us.

Intelligent Control

Product Datasheet: MCI-100P

Microcontroller/CAN Interface for use with the Parallax BASIC Stamp®

Revised: March 8, 2005

Features

e Designed specifically for the Parallax BASIC Stamp®
e Minimizes the memory requirements and processing burden on the Stamp
e Maximizes the data transfer rate
e Can be powered off of the Stamp’s on-board power regulator
¢ Field programmable to support future changes and enhancements
e Controller Area Network (CAN) port
e CAN 2.0A & 2.0B compliant
e Compatible with the ISO 11898-2 standard
e High speed (up to 1 Mbit/sec)
e Supports both 11-bit and 29-bit identifiers
e UART port
e Communication speeds up to 115,200 bits/sec
¢ Direct UART to UART connection. No transceiver necessary
e 240 byte internal receive buffer

Description

The MCI-100P Microcontroller/CAN Interface is a low-power, high-performance CAN co-processor designed for use
with the Parallax BASIC Stamp®. The MCI-100P minimizes the memory requirements and processing burden on the
Stamp while maximizing the data transfer rate. The low-level CAN hardware details are encapsulated in an easy-to-
use, PBasic software interface. The MCI-100P has the capability of being reprogrammed in the field, making it
possible to support custom applications and higher layer CAN protocols such as CANopen and DeviceNet.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 1
http://www.machineBus.com 866 864-8100 (toll free)

Block Diagram

i i

]
1
(]
(]
(]
(]
(]
(]
(]
(]
i
]
]
(]
(]
(]
(]
(]
(]
:
i
]
:
. (]
UART CAN Transceiver —» Vce

(]
(]
(]
'
(]
]
]
(]
(]
(]
(]
(]
(]
:
(]
i Processor «—>»| CAN Controller
(]
(]
(]
(]
(]
(]
(]
:
]
(]
(]
:
]
(]
(]

CAN_H

Figure 1. Block Diagram

Pin Configuration

F 1.5in. 3
LT
£
- =
= < -
ElG G o 8 P
ox 5 gzze gll”
x =
OCCE&EFf®d S00G6
N/
L.conz---f Ltcont-

Figure 2. Pinout MCI-100P

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 2
http://www.machineBus.com 866 864-8100 (toll free)

Pin Descriptions

Pin Name Description

1 Gnd External power ground

2 CAN_L CAN_L bus signal (dominant low)
3 CAN_H CAN_H bus signal (dominant high)
4 Viee External power Vcc (+5V)

Table 1. Power/CAN Connector (CON 1)

Pin Name Description

1 Signal Gnd Signal ground

2 TX Transmitted data

3 Rx Received data

4 RFR (in) Ready-For-Receive (input from Stamp)
5 CTS (out) Clear-To-Send (output to Stamp)

Hardware Operation

Table 2. UART Connector (CON 2)

The MCI-100P has a simple hardware interface. It can be connected directly to the BASIC Stamp, requiring no
additional electronic components. It is possible to power the device directly off of the BASIC stamp or from any +5

VDC power source.

-
l|J:[|
g

LED O

Gnd ————"> Stamp Vss or External Gnd
CAN_L ——=> External CAN bus CAN_L
CAN_H |———> External CAN bus CAN_H

Vec ——-—> Stamp Vdd or External 5V

w|n

i
|
CON1
'
i

IS

E" Signal Gnd |———-_—> Stamp Vss
i Tx f=—_"> Stamp SERIN: Rpin
CON2 Rx —————_"> Stamp SEROUT: Tpin
! RFR f———> Stamp SERIN: Fpin
CTS ——> Stamp SEROUT: Fpin

a|ld|lw|n

Figure 3. Interfacing the MCI-100P with the BASIC Stamp and a CAN bus

MCI-100P

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.

http://www.machineBus.com

866 864-8100 (toll free)

Page 3

Communication between the MCI-100P and the BASIC Stamp

The MCI-100P and the BASIC Stamp communicate via a serial interface. The PBasic commands SERIN and
SEROUT are used for this purpose. The MCI-100P uses hardware flow control to prevent overrunning the BASIC
Stamp. The flexibility of the SERIN and SEROUT commands give you the choice of which pins you would like to use
for receive, transmit and flow control (see the PBasic manual for more information). The following table summarizes
how the connections should be made.

MCI-100P Pin Basic Stamp Pin
CON2: Pin 1 (Signal Ground) Vss

CON2: Pin 2 (Tx) SERIN: Rpin
CON2: Pin 3 (Rx) SEROUT: Tpin
CON2: Pin 4 (RFR) SERIN: Fpin
CON2: Pin 5 (CTS) SEROUT: Fpin

Table 3. MCI-100P to BASIC Stamp UART connections

The MCI-100P supports the following PBasic baud rates: 600, 1200, 2400, 4800, 9600, 19200 and 38400.

Powering the MCI-100P

The MCI-100P requires a regulated +5 VDC power source. It is possible to power the device from the BASIC Stamp
or from an external supply.

When powering from the BASIC Stamp, the Gnd and Vcc pins of the MCI-100P should be connected to the Stamp’s
Vss and Vdd pins, respectively. It is recommended that the status LEDs of the MCI-100P be disabled when
powering off of the Stamp’s power regulator (see the “Disable LEDs” function below).

When powering from an external power source, make certain that there is only one supply.

MCI-100P Pin Basic Stamp Pin or Extermal Supply
CON1: Pin 1 (Gnd) Vss or ground of the external supply
CON1: Pin4 (Vec) Vdd or +5VDC of the external supply

Table 4. MCI-100P to BASIC Stamp power connections

Interfacing with a CAN bus

Connecting the MCI-100P to a CAN bus is straightforward. The MCI-100P’s CAN_L and CAN_H lines should be
connected to the CAN_L and CAN_H line of the CAN bus, respectively. Please note, if the MCI-100P is the last
device on either end of the bus, a 120 ohm resistor should be used to terminate the bus. The resistor should connect
CAN_H and CAN_L together. Itis always a good idea to properly terminate the bus, even though it may not seem
necessary with short bus lengths.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 4
http://www.machineBus.com 866 864-8100 (toll free)

MCI-100P Pin CAN bus
CONT: Pin 2 (CAN_L) CAN_L
CONT: Pin 3 (CAN_H) CAN_H

Table 5. MCI-100P to CAN bus connections

Example: The BASIC Stamp HomeWork Board

The diagram and picture in Figure 4 demonstrate one method of connecting the MCI-100P to the BASIC Stamp
HomeWork Board. In this example the MCI-100P is powered off of the BASIC Stamp’s power regulator. Also, note
the terminating resistor located between the CAN bus cable and the MCI-100.

an

LED O

e Gnd ——> Stamp: Vss
CAN_L ——> External: CAN_L
' CAN_H 1> External: CAN_H
Vec ———> Stamp: Vdd

Q
-0 -
z
=
Hlw|n

"~ Signal Gnd ———_"> Stamp: Vss

i TXx |——> Stamp: P10
CON2 Rx |——> Stamp: P9
RFR p——{"> Stamp: P8

CTS ——> Stamp: P7

s W

MCI-100P

Figure 4: The MCI-100P connected to the BASIC Stamp HomeWork Board

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 5
http://www.machineBus.com 866 864-8100 (toll free)

Software Operation

If you are not familiar with Controller Area Network, we recommend that you read the document “An Overview of
Controller Area Network (CAN) Technology”. The document can be found on the Machine Bus web site at
http://www.machinebus.com/documents/canTechnologyOverview.pdf.

The MCI-100P and the firmware loaded on it have been designed with the following goals in mind:

e Minimize the memory requirements and processing burden on the Stamp. CAN has the potential of
placing huge demands on a processor. The MCI-100P is a microcontroller-based solution. The advantage
to this design is that the MCI-100P becomes a CAN co-processor for the Stamp. This solution relieves the
Stamp of much of the memory and processing requirements needed to manage CAN communications.

e Maximize the data transfer rate between the MCI-100P and the Stamp. The Stamp has the highest data
transfer rate using asynchronous serial communication’. The MCI-100P is capable of communicating at
speeds up to 115,200 baud.

e Make the MCI-100P re-programmable to support future enhancements. The MCI-100P uses a field-
programmable flash and eeprom memory. The ability to reprogram the MCI-100P in the field opens up a
number of possibilities, including the ability to tailor the interface to a particular application or to support
common higher layer protocols such as CANopen and DeviceNet (contact Machine Bus for more
information).

The Basic CAN Controller API

All aspects of the CAN protocol are typically implemented by hardware based CAN controllers. This reduces the load
on the host system that requires access to the CAN bus. These controllers are typically implemented as stand-alone
integrated circuits or as part of a microcontroller package. There are two primary classes of CAN controller, Basic
CAN and Full CAN. The acceptance filtering and buffering capabilities are what differentiate these two controller
classes.

A CAN system is based on the broadcast principle. This means that all nodes receive every message that is
transmitted on the bus. In most cases a receiving node will only be interested in a subset of the transmitted
messages. Acceptance filtering is used to limit the number of messages that the host system needs to deal with.
Typically the acceptance filter is only concerned with the message identifier but other methods of filtering maybe
possible depending upon the particular controller’s capabilities.

Basic CAN controllers are characterized as having one transmit buffer and one receive buffer with a single
acceptance filter. Some Basic CAN controllers are capable of storing multiple messages in its buffer, but the same
acceptance filter is used on all incoming messages. The Basic CAN approach is easy to use and is available on
most all controller implementations.

The MCI-100P presents an API that models the Basic CAN controller. The software interface is relatively simple and
designed to reduce the memory and processing burden on the stamp. Because all interaction with the MCI-100P
must take place via serial communication, the Basic CAN API consists entirely of data structures. These data
structures represent functions, their return values and information used by your BASIC Stamp application.

' According to the Stamp PBasic manual

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 6
http://www.machineBus.com 866 864-8100 (toll free)

Calling MCI-100P Functions

The MCI-100P communicates with the BASIC Stamp via a serial interface. Therefore, all commands sent to and all
results received from the MCI-100P are in the form of a data stream. The structure of a command follows a format
very similar to a function in the C language. The basic pattern is as follows:

1.

2.

Transmit the command code. A command begins by transmitting a command code to the MCI-100P. The
command code is a single byte that instructs the MCI-100P which operation you are invoking.

Transmit any parameters. |f a command accepts parameters, then these are transmitted next. The MCI-
100P expects that all parameters will be sent and will not process the command until it receives them.
Special care must be taken when sending data structures with variable lengths. The CAN Message is a
good example. There are two variables encoded into the “fieldInfo” field of the CAN Message that
determine its length. The MCI-100P will be expecting, and will only accept, the amount of data specified by
this field.

Receive any resulting data. If a command returns any resulting data, then the MCI-100P will transmit it to
the BASIC Stamp after the last parameter byte is received. The MCI-100P will not accept another
command until the BASIC Stamp receives all the data. Again, special care must be taken when accepting
data structures with a variable length.

Receive the status code. Every command ends with a status code. The status code is sent by the MCI-
100P to indicate whether the command was successful or not.

The MCI-100P Boot Process

There are some start up activities that need to take place before the MCI-100P is ready to receive and transmit
CAN messages. The PBasic example in Appendix A demonstrates how the boot process is executed. The
following describes the process.

1. Establish the serial data rate. The data rate between the BASIC Stamp and the MCI-100P needs to
be established. The MCI-100P is able to automatically determine the speed the Stamp is transmitting
at. Sending a single ASCII carriage return character to the MCI-100P at the intended data rate will
accomplish this. The MCI-100P supports the following Stamp baud rates: 600, 1200, 2400, 4800,
9600, 19200 and 38400.

2. Enter command state. At this point, the communication between the BASIC Stamp and the MCI-100P

should be established. To test this, and to confirm that the MCI-100P is ready to accept commands, a

series of fourteen (14) null values should be sent to the MCI-100P.

Initialize the MCI-100P. An “Initialize” command should be sent to the MCI-100P.

4. Set the CAN bit timings. Bit timings are used by the CAN protocol to establish the parameters for
communication on the CAN bus. They are relatively complicated to determine. There are two ways to
set the CAN bit timings on the MCI-100P. Either the “Set Bit Rate” or the “Set Bit Timings” command
can be used. The “Set Bit Timings” allows the caller to set the raw bit timing values. This command
should only be used in extreme circumstances. The “Set Bit Rate” command will automatically set the
proper CAN bit timings, based on the data rate requested (e.g. 125 kbits/sec).

5. Set the CAN acceptance filter. A CAN system is based on the broadcast principle. This means that
all nodes receive every message that is transmitted on the bus. To keep from overwhelming the BASIC
Stamp with unnecessary messages, an acceptance filter can be set. The acceptance filter is a feature
of the Basic CAN controller and is implemented in hardware, so it is very efficient. There are two ways
to set the acceptance filter in the MCI-100P. Either the “Set Filter” or the “Receive All” command can
be used. The “Set Filter” command allows you to set a very specific CAN acceptance filter, but is rather
complicated. As a shortcut, the “Receive All” command is provided to automatically configure the
acceptance filter to receive all CAN messages.

w

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 7
http://www.machineBus.com 866 864-8100 (toll free)

6. Enable the MCI-100P. Once the MCI-100P has been properly configured, it needs to be enabled. An
“Enable” command allows it to take place in CAN bus communications.

7. Enter a message processing loop. Once the MCI-100P has been enabled, its status must be polled
continuously. The BASIC Stamp should enter an endless “DO” loop where it calls and processes the
“Status” command. All other application tasks should also take place in with this loop.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 8
http://www.machineBus.com 866 864-8100 (toll free)

Data: CAN Message

Description: This is a true data structure and represents a CAN message. A CAN message is a packet of
information that is carried on a CAN bus. CAN Messages consist of header information and a data “payload”.
CAN message is intentionally designed to carry a maximum payload of eight (8) data bytes.

A

Table 6 describes the structure of a CAN Message. Note that this is a variable length structure whose size can vary

from 3 to 13 bytes in length.

Field Size (Bytes) Field Name Description

1 Framelnfo Contains information on the frame format, the frame type,
and the data length (see Figure 11)

20r4 CAN identifier Either an 11-bit or 29-bit CAN identifier

0-8 CAN data Data length can vary from 0 to 8 bytes

Table 6: Framelnfo Field Format

The size of the CAN identifier and the CAN data is contained within the Framelnfo byte. Table 7 describes the
structure of the Framelnfo Byte.

Field Size (Bits MSBtoLSB) Field Name Description

8 Frame Format 0 = Standard Frame (11-bit id) or,
1 = Extended Frame (29-bit id)

7 Remote Request 0 = Data Frame or, 1 = Remote Frame
(Does not contain data)

5-6 reserved Must be zero

1-4 Data length The number of data bytes

Table 7: Framelnfo Field Format

Example:

The following snippet of PBasic code demonstrates how to format a CAN Message for debug output.

'CAN message constants

FrameInfoExtended CON 128 'Frame format bit
FrameInfoRemote CON 64 'Remote transmission request bit
FrameInfoDatalength CON 15 'Data length code mask

'Variables

canMessage VAR Byte(13)
index VAR Byte
length VAR Nib

'Print the FrameInfo as a hexidecimal number
DEBUG "Ox", HEX2 canMessage(0), " " 'FrameInfo

'Determine whether this message contains a standard or an extended id
IF(canMessage(0) & FrameInfoExtended) THEN Print_Extended_Id

'Print the standard id as a hexidecimal number
Print_Standard_Id:
DEBUG "0x0000"

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 9

DEBUG HEX2 canMessage(1
DEBUG HEX2 canMessage(2
index = 3

GOTO Print_Message_Data

) 'MSB of Standard Id
) 'LSB of Standard Id

'Print the extended id as a hexidecimal number

Print_Extended_Id:
DEBUG "O0x"
DEBUG HEX2 canMessage (
DEBUG HEX2 canMessage (
DEBUG HEX2 canMessage (
DEBUG HEX2 canMessage (
index = 5

=W N

'Print the data payload if
Print_Message_Data:
DEBUG " "

' MSB of Extended Id

' LSB of Extended Id

this is not a remote frame

IF(canMessage(0) & FrameInfoRemote) THEN End_Of_Print

length = (index - 1 + (

canMessage(0) & FrameInfoDataLength))

FOR index = index TO length

DEBUG HEX2 canMessage (
NEXT

End_Of_Print:
DEBUG CR

index), " "

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 10

Function: Set Bit Timings

Description: Sets the CAN controller’s bit timing parameters (see the ‘Bit Rate’ command as an alternative)

Parameters: 7 bytes in length

Field Size (Bytes)

Field Name

Field Description

1 Command Code Always equal to ‘1’ for this command

1 Baud Rate Prescaler Divisor for the CAN controller’s timing
source

1 Propagation Delay Segment Length of the Propagation Delay
Segment in time quanta

1 Phase Buffer Segment 1 Length of Phase Buffer Segment 1 in
time quanta

1 Phase Buffer Segment 2 Length of Phase Buffer Segment 2 in
time quanta

1 Synchronization Jump Width Length of the Synchronization Jump
Width in time quanta

1 Sample Mode 0 for one sample; 1 for three samples

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to set the CAN bit timing to 125 kbits/sec.

'CAN controller commands
CommandBitTiming CON 1

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10

'CAN bit timing settings

BaudRatePrescaler CON 4
PropagationDelay CON 7
PhaseBufferl CON 7
PhaseBuffer?2 CON 7
SynchronizationJumpWidth CON 1
SampleMode CON 1
'Variables

status VAR Byte

'Execute the set bit timing function
SerialBaudmode, [CommandBitTiming]
SerialBaudmode, [BaudRatePrescaler]
SerialBaudmode, [PropagationDelay]
SerialBaudmode, [PhaseBufferl]

SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT

'Check

SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,

the return value

SERIN SerialRx\SerialRfr,

SerialBaudmode, [PhaseBuffer?2]
SerialBaudmode, [SynchronizationJumpWidth]
SerialBaudmode, [SampleMode]
SerialBaudmode, [status]

http://www.machineBus.com

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
866 864-8100 (toll free)

Page 11

Function: Disable

Description: Disables the CAN controller. The CAN controller does not participate in bus activities when it is
disabled.

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to ‘2’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to disable the CAN controller.

'CAN controller commands
CommandDisable CON 2

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte
SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandDisable]

'Check the return value
SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 12
http://www.machineBus.com 866 864-8100 (toll free)

Function: Enable

Description: Enables the CAN controller. The CAN controller participates in bus activities when it is enabled.
Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to ‘3’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to enable the CAN controller.

'CAN controller commands
CommandEnable CON 3

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte
SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandEnable]

'Check the return value
SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 13
http://www.machineBus.com 866 864-8100 (toll free)

Function: Get Error Count

Description: Returns the status of the CAN controller’s error registers

Parameters: 1 byte in length

Field Size (Bytes)

Field Name Field Description

1

Returns: 3 bytes

Command Code Always equal to ‘4’ for this command

Field Size (Bytes) Field Name Field Description
1 Receive Error Count ~ CAN controller's receive error count
1 Transmit Error Count CAN controller’s transmit error count
1 Call Status Code Zero if successful

Examples:

The following snippet of PBasic code demonstrates how to retrieve the state of the error count registers.

'CAN controller commands
CommandErrorCount CON 4

'Serial communication parameters

SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables
rxErrorCount VAR Byte
status VAR Byte

txErrorCount VAR Byte

SEROUT SerialTx\SerialCts,

SerialBaudmode, [CommandErrorCount]

SERIN SerialRx\SerialRfr, SerialBaudmode, [rxErrorCount]

SERIN SerialRx\SerialRfr,

DEBUG “Receive error count

SerialBaudmode, [txErrorCount]

= ", rxErrorCount

DEBUG “, Transmit error count”, txErrorCount, CR

'Check the return value

SERIN SerialRx\SerialRfr,

SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 14

Function: Set Filter

Description: Sets the CAN controller’'s acceptance filter (see the ‘Receive All' command as an alternative).

Parameters: 13 bytes in length

Field Size (Bytes)

Field Name

Field Description

1

Command Code

Always equal to ‘5’ for this command

4

CAN ID Filter

CAN identifier to compare incoming message
to (MSB first)

4

CAN ID Mask

Bit mask that determines which bits to compare
against the filter. 0 = bit will compare true
regardless of the corresponding filter bit; 1 =
compare bit against the corresponding filter bit
(MSB first)

Is Extended Filter Flag

0 if only standard identifiers should be
accepted; 1 if only extended identifiers should
be accepted

Is Extended Mask Flag

0 if both standard and extended identifiers
should be accepted; 1 if the incoming identifier
should be compared to the ‘Is Extended Filter
Flag’

Is Remote Filter Flag

0 if only data frames should be accepted; 1 if
only remote frames should be accepted

Returns: Zero if successful.

Examples:

Is Remote Filter Mask

0 if both data and remote frames should be
accepted; 1 if the incoming identifier should be
compared to the ‘Is Remote Filter Flag’

The following snippet of PBasic code demonstrates how to set the CAN controller to receive only standard data
frames with an ID of “1”.

'CAN controller commands

CommandFilter

CON 5

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte

SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT
SEROUT

SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,
SerialTx\SerialCts,

SerialBaudmode, [CommandFilter]

SerialBaudmode, [0] 'MSB of 32-bit filter id
SerialBaudmode, [0]

SerialBaudmode, [0]

SerialBaudmode, [1] 'LSB of 32-bit filter id
SerialBaudmode, [O0] 'MSB of 32-bit mask id
SerialBaudmode, [0]

SerialBaudmode, [$07]

SerialBaudmode, [SFF] 'LSB of 32-bit mask id
SerialBaudmode, [0] 'isExtendedFilter

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.

http://www.machineBus.com

866 864-8100 (toll free)

Page 15

SEROUT SerialTx\SerialCts, SerialBaudmode, [1]
SEROUT SerialTx\SerialCts, SerialBaudmode, [0]
SEROUT SerialTx\SerialCts, SerialBaudmode, [1]

'Check the return value
SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

'isExtendedMask
'isRemoteFilter
'isRemoteMask

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.

http://www.machineBus.com

866 864-8100 (toll free)

Page 16

Function: Initialize

Description: Initializes the CAN controller
Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description

1 Command Code Always equal to ‘6’ for this command
Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to initialize the CAN controller

'CAN controller commands
CommandInitialize CON 6

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandInitialize]

'Check the return value
SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 17

Function: Status

Description: Returns the status of the CAN controller
Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to ‘7’ for this command

Returns: 3 - 16 bytes

Field Size (Bytes) Field Name Field Description
1 Controller Status Status of the CAN controller
e s the controller ready to transmit
e Has a message has been received
e Are there controller errors (see CAN
Controller Status below)

1 Controller Errors Controller error flags (see CAN Controller
Errors below)
0-13 Received CAN Message ~ CAN message stored using the minimum
number of bytes
1 Call Status Code Zero if successful

Examples:

The following snippet of PBasic code demonstrates how to request and receive the status of the CAN controller.
Note the constants used to mask out the individual bits in the controller status and controller error fields.

'CAN controller status

ControllerState CON 7 'see "Controller States" below
ControllerReadyToTransmit CON 8 'set IF the controller is ready TO transmit
ControllerMessageReceived CON 16 'set IF a message has been received
ControllerErrorOccured CON 32 'set is an error has occurred

'CAN controller states

ControllerDisabled CON 0O 'the CAN controller is disabled
ControllerErrorActive CON 1 'the CAN controller is "error active"
ControllerErrorWarning CON 2 'still "error active" but error counters > 96
ControllerErrorPassive CON 3 'the CAN controller is "error passive"
ControllerBusOff CON 4 'the CAN controller is "bus off"

'CAN controller errors

ControllerReceiveOverrun CON 1 'the receive buffer has been overrun
ControllerBitError CON 2 'a Bit could NOT be transmitted correctly
ControllerFormError CON 4 'the received CAN message was malformed
ControllerStuffError CON 8 'expected a stuff Bit

ControllerCrcError CON 16 'the CRC checksum is wrong

ControllerAckError CON 32 'the transmitted message was NOT acknowledged

'CAN controller commands
CommandStatus CON 7

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 18
http://www.machineBus.com 866 864-8100 (toll free)

canMessage VAR Byte(13)
controllerStatus VAR Byte
controllerErrors VAR Byte

index VAR Byte
length VAR Nib
status VAR Byte

‘Send the status command and receive the controller status and any error codes

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandStatus]

SERIN SerialRx\SerialRfr, SerialBaudmode, [controllerStatus]

SERIN SerialRx\SerialRfr, SerialBaudmode, [controllerErrors]

‘Did we receive a message?

IF((controllerStatus & ControllerMessageReceived) = 0) THEN End_Of_Status

‘Retreive the frameInfo and determine the size of the identifier

SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage (0)]
IF(canMessage(0) & FrameInfoExtended) THEN Rx_Extended_Id

‘Retrieve a standard identifier
Rx_Standard_1Id:

SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(1l)]
SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage (2)]
index = 3
GOTO Rx_Message_Data

‘Retrieve an extended identifier

Rx_Extended_Id:
SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage (1)]
SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(2)]
SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage(3)]
SERIN SerialRx\SerialRfr, SerialBaudmode, [canMessage (4)]
index = 5

‘Retrieve the data if it exists

Rx_Message_Data:
IF(canMessage (0) & FrameInfoRemote) THEN Can_Return
length = (index - 1 + (canMessage(0) & FrameInfoDatalLength

FOR index = index TO length

SERIN SerialRx\SerialRfr, SerialBaudmode,

NEXT

'Check the return value
End_Of_Status:

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

MSB
LSB

MSB

LSB

))

[canMessage (index)]

'Frameinfo

of
of

of

of

std
std

Ext

Ext

Id
Id

Id

Id

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.

http://www.machineBus.com

866 864-8100 (toll free)

Page 19

Function: Transmit

Description: Transmits a CAN message

Parameters: 4-14 bytes in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to ‘8’ for this command
0-13 Received CAN Message ~ CAN message stored using the minimum
number of bytes

Returns: Zero if successful.

Examples:
The following snippet of PBasic code demonstrates how to transmit a CAN message.

'CAN controller commands
CommandTransmit CON 8

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandTransmit]
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (0)] ' Frameinfo
IF(canMessage (0) & FrameInfoExtended) THEN Tx_Extended_Id

Tx_Standard_1Id:
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(1l)] ' MSB of
]

SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (2) ' LSB of
index = 3
GOTO Tx_Message_Data
Tx_Extended_Id:
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (1l)] ' MSB of
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage(2)]
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (3)]
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (4)] ' LSB of
index = 5
Tx_Message_Data:
IF(canMessage(0) & FrameInfoRemote) THEN Can_Return
length = (index - 1 + (canMessage(0) & FrameInfoDatalLength))
FOR index = index TO length
SEROUT SerialTx\SerialCts, SerialBaudmode, [canMessage (index)]
NEXT

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Standard
Standard

Extended

Extended

Id
Id

Id

Id

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 20

Function: Set Bit Rate

Description: Sets the CAN controller’s bit rate (see the ‘Bit Timing’ command as an alternative)

Parameters: 3 bytes in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to ‘9’ for this command
2 CAN Bit Rate CAN bit rate in 1000’s of bits/second. (Must be a

value of 10, 25, 50, 125, 250, 500, 800 or 1000)
Returns: Zero if successful.

Examples:
The following snippet of PBasic code demonstrates how to set the CAN bit rate to 125 kbits/sec.

'CAN controller commands
CommandBitRate CON 9

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10

'CAN bit rate settings
BitRate CON 125

'Variables
status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandBitRate]
SEROUT SerialTx\SerialCts, SerialBaudmode, [(BitRate & SFF00)]
SEROUT SerialTx\SerialCts, SerialBaudmode, [(BitRate & SFF)]

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 21

Function: Receive All

Description: Sets the CAN controller's acceptance filter to receive all messages (use as an alternative to the “Set
Filter” function).

Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to “10’ for this command

Returns: Zero if successful.

Examples:
The following snippet of PBasic code demonstrates how to set the CAN acceptance filter to receive all messages.

'CAN controller commands
CommandReceiveAll CON 10

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte

SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandReceiveAll]

SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 22
http://www.machineBus.com 866 864-8100 (toll free)

Function: Disable LEDs

Description: Disables the CAN controller’s status LEDs to conserve power
Parameters: 1 byte in length

Field Size (Bytes) Field Name Field Description
1 Command Code Always equal to “101’ for this command

Returns: Zero if successful.

Examples:

The following snippet of PBasic code demonstrates how to disable the status LEDs on the MCI-100P.

'CAN controller commands
CommandDisablelLed CON 101

'Serial communication parameters
SerialBaudmode CON 6

SerialCts PIN 7
SerialRfr PIN 8
SerialTx PIN 9
SerialRx PIN 10
'Variables

status VAR Byte
SEROUT SerialTx\SerialCts, SerialBaudmode, [CommandDisableled]

'Check the return value
SERIN SerialRx\SerialRfr, SerialBaudmode, [status]

Copyright © 2005 Machine Bus Corporation. All Rights Reserved.
http://www.machineBus.com 866 864-8100 (toll free)

Page 23

Electrical Characteristics?

Absolute Maximum Ratings?

Operating Temperature -40°C to 85°C
Storage Temperature -65°C to 150°C
Voltage on Tx, Rx, RFR, and CTS pins with respect to ground ~ -0.5to V¢, + 0.2V
Voltage on CAN_H and CAN_L pins with respect to ground -36V to 36V
Voltage on Vcc with respect to ground 0.5Vt 6.0V
DC current on Tx, Rx, RFR and CTS pins 10 mA max

DC Characteristics

Symbol Parameter Minimum Typical Maximum Units Note
Ve Supply Voltage 4.38 5.00 6.00 \

2 Electrical Characteristics for this product have not yet been finalized. Please consider all values listed herein as preliminary
and non-contractual.

3 Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating

conditions for extended periods may affect device reliability.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 24
http://www.machineBus.com 866 864-8100 (toll free)

Appendix A: Basic CAN API Example

The purpose of this experiment is to show what it takes for the Stamp to be CAN aware. The PBasic software
configures the MCI-100P, writes a copy of every message on the CAN bus to the Stamp’s debug terminal and
echoes the message on the CAN bus, if configured to do so*.

The MCI-100P presents an API we call the Basic CAN Controller. This API is our wrapper around a Basic CAN
Controller (see The Basic CAN Controller API for more information). The PBasic example contains all the constants,
variables and code needed to make full use of the Basic CAN Controller API. It is possible to reduce the amount of
code by using only a subset of the Basic CAN Controller API's features. The example in Appendix B shows how this
is done.

Hardware Setup

The diagram and picture in Figure 9 show how to connect the MCI-100P to the BASIC Stamp HomeWork Board. In
this example the MCI-100P is powered off of the BASIC Stamp’s power regulator. Also, note the terminating resistor
located between the CAN bus cable and the MCI-100.

an

LED O

Gnd |————> Stamp: Vss
CAN_L ——> External: CAN_L
CAN_H ——> External: CAN_H
i Vee ——-> Stamp: Vdd

n

CON1

alw

- X EEEE
| Signal Gnd 2—E> Stamp: Vss e cEmm

: Tx 3—E> Stamp: P10 s s EE =
CON2 Rx 4—E> Stamp: P9 s e
RFR —|5 > Stamp: P8 - = EEEE

cTs > Stamp: P7 == R

- = ===

MCI-100P e -+t
L] EEES

Figure 5: The MCI-100P connected to the BASIC Stamp HomeWork Board

4 Warning: Do not run this example on a CAN bus where there is the potential for damage or injury. Altering the state of a
working system can cause unexpected results.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 25
http://www.machineBus.com 866 864-8100 (toll free)

Software Setup

It takes a few steps to get the Basic CAN Controller APl enabled. Once enabled, the Stamp is able to transmit and
receive CAN messages. The PBasic Code for this example can be found on the Machine Bus web site at the URL
http://www.machineBus.com/downloads/mci100p.zip.

APl Initialization

Perform the following steps to enable the Basic CAN Controller API:
Step 1) Establish the serial communication rate
Step 2) Verify that you're in the command state
Step 3) Initialize the Basic CAN controller

Step 4) Set the CAN bit rate or individual CAN bit timings (see ‘Bit Rate’ or ‘Bit Timings’ in The Basic CAN
Controller API)

Step 5) Set the acceptance filter (see ‘Receive All’ or ‘Filter’ in The Basic CAN Controller API)
Step 6) Enable the CAN controller
Step 7) Enter processing loop

These steps are clearly labeled in the PBasic example. See The Basic CAN Controller API for a full description of
the boot process.

Transmitting and Receiving CAN Messages

In order to transmit and receive, you must continually poll the status of the CAN Controller. The status tells you the
bus state of the controller, if any errors have occurred, if a message has been received and if the controller is ready
to transmit. See The Basic CAN Controller API for a full description.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 26
http://www.machineBus.com 866 864-8100 (toll free)

Appendix B: Blink

The purpose of this experiment is to demonstrate CAN communication between two Stamps. We'll add a switch to
one Stamp, and a bi-color LED to the other. The state of the switch will control the color of the LED.

Hardware Setup

Two boards will have to be setup for this experiment. Diagrams and pictures of the completed boards are shown in
figures 11 and 12. Notice the 120 ohm terminating resistor between CAN_L and CAN_H. ltis always a good idea to

properly terminate the bus, even though it may not be necessary with these short bus lengths. In this experiment the
MCI-100P receives its power from the Basic Stamp’s power regulator.

Basic Stamp Basic Stamp
with LED with Switch

%120 ohm 120 ohm%

Figure 6: Both Stamp devices are connected via the CAN bus

-
&IJ:[I
g

LED O

Gnd ——> Stamp: Vss
CAN_L |—=> External: CAN_L
CAN_H ——> External: CAN_H

Vec ——-_—> Stamp: Vdd

n

i
CON1
'
i

aflw

E" Signal Gnd —————> Stamp: Vss

: Tx f—_=> Stamp: P10
CON2 Rx f——_=> Stamp: P9
RFR |——-—> Stamp: P8

Hlwrn

- - =

cts P—> Stamp: P7 - -

[- =

] - .

MCI-100P = = i
- - .

[] - -

+5V u []

R1 =1]‘ ‘{ -

Stamp PO 4.
220 [l

R2

10K

Figure 7: Schematic and a picture of how to connect a switch and the Stamp/CAN Interface to
the Basic Stamp

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 27
http://www.machineBus.com 866 864-8100 (toll free)

Update picture and diagram

-
&IJ:[I
g

LED O

T Gnd ——{> Stamp: Vss
! CAN_L ——{"> External: CAN_L
' CAN_H ——{> External: CAN_H
[Vec |————> Stamp: Vdd

Q
-0 .
z
=
Al

E" Signal Gnd —————> Stamp: Vss
i Tx f—_=> Stamp: P10
CON2 Rx f——-_—> Stamp: P9
! RFR [———> Stamp: P8
CTS — = Stamp: P7

a|ld|lw|n

MCI-100P

R1

—
D1

470

Stamp CF el UL

omeWork Board @

“

- po

e ——

Figure 8: Schematic and a picture of how to connect a bi-color LED and the Stamp/CAN
Interface to the Basic Stamp

Running the Software

The PBasic Code for this example can be found on the Machine Bus web site at the URL
http://www.machineBus.com/downloads/mci100p.zip.

Step 1) Execute the PBasic file canswitch.bs2 on the board with the switch.
Step 2) Execute the PBasic file canLed . bs2 on the board with the LED.

The color of the LED should alternate between red and green each time the switch is pressed and released.

Copyright © 2005 Machine Bus Corporation. All Rights Reserved. Page 28
http://www.machineBus.com 866 864-8100 (toll free)

