Catalina C Plugins, Targets and the Registry

Plugins and Targets

One of the design goals of Catalina was to make the environment in which C programs
execute as platform-independent as possible. Catalina does this partly by implementing
a Hardware Abstraction Layer so that most programs do not need to know the details of
the platform-dependent code (e.g. hardware drivers) that perform various functions on
their behalf.

On the Propeller, with its multi-core capabilities, such code is often implemented in one
or more separate cogs to the main program. As well as hardware drivers, the multi-core
capabilities of the Propeller encourage the use of cogs for performing other functions as
well — such as floating point functions, or other functions that would be too inefficient to
code in C, or which can execute in parallel or asynchronously.

Catalina uses the term Plugin to refer to such components — i.e. any program designed
to run on a separate cog. This term was chosen to highlight the fact that plugins are
often developed independently of the programs that make use of them, that can be used
by many programs, and also that may be dynamically loaded as needed and unloaded
again when no longer required (although most device driver plugins are loaded once at
initialization time and never unloaded).

Catalina defines a common technique for keeping track of all the loaded plugins, and
also a common method for communicating with them. This is done by using a Registry
— which is a just section of upper Hub RAM reserved for use by the plugins. The Registry
is described in detail in the next section. However, the Registry is not usually accessed
directly by application programs — instead, a set of low level registry functions to do so
are provided, often written in PASM, then “wrapped” in a set of user-friendly functions
that are plugin-specific. For example, to access a Real-Time Clock plugin, a function
such as get_time() might be provided, which implements all the low-level work of
interacting with the clock plugin using the Registry.

To manage plugins, Catalina also introduces the concept of a Target. A target defines a
execution environment provided by a particular Propeller platform — including the
hardware configuration (e.g. pin definitions, physical addresses, clock speeds) the
software configuration (e.g. drivers and other plugins) and the kernel itself (e.g. CMM,
LMM, NMM or XMM kernels, or one of the special function kernels such as the multi-
threading kernels). Catalina groups all these components together into a Target
Directory (sometimes called a Target Package) for convenience.

Each Target Directory may support one or more Propeller platforms, and may contain
either (or both) a p7 and a p2 sub-directory, depending on whether it includes support
for Propeller 1 or Propeller 2 platforms (or both). For example, the default Target
Directory includes support for the C3, FLIP, Hydra, Hybrid, TriBladeProp, DracBlade,
RamBlade, and Demo platforms on the Propeller 1, and the P2 Edge and P2 Evaluation
platforms on the Propeller 2. Each sub-directory typically contains a set of plugins
supported by one or more of the platforms (e.g. various HMI, SD card, Real-Time Clock,
and Floating Point plugins). Each sub-directory will also have one or more include files
which contain the specific configuration data for the platform (e.g. C3 XXX.inc,
HYDRA_XXX.inc on the Propeller 1, or P2EDGE.inc or P2EVAL.inc on the Propeller 2).

Copyright 2025 Ross Higson Page 1

Catalina C Plugins, Targets and the Registry

Catalina supports multiple Target Directories, but only one can be specified when
compiling the final program executable. Having multiple Target Directories can come in
handy when developing new plugins, or when supporting many different propeller
platforms which have significantly different plugins or capabilities.

Within each Target Directory, there may be multiple Targets. Each Target determines the
kernel and the plugins that will be loaded, whether or not debugger support will be
included, whether the cache is included, and how the plugins supported by the target
must be loaded and initialized.

This last point is important because even though a plugin is essentially a “stand-alone”
component, they can be complex to load and initialize correctly. Often plugins must
share not only the Registry, but other areas of Hub RAM, or other Propeller resources
such as /O pins or locks. It is the individual Target that knows how to load and initialize
the various plugins correctly — a process which may differ depending on the type of
kernel used. For example, XMM programs are loaded quite differently to LMM programs.

A plugin to be used in conjunction with a Catalina C program typically consists of three
parts:

1. The plugin itself. Plugins are usually implemented in PASM (although they
can also be written in other languages such as Spin), and are often adapted from
existing code.

2. A set of C “wrapper” functions that allows the services provided by the plugin to
be more easily invoked from C.

3. One or more Targets that support the plugin (i.e. that know how to load it). This is
typically accomplished on the Propeller 1 via the Extras.spin file in the target
directory, or on the Propeller 2 via the plugins.inc file in the relevant Target
Directory.

The Registry

At its simplest, the Catalina Registry is simply a number of consecutive longs — one
long per cog' — located somewhere in Hub RAM (usually in the upper area of Hub RAM).
The location is fixed at compile time, and it is quite feasible for different Catalina
programs to use different locations for the Registry provided they do not execute on the
same Propeller at the same time.

Each long is referred to as the plugin’s Registry Entry. The Registry Entry contains the
following information:

1. The upper 8 bits of the Registry Entry are used to indicate the type of plugin
loaded into each cog. The value $FF (in Spin) or OxFF (in C) indicates no plugin
is loaded (although this is not a guarantee that the cog is actually unused — it
simply means no plugin has been registered in that cog — the cog may be being
used for some other purpose). Setting this value is referred to as “registering” the

plugin.

1 The registry size is always 8 on the Propeller 1. On the Propeller 2 the size is defined by the constant
MAX_COGS in constants.inc, which is currently 8, but which might be 16 in a future version of the chip.

Copyright 2025 Ross Higson Page 2

Catalina C Plugins, Targets and the Registry

2. The lower 24 bits of the Registry Entry point to another location in Hub RAM —
this is the plugin’s Request Block, and consists of at least two consecutive longs.
Normally, these Request Blocks exist immediately above the Registry itself. In
theory, the Request Block can be longer than two longs, can exist anywhere in
Hub RAM, and can be set up anytime up to the time the plugin is loaded and
initialized — but it cannot usually be changed after that, since most plugins read
this location into a local cog register only during initialization and thereafter may
not refer to the Registry Entry at all. However, it is so common for plugins to use a
simple Request Block consisting of two longs, that Catalina initializes each
Registry Entry to point to a Request Block of two longs that also live permanently
in upper Hub RAM.

Each plugin is told the location of the Registry on startup, and from that (plus its own cog
id) it determines which Registry Entry belongs to it specifically, and either the startup
code registers the plugin once it determines it has started, or the plugin registers itself.

While the Registry can be used directly to locate and communicate with plugins, there is
another set of important entries immediately below the Registry that offer a further level
of abstraction and concurrency protection when multiple programs may make concurrent
requests. Each word immediately below the Registry can be a Service Entry and is
referenced by a service id which is the negative offset (in words) from the Registry. See
the diagram below, which shows the whole Registry structure.

Each Service Entry contains the following information:

1. The upper 4 bits of the Service Entry are used to specify the cog (i.e. the plugin)
that offers the service (the upper bit is set if the service entry is unused).

2. The next 5 bits are used to hold the id of a lock? that can be used to prevent
contention in accessing the service (or all bits set if no lock is required).

3. The next 7 bits represent the request id in the plugin that performs the service.

Note that request ids are local to each plugin, and so the same request id may be used
by different plugins to mean different things, but the service id is unique across all
plugins. So, for example, service svc might be represented (in Spin) by
word[REGISTRY-svc] and this word might contain the value cog<<12 + lock<<7 + req,
which indicates that service svc is actually request id req offered by plugin cog, and
calling it must be protected by first successfully locking the specified lock.

This additional level of indirection allows concurrency protection and also more flexibility
as to which services are offered by which plugin. As an example (this is a genuine use
case) the service that gets the time can be offered by either a stand-alone real-time
clock plugin or by code that exists in the same plugin as the another plugin such as he
SD plugin, which saves a cog.

On the Propeller 1, the basic Registry structure and support code is defined in
Catalina_Common.spin. On the Propeller 2 it is defined in common.inc and plugsup.inc.
If you examine these files, you will see definitions for two important locations —

2 On the Propeller 1, there are only 8 locks, but on the Propeller 2 there are 16, so to make the code
common between the two, 5 bits are used on both platforms.

Copyright 2025 Ross Higson Page 3

Catalina C Plugins, Targets and the Registry

REGISTRY and REQUESTS, and (on the Propeller 1) a Spin method called
InitializeRegistry. or (on the Propeller 2) a PASM function called
INITIALIZE_REGISTRY.

These files also contain the constants that identify the type of plugin. For historical
reasons, these constants are all called LMM_XXX3. The local request ids are not defined
in these files, but are instead typically defined in the plugin files themselves plus various
C header files, but the service ids — which must be globally unique are defined in these
files, and are called SVC_<NAME> (e.g. SVC_RTC_GETTIME).

Once the Registry has been initialized, its structure will be as shown in the diagram
below (assuming there are 8 cogs):

3 LMM (Large Memory Mode or Large Memory Model) is what allows PASM instructions to be executed
from Hub RAM on the Propeller 1, and therefore makes C programming practical. The Propeller 2
introduced a Native mode (known as NMM), but also still supports LMM.

Copyright 2025 Ross Higson Page 4

Catalina C

Service (1 word) —»

Plugins, Targets and the Registry

Plugin 7 Response

Plugin 7 Request

A

Plugin 6 Response

Plugin 6 Request

Plugin 5 Response

Plugin 5 Request

Plugin 4 Response

Plugin 4 Request

Plugin 3 Response

Plugin 3 Request

Plugin 2 Response

Plugin 2 Request

Plugin 1 Response

Plugin 1 Request

Plugin O Response

REQUESTS ——»

Plugin 0 Request

Type of
plugin

Cog 7 Plugin

Type of
plugin

Cog 6 Plugin

Type of
plugin

Cog 5 Plugin

Type of
plugin

Cog 4 Plugin

Type of
plugin

Cog 3 Plugin

Type of
plugin

Cog 2 Plugin

Type of
plugin

Cog 1 Plugin

REGISTRY ——»

Type of
plugin

Cog 0 Plugin

Cog | Lock | Req 0O

Cog | Lock | Req 1

Cog | Lock | Regn

Copyright 2025 Ross Higson

Page 5

Catalina C Plugins, Targets and the Registry

To use the registry to communicate with a plugin, a program writes a request to the first
long in the plugin request block. A plugin that is offering interactive services must monitor
this long, and process the request whenever it sees a non-zero value in this long. To
indicate the request is complete (or to tell the calling program that it can proceed), the
plugin should write zero to the same long (i.e. the first long of the request block). Before
doing so, if it wishes to return a result (or a status), the plugin should write a “result’
value to the second long of the request block.

There are several types of service request, dictated by the convention (and it is only a
convention — plugins are free to use other methods) that plugins offering multiple
services use the upper 8 bits of the request long as a request id, and the lower 24 bits of
the request long in one of two ways:

e To hold up to 24 bits of data. This is known as a short request

e To hold the pointer to another data block somewhere in Hub RAM which contains
the actual data. This is known as a long request. It is the responsibility of the
caller to allocate the necessary space for this additional data block, and to
guarantee that it remains valid for the lifetime of each service request.

Short requests are simpler and more efficient, and are generally preferred where
possible. More details on service requests are given in the next section.

Note that there is nothing to stop a target (or a plugin itself) creating a new request block
if it decides it needs one larger than 2 longs — all it has to do is update the Registry Entry
prior to the plugin being used.

Also, it is possible for a target or plugin to create an entirely separate Hub RAM buffer to
use for communication. In such cases the plugin can store the location of this buffer in
either the lower 24 bits of the Registry Entry or in the Request Block, so that programs
can locate it at run-time.

Registry, Plugin and Service functions

Catalina provides C functions and macros for interacting with the Registry. They can be
used to record or identify which Plugins are currently loaded, to manage the Request
Blocks for each Plugin, and to request the services provided by the Plugins.

These functions are defined in the include file plugin.h. The functions are divided into
three logical layers:

« Basic Registry Management
* Plugin Requests
» Service Requests

The Basic Registry Management functions are:

Copyright 2025 Ross Higson Page 6

Catalina C Plugins, Targets and the Registry

unsigned _registry():;

This function returns the address of the registry. This is required (for
example) to be passed to a cog when starting a dynamic kernel to execute
C code on that cog.

void _register plugin(int cog_id, int plugin_type) ;
This function can be used to register that a plugin of a specified type is

running on a particular cog. Plugins must be registered before requests can
be sent to them.

void _unregister plugin(int cog_id);

This function can be used to unregister a plugin.

Plugin types 0 to 127 are reserved for various basic Catalina plugins (see the file
plugin.h for a complete list of those currently allocated), but plugin types 128 to 254 are
free for users to define for their own purposes. Plugin type 255 is reserved, and
indicates no plugin is loaded.

The Basic Registry Management macros are:

REGISTRY ENTRY (c)

This macro returns the registry entry for cog c. The parameter can be from 0
and 7 on the Propeller 1, or 0 to MAX_COGS on the Propeller 2 — any other
value will return an undefined result. The result is an unsigned value.

REGISTERED TYPE (c)

This macro returns the registered type for cog c. The parameter can be from
0 and 7 on the Propeller 1, or 0 to MAX_COGS on the Propeller 2 — any
other value will return an undefined result. The result is an unsigned value.

REQUEST BLOCK (c)

This macro returns a pointer to the request block reserved for cog c. The
parameter can be from 0 and 7 on the Propeller 1, or 0 to MAX_COGS on
the Propeller 2 — any other value will return an undefined result. The request
block structure pointed to is defined as:
typedef struct {

unsigned int request;

unsigned int response;
} request_t;

The Plugin Request functions are:
int _locate_plugin(int plugin_type) ;
This function can be used to find a cog on which a plugin type is executing.

Note that if there is more than one plugin of a specified type executing, only
the first will be found.

int _short plugin_request (long plugin_type, long code, long param);

This function can be used to send a “short” request to a plugin specified by
type (e.g. LMM_HMI). Short requests have a code and up to 24 bits of
parameter. Note that the meaning of the code and the parameters is plugin-

Copyright 2025 Ross Higson Page 7

Catalina C Plugins, Targets and the Registry

dependent, and also that different plugin types may require short or long
requests to be used for specific request codes.

int _long plugin_request (long plugin_type, long code, long param);

This function can be used to send a “long” request to a plugin specified by
type (e.g. LMM_HMI). This type of long request has a code and one 32 bit
parameter. Note that the meaning of the code and the parameter is plugin-
dependent, and also that different plugin types may require short or long
requests to be used for specific request codes.
int _long plugin_request 2 (long plugin_type,
long code,

long parl,
long par?);

This function can be used to send a “long” request to a plugin specified by
type (e.g. LMM_HMI). This type or long request has a code and two 32 bit
parameters. Note that the meaning of the code and the parameters is
plugin-dependent, and also that different plugin types may require short or
long requests to be used for specific request ids.

float _float_request (long plugin_type, long code, float a, float b);

This function can be used to send a “long” request to a plugin specified by
type (e.g. LMM_HMI). This type of long request has a code and two 32 bit
floating point values as parameters. Note that the meaning of the code and
the parameters is plugin-dependent, and also that different plugin types may
require short or long requests to be used for specific request ids.

The Service Requests functions are:

int _short_service (long svc, long param);

This function can be used to send a short request for a specific service (e.g.
SVC_T_CHAR). Short requests have a code and up to 24 bits of parameter.
Note that the meaning of the parameter is service-dependent, and also that
different services may require short or long requests to be used.

int _long_service (long svc, long param);
This function can be used to send a long request for a specific service (e.g.
SVC_RTC_SETFREQ). Long requests have a code and up to 32 bits of
parameter. Note that the meaning of the parameter is service-dependent,

and also that different services may require short or long requests to be
used.

int _long service 2 (long svc, long parl, long par2);

This function can be used to send a long request for a specific service (e.g.
SVC_SD_READ). This type of long request has a code and two 32 bit
parameters. Note that the meaning of the parameters is service-dependent.

float _float service (long svc, float a, float b);

This function can be used to send a long request for a specific service (e.g.
SVC_FLOAT_ADD). This type of long request has a code and two 32 bit

Copyright 2025 Ross Higson Page 8

Catalina C Plugins, Targets and the Registry

floating point values as parameters. Note that the meaning of the
parameters is service-dependent.

The Service Requests macros are:
SERVICE_ENTRY (s)

This macro returns the registry entry for service s. The parameter should be
from 1 to SVC_MAX — any other value will return an undefined result. The
result is an unsigned short value.

SERVICE_COG (s)

This macro returns the cog containing the plugin which implements service
s. The parameter should be from 1 to SVC_MAX - any other value will
return an undefined result. The result is an unsigned value. A value of O0xF
indicates the service is not currently implemented by any loaded plugin.

SERVICE LOCK (s)

This macro returns the lock that must be successfully set to gain access to
service s. The parameter should be from 1 to SVC_MAX - any other value
will return an undefined result. The result is an unsigned value. A value of
0x1F indicates the service is not currently implemented by any loaded
plugin.

SERVICE_CODE (s)

This macro returns the request that will be sent to the plugin to request
service s. The parameter should be from 1 to SVC_MAX - any other value
will return an undefined result. The result is an unsigned value. A value of
0x00 indicates the service is not currently implemented by any loaded

plugin.
The following miscellaneous utility function are provided:
char * plugin name (int type)

This function returns a pointer to a human-readable name for the plugin
type. For example “Real-Time Clock” or “Gamepad”.

Note that the same plugin functions can generally be requested using either Plugin
Requests or Service Requests. The advantage of using Service Requests is that they
implement concurrency control (necessary if you have multiple threads or multiple cogs
executing C programs), that you do not need to know the plugin type to request a
service (i.e. allowing the same service to be implemented by different plugins in different
targets), and also that Service Request access is slightly faster.

Services 1 to 64 are predefined to mean various basic Catalina services (see the file
plugin.h for a complete list), but services 65 to MAX_SVC are free for users to define for
their own purposes.

AN IMPORTANT NOTE ABOUT REGISTRY ACCESS: When accessing the
registry, any addresses used in the registry, or in a plugin or service request,
must be HUB RAM addresses. This is because plugins are normally

Copyright 2025 Ross Higson Page 9

Catalina C Plugins, Targets and the Registry

implemented as Spin/PASM programs that have no access to XMM RAM. For
example, if a service requires a parameter that represents an address where the
plugin expects to find data to process, the address must be in Hub RAM. If the
data is actually located in XMM RAM, it must be copied to Hub RAM before the

service request.

Copyright 2025 Ross Higson Page 10

	Plugins and Targets
	The Registry
	Registry, Plugin and Service functions

