Hi Julian,

 I've looked at the code you provided and it does properly convert 32-bit IEEE

 positive

 floating point values to the truncated integer value. As Tracy points out, if

 the values are

 known to be in the range 0 to 360 you can simplify the code using his

 suggestion, but it

 needs to account for the implicit one bit in the mantissa for normalized IEEE

 numbers.

 The modified code using your original variable names is as follows:

 Exponent = (HeadingVal(0) << 1) + (headingVal(1) >> 7)

 CompHeading = ($80 + (headingVal(1) & $7F)) << 2 + (headingVal(2) >> 6)

 CompHeading = CompHeading >> (136 - Exponent)

 Your original code does seem to work, but it is much less efficient with all the

 looping and

 testing.

 Since your original message indicated that you were getting lots of zeros and

 random

 numbers it might suggest that the input values are not correct. A couple of

 suggestions

 for testing:

 You can force the headingVal to a known IEEE number and see the converted

 result.

 e.g. the test value for 360 is:

 HeadingVal(0) = $43

 HeadingVal(1) = $B4

 HeadingVal(2) = $00

 HeadingVal(3) = $00

 If you go to the uM-FPU link on the Parallax site there's a free download of the

 uM-FPU

 Converter program. You can use this to easily generate test values and also to

 verify the

 values coming from your instrument. If you enter a floating point number in the

 Input

 String box it will convert to the corresponding 32-bit hex value, and if you

 enter a $ first it

 converts from a 32-bit value to the floating equivalent.

 You can also copy and paste, so if you put the following statement in your code

 just after

 you get the heading value from your instrument:

 DEBUG "$", HEX2 HeadingVal(0), HEX2 HeadingVal(1), HEX2 HeadingVal(2), HEX2

 HeadingVal(3), CR

 Then you can copy the resulting $xxxxxxxx string from the Terminal window and

 paste it

 into the Input String box of the uM-FPU converter and it will show the

 corresponding

 floating point value.

 Hope this helps,

 Cam

 A couple more thoughts on your problem. Since your application is

 compass headings you probably want rounding rather than truncation

 so that 22.7 degrees becomes 23 not 22. Also, 360 degrees usually

 wraps back to 0 degrees. If the values are problematic you should

 also do some error checking to ensure the number really is in the

 range 0 to 360. The following code is a further modification of the

 earlier code to provide a robust converter that can handle any

 floating point number and yields an integer in the range 0 to 359 if

 the value is valid or 999 if it's an error condition. The error

 condition is defined as follows:

 - any number less than or equal to -0.5

 - any number greater than or equal to 360.5

 Code:

 Exponent = (HeadingVal(0) << 1) + (headingVal(1) >> 7)

 IF Exponent < 126 THEN

 CompHeading = 0

 ELSEIF (Exponent > 135) OR (HeadingVal(0) > 127) THEN

 CompHeading = 999 'error condition

 ELSE

 CompHeading = ($80 | headingVal(1)) << 2 + (headingVal(2) >> 6)

 CompHeading = CompHeading >> (135 - Exponent)

 IF CompHeading.LOWBIT = 1 THEN Compheading = CompHeading + 1

 Compheading = Compheading >> 1

 IF Compheading = 360 THEN

 Compheading = 0

 ELSEIF Compheading > 360 THEN

 CompHeading = 999 'error condition

 ENDIF

 ENDIF

 Brief Explanation:

 - the exponent is extracted

 - if exponent < 126, the number is between 0.5 and -0.5 so it's

 rounded to zero

 - if exponent > 135, the number is larger than the 9 bits we're

 converting so the 999 error is set

 - if headingVal(0) > 127 the number is negative so the 999 error is

 set

 - ten bits are loaded into compHeading (9 integer bits and 1

 rounding bit)

 - compHeading is shifted right to get the value*2 with LSB bit as

 the rounding bit

 - if the rounding bit is set, it means the remaining fraction is

 greater than or equal to 0.5, so the value is rounded up

 - compHeading is shifted right to get final result

 - compheading is checked for wraparound at 360, or an error

 condition if > 360

 This should give you a solid base for your tests. If you see any

 999 values then you know you're getting reading that are out of

 range. If you're still having trouble, then as Tracy suggested,

 give us the hex value of headingVal(0) to (4) for N-E-S-W so we can

 check the format.

 e.g. put the following right after you get the reading:

 DEBUG HEX2 HeadingVal(0),HEX2 HeadingVal(1),HEX2 HeadingVal(2),HEX2

 HeadingVal(3),CR

 Regards,

 Cam

