E

D

G
n

d

V
c
c

C
A

N
_

L

C
A

N
_

H

S
ig

n
a

l
G

n
d

T
x

R
x

R
F

R
 (

in
)

C
T

S
 (

o
u
t)

123412345

CON 1CON2

1.5 in.

1
.0

 i
n

.

Figure 2. Pinout MCI-100P

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 3
 http://www.machineBus.com 866 864-8100 (toll free)

Pin Descriptions

Pin Name Description

1 Gnd External power ground

2 CAN_L CAN_L bus signal (dominant low)

3 CAN_H CAN_H bus signal (dominant high)

4 Vcc External power Vcc (+5V)

Table 1. Power/CAN Connector (CON 1)

Pin Name Description

1 Signal Gnd Signal ground

2 Tx Transmitted data

3 Rx Received data

4 RFR (in) Ready-For-Receive (input from Stamp)

5 CTS (out) Clear-To-Send (output to Stamp)

Table 2. UART Connector (CON 2)

Hardware Operation

The MCI-100P has a simple hardware interface. It can be connected directly to the BASIC Stamp, requiring no
additional electronic components. It is possible to power the device directly off of the BASIC stamp or from any +5
VDC power source.

J
P

1

LED

Gnd

Vcc

CAN_L

CAN_H

Signal Gnd

Tx

Rx

RFR

CTS

1

2

3

4

1

2

3

4

5
Stamp SEROUT: Fpin

Stamp SERIN: Fpin

Stamp SEROUT: Tpin

Stamp SERIN: Rpin

Stamp Vss

MCI-100P

Stamp Vss or External Gnd

Stamp Vdd or External 5V

External CAN bus CAN_H

External CAN bus CAN_L

CON2

CON1

Figure 3. Interfacing the MCI-100P with the BASIC Stamp and a CAN bus

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 4
 http://www.machineBus.com 866 864-8100 (toll free)

Communication between the MCI-100P and the BASIC Stamp

The MCI-100P and the BASIC Stamp communicate via a serial interface. The PBasic commands SERIN and
SEROUT are used for this purpose. The MCI-100P uses hardware flow control to prevent overrunning the BASIC
Stamp. The flexibility of the SERIN and SEROUT commands give you the choice of which pins you would like to use
for receive, transmit and flow control (see the PBasic manual for more information). The following table summarizes
how the connections should be made.

MCI-100P Pin Basic Stamp Pin

CON2: Pin 1 (Signal Ground) Vss

CON2: Pin 2 (Tx) SERIN: Rpin

CON2: Pin 3 (Rx) SEROUT: Tpin

CON2: Pin 4 (RFR) SERIN: Fpin

CON2: Pin 5 (CTS) SEROUT: Fpin

Table 3. MCI-100P to BASIC Stamp UART connections

The MCI-100P supports the following PBasic baud rates: 600, 1200, 2400, 4800, 9600, 19200 and 38400.

Powering the MCI-100P

The MCI-100P requires a regulated +5 VDC power source. It is possible to power the device from the BASIC Stamp
or from an external supply.

When powering from the BASIC Stamp, the Gnd and Vcc pins of the MCI-100P should be connected to the Stamp’s
Vss and Vdd pins, respectively. It is recommended that the status LEDs of the MCI-100P be disabled when
powering off of the Stamp’s power regulator (see the “Disable LEDs” function below).

When powering from an external power source, make certain that there is only one supply.

MCI-100P Pin Basic Stamp Pin or Extermal Supply

CON1: Pin 1 (Gnd) Vss or ground of the external supply

CON1: Pin 4 (Vcc) Vdd or +5VDC of the external supply

Table 4. MCI-100P to BASIC Stamp power connections

Interfacing with a CAN bus

Connecting the MCI-100P to a CAN bus is straightforward. The MCI-100P’s CAN_L and CAN_H lines should be
connected to the CAN_L and CAN_H line of the CAN bus, respectively. Please note, if the MCI-100P is the last
device on either end of the bus, a 120 ohm resistor should be used to terminate the bus. The resistor should connect
CAN_H and CAN_L together. It is always a good idea to properly terminate the bus, even though it may not seem
necessary with short bus lengths.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 5
 http://www.machineBus.com 866 864-8100 (toll free)

MCI-100P Pin CAN bus

CON1: Pin 2 (CAN_L) CAN_L

CON1: Pin 3 (CAN_H) CAN_H

Table 5. MCI-100P to CAN bus connections

Example: The BASIC Stamp HomeWork Board

The diagram and picture in Figure 4 demonstrate one method of connecting the MCI-100P to the BASIC Stamp
HomeWork Board. In this example the MCI-100P is powered off of the BASIC Stamp’s power regulator. Also, note
the terminating resistor located between the CAN bus cable and the MCI-100.

J
P

1

LED

Gnd

Vcc

CAN_L

CAN_H

Signal Gnd

Tx

Rx

RFR

CTS

1

2

3

4

1

2

3

4

5
Stamp: P7

Stamp: P8

Stamp: P9

Stamp: P10

Stamp: Vss

MCI-100P

Stamp: Vss

Stamp: Vdd

External: CAN_H

External: CAN_L

CON2

CON1

Figure 4: The MCI-100P connected to the BASIC Stamp HomeWork Board

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 6
 http://www.machineBus.com 866 864-8100 (toll free)

Software Operation

If you are not familiar with Controller Area Network, we recommend that you read the document “An Overview of
Controller Area Network (CAN) Technology”. The document can be found on the Machine Bus web site at
http://www.machinebus.com/documents/canTechnologyOverview.pdf.

The MCI-100P and the firmware loaded on it have been designed with the following goals in mind:

• Minimize the memory requirements and processing burden on the Stamp. CAN has the potential of
placing huge demands on a processor. The MCI-100P is a microcontroller-based solution. The advantage
to this design is that the MCI-100P becomes a CAN co-processor for the Stamp. This solution relieves the
Stamp of much of the memory and processing requirements needed to manage CAN communications.

• Maximize the data transfer rate between the MCI-100P and the Stamp. The Stamp has the highest data
transfer rate using asynchronous serial communication1. The MCI-100P is capable of communicating at
speeds up to 115,200 baud.

• Make the MCI-100P re-programmable to support future enhancements. The MCI-100P uses a field-
programmable flash and eeprom memory. The ability to reprogram the MCI-100P in the field opens up a
number of possibilities, including the ability to tailor the interface to a particular application or to support
common higher layer protocols such as CANopen and DeviceNet (contact Machine Bus for more
information).

The Basic CAN Controller API

All aspects of the CAN protocol are typically implemented by hardware based CAN controllers. This reduces the load
on the host system that requires access to the CAN bus. These controllers are typically implemented as stand-alone
integrated circuits or as part of a microcontroller package. There are two primary classes of CAN controller, Basic
CAN and Full CAN. The acceptance filtering and buffering capabilities are what differentiate these two controller
classes.

A CAN system is based on the broadcast principle. This means that all nodes receive every message that is
transmitted on the bus. In most cases a receiving node will only be interested in a subset of the transmitted
messages. Acceptance filtering is used to limit the number of messages that the host system needs to deal with.
Typically the acceptance filter is only concerned with the message identifier but other methods of filtering maybe
possible depending upon the particular controller’s capabilities.

Basic CAN controllers are characterized as having one transmit buffer and one receive buffer with a single
acceptance filter. Some Basic CAN controllers are capable of storing multiple messages in its buffer, but the same
acceptance filter is used on all incoming messages. The Basic CAN approach is easy to use and is available on
most all controller implementations.

The MCI-100P presents an API that models the Basic CAN controller. The software interface is relatively simple and
designed to reduce the memory and processing burden on the stamp. Because all interaction with the MCI-100P
must take place via serial communication, the Basic CAN API consists entirely of data structures. These data
structures represent functions, their return values and information used by your BASIC Stamp application.

1 According to the Stamp PBasic manual

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 7
 http://www.machineBus.com 866 864-8100 (toll free)

Calling MCI-100P Functions

The MCI-100P communicates with the BASIC Stamp via a serial interface. Therefore, all commands sent to and all
results received from the MCI-100P are in the form of a data stream. The structure of a command follows a format
very similar to a function in the C language. The basic pattern is as follows:

1. Transmit the command code. A command begins by transmitting a command code to the MCI-100P. The
command code is a single byte that instructs the MCI-100P which operation you are invoking.

2. Transmit any parameters. If a command accepts parameters, then these are transmitted next. The MCI-
100P expects that all parameters will be sent and will not process the command until it receives them.
Special care must be taken when sending data structures with variable lengths. The CAN Message is a
good example. There are two variables encoded into the “fieldInfo” field of the CAN Message that
determine its length. The MCI-100P will be expecting, and will only accept, the amount of data specified by
this field.

3. Receive any resulting data. If a command returns any resulting data, then the MCI-100P will transmit it to
the BASIC Stamp after the last parameter byte is received. The MCI-100P will not accept another
command until the BASIC Stamp receives all the data. Again, special care must be taken when accepting
data structures with a variable length.

4. Receive the status code. Every command ends with a status code. The status code is sent by the MCI-
100P to indicate whether the command was successful or not.

The MCI-100P Boot Process

There are some start up activities that need to take place before the MCI-100P is ready to receive and transmit
CAN messages. The PBasic example in Appendix A demonstrates how the boot process is executed. The
following describes the process.

1. Establish the serial data rate. The data rate between the BASIC Stamp and the MCI-100P needs to
be established. The MCI-100P is able to automatically determine the speed the Stamp is transmitting
at. Sending a single ASCII carriage return character to the MCI-100P at the intended data rate will
accomplish this. The MCI-100P supports the following Stamp baud rates: 600, 1200, 2400, 4800,
9600, 19200 and 38400.

2. Enter command state. At this point, the communication between the BASIC Stamp and the MCI-100P
should be established. To test this, and to confirm that the MCI-100P is ready to accept commands, a
series of fourteen (14) null values should be sent to the MCI-100P.

3. Initialize the MCI-100P. An “Initialize” command should be sent to the MCI-100P.
4. Set the CAN bit timings. Bit timings are used by the CAN protocol to establish the parameters for

communication on the CAN bus. They are relatively complicated to determine. There are two ways to
set the CAN bit timings on the MCI-100P. Either the “Set Bit Rate” or the “Set Bit Timings” command
can be used. The “Set Bit Timings” allows the caller to set the raw bit timing values. This command
should only be used in extreme circumstances. The “Set Bit Rate” command will automatically set the
proper CAN bit timings, based on the data rate requested (e.g. 125 kbits/sec).

5. Set the CAN acceptance filter. A CAN system is based on the broadcast principle. This means that
all nodes receive every message that is transmitted on the bus. To keep from overwhelming the BASIC
Stamp with unnecessary messages, an acceptance filter can be set. The acceptance filter is a feature
of the Basic CAN controller and is implemented in hardware, so it is very efficient. There are two ways
to set the acceptance filter in the MCI-100P. Either the “Set Filter” or the “Receive All” command can
be used. The “Set Filter” command allows you to set a very specific CAN acceptance filter, but is rather
complicated. As a shortcut, the “Receive All” command is provided to automatically configure the
acceptance filter to receive all CAN messages.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 8
 http://www.machineBus.com 866 864-8100 (toll free)

6. Enable the MCI-100P. Once the MCI-100P has been properly configured, it needs to be enabled. An
“Enable” command allows it to take place in CAN bus communications.

7. Enter a message processing loop. Once the MCI-100P has been enabled, its status must be polled
continuously. The BASIC Stamp should enter an endless “DO” loop where it calls and processes the
“Status” command. All other application tasks should also take place in with this loop.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 9
 http://www.machineBus.com 866 864-8100 (toll free)

Data: CAN Message

Description: This is a true data structure and represents a CAN message. A CAN message is a packet of

information that is carried on a CAN bus. CAN Messages consist of header information and a data “payload”. A
CAN message is intentionally designed to carry a maximum payload of eight (8) data bytes.

Table 6 describes the structure of a CAN Message. Note that this is a variable length structure whose size can vary
from 3 to 13 bytes in length.

Field Size (Bytes) Field Name Description

1 FrameInfo Contains information on the frame format, the frame type,
and the data length (see Figure 11)

2 or 4 CAN identifier Either an 11-bit or 29-bit CAN identifier

0 – 8 CAN data Data length can vary from 0 to 8 bytes

Table 6: FrameInfo Field Format

The size of the CAN identifier and the CAN data is contained within the FrameInfo byte. Table 7 describes the
structure of the FrameInfo Byte.

Field Size (Bits MSB to LSB) Field Name Description

8 Frame Format 0 = Standard Frame (11-bit id) or,
1 = Extended Frame (29-bit id)

7 Remote Request 0 = Data Frame or, 1 = Remote Frame
(Does not contain data)

5 – 6 reserved Must be zero

1-4 Data length The number of data bytes

Table 7: FrameInfo Field Format

Example:

The following snippet of PBasic code demonstrates how to format a CAN Message for debug output.

'CAN message constants

FrameInfoExtended CON 128 'Frame format bit

FrameInfoRemote CON 64 'Remote transmission request bit

FrameInfoDataLength CON 15 'Data length code mask

'Variables

canMessage VAR Byte(13)

index VAR Byte

length VAR Nib

'Print the FrameInfo as a hexidecimal number

DEBUG "0x", HEX2 canMessage(0), " " 'FrameInfo

'Determine whether this message contains a standard or an extended id

IF(canMessage(0) & FrameInfoExtended) THEN Print_Extended_Id

'Print the standard id as a hexidecimal number

Print_Standard_Id:

 DEBUG "0x0000"

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 10
 http://www.machineBus.com 866 864-8100 (toll free)

 DEBUG HEX2 canMessage(1) 'MSB of Standard Id

 DEBUG HEX2 canMessage(2) 'LSB of Standard Id

 index = 3

 GOTO Print_Message_Data

'Print the extended id as a hexidecimal number

Print_Extended_Id:

 DEBUG "0x"

 DEBUG HEX2 canMessage(1) ' MSB of Extended Id

 DEBUG HEX2 canMessage(2)

 DEBUG HEX2 canMessage(3)

 DEBUG HEX2 canMessage(4) ' LSB of Extended Id

 index = 5

'Print the data payload if this is not a remote frame

Print_Message_Data:

 DEBUG " "

 IF(canMessage(0) & FrameInfoRemote) THEN End_Of_Print

 length = (index - 1 + (canMessage(0) & FrameInfoDataLength))

 FOR index = index TO length

 DEBUG HEX2 canMessage(index), " "

 NEXT

End_Of_Print:

 DEBUG CR

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 11
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Set Bit Timings

Description: Sets the CAN controller’s bit timing parameters (see the ‘Bit Rate’ command as an alternative)

Parameters: 7 bytes in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘1’ for this command

1 Baud Rate Prescaler Divisor for the CAN controller’s timing
source

1 Propagation Delay Segment Length of the Propagation Delay
Segment in time quanta

1 Phase Buffer Segment 1 Length of Phase Buffer Segment 1 in
time quanta

1 Phase Buffer Segment 2 Length of Phase Buffer Segment 2 in
time quanta

1 Synchronization Jump Width Length of the Synchronization Jump
Width in time quanta

1 Sample Mode 0 for one sample; 1 for three samples

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to set the CAN bit timing to 125 kbits/sec.

'CAN controller commands

CommandBitTiming CON 1

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'CAN bit timing settings

BaudRatePrescaler CON 4

PropagationDelay CON 7

PhaseBuffer1 CON 7

PhaseBuffer2 CON 7

SynchronizationJumpWidth CON 1

SampleMode CON 1

'Variables

status VAR Byte

'Execute the set bit timing function

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandBitTiming]

SEROUT SerialTx\SerialCts, SerialBaudmode, [BaudRatePrescaler]

SEROUT SerialTx\SerialCts, SerialBaudmode, [PropagationDelay]

SEROUT SerialTx\SerialCts, SerialBaudmode, [PhaseBuffer1]

SEROUT SerialTx\SerialCts, SerialBaudmode, [PhaseBuffer2]

SEROUT SerialTx\SerialCts, SerialBaudmode, [SynchronizationJumpWidth]

SEROUT SerialTx\SerialCts, SerialBaudmode, [SampleMode]

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 12
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Disable

Description: Disables the CAN controller. The CAN controller does not participate in bus activities when it is

disabled.

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘2’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to disable the CAN controller.

'CAN controller commands

CommandDisable CON 2

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandDisable]

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 13
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Enable

Description: Enables the CAN controller. The CAN controller participates in bus activities when it is enabled.

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘3’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to enable the CAN controller.

'CAN controller commands

CommandEnable CON 3

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandEnable]

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 14
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Get Error Count

Description: Returns the status of the CAN controller’s error registers

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘4’ for this command

Returns: 3 bytes

Field Size (Bytes) Field Name Field Description

1 Receive Error Count CAN controller’s receive error count

1 Transmit Error Count CAN controller’s transmit error count

1 Call Status Code Zero if successful

Examples:

The following snippet of PBasic code demonstrates how to retrieve the state of the error count registers.

'CAN controller commands

CommandErrorCount CON 4

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

rxErrorCount VAR Byte

status VAR Byte

txErrorCount VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandErrorCount]

SERIN SerialRx\SerialRfr, SerialBaudmode, [rxErrorCount]

SERIN SerialRx\SerialRfr, SerialBaudmode, [txErrorCount]

DEBUG “Receive error count = “, rxErrorCount

DEBUG “, Transmit error count”, txErrorCount, CR

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 15
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Set Filter

Description: Sets the CAN controller’s acceptance filter (see the ‘Receive All’ command as an alternative).

Parameters: 13 bytes in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘5’ for this command

4 CAN ID Filter CAN identifier to compare incoming message
to (MSB first)

4 CAN ID Mask Bit mask that determines which bits to compare
against the filter. 0 = bit will compare true
regardless of the corresponding filter bit; 1 =
compare bit against the corresponding filter bit
(MSB first)

1 Is Extended Filter Flag 0 if only standard identifiers should be
accepted; 1 if only extended identifiers should
be accepted

1 Is Extended Mask Flag 0 if both standard and extended identifiers
should be accepted; 1 if the incoming identifier
should be compared to the ‘Is Extended Filter
Flag’

1 Is Remote Filter Flag 0 if only data frames should be accepted; 1 if
only remote frames should be accepted

1 Is Remote Filter Mask 0 if both data and remote frames should be
accepted; 1 if the incoming identifier should be
compared to the ‘Is Remote Filter Flag’

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to set the CAN controller to receive only standard data
frames with an ID of “1”.

'CAN controller commands

CommandFilter CON 5

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandFilter]

SEROUT SerialTx\SerialCts, SerialBaudmode, [0] 'MSB of 32-bit filter id

SEROUT SerialTx\SerialCts, SerialBaudmode, [0]

SEROUT SerialTx\SerialCts, SerialBaudmode, [0]

SEROUT SerialTx\SerialCts, SerialBaudmode, [1] 'LSB of 32-bit filter id

SEROUT SerialTx\SerialCts, SerialBaudmode, [0] 'MSB of 32-bit mask id

SEROUT SerialTx\SerialCts, SerialBaudmode, [0]

SEROUT SerialTx\SerialCts, SerialBaudmode, [$07]

SEROUT SerialTx\SerialCts, SerialBaudmode, [$FF] 'LSB of 32-bit mask id

SEROUT SerialTx\SerialCts, SerialBaudmode, [0] 'isExtendedFilter

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 16
 http://www.machineBus.com 866 864-8100 (toll free)

SEROUT SerialTx\SerialCts, SerialBaudmode, [1] 'isExtendedMask

SEROUT SerialTx\SerialCts, SerialBaudmode, [0] 'isRemoteFilter

SEROUT SerialTx\SerialCts, SerialBaudmode, [1] 'isRemoteMask

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 17
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Initialize

Description: Initializes the CAN controller

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘6’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to initialize the CAN controller

'CAN controller commands

CommandInitialize CON 6

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandInitialize]

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 18
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Status

Description: Returns the status of the CAN controller

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘7’ for this command

Returns: 3 - 16 bytes

Field Size (Bytes) Field Name Field Description

1 Controller Status Status of the CAN controller

• Is the controller ready to transmit

• Has a message has been received

• Are there controller errors (see CAN
Controller Status below)

1 Controller Errors Controller error flags (see CAN Controller
Errors below)

0 – 13 Received CAN Message CAN message stored using the minimum
number of bytes

1 Call Status Code Zero if successful

Examples:

The following snippet of PBasic code demonstrates how to request and receive the status of the CAN controller.
Note the constants used to mask out the individual bits in the controller status and controller error fields.

'CAN controller status

ControllerState CON 7 'see "Controller States" below

ControllerReadyToTransmit CON 8 'set IF the controller is ready TO transmit

ControllerMessageReceived CON 16 'set IF a message has been received

ControllerErrorOccured CON 32 'set is an error has occurred

'CAN controller states

ControllerDisabled CON 0 'the CAN controller is disabled

ControllerErrorActive CON 1 'the CAN controller is "error active"

ControllerErrorWarning CON 2 'still "error active" but error counters > 96

ControllerErrorPassive CON 3 'the CAN controller is "error passive"

ControllerBusOff CON 4 'the CAN controller is "bus off"

'CAN controller errors

ControllerReceiveOverrun CON 1 'the receive buffer has been overrun

ControllerBitError CON 2 'a Bit could NOT be transmitted correctly

ControllerFormError CON 4 'the received CAN message was malformed

ControllerStuffError CON 8 'expected a stuff Bit

ControllerCrcError CON 16 'the CRC checksum is wrong

ControllerAckError CON 32 'the transmitted message was NOT acknowledged

'CAN controller commands

CommandStatus CON 7

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 19
 http://www.machineBus.com 866 864-8100 (toll free)

canMessage VAR Byte(13)

controllerStatus VAR Byte

controllerErrors VAR Byte

index VAR Byte

length VAR Nib

status VAR Byte

‘Send the status command and receive the controller status and any error codes

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandStatus]

SERIN SerialRx\SerialRfr, SerialBaudmode, [controllerStatus]

SERIN SerialRx\SerialRfr, SerialBaudmode, [controllerErrors]

‘Did we receive a message?

IF((controllerStatus & ControllerMessageReceived) = 0) THEN End_Of_Status

‘Retreive the frameInfo and determine the size of the identifier

SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(0)] 'Frameinfo

IF(canMessage(0) & FrameInfoExtended) THEN Rx_Extended_Id

‘Retrieve a standard identifier

Rx_Standard_Id:

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(1)] ' MSB of Std Id

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(2)] ' LSB of Std Id

 index = 3

 GOTO Rx_Message_Data

‘Retrieve an extended identifier

Rx_Extended_Id:

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(1)] ' MSB of Ext Id

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(2)]

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(3)]

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(4)] ' LSB of Ext Id

 index = 5

‘Retrieve the data if it exists

Rx_Message_Data:

 IF(canMessage(0) & FrameInfoRemote) THEN Can_Return

 length = (index - 1 + (canMessage(0) & FrameInfoDataLength))

 FOR index = index TO length

 SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(index)]

 NEXT

'Check the return value

End_Of_Status:

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 20
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Transmit

Description: Transmits a CAN message

Parameters: 4-14 bytes in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘8’ for this command

0 – 13 Received CAN Message CAN message stored using the minimum
number of bytes

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to transmit a CAN message.

'CAN controller commands

CommandTransmit CON 8

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandTransmit]

SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(0)] ' Frameinfo

IF(canMessage(0) & FrameInfoExtended) THEN Tx_Extended_Id

Tx_Standard_Id:

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(1)] ' MSB of Standard Id

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(2)] ' LSB of Standard Id

 index = 3

 GOTO Tx_Message_Data

Tx_Extended_Id:

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(1)] ' MSB of Extended Id

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(2)]

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(3)]

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(4)] ' LSB of Extended Id

 index = 5

Tx_Message_Data:

 IF(canMessage(0) & FrameInfoRemote) THEN Can_Return

 length = (index - 1 + (canMessage(0) & FrameInfoDataLength))

 FOR index = index TO length

 SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(index)]

 NEXT

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 21
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Set Bit Rate

Description: Sets the CAN controller’s bit rate (see the ‘Bit Timing’ command as an alternative)

Parameters: 3 bytes in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘9’ for this command

2 CAN Bit Rate CAN bit rate in 1000’s of bits/second. (Must be a
value of 10, 25, 50, 125, 250, 500, 800 or 1000)

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to set the CAN bit rate to 125 kbits/sec.

'CAN controller commands

CommandBitRate CON 9

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'CAN bit rate settings

BitRate CON 125

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandBitRate]

SEROUT SerialTx\SerialCts, SerialBaudmode, [(BitRate & $FF00)]

SEROUT SerialTx\SerialCts, SerialBaudmode, [(BitRate & $FF)]

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 22
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Receive All

Description: Sets the CAN controller’s acceptance filter to receive all messages (use as an alternative to the “Set

Filter” function).

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘10’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to set the CAN acceptance filter to receive all messages.

'CAN controller commands

CommandReceiveAll CON 10

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandReceiveAll]

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 23
 http://www.machineBus.com 866 864-8100 (toll free)

Function: Disable LEDs

Description: Disables the CAN controller’s status LEDs to conserve power

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘101’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to disable the status LEDs on the MCI-100P.

'CAN controller commands

CommandDisableLed CON 101

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7

SerialRfr PIN 8

SerialTx PIN 9

SerialRx PIN 10

'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandDisableLed]

'Check the return value

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 24
 http://www.machineBus.com 866 864-8100 (toll free)

Electrical Characteristics2

Absolute Maximum Ratings3

Operating Temperature -40°C to 85°C

Storage Temperature -65°C to 150°C

Voltage on Tx, Rx, RFR, and CTS pins with respect to ground -0.5 to Vcc + 0.2V

Voltage on CAN_H and CAN_L pins with respect to ground -36V to 36V

Voltage on Vcc with respect to ground -0.5 V to 6.0 V

DC current on Tx, Rx, RFR and CTS pins 10 mA max

DC Characteristics

Symbol Parameter Minimum Typical Maximum Units Note

Vcc Supply Voltage 4.38 5.00 6.00 V

2 Electrical Characteristics for this product have not yet been finalized. Please consider all values listed herein as preliminary
and non-contractual.
3 Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 25
 http://www.machineBus.com 866 864-8100 (toll free)

Appendix A: Basic CAN API Example

The purpose of this experiment is to show what it takes for the Stamp to be CAN aware. The PBasic software
configures the MCI-100P, writes a copy of every message on the CAN bus to the Stamp’s debug terminal and
echoes the message on the CAN bus, if configured to do so4.

The MCI-100P presents an API we call the Basic CAN Controller. This API is our wrapper around a Basic CAN
Controller (see The Basic CAN Controller API for more information). The PBasic example contains all the constants,
variables and code needed to make full use of the Basic CAN Controller API. It is possible to reduce the amount of
code by using only a subset of the Basic CAN Controller API’s features. The example in Appendix B shows how this
is done.

Hardware Setup

The diagram and picture in Figure 9 show how to connect the MCI-100P to the BASIC Stamp HomeWork Board. In
this example the MCI-100P is powered off of the BASIC Stamp’s power regulator. Also, note the terminating resistor
located between the CAN bus cable and the MCI-100.

J
P

1

LED

Gnd

Vcc

CAN_L

CAN_H

Signal Gnd

Tx

Rx

RFR

CTS

1

2

3

4

1

2

3

4

5
Stamp: P7

Stamp: P8

Stamp: P9

Stamp: P10

Stamp: Vss

MCI-100P

Stamp: Vss

Stamp: Vdd

External: CAN_H

External: CAN_L

CON2

CON1

Figure 5: The MCI-100P connected to the BASIC Stamp HomeWork Board

4 Warning: Do not run this example on a CAN bus where there is the potential for damage or injury. Altering the state of a
working system can cause unexpected results.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 26
 http://www.machineBus.com 866 864-8100 (toll free)

Software Setup

It takes a few steps to get the Basic CAN Controller API enabled. Once enabled, the Stamp is able to transmit and
receive CAN messages. The PBasic Code for this example can be found on the Machine Bus web site at the URL
http://www.machineBus.com/downloads/mci100p.zip.

API Initialization

Perform the following steps to enable the Basic CAN Controller API:

Step 1) Establish the serial communication rate

Step 2) Verify that you’re in the command state

Step 3) Initialize the Basic CAN controller

Step 4) Set the CAN bit rate or individual CAN bit timings (see ‘Bit Rate’ or ‘Bit Timings’ in The Basic CAN
Controller API)

Step 5) Set the acceptance filter (see ‘Receive All’ or ‘Filter’ in The Basic CAN Controller API)

Step 6) Enable the CAN controller

Step 7) Enter processing loop

These steps are clearly labeled in the PBasic example. See The Basic CAN Controller API for a full description of
the boot process.

Transmitting and Receiving CAN Messages

In order to transmit and receive, you must continually poll the status of the CAN Controller. The status tells you the
bus state of the controller, if any errors have occurred, if a message has been received and if the controller is ready
to transmit. See The Basic CAN Controller API for a full description.

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 27
 http://www.machineBus.com 866 864-8100 (toll free)

Appendix B: Blink

The purpose of this experiment is to demonstrate CAN communication between two Stamps. We’ll add a switch to
one Stamp, and a bi-color LED to the other. The state of the switch will control the color of the LED.

Hardware Setup

Two boards will have to be setup for this experiment. Diagrams and pictures of the completed boards are shown in
figures 11 and 12. Notice the 120 ohm terminating resistor between CAN_L and CAN_H. It is always a good idea to
properly terminate the bus, even though it may not be necessary with these short bus lengths. In this experiment the
MCI-100P receives its power from the Basic Stamp’s power regulator.

Basic Stamp
with LED

Basic Stamp
with Switch

120 ohm120 ohm

Figure 6: Both Stamp devices are connected via the CAN bus

J
P

1

LED

Gnd

Vcc

CAN_L

CAN_H

Signal Gnd

Tx

Rx

RFR

CTS

1

2

3

4

1

2

3

4

5
Stamp: P7

Stamp: P8

Stamp: P9

Stamp: P10

Stamp: Vss

MCI-100P

Stamp: Vss

Stamp: Vdd

External: CAN_H

External: CAN_L

CON2

CON1

R1

220

P0

S1
+5V

R2

10K

Stamp

Figure 7: Schematic and a picture of how to connect a switch and the Stamp/CAN Interface to
the Basic Stamp

 Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 28
 http://www.machineBus.com 866 864-8100 (toll free)

Update picture and diagram

R1

470
D1

P1

Stamp

P0

J
P

1

LED

Gnd

Vcc

CAN_L

CAN_H

Signal Gnd

Tx

Rx

RFR

CTS

1

2

3

4

1

2

3

4

5
Stamp: P7

Stamp: P8

Stamp: P9

Stamp: P10

Stamp: Vss

MCI-100P

Stamp: Vss

Stamp: Vdd

External: CAN_H

External: CAN_L

CON2

CON1

Figure 8: Schematic and a picture of how to connect a bi-color LED and the Stamp/CAN
Interface to the Basic Stamp

Running the Software

The PBasic Code for this example can be found on the Machine Bus web site at the URL
http://www.machineBus.com/downloads/mci100p.zip.

Step 1) Execute the PBasic file canSwitch.bs2 on the board with the switch.

Step 2) Execute the PBasic file canLed.bs2 on the board with the LED.

The color of the LED should alternate between red and green each time the switch is pressed and released.

