I like what Jack Crenshaw said about IEEE floating point format:

 "There are almost as many floating point formats as there are

 compilers; each vendor seemed to use its own until IEEE stepped in

 and defined the most complicated format humanly possible. Most

 compiler venders and CPU designers try to adhere to the IEEE

 standard, but most also take liberties with it because the full IEEE

 standard includes many requirements that affect system performance..."

 > 'Number = 1.F * 2^(E-127)

 This comment and others from your program suggests a 23 bit mantissa

 and an 8 bit exponent. The exponent offset by 127. No phantom bits.

 Presumably with the decimal point is assumed to be always just to the

 left of the mantissa, so the mantissa is always a number greater than

 or equal to 1/2 and less than one. So, some example numbers...

 N exponent mantissa mantissa represents

 Number

 1 EEEEEEEE=128 F=$400000 (F=0.5, binary

 %0.10000000000000000000000) (Number=0.5 * 2^(128-127)=1)

 2 EEEEEEEE=129 F=$400000 (F=0.5, binary

 %0.10000000000000000000000) (Number=0.5 * 2^(129-127)=2)

 0.5 EEEEEEEE=127 F=$400000 (F=0.5, binary

 %0.10000000000000000000000) (Number=0.5 * 2^(127-127)=0.5)

 360 EEEEEEEE=136 F=$B40000 (F=.703125 binary

 %0.10110100000000000000000) (Number=0.703125 * 2^(136-127)=360)

 This is where I am a little unclear. Is the data from the compass

 indeed in units of degrees and fractional degrees? Not radians or

 percent or something?

 About this step,

 > HeadingVal(0) = HeadingVal(0) * 2

 > 'Shift Exponent

 That discards the least significant bit of the exponent, which is

 probably needed. Maybe it should be:

 EEEEEEEE = (HeadingVal(0) <<1) + (HeadingVal(1)>>7) ' 8 bit exponent

 I wonder if something like the following would work to extract the

 integer degrees (0 to 360)?

 finalAnswer VAR word

 finalAnswer=headingVal(1) & 7f << 2 + (headingVal(2) >> 6) ' 9

 bits of mantissa

 finalAnswer = finalAnswer >> (136 - EEEEEEEE)

 The idea is to put 9 bits of the mantissa into one word. That will

 cover all integer angles up to 360 degrees. The statement works by

 combining the low 7 bits of headingVal(1) with the high two bits of

 headingVal(2). Then in the last statement, shift that right by the

 exponent. For example, if the angle is 360 degrees, you end up with

 %101101000 in finalAnswer, shifted by zero, 360 the final answer. If

 the angle is 2 degrees, you end up with %100000000 in finalAnswer,

 shifted by (136-129=7), resulting in %10 = 2, the final answer.

 I may be way off base about how the data is represented, but if not,

 the C++ transcription is needlessly complicated.

 -- regards,

 Tracy

