
Catalina C​ ​ Who’s Who in the Lua Zoo

Who’s Who in the Lua Zoo
Table of Contents
Introduction...2
Rationale.. 2
Standalone Lua.. 4

Lua : Standard Lua (lua and luax)...4
iLua : Interactive Lua (ilua)..5
mLua : Multiprocessing Lua (mlua and mluax)... 5
wLua : WiFi Lua (wlua and wluax).. 6

Client/Server Lua..6
eLua : Extended Lua (elua, eluax and eluaXX).. 6
aLua : ALOHA/Serial Lua (alua, aluax and aluaXX)... 7
rLua : RPC/WiFi Lua (rlua, rluax and rluaXX)... 8
sLua : Server-only Lua (sluaXXX)...10

Other variants... 11

Copyright (c) 2025 Ross Higson​ ​ Page 1

Catalina C​ ​ Who’s Who in the Lua Zoo

Introduction
Lua is a C-based embedded1 scripting language that has found popularity in games and
other applications where providing the ability for end-users to customize applications
easily and rapidly is highly desirable. Lua is not only written in C, it is intended to be highly
inter-operable with C – i.e. C programs can call Lua programs and vice-versa. But Lua can
also be used stand-alone. This means it is not necessary to either know or use any C to
create and execute Lua programs.

Catalina has extensive Lua support - in fact, the propeller 2 versions of Catalyst and the
self-hosted version of the Catalina compiler itself are partly implemented in Lua. But this
document is not about Lua itself - for that, see any Lua documentation (such as the Lua
Reference Manual - see https://www.lua.org/manual/5.4/). Instead, this document gives a
brief overview of the different variants of Lua supported by Catalina. Further detail of each
of the variants is then provided in other Catalina documents:

●​ The Standard2 and Interactive variants of Lua are included as Catalyst demo
programs. Details are given in the Catalyst Reference Manual.

●​ Details of the Multiprocessing variants of Lua are given in the document Lua on
the Propeller 2 with Catalina. This document also describes the propeller and
hmi modules which (if enabled) provide basic propeller and HMI functions to all
variants.

●​ Details on the Client/Server variants of Lua, where a Lua Client and a Lua Server
execute either on the same propeller or on different propellers, are given in the
document Aloha from Lua.

​​Rationale
​​Lua is a highly extensible language. While all the Lua variants support the same Lua
language, they are extended by including various C or Lua library modules or
components. Since the propeller has no support for dynamically loading libraries and has
limited Hub RAM, the different variants are required to allow different capabilities to be
supported by having different modules compiled into the Lua executable, or omitted to
save space. The different variants may also use different memory models (to trade-off
between speed and space), different platform configurations and different Catalina plugins
and options.

​​Here is a summary of possible differences between Lua variants:

1.​ Whether the variant includes the Lua parser. This is a standard Lua option. The
main reason for omitting the parser is to save memory if it is not required at
run-time. If the parser is included, then Lua can execute both source (e.g. .lua) files
as well as compiled (e.g. .lux) files. Otherwise only compiled files can be executed.

2 ​ Standard Lua is supported on the propeller 1 and 2, the other variants only on the propeller 2.
1​ The term "embedded" here means embedded within other programs, not embedded in hardware.

Copyright (c) 2025 Ross Higson​ ​ Page 2

https://www.lua.org/manual/5.4/

Catalina C​ ​ Who’s Who in the Lua Zoo

2.​ The Catalina plugins and Catalina compile-time options used by the variant, such
as the cache size to use for variants that use XMM RAM.

3.​ Whether various propeller-specific library modules and other Lua components are
compiled into the variant (to save space if they are not required). These are:

propeller​ basic propeller functions (e.g. setpin(), sleep(), lockset() etc)

hmi​ HMI functions (k_get(), t_char(), m_button() etc)

threads​ multi-threading functions (factory(), worker(), channel() etc)

service​ registry service calls (long(), short(), float(), serial() etc)

serial​ serial protocol functions (tx(), rx(), txflush(), str() etc)

wifi​ WiFi functions (SEND(), RECV(), POLL(), CONNECT() etc)

linenoise​ command-line editing support (used by Interactive Lua)

debug​ A standard Lua module which provides debug and reflection support

utf8​ A standard Lua module which provides utf8 character support

math​ A standard Lua module which provides floating point support

os​ A standard Lua module which provides operating system support

coroutine​A standard Lua module which provides co-routine support

4.​ For the Standalone variants, Lua can be compiled in NATIVE mode, which
executes entirely from the Hub RAM at maximum speed, COMPACT mode, which
executes entirely from Hub RAM using less memory but more slowly, or SMALL or
LARGE mode3, which executes from XMM RAM more slowly still, but which can
support Lua programs up to 16Mb.

5.​ For Client/Server variants, the memory model used by the Client and the Server
(which can be different). Clients always use Hub RAM for all code and data. but can
use NMM4, LMM or CMM. Some variants allow the Servers to use either Hub RAM
for all code and data, or use XMM RAM for code and Hub RAM for data and stack
space (i.e. XMM SMALL) or XMM RAM for code and data and Hub RAM only for
stack space (i.e. XMM LARGE).

6.​ For Client/Server variants that execute both the Client and the Server on the same
propeller, the amount of RAM allocated to the Client and the Server.

7.​ For Client/Server variants where the Client and the Server execute on different
propellers, the platform configuration to use for each. These are referred to as the
master and slave propellers, and are typically compiled using pairs of platform

4 ​ CMM, LMM, NMM and XMM are different memory/execution models for code on the Propeller 2. See
the Catalina Reference Manual (Propeller 2) for details.

3 ​ The Multiprocessing variants cannot use XMM SMALL or XMM LARGE modes - this is one reason for
having the Client/Server variants, described later.

Copyright (c) 2025 Ross Higson​ ​ Page 3

Catalina C​ ​ Who’s Who in the Lua Zoo

configurations such as P2_MASTER and P2_SLAVE, or P2_WIFI_MASTER and
P2_WIFI_SLAVE - although note that there could also be multiple slaves, with each
slave using a different platform configuration.

​​Standalone Lua
​​The Standalone variants of Lua are those where there is only one instance of Lua
executing. However, that single instance may have several Lua coroutines or threads
executing simultaneously, and these may be executing on multiple cogs.

​​Lua : Standard Lua (lua and luax)
There are two main variants of standard Lua in the folder demos/catalyst/lua5.4.4.

Here is a brief description of the two main lua variants, available on any propeller 2:

lua​ a CMM variant of Lua, with a Lua parser.

luax​ a CMM variant of Lua without a Lua parser.

There are also lua variants built to use XMM RAM (if available):

xs_lua​ an XMM SMALL variant of Lua with a Lua parser.

xs_luax​ an XMM SMALL variant of Lua without a Lua parser.

xl_lua​ an XMM LARGE variant of Lua with a Lua parser.

xl_luax​ an XMM LARGE variant of Lua without a Lua parser.

All variants include the propeller and hmi modules, and also the linenoise module unless
the Catalina symbol NO_LINENOISE was specified when Catalyst was compiled.

​​Lua can be invoked directly from the Catalyst command line, optionally specifying the
name of the Lua file to execute (specifying a file is required for luax). For example:

​​lua​
lua progam.lua​
xs_lua progam.lux​
xl_luax program.lux

​​Catalyst can also execute Lua commands directly from the command prompt, so entering
just program would cause Catalyst to search for (and execute if found) program.lux and
then program.lua. Also, the Catalyst environment variables LUA and LUAX can be set to
specify which variant is used (the defaults are to use lua and luax). For example:

​​set LUA=xs_lua​
set LUAX=xl_luax

​​Also in demos/catalyst/lua5.4.4 is the Lua compiler (luac), which is suitable for compiling
all Lua programs no matter what Lua variant is used to execute them. Also, in the folder
demos/catalyst/core is a Lua program clua.lua that makes the Lua compiler easier to use
(for instance, it is not necessary to specify the extension and output files, as it is for luac).

Copyright (c) 2025 Ross Higson​ ​ Page 4

Catalina C​ ​ Who’s Who in the Lua Zoo

​​So the command:

​​clua program

​​does the same as:

​​luac -o program.lux program.lua

​​If XMM RAM is available, there are also XMM SMALL and XMM_LARGE variants of the
Lua compiler (xs_luac and xl_luac). To have the clua command use these instead of the
CMM version, edit the script (on the Catalyst SD, this script will be in bin/clua.lua).

​​Examples of Lua programs are given in demos/catalyst/lua5.4.4/test.

​​iLua : Interactive Lua (ilua)
Interactive Lua is not really a separate variant - it is a Lua script (ilua.lua) in
demos/catalyst/ilua that can be executed using Standard Lua. This script provides an
enhanced Lua Read-Eval-Print Loop and enhanced command-line editing. It requires that
Stand-alone Lua has been built to include the linenoise module (which is the default).

​​Since it is a Lua script, iLua can be invoked directly from the Catalyst command line. The
script does not accept any parameters. So just enter the command:

​​ilua

​​mLua : Multiprocessing Lua (mlua and mluax)
There are several variants of Lua with multiprocessing support enabled, also in the folder
demos/catalyst/lua5.4.4. The multiprocessing support allows Lua to execute on multiple
cogs.

Here is a brief description of the two main mlua variants:

mlua​ a CMM variant of Lua with multiprocessing support and with a Lua
parser.

mluax​ a CMM variant of Lua with multiprocessing support without a Lua
parser.

​​These variants include the propeller, hmi and threads modules, and also the linenoise
module unless the Catalina symbol NO_LINENOISE was specified when Catalyst was
compiled. To free up more Hub RAM, the debug and utf8 Lua modules are omitted from
these variants5.

​​mLua can be invoked directly from the Catalyst command line, optionally specifying the
name of the Lua file to execute (specifying a file is required for mluax). For example:

​​mlua​
mlua progam.lua​

5 ​ If the debug or utf8 modules are required by a Lua program, they can be re-enabled by editing the
appropriate Lua initialization file (i.e. linit.c). However, this will reduce the size of Lua programs that can
be executed.

Copyright (c) 2025 Ross Higson​ ​ Page 5

Catalina C​ ​ Who’s Who in the Lua Zoo

mlua progam.lux​
mluax program.lux

​​The multiprocessing extensions to Lua are described in detail in the document Lua on the
Propeller 2 with Catalina. Examples of mLua programs are described in that document,
and included in demos/catalyst/lua5.4.4/test.

​​wLua : WiFi Lua (wlua and wluax)
There are two variants of Lua with WiFi support enabled in the folder demos/wifi. The WiFi
support allows internet applications (e.g. that use HTTP, TCP or TELNET) to be created in
Lua.

Here is a brief description of the two main wLua variants:

wlua​ a CMM variant of Lua with WiFi support enabled and with a Lua
parser..

wluax​ a CMM variant of Lua with WiFi support enabled without a Lua parser.

​​These variants include the propeller, hmi, serial and wifi modules. The linenoise
module is not included.

​​wLua can be invoked directly from the Catalyst command line, optionally specifying the
name of the Lua file to execute (specifying a file is required for wluax). For example:

​​wlua​
wlua progam.lua​
wlua progam.lux​
wluax program.lux

​​Examples of wLua programs are included in demos/wifi.

​​Client/Server Lua
​​The Client/Server variants of Lua allows Lua programs to use a simple Client/Server
paradigm, where the Client executes from Hub RAM at maximum speed, and the Server
executes from XMM RAM, and can therefore be up to 16Mb in size. The Client and Server
can be on the same propeller, or on different propellers.

​​eLua : Extended Lua (elua, eluax and eluaXX)
The Extended variant of Lua allows Lua programs to use a simple Client/Server paradigm,
where both Client and Server execute on the same propeller..

There are several Extended variants in the folder demos/elua - two main ones, plus a few
others that are useful in particular circumstances.

Here is a brief description of the two main eLua variants:

elua​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both with a Lua parser.

Copyright (c) 2025 Ross Higson​ ​ Page 6

Catalina C​ ​ Who’s Who in the Lua Zoo

eluax​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with a 64K cache, both without a Lua parser.

The other eLua variants omit the multiprocessing support, which frees up more Hub RAM
when these capabilities are not required:

eluafx​ an NMM Lua client and an XMM LARGE Lua server with an 8K
cache, both without a Lua parser or multiprocessing support.
Because the client is a NATIVE program, it will execute faster than the
other eLua variants - but there is less Hub RAM available, so only
smaller Lua programs can be executed.

eluas​ a CMM Lua client and an XMM LARGE Lua server with an 8K cache,
both with a Lua parser, but without multiprocessing support. This
variant also omits the propeller module from the Lua Client (it is
enabled in the Lua Server)..

eluasx​ a CMM Lua client and an XMM LARGE Lua server with a 64K cache,
both without a Lua parser or multiprocessing support.

​​Unless otherwise stated above, the propeller and hmi modules are included in both the
Client and the Server.

​​eLua can be invoked directly from the Catalyst command line, optionally specifying the
names of the Client and Server files to execute. If no extension is specified, then .lua is
assumed by variants that include the parser, and .lux is assumed by variants that do not. If
no filenames are entered, then client and server are assumed. For example:

​​elua​
eluax​
elua client server​
eluax client serverbg

​​eLua is described in detail in the document Aloha from Lua. This document also
describes the structure required for Lua Client/Server programs. Examples of eLua
programs are included in demos/elua.

​​aLua : ALOHA/Serial Lua (alua, aluax and aluaXX)
The ALOHA/Serial variant of Lua allows Lua programs to use a simple Client/Server
paradigm, where the Client and Server are on different propellers, connected via a
hardwired serial connection.

As with eLua, the aLua variants differ in the memory models and components included.
Here is a brief description of the aLua variants provided in the folder demos/elua/aoha:

alua​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both with a Lua parser.

aluax​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with a 64K cache, both without a Lua parser.

Copyright (c) 2025 Ross Higson​ ​ Page 7

Catalina C​ ​ Who’s Who in the Lua Zoo

aluafx​ an NMM Lua client and an XMM LARGE Lua server with an 8K
cache, both without a Lua parser or multiprocessing support.
Because the client is a NATIVE program it will execute faster than the
other eLua variants - but there is less Hub RAM available, so only
smaller Lua clients (or servers, depending on how the Hub RAM is
allocated) can be executed.

The build_aloha script in the folder demos/elua/aloha builds these variants to execute on
both P2_MASTER and P2_SLAVE propellers, and it renames the resulting P2_MASTER
binaries as master.bin, masterx.bin and masterfx.bin, and the P2_SLAVE binaries as
slave.bin, slavex.bin and slavefx.bin - so it ends up the following six binaries:

master.bin​ alua compiled for P2_MASTER
masterx.bin​ aluax compiled for P2_MASTER
masterfx.bin​ aluafx compiled for P2_MASTER
slave.bin​ alua compiled for P2_SLAVE
slavex.bin​ aluax compiled for P2_SLAVE
slavefx.bin​ aluafx compiled for P2_SLAVE

Then master (or masterx or masterfx) must be executed on the P2_MASTER propeller,
and slave (or slavex or slavefx) must be executed on the P2_SLAVE propeller. The master
and slave names are arbitrary - in fact all the binaries are simply eLua, but built using a
different platform configuration file.

​​aLua programs can be invoked directly from the Catalyst command line, optionally
specifying the names of the Client and Server files to execute. If no extension is specified,
then .lua is assumed by variants that include the parser, and .lux is assumed by variants
that do not. If no filenames are entered, then client and server are assumed. For example:

​​master​
slavex​
master client server​
slave client serverbg

aLua is described in detail in the document Aloha from Lua. This document also
describes the structure required for Lua Client/Server programs. Examples of aLua
programs are included in demos/elua/aloha.

rLua : RPC/WiFi Lua (rlua, rluax and rluaXX)
The RPC/WiFi variant of Lua allows Lua programs to use a simple Client/Server
paradigm, where the Client and Server are on the same propeller, or on different
propellers, connected to a WiFi network.

As with the eLua and aLua variants, the rLua variants differ in the memory models and
components included. Here is a brief description of the rLua variants provided:

rlua​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both with a Lua parser. Uses
the 8 port serial plugin and supports both serial ALOHA and WiFi
services. Both the client and the server support the WiFi functions.

Copyright (c) 2025 Ross Higson​ ​ Page 8

Catalina C​ ​ Who’s Who in the Lua Zoo

rluax​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both without a Lua parser. Uses
the 8 port serial plugin and supports both serial ALOHA and WiFi
services. Both the client and the server support the WiFi functions.

rlua2​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both with a Lua parser. Uses
the 2 port serial plugin and does NOT support serial ALOHA services
- only WiFi services, and only the server supports the WiFi functions6.
This allows more Hub RAM for Lua programs.

rlua2x​ a CMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both without a Lua parser. Uses
the 2 port serial plugin but does NOT support serial ALOHA services -
only WiFi services, and only the server supports the WiFi functions7.
This allows more Hub RAM for Lua programs.

rluafx​ an NMM Lua client with Lua multiprocessing support, and an XMM
LARGE Lua server with an 8K cache, both without a Lua parser. Uses
the 2 port serial plugin but does NOT support serial ALOHA services -
only WiFi services, and only the server supports the WiFi functions8.

The build_rpc script in the folder demos/elua/aloha builds these variants for the propeller
platform P2_WIFI to execute on a single propeller or multiple propellers with the same
platform configuration, but it also builds them for P2_WIFI_MASTER and P2_WIFI_SLAVE
to be executed on multiple propellers that have different platform configurations. It
renames the resulting P2_WIFI_MASTER binaries as rmaster.bin and rmasterx.bin and
and the P2_WIFI_SLAVE binaries as rslave.bin and rslavex.bin - to end up the following
binaries:

rlua.bin​ rlua compiled for P2_WIFI
rluax.bin​ rluax compiled for P2_WIFI​
rluafx.bin​ rluafx compiled for P2_WIFI​
rlua2.bin​ rlua2 compiled for P2_WIFI
rlua2x.bin​ rlua2x compiled for P2_WIFI
rmaster.bin​ rlua compiled for P2_WIFI_MASTER
rmasterx.bin​ rluax compiled for P2_WIFI_MASTER
rslave.bin​ rlua compiled for P2_WIFI_SLAVE
rslavex.bin​ rluax compiled for P2_WIFI_SLAVE

The rlua (or rluax or rluafx or rlua2 or rlua2x) can be executed on any P2_WIFI propeller.
The rmaster (or rmasterx) must be executed on the P2_WIFI_MASTER propeller, and
rslave (or rslavex) must be executed on the P2_WIFI_SLAVE propeller.

8 ​ See previous footnote.
7 ​ See previous footnote.

6 ​ However, the client can use the WiFi functions provided by the server if suitable proxy services are
defined - see the HTTP example in demos/elua/http.

Copyright (c) 2025 Ross Higson​ ​ Page 9

Catalina C​ ​ Who’s Who in the Lua Zoo

The names are arbitrary - in fact all the binaries are simply rLua, but built for a specific
platform, and including a custom Lua dispatcher with ALOHA serial and WiFi RPC support
(except for rlua2, rlua2x and rluafx, which explicitly disable the ALOHA serial protocol to
free up more Hub RAM).

​​rLua programs can be invoked directly from the Catalyst command line, optionally
specifying the names of the Client and Server files to execute. If no extension is specified,
then .lua is assumed by variants that include the parser, and .lux is assumed by variants
that do not. If no filenames are entered, then client and server are assumed. For example:

​​rlua​
rluax​
rlua client remote​
rluax remote serverbg

rLua is described in detail in the document Aloha from Lua. This document also
describes the structure required for Lua Client/Server programs. Examples of rLua
programs are included in demos/elua/aloha.

sLua : Server-only Lua (sluaXXX)
​​The Server-only Lua variants contain a Lua Server, but no Lua Client (and so they must
be executed in conjunction with a Client executing on another propeller). This allows the
Lua Server to be executed entirely from Hub RAM. Since Clients always execute from
Hub RAM, this allows for maximum speed where the Lua program can be written as a
Client/Server program to execute on multiple propellers.

The following variants are intended to be used with an existing aLua client, and are
therefore built only for the P2_SLAVE propeller:

sluafx​ an NMM Lua Server with no Lua client, no Lua parser and no
multiprocessing support. Because the server is a NATIVE program it
will execute faster than the other aLua variants, but only support
smaller Lua servers. This variant also omits the propeller module.

sluafix​ an NMM Lua Server with no Lua client, no Lua parser and no
multiprocessing support. Because the server is a NATIVE program it
will execute faster than the other aLua variants, but only support
smaller Lua servers. It uses the integer version of the standard C
library, which omits the capabilities of doing I/O on floating point
numbers, and also the Lua math and os modules9.This variant also
omits the propeller module.

sluacx​ a CMM Lua Server with no Lua client, no Lua parser and no
multiprocessing support. Because the server is a COMPACT program
it will execute more slowly than the sluafx variant, but can support
larger Lua servers. This variant also omits the propeller module.

9 ​ If the math or os modules are required by a Lua program, they can be re-enabled by editing the
appropriate Lua initialization file iinit.c

Copyright (c) 2025 Ross Higson​ ​ Page 10

Catalina C​ ​ Who’s Who in the Lua Zoo

sluacix​ a CMM Lua Server with no Lua client, no Lua parser and no
multiprocessing support. Because the server is a COMPACT program
it will execute more slowly than the sluafix variant, but can support
larger Lua servers. It uses an integer version of the standard C
library, which omits the capabilities of doing I/O on floating point
numbers, and also the Lua math and os modules. This variant also
omits the propeller module to free up more Hub RAM.

The following variant is intended to be used with an existing rLua client, and is only built
for the P2_WIFI_SLAVE propeller:

sluarfx​ an NMM Lua Server with no Lua client, no Lua parser and no
multiprocessing support. Because the server is a NATIVE program it
will execute faster than the other rLua variants, but it can only support
smaller Lua servers.

​​Unless otherwise stated above, the propeller and hmi modules are included in the Lua
Server.

​​sLua programs can be invoked directly from the Catalyst command line, optionally
specifying the name of the Lua Server file to execute. If no extension is specified, then .lua
is assumed by variants that include the parser, and .lux is assumed by variants that do
not. If no filenames are entered, then server is assumed. For example:

​​sluafx​
sluacix server​
sluafx server.lux

​​sLua is described in detail in the document Aloha from Lua. Examples of Server-only
Lua programs are included in demos/elua/aloha.

Other variants
Note that not all possible Lua variants are included with Catalina - there are simply too
many possible combinations. Additional variants to those described in this document may
be included in particular Catalina releases, or can be created as needed for specific
applications.

Creating new variants can be done by:

1.​ Editing the relevant Lua initialization files (typically this will be called linit.c, xinit.c or
iinit.c) to enable or disable specific Lua modules.

2.​ Creating and adding new Lua modules.

3.​ Editing the platform configuration files in the target/p2 directory (e.g
P2MASTER.inc, P2SLAVE.inc, P2WIFI.inc, P2WIFI_S.inc, P2WIFI_M.inc) or
creating additional ones (e.g. if there is more than one Lua Slave propeller).

4.​ Editing the build scripts or Makefiles (e.g. to modify command line options, or
include additional options such as NO_LINENOISE or ENABLE_PROPELLER).

Copyright (c) 2025 Ross Higson​ ​ Page 11

Catalina C​ ​ Who’s Who in the Lua Zoo

5.​ Editing the catapult pragmas in the relevant C source files (the Catalina catapult
utility is used to build all the Client/Server Lua variants). See the document Getting
Started with Catapult for details.

Copyright (c) 2025 Ross Higson​ ​ Page 12

	Who’s Who in the Lua Zoo
	Introduction
	​​Rationale
	​​Standalone Lua
	​​Lua : Standard Lua (lua and luax)
	​​iLua : Interactive Lua (ilua)
	​​mLua : Multiprocessing Lua (mlua and mluax)
	​​wLua : WiFi Lua (wlua and wluax)

	​​Client/Server Lua
	​​eLua : Extended Lua (elua, eluax and eluaXX)
	​​aLua : ALOHA/Serial Lua (alua, aluax and aluaXX)
	rLua : RPC/WiFi Lua (rlua, rluax and rluaXX)
	sLua : Server-only Lua (sluaXXX)

	Other variants

