Lab #6

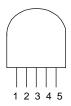
Mechatronic Systems Design MECH 498 - 005

10/20/99

Subject:

Digital Circuitry: Encoder Interface

Objectives:

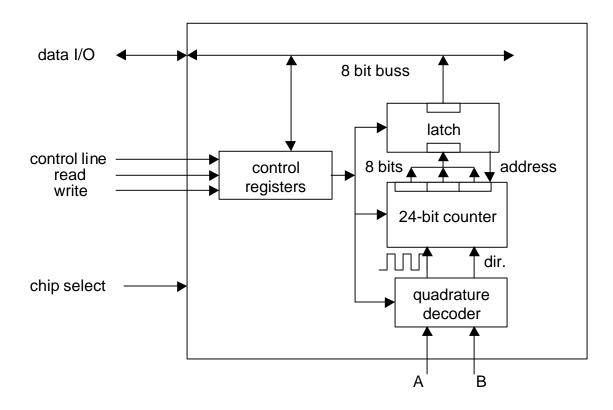

- 1) Understand the function of a quadrature optical encoder.
- Understand the internal digital circuitry of an encoder interface chip (counter, latch, decoder, bus).
- 3) Use a micro-controller, encoder, and encoder interface chip to determine the position and velocity of a motor.

	Possible Points	Grade
1	25	
2	25	
3	50	
Total	100	

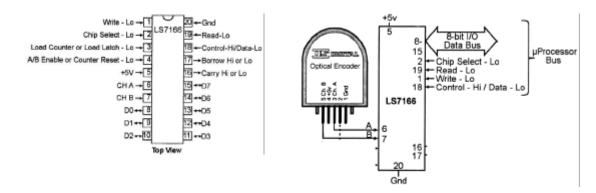
Lab #6

Section 1: Encoder

1) View the output of the encoder on the scope (both channel A and channel B). Set the 4-6.5 Volt power supply to 5 volts and use it to power the encoder. Use the 0-30 Volt power supply to power the motor.



[1] GND	
[2] NC	Supply Voltage, Vcc5 to 7 V
[3] Channel A	Output Voltage, Vo
[4] +Vcc	Output Current per Channel1.0 mA to 5 mA
[5] Channel B	· ·


- 2) Rotate the motor at various speeds and in both directions.
- 3) Sketch the timing diagram showing both channels for positive and negative motor rotation.
- Determine the speed of the motor by measuring the frequency of the quadrature wave. Take 4) approximately 5 data points and create a function that relates output frequency to motor RPM.

Section 2: Encoder Interface Chip

1) Discuss the function of the encoder interface chip within your group. Make sure you understand each component (I know this sounds corny, but I want you to understand what the chip is doing)

2) Discuss the pin out. Check this with the lab set-up.

3) Connect the encoder to the encoder interface chip. Use the power supply and ground from the BSII to power the encoder.

Section 3: Reading the Encoder with the BSII

- 1) Run the encoder-reading program provided.
- 2) Move the motor shaft with your hand (in both directions) and observe the output of the program. The program displays the decimal numbers corresponding to the 3 bytes of the 24-bit counter. The program also displays a decimal number that is constructed from the LSByte and the middle byte of the 24-bit counter.
- 3) Alter the program to display motor position in degrees, and motor velocity in RPM.
- 4) Write a lab report that explains what you have done.

Program:

CS con 15 READ_PIN con 14 WRITE_PIN con 13 CNTRL con 12	 Chip select pin; 0 = active Pin for reading: 0 = reading Pin for writing: 0 = writing Pin for Control: 		
pos0 var byte pos1 var byte pos2 var byte position var word	'low byte of 24-bit counter 'middle byte of 24-bit counter 'high byte of 24-bit counter 'word with low and middle byte		
output CNTRL high WRITE_PIN high READ_PIN			
'********** MAIN PROGRAM low CS gosub initilize again:	' Main loop.		
gosub read_position pause 500 goto again '************	' read data from encoder chip ' Wait a half second. ' Endless loop. *****		
'********** INITIALIZE CHIP initilize: high CNTRL high READ_PIN	*****		
dirl=%11111111	'declare as outputs		
outl=%00110101	'master control register		
gosub execute_write			
debug CLS, "master control regi			
outl=%01001000 'Input control register debug "input control register: ",bin inl,cr			
gosub execute_write			
outl=%1000000	'output control register		
debug "output control register: ",bin inl,cr			
gosub execute_write			
outl=%11000001	'quadrature control register		
debug "quadrature control register: ",bin inl,cr gosub execute_write			
return			

'*************************************			
read_position:			
dirl=%11111111	' latch counter output		
high CNTRL	' latch counter output		
low 6	'latch counter output		
low 7	' latch counter output		
high 0	' latch counter output		
high 1	latch counter output		
gosub execute_write	' latch counter output		
low CNTRL dirl=%00000000			
low READ_PIN			
pos0=inl			
high READ_PIN debug CLS "position0: " dee pos0 " " " Display date			
debug CLS,"position0: ",dec pos0," " 'Display data. low READ PIN			
pos1=inl			
high READ_PIN			
debug "position1: ",dec pos1,"	" 'Display data.		
low READ PIN	I J M		
pos2=inl			
high READ_PIN			
debug "position2: ",dec pos2,cr	' Display data.		
high CNTRL			
position.lowbyte=pos0			
position.highbyte=pos1			
debug "position: ",dec position,cr 'Display data			
return			

execute_write:	'pulse write line
low WRITE_PIN	-
high WRITE_PIN	
return	