
1.1.1.1 Reading Program Memory Using the IREAD Instruction

There is another method to build tables in program memory that are created with the dw direc-
tive, using the iread (immediate read) instruction. Different from the retw instruction that re-
turns an 8-bit value, iread makes it possible to read all 12 bits stored in a program memory
location.

Using iread is a bit "tricky" - let's demonstrate it with the following program:

; ===
; Programming the SX Microcontroller
; TUT039.SRC
; ===
LIST Q = 37
DEVICE SX28L, TURBO, STACKX, OSCHS2
IRC_CAL IRC_FAST
FREQ 50_000_000

RESET Main

org $08
Ix ds 1
Data ds 2

Main
 mov Ix, #Table

Loop
 mov m, #Table >> 8

 mov w, Ix
 iread
 mov Data, w
 mov Data+1, m
 inc Ix
 test Data
 sz
 jmp Loop
 test Data+1
 sz
 jmp Loop
 jmp Main

org $400
Table
 dw 'PARALLAX'
 dw 12, 123, 1234, 0

When your debugger allows watching variables, configure a watch window that displays the
contents of Data in character format as well as in 12-bit unsigned decimal format.

At memory page $400, we have defined the table. As you can see, the dw directive is used for
initializing locations in the program memory to constant values. The dw directive accepts
character strings, like 'PARALLAX'. In this case, for each character in the string, the lower
eight bits of a memory location will be set to the ASCII code of that character (the upper four
bits are cleared). The dw directive also accepts numerical constants like 12, 123, 1234, or 0.
For each numerical constant, the assembler initializes one 12-bit memory location with the
specified value with the upper bits cleared when necessary. The greatest number that can be
stored in a memory location is $fff or 4,095 in decimal.

We use the Ix variable as table index. The instruction mov Ix, #Table copies the lower eight
bits of the table address to Ix, i.e. Ix now "points" to the first table item.

As Ix is only eight bits wide, this is not enough to fully address all table items.

The expression Table >> 8 is calculated at assembly-time, and its result are the upper four
bits of the table address. This value is stored in the m register's lower four bits 3...0.

The contents of Ix are copied to w before executing the iread instruction.

The iread instruction expects the address to be read in m:w. This means that the upper four ad-
dress bits are expected in the lower four bits (3...0) of m and the lower eight bits of the address
are expected in w. In our example, this is the case because m and w were set accordingly before.
The 12-bit contents of the addressed memory location is returned by iread in m:w. Similar to
the format that was used to pass an address to iread, the result's upper four bits (11...8) are re-
turned in the lower four bits of m (3...0) and the lower eight bits of the result (7...0) are
returned in w.

In our program, the return value is stored to Data (lower eight bits) and Data+1 (upper four
bits). It then increments the table index Ix.

The program then tests if the value stored in Data+1:Data is $000. In this case, the program
loops back to Main in order to re-initialize the table index Ix. Otherwise, the program stays in
Loop by reading the next value from the table.

If you test the program in single-step mode or in "slow-motion", you can see, the values read
from the table displayed in the watch window.

The size of a table read with iread is not limited to 256 items because the instruction uses
direct addressing via m:w.

