
Catalina C Aloha from Lua

Aloha from Lua
Table of Contents
Introduction...3
eLua... 3

Building eLua... 4
Demonstrating eLua.. 6
Multi-Processing with eLua..7

ALOHA.. 9
Preparing multiple Propellers...9
Building eLua with ALOHA support..11
A simple demo... 14

Loading the simple demo...14
Executing the simple demo..15
The simple demo files..15

client.lua...15
server.lua... 16
remote.lua.. 17
common.lua... 18

Putting it all together.. 20
WiFi and RPC..21

Preparing multiple Propellers...21
Building eLua with WiFi and RPC support...21
A hybrid demo..24

Loading the hybrid demo... 24
Executing the hybrid demo.. 25

Technical Notes... 26
File name conventions...26
Lua initialization modules...26
Hub RAM Allocation...27
Cog allocation.. 27
The binser module... 28
The ALOHA protocol...29

aloha_tx... 30
aloha_rx... 31

The ALOHA and WiFi RPC dispatcher.. 31
RPC network definition.. 33
The WiFi RPC protocol.. 34
Background tasks.. 34

Appendix A - A more complete demo..36
client.lua...36
server.lua... 37

Copyright (c) 2024 Ross Higson Page 1

Catalina C Aloha from Lua

common.lua... 38
remote.lua..39

Appendix B - Life... 40

Copyright (c) 2024 Ross Higson Page 2

Catalina C Aloha from Lua

Introduction
Lua is a C-based embedded1 scripting language that has found popularity in games and
other applications where providing the ability for end-users to customize applications
easily and rapidly is highly desirable. Lua is not only written in C, it is intended to be highly
inter-operable with C – you can call Lua programs from C, and vice-versa. But Lua can
also be used stand-alone.

An introduction to Lua on the Propeller 2 is given in the document Lua on the Propeller 2
with Catalina. That document also contains a description of Catalina’s multi-processing
extensions to Lua, which enable Lua to take advantage of multiple cogs on multiple
threads.

This document is about a different extension to Lua that Catalina offers - eLua offers a
simple way to execute two instances of Lua on the same Propeller using a simple
client/server architecture, which provides another way for Lua to take advantage of the
Propeller’s multi-processing capabilities.

eLua allows Lua to get around both the speed and space limitations that could otherwise
make Lua impractical on a microcontroller. Lua programs can potentially have both speed
and space, as well as the multi-processor capabilities offered by the Propeller.

eLua programs can also be easily extended to multiple propellers, using either a very
simple serial protocol called ALOHA, or by using a WiFi based Remote Procedure Call
(RPC) protocol. First, this document will describe eLua by itself, then eLua with ALOHA,
then eLua with WiFi.

 eLua
The main purpose of eLua is to enable two Lua instances to execute in parallel. Typically,
one Lua instance will execute from Hub RAM at full propeller speed but with limited
program and data space, while the other Lua instance will execute from XMM RAM, at
slower speeds but with potentially megabytes of code and data space.

The interaction between the two Lua instances is via a very simple client/server
architecture, where the server provides one or more Lua functions that the client can call
whenever it needs something done that would require too much code space or data space
for it to do itself. The server can also run a “background” task when it is not servicing calls
from the client, allowing for an easy to understand and easy to program way to build a
multi-processing application.

1 The term "embedded" here means embedded within other programs, not embedded in hardware.

Copyright (c) 2024 Ross Higson Page 3

Catalina C Aloha from Lua

Building eLua
There are several variants of essentially the same eLua client/server program in the folder
demos/elua - two main ones, plus a few others that may be useful in particular
circumstances.

Here is a brief description of the two main eLua variants:

elua a CMM2 Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with an 8K cache, both with a Lua parser.

eluax a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with a 64K cache, both without a Lua parser.

The other eLua variants omit the multi-processor support, which frees up more Hub RAM
when these capabilities are not required:

eluafx an NMM Lua client and an XMM LARGE Lua server with an 8K
cache, both without a Lua parser or multi-processing support.
Because the client is a NATIVE program, it will execute faster than the
other eLua variants - but there is less Hub RAM available, so only
smaller Lua clients (or servers, depending on how the Hub RAM is
allocated) can be executed.

eluas a CMM Lua client and an XMM LARGE Lua server with an 8K cache,
both with a Lua parser, but without multi-processing support.

eluasx a CMM Lua client and an XMM LARGE Lua server with a 64K cache,
both without a Lua parser or multi-processing support.

Compile them all using the build_all script:

build_all P2_EDGE

or compile them individually by using the following Catapult commands (this example is for
the P2_EDGE3):

set CATALINA_DEFINE=P2_EDGE
catapult elua.c
catapult eluax.c
catapult eluas.c
catapult eluafx.c
catapult eluasx.c

The variants differ only in the attributes of the various Catapult pragmas, which tell
Catalina what memory model to use for the primary (server) and secondary (client)
programs, their stack sizes, address, cache size, etc.

3 All the examples in this document assume Windows. On Linux instead of set you would say:
export CATALINA_DEFINE=P2_EDGE

2 CMM, LMM, NMM and XMM are different memory/execution models for code on the Propeller 2. See
the Catalina Reference Manual (Propeller 2) for details.

Copyright (c) 2024 Ross Higson Page 4

Catalina C Aloha from Lua

All the eLua variants should build "as is" when compiled under Windows4 for a P2 Edge
with on-board PSRAM (i.e. the P2-EC32MB), or a P2 Evaluation board with the
HyperRAM add-on board. With minor modification - typically, to the address to use for the
client program - they can also be built for other Propeller 2 platforms with supported
PSRAM. As usual with Catapult programs, the programs will tell you the address to use
when they are compiled and executed if this needs to be changed.

All the eLua variants load the client and server Lua files specified on the command line -
the first argument specifies the client file, and the second specifies the server file. The
variants that include a Lua parser (such as elua) can accept either text or compiled binary
Lua files (e.g. client.lua or client.lux). The variants that do not include a Lua parser (such
as eluax) can accept only compiled binary Lua files (e.g. client.lux). If no files are
specified, the defaults are client.lua and server.lua for those variants that include a Lua
parser, and client.lux and server.lux for those that do not.

All eLua programs use the Catalina Registry for their client/server interaction - this
enables the server to offer multiple services, and also adds lock protection so that the
services can be used safely in multi-processing applications.

The Catalina registry supports only a limited number of service parameter profiles -
basically, those that are required to implement Catalina plugins.

However, the basic "short" service profile can also be used to pass a pointer to the shared
data structure as the parameter. This allows for arbitrary data to be exchanged between
client and server. In eLua, the shared data is primarily used to store and share the names
of the client and server files, and also to synchronize the startup between the client and
the server (so that the client does not try to call services provided by the server before the
server is ready).

Also, specifically for Lua a "serial" service profile has been added that can be used to
accept and return any simple Lua data type. They are passed in a "serialized" format. A
binary serialize/deserialize library (called binser) is provided for this purpose. Any Lua
function can be implemented using the serial service type, because it can accept and
return one or more of any of the basic Lua data types - including Lua functions. This
means a client can not only exchange arbitrary data with the server - it can also exchange
functions with the server for remote execution (the simple demo provided has an example
of doing this). The binser module is described in more detail in the Technical Notes
section of this document.

Note that the eLua programs DO NOT generally need to be recompiled just to execute
different Lua programs. The main reasons eLua would need to be recompiled would be to
adjust the allocation of Hub RAM between the Lua client and the Lua server, to alter
plugins used, or to alter the default modules loaded by Lua. See the Technical Notes
section of this document for more detail on Hub RAM allocation.

4 All the eLua variants have been configured for compilation on Windows. The address specified in the
catapult secondary pragma may need to be modified when compiled under Linux. The program will tell
you the correct address to use when compiled and executed if it needs to be modified.

Copyright (c) 2024 Ross Higson Page 5

Catalina C Aloha from Lua

Demonstrating eLua
To demonstrate eLua, after building the binaries copy the following files from demos/elua
to an SD card containing Catalyst:

elua.bin the eLua program with a Lua parser
eluax.bin the eLua program without a Lua parser

Then add the files from the demos/elua/example folder:

binser.lua the binser module
common.lua common definitions for the clients and servers
client.lua an example eLua client
server.lua an example eLua server
remote.lua an ALOHA proxy client/server (more on this later)
serverbg.lua an example eLua server with a background task
rebuild a Catalyst script to re-compile all the Lua files

plus compiled binary (.lux) versions of the Lua files.

These files implement an example eLua program. Since the files have the names that will
be loaded by default, to execute the example simply execute any of the eLua variants
without specifying any parameters. For example:

elua

or

eluax

This example implements five different services, intended to illustrate various eLua
features:

add accepts two numbers and returns their sum. Demonstrates that a
service can accept multiple arguments.

modrem accepts two numbers and returns their modulus and remainder.
Demonstrate that a service can return multiple results.

invert accepts a Lua table and returns a Lua table that "inverts" the value of
each table element. Demonstrates that a service can accept and
return a Lua table.

invoke accepts a Lua table that contains a number and a Lua function,
invokes the function on the number, and returns the result.
Demonstrates that a service can accept any simple Lua data type,
including Lua functions.

quit causes the server to terminate. Provides a mechanism for orderly
program termination.

The common.lua file contains the definition of all the services required by the client.lua
program, and proxy functions that can be used to call them. The server.lua program is

Copyright (c) 2024 Ross Higson Page 6

Catalina C Aloha from Lua

slightly more complex, but essentially just adds a wrapper function around each service
that allows it to be called by the Lua dispatcher. The client doesn't need to know any of
these details - it simply calls the proxy functions as if they were local functions and is
unaware that they may actually be implemented by the server and not the client.

Note that if you change any of the Lua text files, you should also recompile the
corresponding binary versions. For example:

luac -o client.lux client.lua

A catalyst script to recompile all the Lua binary versions is provided called rebuild. To
execute it use the following Catalyst command:

exec rebuild

Instead of discussing this example in detail, it is better to start with a simpler demo. The
simple demo given later in this document functions perfectly well when executed as an
eLua example with or without ALOHA. So it is possible to skip straight from here to the
section titled A simple demo and then come back to examine the example program files in
detail, and also find out more about eLua’s multi-processing support and ALOHA.

Multi-Processing with eLua
This section describes using eLua to execute programs that are not specifically written for
eLua. The examples used are the example programs described in the document Lua on
the Propeller 2 with Catalina, and should already be on the Catalyst SD card (if not,
copy the files ex*.lua from demos/catalyst/lua-5.4.4/test). However, these examples can
be executed as client programs by eLua and can also be executed in conjunction with an
eLua server that performs additional functions.

eLua does not replace Lua’s existing multi-processing capabilities, it extends them.

To execute any of these examples, just specify them as eLua client programs. For
example:

elua ex6.lua

or

luac -o ex6.lux ex6.lua
eluax ex6.lux

These programs do not themselves use the client/server capabilities of eLua, but because
the server code will be loaded and executed even if it is not used, some of the demos
need minor tweaks due to the reduced Hub RAM and cogs available to eLua clients (and
they must all be executed as eLua clients, because eLua servers do not usually support
multi-processing capabilities). Here are the tweaks required:

ex1.lua must be executed by elua (not eluax) since it requires the Lua parser.

ex8.lua can execute at most 5 Lua threads (not 10).

Copyright (c) 2024 Ross Higson Page 7

Catalina C Aloha from Lua

ex9.lua can use at most 2 factories (not 4), and can recycle at most 2 workers
(not 4).

ex12.lua can use at most 2 factories (not 4) and 2 workers (not 4).

Also, note that these examples usually end with a Press ENTER to terminate message -
but this will only terminate the client and not the server because these programs are not
aware there is a server that needs to be terminated. Instead, reset the Propeller to return
to the Catalyst prompt.

To verify that the server is actually functioning (and so is available to be used for other
tasks) an alternate server that just flashes a LED periodically is provided. This is in the file
serverbg.lua (or its compiled equivalent serverbg.lux).

To see it in action, load any of the examples (except ex10.lua, which expects to use the
LEDs itself) but specify serverbg.lua (or serverbg.lux) instead of loading the default. For
example:

elua ex1.lua serverbg.lua

or

eluax ex6.lux serverbg.lux

The serverbg server can also be used in place of the normal server when executing the
eLua example program described earlier, since it implements the same services in
addition to executing a background task. For example:

elua client.lua serverbg.lua

Copyright (c) 2024 Ross Higson Page 8

Catalina C Aloha from Lua

 ALOHA
 ALOHA extends eLua to allow programs to execute clients and servers on different
propellers. No changes are required to eLua programs to make use of this capability.

 The best way to get started with ALOHA is with an example. In this section, we will walk
through a simple - but fully functional - eLua/ALOHA demo5. This demo can be executed
as an eLua program on one propeller, or as an ALOHA program on two propellers. If it is
only going to be executed on a single propeller, the sections below titled Preparing
multiple propellers and Building eLua with ALOHA can be skipped.

 Preparing multiple Propellers
 ALOHA is intended to be used on multiple propellers. The terms 'master' and 'slave' are
used for these rather than 'client' and 'server' because when running eLua, each propeller
runs both a local client and a local server, so we need to distinguish between the client
and server running on the master and the clients and servers running on each of the
slaves (there can be more than one).

 Specifically to support this type of master/slave multi-propeller programming, two new
platform configuration files have been added to the target/p2 folder, and the
target/p2/platforms.inc file - they are called P2MASTER.inc and P2SLAVE.inc, which will
be used when the Catalina symbols P2_MASTER and P2_SLAVE (respectively) are
defined.

 The propellers must be connected using two pins for serial communications - the default is
to have a dedicated serial connection between the master and each slave, although
"multi-dropping" - where a single serial connection is used to connect the master with all
the slaves is also possible, provided each slave implements a different set of services.

 The 2 or 8 port serial plugin can be used, and the SIMPLE HMI option can be used by
each propeller (the TTY HMI option can be used if the 8 port serial plugin is used, but not
if the 2 port serial plugin is used). For this demo we will use the 2 port serial plugin on both
the master and slave propellers, with the propellers connected as shown below:

 P2_MASTER P2_SLAVE
 rx 0 <—---------> 0 tx
 tx 1 <------------> 1 rx

 So the file target/p2/P2MASTER.inc should specify:

 ' 2 Port Serial constants
 ' =======================
 _RX1_PIN = 0
 _TX1_PIN = 1

 and the file target/p2/P2SLAVE.inc should specify:

 ' 2 Port Serial constants
 ' =======================
 _RX1_PIN = 1

5 A more complete version of the demo, with a few more “bells and whistles” is included in Appendix A.

Copyright (c) 2024 Ross Higson Page 9

Catalina C Aloha from Lua

 _TX1_PIN = 0

 The P2MASTER.inc and P2SLAVE.inc files included are copies of P2_EDGE.inc, modified
as above. If you have a different propeller platform, modify them accordingly.

 A picture is probably worth a thousand words at this point, so here is one:

 +----- Master -----+
 | +----------+ |
 | | o----- port n ----------+
	client		...	
	o----- port 0 --+			
+----------+				
local calls				
			...	
V				
+----------+				
	server			
+----------+				
 +---- Propeller ---+ | |
 remote |
 procedure calls |
 | |
 +----- Slave 0 ----+ | |
+----------+				
	client			
+----------+				
			...	
local calls				
V				
+----------+				
	server o<---- port 0 --+			
+----------+				
 +---- Propeller ---+ |
 |
 . remote
 . procedure calls
 . |
 |
 +----- Slave n ----+ |
+----------+			
	client		
+----------+			
local calls			
V			
+----------+			
	server o<---- port 0 ----------+		
+----------+			
 +---- Propeller ---+

 Because the demo program has to be built to execute on two or more different propeller
platforms (or two or more of the same platform but perhaps with different options and/or
configurations) the easiest way to build them is using Catapult, after setting

Copyright (c) 2024 Ross Higson Page 10

Catalina C Aloha from Lua

CATALINA_DEFINE to the appropriate platform. A build_aloha script to do this is provided
(this is described further below).

 Building eLua with ALOHA support
 To execute the demo on one Propeller, we do not need to do anything further - we can just
execute it with elua or eluax. Skip to the next section.

 To execute the demo on multiple propellers, we must build eLua for both the master and
the slave platforms, and build both the master and slave versions to include ALOHA
support.

 As with plain eLua, the ALOHA variants differ in the memory models and options. Here is
a brief description of the ALOHA variants provided:

alua a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with an 8K cache, both with a Lua parser.

aluax a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with a 64K cache, both without a Lua parser.

aluafx an NMM Lua client and an XMM LARGE Lua server with an 8K
cache, both without a Lua parser or multi-processing support.
Because the client is a NATIVE program it will execute faster than the
other eLua variants - but there is less Hub RAM available, so only
smaller Lua clients (or servers, depending on how the Hub RAM is
allocated) can be executed.

 As previously described, building alua (and aluax and aluafx) can be most easily done
using Catapult, after defining CATALINA_DEFINE to specify the appropriate platform, as
follows:

 set CATALINA_DEFINE=P2_SLAVE
catapult alua.c
catapult aluax.c
catapult aluafx.c

 or

 set CATALINA_DEFINE=P2_MASTER
catapult alua.c
catapult aluax.c
catapult aluafx.c

 The build_aloha script in the folder demos/elua/aloha does exactly this, but it also
renames the resulting P2_MASTER binaries as master.bin, masterx.bin and masterfx.bin,
and the P2_SLAVE binaries as slave.bin, slavex.bin and slavefx.bin - so we will end up the
following six binaries:

 master.bin alua compiled for P2_MASTER
 masterx.bin aluax compiled for P2_MASTER
 masterfx.bin aluafx compiled for P2_MASTER

Copyright (c) 2024 Ross Higson Page 11

Catalina C Aloha from Lua

 slave.bin alua compiled for P2_SLAVE
 slavex.bin aluax compiled for P2_SLAVE
 slavefx.bin aluafx compiled for P2_SLAVE

 Then master (or masterx or masterfx) must be executed on the P2_MASTER propeller,
and slave (or slavex or slavefx) must be executed on the P2_SLAVE propeller. The master
and slave names are arbitrary - in fact all the binaries are simply eLua, but built for a
specific platform, and including a custom Lua dispatcher and the ALOHA protocol (both
described later in this document).

 The alua.c, aluax.c and aluafx.c programs are configured to use the 2 port serial plugins
by default, but the 8 port serial plugin can be used if more than 3 propellers are to be
linked in a star configuration (with one master connected to up to eight slaves - see the
diagram above).

 To use the 8 port serial plugin, simply specify -lserial8 in place of -lserial2 before compiling
elua.c, eluax.c or eluafx.c (i.e. modify the Catapult pragmas accordingly). Then modify the
8 port serial configuration parameters in P2MASTER.inc and P2SLAVE.inc platform
configuration files (adding more files if there are different slave configurations - e.g.
P2SLAVE0.inc .. P2SLAVE7.inc). It is possible to use a mix of 2 port and 8 port plugins.

 There is also one special eLua program that applies only to ALOHA. This is a program
that has only an eLua Server, but no eLua client (and so must be executed in conjunction
with an eLua client executing on another Propeller):

sluafx an NMM Lua Server with no Lua client, no Lua parser and no
multi-processing support. Because the server is a NATIVE program it
will execute faster than the other eLua variants, but only support
smaller Lua servers.

 Another picture might clarify this. In the following picture, the Master Propeller could be
executing elua, eluax or eluafx, but there is no client on the Slave Propeller because it is
executing sluafx (but there may be other slaves running other eLua variants):

 +----- Master -----+
 | +----------+ |
 | | client o----- port 0 --+
+----------+		
local calls		
V		
+----------+	remote	
	server	
+----------+		
 +---- Propeller ---+ |
 |
 +------ Slave -----+ |

 | +----------+ | |
 | | sluafx | | |
 | | server o<---- port 0 --+
 | +----------+ |
 +---- Propeller ---+

Copyright (c) 2024 Ross Higson Page 12

Catalina C Aloha from Lua

 The fastest possible combination is when the Master is running aluafx and the Slaves are
running sluafx. In this case the client and the slaves are both executing as NATIVE
programs from Hub RAM. Appendix B contains an example of using sluafx.

Copyright (c) 2024 Ross Higson Page 13

Catalina C Aloha from Lua

 A simple demo
This section describes loading and executing a very simple ALOHA program in detail. The
demo can be found in the folder demos/elua/simple.

It must be executed on two propellers connected via a serial connection - a P2_MASTER
and a P2_SLAVE.

On the P2_MASTER we will execute master.bin and on the P2_SLAVE we will execute the
demo using slave.bin

 Loading the simple demo

Copy the appropriate eLua binaries (i.e. elua.bin, master.bin and slave.bin) to the
appropriate Catalyst SD cards (for two propellers, one SD card is needed for the
P2_MASTER propeller and one for each P2_SLAVE propeller).

To each SD card also copy the contents of the demos/elua/simple folder, which will
include:

 binser.lua the binser module
 common.lua common definitions for the clients and servers
 client.lua an example eLua client
 server.lua an example eLua server
 remote.lua an ALOHA proxy client/server
 rebuild a Catalyst script to re-compile all the Lua files

 There may also be compiled (i.e. .lux) versions of the Lua files. Note that these files have
the same name as the ones in the eLua example - those files will be overwritten if they
already are on the SD card.

 Note that if there are no .lux versions, or you change any of the .lua versions, you should
compile the .lua files to generate the corresponding .lux versions, at least for the common
Lua module. For example:

luac -o common.lux common.lua

 or

 clua common

 A catalyst script to recompile all the files is provided with each demo called rebuild. To
execute it, use the following Catalyst command:

exec rebuild

Copyright (c) 2024 Ross Higson Page 14

Catalina C Aloha from Lua

 Executing the simple demo

 To execute the demo on a single propeller, just execute elua (or master or slave) with no
parameters.

 They will all execute client.lua and server.lua as the eLua client and server, and the client
calls functions in the local server - i.e. in the same propeller. This will not use ALOHA even
if it is available. To instead execute the demo on multiple propellers, do the following:

 First6, on the P2_SLAVE, execute slave but specify remote.lua as the client:

 slave remote.lua server.lua

 Then, on the P2_MASTER, execute master but specify remote.lua as the server:

 master client.lua remote.lua

 The client on the master propeller will now use ALOHA to call the server on the slave
propeller.

 The simple demo files
 This section contains a walk-through of all the significant lines in all the files in the
demos/elua/simple folder. Each file is only a few lines long - to see them all on a single
page, see Putting it all together, below.

 client.lua
The file client.lua contains only two lines of significance.

The first loads definitions required by all clients and all servers:

dofile 'common.lux'

This line simply executes common.lux, which is the compiled version of common.lua (do
not jump ahead just yet to read the section on common.lua - read the sections in the order
they are included in this document - they are given in this order for a reason).

This line could actually specify common.lua - however, it is generally recommended to use
the compiled version of the common module (i.,e. common.lux) rather than the text
version (i.e. common.lua) because the former will work even if client.lua is subsequently
compiled (e.g. to client.lux) and then executed by a version of eLua that does not include
the Lua parser, whereas the latter will not (it will report an error). However, using the text
version is useful while developing programs, as it does not need to be recompiled after
each amendment.

The only other significant line is the one that shows how the client calls a server function.
In the following line, a perfectly ordinary Lua function called invoke is being called, and the
result of the call is then printed:

print(invoke(function(x) return x*x end, 2.5))

6 In this simple version the commands must be executed in this order - the slave has to be ready before
the master starts or it will time out. This is not true in the more complete version given in Appendix A.

Copyright (c) 2024 Ross Higson Page 15

Catalina C Aloha from Lua

The invoke function may be familiar. It is essentially the same as the one in the
non-ALOHA eLua demo. It accepts two parameters:

● a function that accepts a value; and
● a value to be passed to that function.

If this line is a little cryptic, it is very likely because in Lua, functions are first class types,
and can be specified anywhere any other data type can be specified. Most languages do
not support this, and treat functions as second class citizens that must be specially
defined - generally before they can be used anywhere.

Lua can do that too, of course. The line above could equally well be written as shown
below, which may make it clearer that a function f that takes a parameter called x and
returns a result (x*x in this case) is being passed to invoke, along with a value for x:

function f(x)
 return x*x
end
x = 2.5
result = invoke(f, x)

Neither the names f nor x are significant here. Consider the line below - neither f nor x
appear, but this line is also perfectly acceptable. Can you predict what it will do if it is
executed as part of client.lua?

invoke(function(str) print(str) end, "ALOHA"))

We can include this line in client.lua to find out.

server.lua
The file server.lua is a little more complex. But it also contains only a few lines of
significance.

Again, the first one loads definitions required by all clients and all servers:

dofile 'common.lux'

The next significant line defines serial port usage - it defines a table of functions that will
be called via the specified serial port.

One such entry is required for each ALOHA port that might call this server, called
port_0_index .. port_7_index. An empty table indicates the port is to be monitored for
inward function calls, but no remote calls are made out of this port. In our example
program, we only want to monitor port 0 for incoming remote calls, so we need only one
line:

port_0_index = { }

The next significant lines are those that define the invoke function, which is the function
that clients will call remotely:

function invoke(serial)
 f, x = bs.deserializeN(serial, 2);
 output = f(x);
 return bs.serialize(output)

Copyright (c) 2024 Ross Higson Page 16

Catalina C Aloha from Lua

end
This is not the normal Lua function definition we might have expected for invoke. First, it
accepts only one parameter called serial (rather than the two parameters f and x we might
have expected). It calls deserializeN on that parameter to get the actual parameters f and
x, then it invokes f on x (which is what we would have expected), and then it calls serialize
on the output before it returns it.

This (apart from the line which calls the actual function) is how all services must be
written. Although the service appears to accept just one serialized argument and return
one serialized value, those serialized values can actually encode multiple actual values.

When the function invoke is called by the client, the client actually calls the proxy function
(defined in common.lua) which passes a serialized version of all its parameters (which in
this case are the 2 parameters f and x). The function deserializeN deserializes the
specified number of parameters from its input (again, in this case the 2 parameters f and
x). The next line simply invokes the function f on parameter x and generates output, and
the last line calls serialize to turn the result into a form that can be passed back to the
caller.

This will become clearer when we look at the proxy function for invoke defined in
common.lua.

The important point here is that the function arguments and function return values are
always passed between eLua clients and servers - whether those clients are on the same
propeller or on different propellers - in a serialized binary format. As we have seen, these
arguments can be any simple Lua data type, including functions and tables. They are
serialized before transmission, and must be unserialized on reception. This is
accomplished using functions provided by the package binser, which is a general purpose
Lua serializer and deserializer.

A detailed discussion of binser is beyond the scope of this document, but a very quick
summary of all we need to know is given in the section titled The binser module - and the
example above illustrates this is quite easy.

The last significant lines are those that define what the server should do when it is not
servicing remote calls. This is a special function called background. In this case, we don’t
need the server to do anything except respond to remote calls to invoke, so it is just a null
procedure.

function background()
end

A more detailed discussion of background tasks is given in the section titled Background
tasks.

 remote.lua
 This file is only relevant when using ALOHA. In this example program, the file remote.lua
is almost completely trivial, and contains only a few lines of significance.

 Again, the first one loads definitions required by all clients and all servers:

dofile 'common.lux'

Copyright (c) 2024 Ross Higson Page 17

Catalina C Aloha from Lua

And the only other significant lines are those that define the port that will be monitored for
service calls, and the calls that are expected on that port. In this case, we expect only one
call to be made, and they must be made via port 0, to our invoke service:

port_0_index = {
 [INVOKE_SVC] = "invoke"
}

 Contrast this instance of port_0_index with the previous instance, described in server.lua.
That instance was for the slave server, which accepts calls on port 0 but doesn’t make
any, and this instance is for the master server, which actually makes such calls.

common.lua
The common.lua file is where most of the ‘magic’ happens.

First, of all, there is some necessary housekeeping:

svc = require 'service'
bs = dofile 'binser.lux'

The service module is required to allow eLua programs to interact with the Catalina
Registry. Very briefly, the Registry provides the necessary mechanisms to allow
communication between two Lua programs, whether they are running on different cogs on
the same propeller, or on different propellers.

The binser module is used by all eLua clients and servers to serialize and deserialize
function arguments and return values. See the section titled The binser module for more
details.

The next significant lines are where we define a Catalina service id for each service we
intend to provide (in this case there is only one - for the invoke service).

INVOKE_SVC = 81

Why 81? Well, all service requests go via the Registry, even if the service is to be provided
by another propeller, and Catalina supports service ids in the range 0 .. 255. But services
ids 1 .. 80 are reserved for Catalina’s own use. So eLua service ids must start from 81.

The next significant lines define an index of services the server will provide, as a Lua table
called service_index. In this case, we need only one entry, again for the invoke service:

service_index = {
 [INVOKE_SVC] = "invoke"
}

The next lines are only relevant to eLua programs that use WiFi and RPC. These lines are
not used by other eLua or ALOHA programs. They will be described in a later section of
this document:

rpc_network = {
 ["SSID"] = "MyNetwork"; -- set to "" if this propeller offers the AP
 ["PASSPHRASE"] = "TellMeASecret"; -- set to "" for a propeller AP
 [INVOKE_SVC] = "xxx.xxx.xxx.xxx";
}

Copyright (c) 2024 Ross Higson Page 18

Catalina C Aloha from Lua

Finally, we define a proxy service for each of the functions we want the client to be able to
call. Again, in this case we need only one, for the invoke service:

function invoke(f, x)
 return bs.deserializeN(svc.serial(INVOKE_SVC, bs.serialize(f, x), 500), 1)
end

Not the use of binser again here. This instance of invoke is a proxy for the actual invoke
function in server.lua (which is where the real function actually executes). This proxy
function is what makes the whole thing work - it allows clients to call the invoke function
exactly as they normally would, without having to know where that function is executed. It
may be executed on the local master server, or it may be executed on a remote slave
server.
The parameter 500 (to svc.serial) specifies how large a buffer may be required to be
allocated internally to accommodate the serialize/deserialize process. An error will be
reported if the buffer is not large enough.

Copyright (c) 2024 Ross Higson Page 19

Catalina C Aloha from Lua

Putting it all together
Every significant line in the simple demo has been explained in the previous sections. But
it may be easier to understand when it is seen all together on one page - so here it is
again, in full:

common.lua:

svc = require 'service'
bs = dofile 'binser.lux'

INVOKE_SVC = 81

service_index = {
 [INVOKE_SVC] = "invoke"
}

rpc_network = {
 ["SSID"] = "MyNetwork";
 ["PASSPHRASE"] = "TellMeASecret";
 [INVOKE_SVC] = "xxx.xxx.xxx.xxx";
}

function invoke(f, x)
 out = bs.deserializeN(svc.serial(INVOKE_SVC, bs.serialize(f, x), 500), 1)
 return out
end

client.lua:

dofile 'common.lux'

invoke(function(str) print(str) end, "ALOHA")
print(invoke(function(x) return x*x end, 2.5))

server.lua:

dofile 'common.lux'

port_0_index = { }

function invoke(serial)
 f, x = bs.deserializeN(serial, 2)
 output = f(x)
 return bs.serialize(output)
end

function background()
end

remote.lua:

dofile 'common.lux'

port_0_index = {
 [INVOKE_SVC] = "invoke"
}

function background()
end

Copyright (c) 2024 Ross Higson Page 20

Catalina C Aloha from Lua

 WiFi and RPC
 For Propellers equipped with a Parallax WiFi module, eLua also allows clients and servers
on different propellers to interact using a Remote Procedure Call (RPC) protocol over
WiFi. Also, it is possible to use ALOHA serial links for some services and WiFi/RPC
communication for others. The next section demonstrates such a hybrid program.

 Preparing multiple Propellers
 Similar to ALOHA, WiFi and RPC are intended to be used on multiple propellers, which
must all be equipped with Parallax WiFi modules. As with ALOHA, there are several
platform configuration files provided that support WiFi and RPC.

 As with ALOHA, the terms 'master' and 'slave' are used for these propellers rather than
'client' and 'server'. The ‘master’ makes RPC calls, and the ‘slave’ service them.

 First, for programs that use only WiFi and RPC, there is a common platform configuration
file in the target/p2 folder called P2_WIFI.inc, which will be used when the Catalina symbol
P2_WIFI is defined.

 Specifically to support the hybrid model of master/slave multi-propeller programming,
there are two additional platform configuration files in the target/p2 folder - they are called
P2WIFI_M.inc and P2WIFI_S.inc, which will be used when the Catalina symbols
P2_WIFI_MASTER and P2_WIFI_SLAVE (respectively) are defined.

 For programs that use only WiFi and RPC, the Propellers need no physical connection -
they just need to be on the same WiFi network. While there can be only one master
propeller, there can be any number of slave Propellers in the WiFi network - unlike
ALOHA, which is limited to eight slaves.

 For hybrid programs that also use serial ALOHA services, there can be up to six slave
propellers that use ALOHA serial connections, which must be connected to the master
using two pins for serial communications, as described in the ALOHA section.

 For programs that use only WiFi and RPC, either the 2 or 8 port serial plugin can be used,
and the SIMPLE HMI option can be used by each propeller (the TTY HMI option can be
used if the 8 port serial plugin is used, but not if the 2 port serial plugin is used).

 For hybrid programs, the 8 port serial plugin must be used, and the serial connections
(similar to those used in ALOHA programs) should use serial ports 2 .. 7.

 The P2_WIFI.inc and P2WIFI_M.inc and P2WIFI_S.inc files included are copies of
P2_EDGE.inc. If you have a different propeller platform, modify them accordingly.

 Building eLua with WiFi and RPC support
 To execute the demo on multiple propellers, we must build eLua for both the master and
the slave platforms, and build both the master and slave versions to include WiFi and RPC
support. This is accomplished by linking with the wifi library (i.e. -lwifi) and one of the serial
plugin libraries (i.e. -lserial2 or -lserial8).

Copyright (c) 2024 Ross Higson Page 21

Catalina C Aloha from Lua

 As with the ALOHA variants, the RPC variants differ in the memory models and options.
Here is a brief description of the RPC variants provided:

rlua a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with an 8K cache, both with a Lua parser.
Uses the 8 port serial plugin and supports both ALOHA serial and
WiFi RPC services.

rluax a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with a 64K cache, both without a Lua parser.
Uses the 8 port serial plugin and supports both ALOHA serial and
WiFi RPC services.

rluax2 a CMM Lua client with Lua multi-processing support enabled, and an
XMM LARGE Lua server with a 64K cache, both without a Lua parser.
Uses the 2 port serial plugin and does NOT support ALOHA serial
services - only WiFi RPC services. This allows more Hub RAM for
Lua programs.

 As previously described, building rlua (and rluax and rluax2) can be most easily done
using Catapult, after defining CATALINA_DEFINE to specify the appropriate platform, as
follows:

 set CATALINA_DEFINE=P2_WIFI
catapult rlua.c
catapult rluax.c
catapult rluax2.c

 or

 set CATALINA_DEFINE=P2_WIFI_SLAVE
catapult rlua.c
catapult rluax.c
catapult rluax2.c

 or

 set CATALINA_DEFINE=P2_WIFI_MASTER
catapult rlua.c
catapult rluax.c
catapult rluax2.c

 The build_rpc script in the folder demos/elua/aloha does exactly this, but it also renames
the resulting P2_MASTER binaries as rmaster.bin and rmasterx.bin and and the
P2_SLAVE binaries as rslave.bin and rslavex.bin - so we will end up the following six
binaries:

 rlua.bin rlua compiled for P2_WIFI
 rluax.bin rluax compiled for P2_WIFI
rluax2.bin rluax2 compiled for P2_WIFI
 rmaster.bin rlua compiled for P2_WIFI_MASTER

Copyright (c) 2024 Ross Higson Page 22

Catalina C Aloha from Lua

 rmasterx.bin rluax compiled for P2_WIFI_MASTER
 rslave.bin rlua compiled for P2_WIFI_SLAVE
 rslavex.bin rluax compiled for P2_WIFI_SLAVE

 The rlua (or rluax or rluax2) can be executed on any P2_WIFI propeller. The rmaster (or
rmasterx) must be executed on the P2_WIFI_MASTER propeller, and rslave (or rslavex)
must be executed on the P2_WIFI_SLAVE propeller.

 The names are arbitrary - in fact all the binaries are simply eLua, but built for a specific
platform, and including a custom Lua dispatcher and ALOHA, WiFi and RPC protocol
support (except for rluax2, which explicitly disables the ALOHA protocol support to save
Hub RAM).

Copyright (c) 2024 Ross Higson Page 23

Catalina C Aloha from Lua

 A hybrid demo
This section describes loading and executing a hybrid ALOHA program which uses both
ALOHA serial services and WiFi RPC services. The demo can be found in the folder
demos/elua/hybrid.

It must be executed on two propellers, each with a WiFi module, and also connected via a
serial connection - a P2_WIFI_MASTER and a P2_WIFI_SLAVE.

Of course, there is no real need for a serial connection if both Propellers have WiFi
adaptors - this is done only for this hybrid demo, to show that this can be supported. All
the other example eLua programs provided can also be executed using two propellers
connected only via WiFi.

On the P2_WIFI_MASTER we will execute rmaster.bin and on the P2_WIFI_SLAVE we
will execute the demo using rslave.bin

 Loading the hybrid demo

 Copy the appropriate eLua binaries (i.e. rmaster.bin and rslave.bin) to the appropriate
Catalyst SD cards (one SD card is needed for the P2_MASTER propeller and one for
each P2_SLAVE propeller).

 The P2_MASTER and P2_SLAVE propellers must have their WiFi modules installed on
the pin groups specified in the P2_WIFI_M.inc and P2_WIFI_S.inc platform configuration
files, and the two propellers must also have a serial connection connecting the pins
defined for the third serial port (by default these are pins 0 and 1).

 The WiFi modules on each Propeller may need to have their firmware updated - see the
README.TXT file in the demos/wifi folder for more details.

 To each SD card also copy the contents of the demos/elua/hybrid folder, which will
include:

 binser.lua the binser module
 common.lua common definitions for the clients and servers
 client.lua an example eLua client
 server.lua an example eLua server
 remote.lua an ALOHA proxy client/server
 rebuild a Catalyst script to re-compile all the Lua files

Note that if there are no .lux versions, or you change any of the .lua versions, you should
compile the .lua files to generate the corresponding .lux versions, at least for the common
Lua module. For example:

luac -o common.lux common.lua

 or

clua common

Copyright (c) 2024 Ross Higson Page 24

Catalina C Aloha from Lua

 A catalyst script to recompile all the files is provided with each demo called rebuild. To
execute it, use the following Catalyst command:

exec rebuild

 Executing the hybrid demo

 The hybrid demo must be executed on both the P2_WIFI_MASTER and P2_WIFI_SLAVE
propellers:

 First7, on the P2_WIFI_SLAVE, execute rslave but specify remote.lua as the client:

 rslave remote.lua server.lua

 Then, on the P2_WIFI_MASTER, execute rmaster but specify remote.lua as the server:

 rmaster client.lua remote.lua

 The client on the master propeller is using WiFi RPC to call the server on the slave
propeller for all services except invert, which will use the serial ALOHA connection.

 Both programs will print WiFi information on startup, which can be used to determine the
IP addresses of the Propellers once they have joined the WiFi network. For example, you
might see something like:

 WiFi SSID = 'MyNetwork'
WiFi module name = 'wx-XXXXXX'
WiFi JOIN 'MyNetwork'
WiFi IP address = '192.168.1.115'

 The SSID will depend on what is specified in the rpc_network table in common.lua, and
the program will only JOIN successfully and display an IP address if the PASSPHRASE is
also correct.

 Also, the program will not JOIN a network if the SSID is either an empty string or the same
as its own WiFi module name - in that case, it assumes it is the one offering its SSID as an
Access Point, and all the other propellers in the network should JOIN this Access Point.
Only the master propeller should be configured this way.

 The IP address displayed will depend on your local DHCP server, and the program should
be run once to obtain the IP address. which can then be used to specify the IP address of
the server offering each RPC service in the rpc_network table in common.lua (and then
exec rebuild the program).

 The output of this WiFi information on startup can be disabled by setting WIFI_INFO to 0
in dsptch_l.c and then recompiling the eLua programs.

7 In this demo the commands must be executed in this order - the slave has to be ready before the master
starts or it will time out.

Copyright (c) 2024 Ross Higson Page 25

Catalina C Aloha from Lua

Technical Notes

 File name conventions
 An eLua program with one client and one server typically consists of three files. They can
be given any names, but the following convention is recommended:

common.lua definitions common to all the clients and servers in the eLua
program

client.lua the master client Lua program.

server.lua the slave server Lua program.

eLua programs that use ALOHA can span multiple propellers, and at least one more file is
typically required:

remote.lua the master server Lua program, which often may also
conveniently be used as the slave client program.

If there is more than one slave (i.e. a multi-propeller eLua program with more than two
propellers), then adding suffixes _0 .. _7 to the server and remote file names is
recommended.

Following this convention means that the common file is the only one that needs to know
the details of the service ids required to implement the client/server communications, and
also provides a place to implement the proxy services that allow the client to be unaware
that the services are not implemented locally. It also provides a convenient place to load
the common modules (e.g. binser) and perform any necessary client or server
configuration.

The service ids (a unique one must be allocated to each service) can be any service id
other than those reserved for Catalina's own use (see target/p2/constants/inc) - i.e. from
(SVC_RESERVED + 1) to 255 - ii.e. 81 to 255.

 Lua initialization modules
There are two different Lua initialization modules provided. More could be created for
specific purposes. Specify them in the appropriate primary or secondary pragmas (or in
the common pragma to apply to both client and server):

linit.c loads essential modules and the Lua parser. Loads the “propeller”
module if the ENABLE_PROPELLER Catalina symbol is defined.
Loads the propeller and threads modules if -lthreads is specified as
an option. Usually used in conjunction with the -llua option.

xinit.c loads essential modules, but no Lua parser. Loads the “propeller”
module if the ENABLE_PROPELLER Catalina symbol is defined.
Loads the propeller and threads modules if -lthreads is specified as
an option. Usually used in conjunction with the -lluax option.

Copyright (c) 2024 Ross Higson Page 26

Catalina C Aloha from Lua

Both linit.c and xinit.c load the services module that is used to implement Lua
client/servers. This is 'required' by the Lua common module as follows:

svc = require 'services'

Using the compiled version of the common module is recommended in all Lua
client/server scripts, so that it can be loaded by clients and servers that only support
compiled Lua programs. For example:

dofile 'common.lux'

Hub RAM Allocation
The Catapult 'stack' and 'address' attributes are the mechanism used to allocate Hub RAM
between the client and the server. Trial and error must be used to determine the
appropriate sizes. The minimum stack required by ANY client is about 75,000 bytes
(which is the size used by the eluas version of the demo).

Note that since the client always executes entirely from Hub RAM, the client stack size
(specified as the 'stack' attribute of the secondary catapult pragma) includes the Lua stack
and heap. Once this size is determined, the resulting server address (specified as the
'address' attribute of the primary catapult pragma) determines how much Hub RAM is left
for the server. However, because the server is an XMM LARGE program, this Hub RAM
is used only for the Lua stack and does not include the heap (which is in XMM RAM), so
the Hub RAM requirement of Lua code executed in the server is typically much lower than
it would be if the same code was executed by the client. Put in simple terms, if there is a
choice then Lua code should be put in the server rather than the client..

Here are the approximate amounts of Hub RAM (in bytes) available to the client and the
server in each eLua variant:

name client server
======== ======= =======
elua 100,000 100,000
eluax 100,000 90,000
eluas 75,000 180,000
eluasx 100,000 130,000
eluafx 100,000 50,000

Other Hub RAM trade-offs between client and server are of course possible.

Cog allocation
In order to maximize the available free cogs for demonstration purposes, the RTC plugin is
not loaded by any of the eLua variants. This may make some Lua functions not work as
expected - e.g. os.date() or os.clock(). If these are required, add the options -C RTC (in
place of -C CLOCK) to the appropriate Catapult pragmas. This requires an additional cog.

Copyright (c) 2024 Ross Higson Page 27

Catalina C Aloha from Lua

The binser module
The binser8 module does not originate with Catalina - the original is available on github9.
However, Catalina’s version has been modified to suit Catalina and Lua 5.4.4, and this
version is in the folder demos/elua/binser, along with the original documentation.

The binser module is normally loaded by the common module, and it is recommended to
use the compiled version (binser.lux) because it loads faster and will also work in compiled
clients and servers (the text version binser.lua will not). For example:

bs = dofile 'binser.lux'

There are only three binser functions that are typically required by an eLua program:

The function serialize is used to turn a series of one or more arguments into a serial binary
string (note the result is a Lua string and not a C string - it may contain embedded
zeroes):

serial = bs.serialize(args ...)

For example:

serial = bs.serialize(x, y, z)

The function deserializeN is used to turn a serial binary string back into N arguments (if
there is only one argument, specify 1 for N):

arg1, ... argN = bs.deserializeN(serial, N)

For example:

arg = bs.deserializeN(serial, 1) -- one argument
arg1, arg2 = bs.deserializeN(serial, 2) -- two arguments

Finally, there is also a deserialize function:

args = bs.deserialize(serial)

However, deserialize returns its results as a Lua table instead of a series of Lua data
types, which makes it slightly more complex to use. For instance, instead of using
deserializeN, to use deserialize to do the same job would have to be written as:

args = bs.deserialize(serial)
args1 = args[1]
...
argsN = args[N]

Using deserializeN is easier unless the program intends to pass Lua tables, in which case
it is easier to use deserialize. For instance:

args_in = {x=1, y=2} -- this is a table with two elements (x and y)
serial = bs.serialize(args_in)
args_out = bs.deserialize(serial)

9 See https://github.com/bakpakin/binser

8 In all the eLua program examples, binser is abbreviated to bs when loaded.

Copyright (c) 2024 Ross Higson Page 28

Catalina C Aloha from Lua

 There is a Lua subtlety here that can catch you unawares. Both the deserializeN and
deseserialize functions actually return more than one value, which is a perfectly
acceptable thing to do in Lua. The first values returned are the results of deserializing, and
the final value is the resulting position in the string being deserialized - something which is
generally of little interest in eLua.

 The subtlety is that if you pass the result of deserializing straight to a function that accepts
a variable number of arguments - such as the print function does - you will get all the
values.

 So, for example:

result = bs.deserializeN(bs.serialize("abc"),1)
print(result)

 will output:

abc

 which is what you would expect. Whereas …

print(bs.deserializeN(bs.serialize("abc"),1))

which looks like it should do exactly the same thing, will instead output:

abc 6

which may be a little surprising until you know what is going on!

 The ALOHA protocol
 The ALOHA protocol is a simple serial protocol specifically designed to be used for
client/server transactions.

 The protocol is asymmetric. The server never initiates a transaction. The client initiates
every transaction by sending a request packet:

 FF 02 id sq lo hi b1 .. bn ck

 Where:

id is a service id
sq is a sequence number (can be used to detect repeats)
lo and hi are the length of data - i.e. (hi<<8)+lo
b1 .. bn are the bytes of data (may contain zeroes)
ck is the checksum of packet (excluding the initial FF 02)

 The server can respond to the request packet by sending a return FF 02 packet, which
indicates success:

 FF 02 id sq lo hi b1 .. bn ck

Copyright (c) 2024 Ross Higson Page 29

Catalina C Aloha from Lua

 Or the server can respond by sending a failure response. Some possible failure responses
are:

FF 01 timeout on tx
FF 03 checksum error on tx
FF 04 no such id
FF 05 other error

 Notes:

○ Any occurrence of FF other than in the initial FF 02 is "byte stuffed" to FF 00. This
means that FF 02 can never occur within a message, and so it always signals the
start of a packet.

○ The ck is set so that the sum of all the bytes after the FF 02 equals zero (modulo
0x100).

○ The sq is not checked by the protocol - it is just a value. Typically it is simply returned
by the server in the response to the request. If the service is not idempotent then it is
up to the server to ensure it does not service duplicate requests, and it is up to the
client to ensure the response packet it receives has the correct sq, incrementing it as
required to ensure the the response is not simply a duplicate that has been buffered
and/or re-transmitted during the serial processing.

 The protocol is implemented in the files aloha.h and aloha.c in demos/elua/aloha. This
folder also contains a simple demo/test program implemented in the files amaster.c and
aslave.c - see those files for more details.

 There are only two functions required to implement the ALOHA protocol. These are
described in the sections below.

 aloha_tx
 Here is the C function prototype of aloha_tx, which is used to transmit an ALOHA packet:

 void aloha_tx(int port, int id, int sq, int len, char *buf);

port 0 .. 1 if the 2 port serial plugin is used, 0 .. 7 if the 8 port serial plugin is used.

id the id (0 .. 255) of the service to be called.

sq a sequence number that should be incremented on each call. This number
will be returned in the response packet so that it is possible for the sender to
distinguish a response to a request from a buffered or retransmitted
response to a previous request.

len the length of the message to send.

buf a pointer to the binary message to send.

Copyright (c) 2024 Ross Higson Page 30

Catalina C Aloha from Lua

 aloha_rx
 Here is the C prototype of aloha_rx, which is used to receive an ALOHA packet:

 int aloha_rx(int port, int *id, int *sq, int *len, char *buf, int max, int ms);

port 0 .. 1 if the 2 port serial plugin is used, 0 .. 7 for the 8 port serial plugin is used.

id a pointer to an int used to return the id (0 .. 255) of the service that was
requested.

sq a pointer to an int used to return the sequence number of the request.

len a pointer to an int used to return the size in bytes of the response data.

buf a pointer to a buffer to put the response data.

max the size of the buffer.

ms the timeout in milliseconds to wait for each byte of the response.

 The return value is as follows:

 0 success (success packet received)
-1 timeout on rx
-2 packet larger than max
-3 checksum error on rx
 n failure packet n received (n != 2)

 The ALOHA and WiFi RPC dispatcher
 eLua normally uses the Lua dispatcher which is in the standard Catalina C library and is
called _dispatch_Lua_bg. This dispatcher works perfectly well when the client and server
are executing in different cogs on the same propeller - the transfer of data between the
client and server can occur in Hub RAM.

 However, eLua was designed to be extendable across multiple propellers - i.e. when the
client is executing on one propeller and one or more servers are executing on another.
This is where the ALOHA and WiFi RPC protocols come in.

 To use the ALOHA or WiFi RPC protocols, a custom Lua dispatcher is required. This is
called my_dispatch_Lua_bg and is provided in dsptch_l.c in the folder demos/elua/aloha.
Using this dispatcher requires that the 2 port serial or 8 port serial plugin is used, and that
the ALOHA protocol is also included. Support for the WiFi RPC protocol is optional, and is
determined by whether the program includes the WiFi library (i.e. -lwifi).

 This custom version of the Lua dispatcher has the following additions to the standard Lua
dispatcher:

○ It retrieves the list of all Lua services (local or remote) from the service_index table,
and the ports any remote services must use from the port_0_index .. port_n_index
tables (where n = 1 or 7, depending on which serial plugin is in use). All services that
might need to be dispatched on this propeller must be listed in the service_index
table. An entry that is listed in the port_n_index tables (and it can be listed only in one

Copyright (c) 2024 Ross Higson Page 31

Catalina C Aloha from Lua

of them) is assumed to be a remote service available on port n. Any entry that is listed
in the service_index table but not in any of the port_n_index tables is assumed to be a
local service.

○ It retrieves the names and IP addresses of any RPC services from the rpc_network
table. All the services in the rpc_network table should also be in the service_index
table, and are assumed to be RPC services, offered as a WiFi RPC service by the
propeller with the specified IP address (see the RPC network definition section
below).

○ It monitors the Catalina Registry as usual for service requests. If WiFi support is
enabled and it receives a request for a service whose id corresponds to one in the
rpc_network table it sends the request as a HTTP request to the specified IP address
and waits for a HTTP response, otherwise if the request it corresponds to an id in the
port_n_index table it sends the request as an ALOHA request out the appropriate
serial port, and waits for a response on the same port. Otherwise, it dispatches the
service internally (i.e. to the cog indicated in the Catalina Service Registry)

○ It monitors all ports which have a port_n_index table (even if that table is empty) for
the arrival of ALOHA messages. If it receives one, it services the request and returns
an ALOHA response on the same port.

○ If WiFi support is enabled It listens for HTTP requests on port 80, and if it receives
one, it services the request and sends a HTTP response.

It is worth noting that ALL services must be included in the service_index table, but only
services that must be called using ALOHA should be included in the port_n_index table.

It is also worth noting that while it is highly recommended that all clients and servers use
the same service_index table, each client and server may use a different set of
port_n_index tables. When multiple propellers are configured in a simple star configuration
(i.e. with the master propeller connected via a dedicated serial link to each slave propeller)
then it is recommended that all propellers use the same set of tables (which would
typically be specified in common.lua). An example of this is given in the demo program.
More complex configurations are possible, but are beyond the scope of this document.

The dispatcher has the following configurable parameters, which may need to be adjusted
for specific applications:

Parameter Default Meaning

REMOTE_TIMEOUT 1000 timeout on response after sending request

PORT_TIMEOUT 200 timeout on rx after receiving first byte

REMOTE_MAX 2048 maximum size of message that can be received
(note that this must be wifi_DATA_SIZE if WiFi
RPC support is enabled).

IP_RETRIES 30 number of times to retry fetching IP address on
network JOIN

Copyright (c) 2024 Ross Higson Page 32

Catalina C Aloha from Lua

IP_RETRY_SECS 3 interval (seconds) between retries of fetching IP
address

RETRY_INTERVAL 200 interval (milliseconds) between polls for a reply to
an RPC request

REPLY_RETRIES 25 number of times to poll for a reply to an RPC
request

 RPC network definition
The WiFi RPC network is described in a Lua table called rpc_network, which should be
common to all clients and servers. It is therefore recommended it be included in the
common.lua module.

This table contains the following keys and key types, and the values have the following
meaning:

Key Value Key Type Value and Meaning

“SSID” string The SSID this Propeller is to join. If this propeller is
to offer its SSID as the Access Point other
Propellers must join, this should be either an empty
string, or the same as the WiFi module name.

"PASSPHRASE" string The passphrase required to join the WiFi Access
Point. For Access Points offered by propellers, this
should be an empty string.

SERVICE_ID integer The IP address of the client that offers the service
with the specified ID. Each of these integer IDs
must be present in the service_index table.

Here are the actual values of the service_index and rpc_network tables from the hybrid
example:

-- define a unique service id for each service:
ADD_SVC = 81
DIVMOD_SVC = 82
INVERT_SVC = 83
INVOKE_SVC = 84
QUIT_SVC = 89

-- define the services implemented in the server:
service_index = {
 [ADD_SVC] = "add",
 [DIVMOD_SVC] = "divmod",
 [INVERT_SVC] = "invert",
 [INVOKE_SVC] = "invoke",
 [QUIT_SVC] = "quit"
}

-- define the WiFi network and the RPC calls supported:
rpc_network = {
 ["SSID"] = "MyNetwork"; -- set to "" if this propeller offers the AP
 ["PASSPHRASE"] = "TellMeASecret"; -- set to "" for a propeller AP

Copyright (c) 2024 Ross Higson Page 33

Catalina C Aloha from Lua

 [ADD_SVC] = "xxx.xxx.xxx.xxx";
 [DIVMOD_SVC] = "xxx.xxx.xxx.xxx";
 [INVOKE_SVC] = "xxx.xxx.xxx.xxx";
 [QUIT_SVC] = "xxx.xxx.xxx.xxx";
}

The IP addresses (shown in the table as “xxx.xxx.xxx.xxx” must be replaced with the
actual IP addresses assigned to the master and slave propellers (which can be obtained
by executing the programs - they will be printed on startup). If the IP address specified
matches the IP address of the propeller, it means this propeller is a slave and will offer the
service via HTTP. If it does not match, it indicates that this propeller is a master, and will
send a HTTP RPC request to the nominated IP address to service the request.

Note in the above example that the “invert” service is included in the service_index table
but not mentioned in the rpc_network table. This is a deliberate omission, and means that
this service is not available via WiFi - it is only available via an ALOHA serial connection.
To identify the serial port that will be used to service the request, the remote.lua module
contains the following information:

-- this is used by ALOHA ...
port_2_index = {
 [ADD_SVC] = "add",
 [DIVMOD_SVC] = "divmod",
 [INVERT_SVC] = "invert",
 [INVOKE_SVC] = "invoke",
}

And the server.lua module contains the following information:

-- this is used by ALOHA …
port_2_index = { }

The rpc_network table takes precedence over the port_n_tables, this combination means
that the “add”, “divmod”, and “invoke” services will use WiFi RPC, but the “invert” service
will continue to use ALOHA.

 The WiFi RPC protocol
The WiFi RPC protocol is a very simple protocol designed to be used for RPC
transactions across HTTP. The server does a HTTP POST request to the path
/rpc/service_name at the IP address specified as the client in the rpc_network table, and
waits for a HTTP response.

 Since HTTP is essentially a text protocol the binser data sent in both directions is first
encoded as base64 data in the body of the POST request before transmission, and sent
as a REPLY and decoded on reception.

The base64 encoding and decoding is done by functions provided in all the Catalina
libraries - see the include file base64.h for details.

Copyright (c) 2024 Ross Higson Page 34

Catalina C Aloha from Lua

Background tasks
The Lua dispatcher executes on each propeller and dispatches calls made via the registry
to their appropriate destination (i.e. either to the local slave server, or to a remote slave
server). It also continually checks for incoming service calls on the serial ports and
dispatches those as well.

But when there are no service calls outstanding, it can also periodically execute a
background Lua function. It does this between each check of the registry and the
nominated serial ports.

The consequence of this is that if the background function adheres to some simple
conditions, then it can be used to perform useful tasks. The background function must
adhere to the following conditions:

1. It cannot accept any arguments or return any values.
2. It must return regularly, so as not to hold up incoming service calls unduly.
3. If ALOHA is in use, it must not execute for long enough on each call to cause an

ALOHA timeout - if it executes for a significant portion of the REMOTE_TIMEOUT
specified for the ALOHA protocol, then a remote service call may fail with a timeout
error.

The function should be written so that on each call, it picks up where it left off from the
previous call, does a little more processing, and then returns. Note that it can store state
internally between calls.

Here is a trivial example of a background task that flashes an LED periodically:

count = 0
LED = 38 -- suitable for P2_EDGE, change to 56 for P2_EVAL
function background()
 count = count + 1
 if count > 1000 then
 propeller.togglepin(LED)
 count = 0
 end
end

The background function can be defined in server.lua for automatic execution by the
ALOHA dispatcher on slave servers, or remote.lua for automatic execution on the master
server.

The background function can also be executed on slave clients, but this is not done
automatically. To do it manually, simply add a loop to call background() repeatedly. It is
recommended to add a small delay between calls, or call propeller.msleep(0) between
calls (which does a yield if multi-threading is in use).

For example, add the following code to remote_n.lua for each slave client that should
execute the background function:

while true do
 background()
 propeller.msleep(0)
end

Copyright (c) 2024 Ross Higson Page 35

Catalina C Aloha from Lua

Appendix A - A more complete demo
This appendix contains a more complete and “user friendly” version of the simple demo.
This version is in the folder demos/elua/complete. Copy the files in this folder to a Catalyst
SD card to execute them. Note that they have the same names as the files in the simple
version of the demo, and will overwrite them.

No new concepts or features are introduced, but it includes comments, does more error
checking, has more examples of some features, and has the following improvements over
the simple version described in the main section of this document:

1. It prints messages when the client and server Lua programs are loaded.
2. It does not require the slave to be executed first. The master will prompt for a

keystroke before proceeding.
3. It demonstrates both local and remote services, rather than just remote ones (the

“quit” service is defined in the service_index table in common.lua, but not listed in
the port_0_index table in remote.lua - instead, it is defined in both server.lua and
remote.lua, which means calls to this service will always go to the server local to
the client that calls it, not to a remote server).

4. It demonstrates a service (the “big” service) that accepts and returns a string
significantly longer than the size of the buffers used by the serial plugin. Note that
to accommodate this, the proxy function for “big” in common.lua specifies a larger
buffer size (1000 bytes).

5. It demonstrates a means whereby the master can shut down remote clients and
servers (using the “execute” service) as well as local servers (using the “quit”
service).

Execute this program the same way as the simpler version of the demo.

On the master propeller:

master client.lua remote.lua

On the slave propeller:

slave remote.lua server.lua

client.lua
print("client ...")

-- load common definitions ...
dofile 'common.lux'

print("... loaded")

function ENTER_to_continue()
 print("\nPress ENTER to continue");
 io.read();
end

-- call some server functions ...

ENTER_to_continue()

Copyright (c) 2024 Ross Higson Page 36

Catalina C Aloha from Lua

print("calling invoke ...")
invoke(function(str) print(str) end, "ALOHA")

ENTER_to_continue()
print("calling invoke ...")
function f(x)
 return x*x
end
print ("Result = ".. invoke(f, 2.5))

ENTER_to_continue()
print("calling big ...")
input = "Now is the time for all good men to come to the aid of the party
... The quick brown fox jumps over the lazy dog ... Four score and ten
years ago ... we will fight them on the beaches ... hey ho, hey ho - it's
off to work we go ... "
print ("Result = ".. big(input .. input .. input .. input))

ENTER_to_continue()
print("calling execute (will time out!)...")
execute("")
print("calling quit ...")
quit()

server.lua
print("server ...")

-- load common definitions ...
common = dofile('common.lux')

-- define remote services (on port 0) - an empty table indicates the
-- server calls no services on the port but just monitors the port
-- for calls from a remote client ...

port_0_index = { }

-- this is the function the server executes in the background ...

function background()
 -- the default is to do nothing!
end

-- define local services ...

-- this service returns the output of invoking function f on value x ...
function invoke(serial)
 f, x = bs.deserializeN(serial, 2);
 output = f(x);
 return bs.serialize(output)
end

-- this service demonstrates accepting and returning a big string ...
function big(serial)
 input = bs.deserializeN(serial, 1);
 output = "bigger ... " .. input
 return bs.serialize(output)
end

-- this service executes a Catalyst command, which will also
-- terminate the slave ...

Copyright (c) 2024 Ross Higson Page 37

Catalina C Aloha from Lua

function execute(serial)
 command = bs.deserializeN(serial, 1);
 if type(command) == "string" then
 print("Client requested execute '" .. command .. "'")
 propeller.execute(command)
 else
 result = "Invalid execute command";
 end
 return bs.serialize(output)
end

-- this service quits the local server ...
function quit()
 print("Client requested shutdown\n")
 os.exit()
end

print("... loaded")

common.lua
-- this file must be loaded by both the client and the server. It is the
-- only file required to know about the service ids.
--
-- for example, to load the text version:
--
-- dofile 'common.lua'
--
-- or to load the compiled version:
--
-- dofile 'common.lux'
--
-- using the compiled version is recommended even in text Lua files,
-- so that the files do not have to be modified to be executed using a
-- client/server program that does not load a Lua parser.

svc = require 'service'
bs = dofile 'binser.lux'

-- define a unique service id for each service:

INVOKE_SVC = 81
QUIT_SVC = 82
BIG_SVC = 83
EXECUTE_SVC = 84

-- define the services implemented by the server ...

service_index = {
 [INVOKE_SVC] = "invoke",
 [QUIT_SVC] = "quit",
 [BIG_SVC] = "big",
 [EXECUTE_SVC] = "execute",
}

-- define the WiFi network and the RPC calls supported:

rpc_network = {
 ["SSID"] = "MyNetwork"; -- set to "" if this propeller offers the AP
 ["PASSPHRASE"] = "TellMeASecret"; -- set to "" for a propeller AP

Copyright (c) 2024 Ross Higson Page 38

Catalina C Aloha from Lua

 [INVOKE_SVC] = "xxx.xxx.xxx.xxx";
 [QUIT_SVC] = "xxx.xxx.xxx.xxx";
 [BIG_SVC] = "xxx.xxx.xxx.xxx";
 [EXECUTE_SVC] = "xxx.xxx.xxx.xxx";
}

-- define proxy calls for the services implemented by the server. The
-- value of 500 in these definitions is the maximum size (in bytes) that
-- is expected when the parameters are serialized:

function invoke(f, x)
 out = bs.deserializeN(svc.serial(INVOKE_SVC, bs.serialize(f, x), 500),
1)
 return out
end

function big(input)
 out = bs.deserializeN(svc.serial(BIG_SVC, bs.serialize(input), 1000), 1)
 return out
end

-- note that this function will ALWAYS generate a timeout if it
-- succeeds, because it shuts the slave down to execute the command:
function execute(input)
 out = bs.deserializeN(svc.serial(EXECUTE_SVC, bs.serialize(input),
1000), 1)
 return out
end

function quit()
 svc.serial(QUIT_SVC, "", 0)
 return nil
end

remote.lua
print("remote ...")

-- load common definitions ...
common = dofile('common.lux')

-- define remote services (on port 0) ...

port_0_index = {
 [INVOKE_SVC] = "invoke",
 [BIG_SVC] = "big",
 [EXECUTE_SVC] = "execute",
}

-- this is the function the server executes in the background ...

function background()
 -- the default is to do nothing!
end

-- define local services ...

-- this service quits the local server ...
function quit()
 print("Client requested shutdown\n")
 os.exit()

Copyright (c) 2024 Ross Higson Page 39

Catalina C Aloha from Lua

end

print("... loaded")

Copyright (c) 2024 Ross Higson Page 40

Catalina C Aloha from Lua

Appendix B - Life
This appendix contains details of a more complex eLua/ALOHA client/server demo.

The folder demos/elua/life contains two Lua implementations of Conway’s Game of Life10 -
a simple cellular automaton.

First, the version of the program in life.lua is not a client/server program. It is a normal Lua
program and it can be compiled and executed using normal Lua. For example:

luac -o life.lux life.lua
luax life.lux

When executed this way and using a serial HMI, each iteration of Life takes about 5
seconds. The best we can do on one Propeller is to recompile Lua to execute in NATIVE
mode from Hub RAM. If we do that each iteration of Life takes about 1.6 seconds.

Another version of the Game of Life is in the files common.lua, client.lua and server.lua
(and their compiled equivalents common.lux, client.lux and server.lux). This is an eLua
client/server version of the same program. The server implements the cellular automaton,
and the client handles the display of the output. Execute it using eluax with the command:

eluax client.lux server.lux

or just:

eluax

When executed this way, each iteration of Life takes about 5 seconds - i.e. about the
same speed as the original version of the program - but now it is being executed from
XMM, which allows for larger Life universes.

But with ALOHA, the client and server do not need to execute on the same propeller. To
demonstrate this, two propellers are needed, prepared as a P2_MASTER and P2_SLAVE,
as described in the main body of this document.

 On the P2_SLAVE11, execute slave but specify remote.lua as the client:

 slave remote.lua server.lua

 Then, on the P2_MASTER, execute master but specify remote.lua as the server:

 master client.lua remote.lua

11 The commands must be executed in this order - i.e. the slave has to be started before the master, or the
master will time out.

10 See https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Copyright (c) 2024 Ross Higson Page 41

Catalina C Aloha from Lua

Using ALOHA this way doesn’t speed the program up any further. But that’s not the end of
the story …

 On the P2_SLAVE, we can use sluafx to execute the slave in NATIVE mode from Hub
RAM:

 sluafx server.lux

 or just:

 sluafx

 And on the P2_MASTER, we can use masterfx to execute the client in NATIVE mode from
Hub RAM:

 masterfx client.lua remote.lua

When executed this way, each iteration of Life takes only 0.8s - twice as fast as the best
that can be achieved on a single Propeller.

As Mr Spock might have said to Captain Kirk …

“It’s Life, Jim, but not as we know it”

Copyright (c) 2024 Ross Higson Page 42

	Aloha from Lua
	Introduction
	eLua
	Building eLua
	Demonstrating eLua
	Multi-Processing with eLua

	ALOHA
	Preparing multiple Propellers
	Building eLua with ALOHA support
	A simple demo
	Loading the simple demo
	Executing the simple demo
	The simple demo files
	client.lua
	server.lua
	remote.lua
	common.lua

	Putting it all together

	WiFi and RPC
	Preparing multiple Propellers
	Building eLua with WiFi and RPC support
	A hybrid demo
	Loading the hybrid demo
	Executing the hybrid demo

	Technical Notes
	File name conventions
	Lua initialization modules
	Hub RAM Allocation
	Cog allocation
	The binser module
	The ALOHA protocol
	aloha_tx
	aloha_rx

	The ALOHA and WiFi RPC dispatcher
	RPC network definition
	The WiFi RPC protocol
	Background tasks

	Appendix A - A more complete demo
	client.lua
	server.lua
	common.lua
	remote.lua

	Appendix B - Life

