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A New Vector Quantization Clustering Algorithm 

Ahtrucr-The Pairwise Nearest Neighbor (PNN) algorithm is we- 
sented as an alternative to the Unde-Bum-Gray (generalized Lloyd) 
algorithm for vector quantization clustering. The PNN algorithm de- 
rives a vector quantization codebook Is a dimfnishingly s d l  fraction 
of the time previously required, without soerking performance. In 
addition, the time needed to generate a codebook grows only like O ( N  
lag N) in training set size, and is Independent of the number of code 
words desired. Using this new metbed, one can either minimize the 
number of code words needed subject to a maximum allowable distor- 
tion or minlmlze the dktortioa subject to a maximum rate. The PNN 
algorithm can be used with squared error Snd weigbted squared error 
distortion measures. Simulations on a variety of images encoded at 1/2 
bit per pixel lndlcate that PNN codebooks can be developed in roughly 
5 percent of the time required by the LBG algorithm. 

I. VECTOR QUANTIZATION 
ECTOR quantization [l], [2] is a process in which V data to be encoded are broken into small “blocks,” 

or vectors, which are then sequentially encoded vector by 
vector. The idea is to identify a set, or “codebook,” of 
possible vectors which are representative of the informa- 
tion to be encoded. The vector quantization encoder pairs 
up each source vector with the closest matching vector 
from the codebook, thus “quantizing” it. The actual en- 
coding is then simply a process of sequentially listing the 
identity of the code words which were deemed to most 
closely match the vectors making up the original data. 
The decoder has a codebook identical to the encoder, and 
decoding is a trivial matter of piecing together the vectors 
whose identity has been specified. The key to this method, 
of course, is to have a good codebook of representative 
vectors, typical of the data to be sent. To date, the method 
used almost exclusively for developing a codebook has 
been the algorithm known as the Linde-Buzo-Gray (LBG) 
algorithm [3]. This algorithm is also sometimes referred 
to as the generalized Lloyd algorithm (GLA), since it is 
a vector generalization of a clustering algorithm due to 
Lloyd [4]. 

A.  7he Generalized Lloyd, or ‘ ‘LBG. ” Algorithm 
The LBG algorithm for deriving a codebook based on 

a set of training vectors is iterative, and can be described 
as follows. The initialization step involves choosing the 
starting codebook of vectors. This could be a codebook 

Manuscript received April 15, 1987; revised December 17, 1988. This 
paper is based in part on work supported by a National Science Foundation 
Graduate Fellowship, and was presented in pan at 1987 ICASSP. 

The author is with the IBM Almadcn Research Center, 650 Harry Rd.. 
Department W2/802, San Jose, CA 95120-6099. 

. 
IEEE Log Number 8929999. 

used previously, or something arbitrary, such as evenly 
spaced points in the vector space. The iteration begins by 
assigning each training vector to its “best fit” code word, 
based on some distortion measure and an exhaustive 
search. Next, given the set of vectors assigned to a par- 
ticular code, that code is modified to minimize its error 
relative to the training vectors currently assigned to it. 
This two step pmcess continues iteratively. The process 
is terminated when the overall error between the training 
vectors and the codes they are assigned to changes by a 
small enough fraction between one iteration and the next. 
The codebook is then considered to be determined and, 
given arbitrary error tolerances, this codebook reduces the 
coding error to at least a local minimum. The execution 
time of this algorithm is uncertain because the required 
number of iterations cannot be predicted ahead of time. 
Experience indicates that execution time grows quickly as 
the training set gets larger, as the number of code words 
increases, and as the vector dimension increases. 

In this algorithm, by far the most complicated task is to 
come up with an acceptable initial codebook. Since the 
LBG algorithm can only find local minima, it is important 
that one start out in the general neighborhood of the cor- 
rect solution, lest one become stranded at a local mini- 
mum distant from the global minimum. As stated previ- 
ously, one possible way to initialize the LBG algorithm 
is to use a codebook previously developed for some other 
purpose. Altematively, one might initialize with evenly 
spaced code words in the vector space or use a so-called 
“splitting” technique as described in [l]. However, per- 
haps the best simple initialization is to randomly choose 
a sampling from the training set for use as the initial codes. 
In practice, the “random initialization” is typically im- 
plemented by choosing evenly spaced elements in the 
training sequence (e.g., 2,  ? k + l ,  & + , ,  - - 9 , 
x ( c - l ) k + l  where Zi is the ith training vector, N = the 
number of training vectors, C = the number of code words 
desired, and k = N / C  ). 

B. Other Clustering Algorithms 
Other authors have mentioned that one could develop 

vector quantization codebooks based on pattern recogni- 
tion “clustering” techniques, and at least one has been 
implemented [SI. However, the efficacy of these tech- 
niques has not been demonstrated, and these techniques 
often suffer from the defect that they cannot specify ahead 
of time how many clusters will result. Additionally, many 
typical clustering algorithms are no less complicated than 
the LEG algorithm and suffer f r o m  the defect that they  
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cluster points with the aim of classifying the points rather 
than minimizing reconstruction error. 

I 569 

11. PAIRWISE NEAREST NEIGHBOR CLUSTERING 
In this section, a new algorithm, the Pairwise Nearest 

Neighbor (PNN) algorithm, is presented as a substitute 
for the LBG algorithm. This new algorithm significantly 
reduces needed computation without sacrificing perfor- 
mance. This algorithm can also be considered as an ini- 
tializer for the LBG algorithm, providing better perfor- 
mance than either algorithm can achieve separately. The 
PNN algorithm is designed for use with squared error and 
weighted squared error distortion measures. The full 
search version of this algorithm will first be presented, 
and then an efficient approximation will be described. A 
preliminary version of this work first appeared in [6].  

A. Full Search Painvise Nearest Neighbor Clustering 
The process of generating vector quantization code 

words from a training set is equivalent to the process of 
grouping the training set into “clusters,” where each 
cluster is to be represented by a single code word. The 
Pairwise Nearest Neighbor (PNN) algorithm begins with 
a separate cluster for each vector in the training set and 
merges together two clusters at a time until the desired 
codebook size is achieved. At the start of the clustering 
process, one converts N clusters, each containing one 
vector, into the optimal (N - 1) cluster codebook by 
merging together into a single cluster the two closest 
training vectors. The code word for this new cluster is 
chosen to minimize the error incurred by replacing these 
two vectors with a single code word. In other words, it is 
the centroid of the two vectors now in the new cluster. 

For instance, in Fig. 1 we start with six training vectors 
of two-dimensional data. We consider each training vec- 
tor to be a separate cluster. The two components of each 
vector are represented as x and y coordinates on the graph 
and each cluster centroid is represented in the diagram 
with an X. Before any merges, each cluster centroid has 
the number “1” next to it, signifying that it is made up 
of just one training vector. After one merging step there 
are five clusters, with the two closest cluster centroids de- 
leted and replaced by a single cluster centroid half way 
between the two deleted X’s. This new centroid has a “2” 
next to it, signifying that it IMW represents two training 
vectors. 

Unfortunately, once clusters have more than one mem- 
ber, things become more complicated. However, given K 
clusters, we can always optimally move to K - 1 by 
merging the two clusters which result in the best tradeoff 
between merging close clusters and affecting few training 
vectors. If the members of a cluster can be approximated 
by their centroid, then this step-by-step optimality will 
lead us to a good overall clustering. 

Consider the example in Fig. 2. This diagram repre- 
sents a typical merge in the PNN algorithm. We start with 
f ive clusters and merge together  the clusters  consisting of 
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Fig. 1. First mrge in PNN algorithm. 

Fig. 2. Typical mcrgc in PNN algorithm. 

four and one training vectors, respectively. We merge to- 
gether these two clusters rather than the clusters with four 
and one-hundred training vectors, which appear “closer,” 
because the larger error introduced to each training vector 
in our chosen two clusters is outweighed by the fact that 
our choice of clusters affects many fewer training vectors. 

The clustering process is halted when we are satisfied 
with our clusters, and then the centroid of each cluster is 
used as a code word. Stopping criteria are described in 
more detail below, Of course, it is not true that the “op- 
timal” size C codebook will necessarily be achievable by 
sequentially developing the optimal codebooks of de- 
creasing size, but this is the approximation on which the 
algorithm is built. 

The pair of clusters which will introduce the least error 
when merged can be calculated as follows. If our distor- 
tion measure is squared error (the calculations are similar 
for weighted squared error), and we use the following no- 
tation: 

c, = 
c, = 

ni = 
“0 = 
Zi = 
xv = 
s: = 

s?. = 

( X , Y )  = 

11 

then 

i th cluster of training vectors 
cluster formed by merging ith and j t h  clus- 
ters 
number of training vectors in Ci 
number of training vectors in C, 
centroid (mean) of the training vectors in C, 
centroid (mean) of the training vectors in C, 
average squared error between X i  and the 
training vectors in Ci 
average squared error between Eo and the 
training vectors in C, 
inner product of x and y, 

(3 )  

2 2 
= c 1. -Eijl + c 1. - % j I  , (4) 

xscr xsc, 
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where 

niZi + njZi - nixi - njZj I ni + ni 
= niS: + ni 

njZi - njxj I ni + nj- [ = niS! + ni (9) 

Consequently, 

2 nf nj + 2 J E j  - ZiJ 
. ( ni + nj) 

ninj(ni + nj) 
= n , ~ , 2  + njSj + 1zi - XjI2 ( 1 2 )  

(ni + nj)‘ 

(13) 
ni nj 2 - xj1 . = niS;2 + njSf + - 

ni + nj 
We interpret the last term in (13) as the squared e m r  in- 
troduced by merging clusters Ci and Cj, and the idea is to 
choose the clusters Ci and Cj which minimize this quan- 
tity. Notice that the only statistics one need keep track of 
for each cluster are and n,. In fact, Ci can be considered 
to be a vector of “weight” ni located at the centroid of 
the cluster g .  In this way, the distortion introduced by 
merging two clusters can be considered a “weighted dis- 
tance” between the two centroids. 

If one is interested in tracking the error introduced as 
the clustering proceeds, one might also keep track of S: 
for each cluster. However, one should recognize that this 
value is just an upper bound on the distortion the real en- 
coder will introduce. This is because the calculation above 
assumes that all the training vectors in a cluster are closer 
to the centroid of their own cluster than to the centroid of 
a different cluster. In practice, this may not be the case, 
and the training vectors may thus be encoded with strictly 
less distortion. Using this method allows one to terminate 
the clustering process when a certain distortion relative to 
the training set is reached, rather than when a certain 
number of clusters are obtained. 

We can now see that there are two possible termination 
criteria. First, we may choose to terminate when we have 

reduced our training set to a predetermined number of 
clusters. Alternately, we may choose to continue merging 
clusters as long as the average emr introduced by repre- 
senting the training data by the cluster centroids stays be- 
low some predetermined threshold. Since the number of 
clusters determines the coding rate, we see that these ter- 
mination criteria correspond respectively to minimizing 
distortion, subject to a rate constraint, and to minimizing 
rate, subject to a distortion constraint. 

B. Fast Search PNN Clustering 
The PNN codebook development algorithm is a matter 

of progressively merging together pairs of clusters with 
minimal weighted distance between their centroids. The 
key to quick execution of this algorithm is quickly finding 
the closest pairs of centroids among an essentially ran- 
domly distributed set. The obvious way is to explicitly 
find each point’s nearest neighbor, but this is very slow 
(a log N search at best) and leads to closest pair compu- 
tation cost on the order of N log N for each merge. How- 
ever, it is possible to efficiently find good, if suboptimal, 
pairs of clusters to merge as described below. We do not 
care if we merge the absolute closest pair of clusters at 
each step, as long as close clusters get merged eventually. 
We call this approximated PNN algorithm the “fast” 
PNN algorithm. 

The way we accomplish the computational saving is to 
search for a vector’s near neighbors only within a small 
region, with neighborhoods being defined by a k-d tree 
partitioning of the multidimensional space. In the past [6]- 
[8], k-d trees have been used in vector quantization cod- 
ing as a means of performing the nearest neighbor searches 
required by the LBG algorithm, but in our case we will 
merely be using the partition of k-dimensional space in- 
duced by organizing the training vectors into a k-d tree 
structure. 

1)  K-d Trees: 
Structure: K-d trees (short for k-dimensional trees) 

were developed by Bentley [9], [IO] and provide a data 
structure which allows for log (N) multidimensional 
“nearest-neighbor” searches to be accomplished. K-d 
trees (see Fig. 3) consist of a set of interconnected nodes 
and a set of terminal nodes, or “buckets,” located at the 
lowest level of the tree. The nodes serve to organize the 
data, the buckets hold the data. Similar to binary search 
trees, each node in a k-d tree partitions data into two sets 
based on some scalar threshold, but unlike simple binary 
trees, Bentley’s k-d trees partition vector data at each node 
by performing a threshold test on a single coordinate of 
each vector. The coordinate being tested is the same for 
all vectors being “partitioned” at a given node, but can 
be different at each node of the k-d tree. 

A node in a k-d tree is defined by four elements. The 
first element is the index i of the coordinate used for par- 
titioning the data at this node. The second element is the 
threshold t for partitioning data. Any vector in the subtree 
“below” this node whose i th  coordinate has a value less 
than t is located in the left branch of this subtree and, 
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Fig. 3. Example of a K-d trcc. Fig. 4. K-d partition corresponding to example. 

conversely, any vector whose ith coordinate is greater 
than z is located in the right branch. It is a matter of con- 
vention in which branch a vector belongs if its ith coor- 
dinate happens to equal t .  The last two elements of a node 
are pointers to the left and right branches, or childien. 
These children are k-d trees in their own right, organizing 
their “half’ of the data. 

Buckets are special nodes which point to, or “con- 
tain,” data rather than other nodes. In a completely or- 
ganized tree, each bucket would contain only one vector, 
but usually it is more efficient to have a bucket contain a 
small number of vectors which are all similar. This way 
fewer nodes (and levels in the tree) are needed. The vec- 
tors in a given bucket can be stored in a finite array if it 
is guaranteed that there will never be more than a certain 
number of vectors per bucket or they can be stored as a 
linked list. 

One can consider each particular k-d tree to be a parti- 
tioning of k-dimensional with each node corresponding to 
a hyper-plane parallel to all but one coordinate axis. For 
example, consider the two-dimensional case in Fig. 4 
which corresponds to the tree in Fig. 3. Here there are 12 
vectors, represented by the letters A-L. The top node acts 
as the first partition, dividing the two-dimensional region 
into two haif-planes. The next level of the tree divides 
these half-planes once again, and so on. The lines (hyper- 
planes in general) dividing up the “space” correspond to 
nodes, and the regions defined by the nodes correspond 
to buckets. Each partition could, in theory, be done with 
respect to any coordinate, but to get the most effective 
partitions one would normally try to use different coor- 
dinates at different nodes. 

Building a K-d Tree: K-d trees, like binary trees, are 
constructed recursively from the top down, and are de- 
signed specifically to partition a particular set of data. The 
first parameter one fixes is the number of vectors one will 
allow in each bucket. Then, if one wants to build a tree 
with this many or fewer vectors, they are all assigned to 
a single bucket. If there are more vectors than will fit into 
a single bucket, a single coordinate i and a threshold t are 
chosen and the set of vectors is divided into two halves 
based on the value of their ith coordinate. As described 
above, if a vector’s ith coordinate is less than t it is as- 
signed to the left child, and if it is greater than f it goes 
to the right child. If the ith coordinate equals t it goes to 
one child or the other based on convention. Each of these 
two sets of vectors are then recursively formed into a new 
k-d tree, and so on, until all the vectors are assigned into 
buckets. 

At each node, one is faced with the difficult question of 
which coordinate to use for partitioning the data. One 
simple approach is to choose cyclically among the coor- 
dinates. On the top level of the tree partition on the basis 
of the first coordinate; on the second level, use the sec- 
ond, etc. When all the coordinates have been used once, 
start over again with the first one. A better method is to 
choose for each node the coordinate which best “spreads 
out” the data. That is to say, one might choose to parti- 
tion the data on the basis of the coordinate which has the 
largest variance associated with it. The reason for choos- 
ing this as the “split coordinate” is that if the data are 
very spread out along a particular dimension, then pre- 
sumably differences in that coordinate are more “signifi- 
cant” in some sense than differences in another, more 
densely grouped coordinate. Choosing in this second 
manner has the effect of splitting the data on the basis of 
uncorrelated coordinates. 

To achieve a maximally balanced tree, one should use 
the median coordinate value from among the vectors in- 
volved as the split threshold. Friedman ez al. [ 101 report 
that a bucket size averaging around eight entries seems to 
be optimal for a wide range of problems. 

2) Using K-d Trees to Petform Fast PNN Cluster- 
ing: We use k-d trees in the following way (see Fig. 5) .  
When looking for pairs of clusters to merge, we only con- 
sider pairs where both cluster centroids are assigned to the 
same region of k-dimensional space as defined by the 
buckets of a k-d tree. 

We start by organizing the training set in a k-d tree. 
Then we repeatedly perform the following steps until we 
are satisfied with our clustering. As usual, we consider 
the training vectors to be the first set of cluster centroids. 
After the tree is created, candidate pairs for merging are 
generated by doing local comparisons within each k-d 
bucket. Within each bucket, the pair of clusters which 
will introduce the least distortion when merged is called 
the bucket’s “candidate.” Next, a fixed fraction of these 
candidate pairs (such as 50 percent) are merged based on 
the distortion their merge would introduce. The candidate 
pair which would introduce the least distortion is always 
merged, and then the pair which would introduce the sec- 
ond least amount, and so on, until the desired fraction of 
candidates have been merged. The ” o n  for merging 
only a fraction of the candidate pairs at each pass is that 
some partitions (buckets) will not have any close pairs. 
At this point, we can stop if we want, either because we 
have the correct number of clusters or because we have 
reached the maximum desired distortion between the 



1572 m e  TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING. VOL. 37. NO. 10. OCTOBER 1989 

Fig. 5. The PNN algorithm. 

training set and our cluster centroids. If we decide to con- 
tinue, the k-d tree is then rebalanced to account for the 
loss of the merged cluster centroids and the addition of 
the results of these merges. Buckets which now contain 
too many cluster centroids are split, and buckets which 
now contain too few cluster centroids are combined with 
neighboring buckets. This tree readjustment has the effect 
of keeping the number of vectors in each bucket roughly 
constant. With this newly adjusted tree, new candidate 
pairs are generated and the process continues. 

3) Complexity of the Fast PNN Algorithm: Bentley 
shows that the amount of computation needed to build the 
k-d tree is O ( W  log N )  where there are N k-dimensional 
vectors to be organized, so if T equals the number of vec- 
tors in the training set, the complexity of the first step in 
the fast PNN algorithm is 0 ( T log T ). This computation 
is performed once. 

If there are initially T clusters (one for each training 
vector) and if at the end there are C clusters, there must 
be a total of ( T - C) merges performed. Since T is typ- 
ically much larger than C, we lose little by upper bonding 
the number of merges performed by T. The cost of an 
individual merge is the cost of deleting two vectors from 
the tree and adding one. This is of complexity O( log T) 
so the complexity of all the merges combined is O( T log 
T). I 

At each pass in the fast PNN algorithm, a fixed fraction 
of the candidate pairs of cluster centroids are actually 
merged, so the total number of buckets searched during 
the entire clustering process is (T - C )/y, where y is 
the fraction of candidates merged at any given step. Since 
buckets are kept at a small constant size, searching within 
a bucket incurs a constant computational cost, and the 
overall complexity attributable to searching for candi- 
dates is O( T). In addition, the operation of determining 
which candidates to merge is linear in the number of can- 
didates produced at any stage, since it involves only find- 
ing a percentile (median, for example) and comparing all 
candidates to this percentile. Since finding a percentile is 
linear is the size of the data set, at any stage the com- 
plexity of determining which candidates to merge is pro- 
portional to the number of buckets searched. As above, 
the total number of buckets searched for a candidate is 
O( T), so the overall cost of generating candidate pairs is 
WT).  

Consequentiy , the complexity of the PNN clustering 
process is O( T log T) in the size of the training set and 
is essentially independent of the size of codebook gener- 
ated (even though larger codebooks take slightly less time 
than small ones). 

111. APPLICATION TO IMAGE CODING 
In this section we describe an application of the PNN 

algorithm to vector quantization coding of still images. 
We chose image coding because we felt this was the ap- 
plication in which the computational difficulties were most 
severe. However, in theory the PNN algorithm could 
serve as an effective substitute for the LBG algorithm in 
any vector quantization application. 

A. Vector Quantization Picture Coding 
We used the typical [ 111-[14] approach of coding dig- 

itized images by dividing them into blocks of pixels and 
then using these blocks as vectors. Our blocks were 4 X 
4 pixels in size and the images we used were 512 x 512 
pixels. Our pictures were digitized to 8 bits per pixel (256 
possible gray levels) and we chose to generate a codebook 
with 256 codewords, resulting in a coding rate of 1 /2 bit 
per pixel. 

While organizing the training vectors in k-d trees, the 
coordinate used to partition the data at each node in the 
tree was the coordinate with the greatest variance. The 
split threshold was the median value of this coordinate. 
When a child was given eight or fewer vectors they were 
placed in a bucket. 

All tests were performed on either a Vax 111780 or a 
Vax 111750 with programs written in the C programming 
language. Execution time was measured in Berkeley 
UNIX accounting units. These “units” are measured in 
seconds and are similar to CPU seconds, except that they 
are adjusted for system load. All performance tests shown 
in a single table were run on the same computer. All tests 
involving the LBG algorithm were run until there was less 
than a 0.1 percent change in the distortion introduced by 
representing the training set with the codebook being de- 
veloped. Most tests were run using vectors from a single 
image as the training set, although larger training sets were 
also tested with similar Rsults. 

For LBG coding, a “trick” which increased perfor- 
mance significantly was to initialize not with evenly 
spaced vectors from the training set beginning with the 
first vector, but rather with evenly spaced vectors from 
the training set offset by a small number. The reason for 
the performance enhancement was that the first training 
vector corresponded to the block of pixels in the top left 
comer of the image, and evenly spaced vectors beginning 
with this vector included a large fraction of vectors lying 
along the left boundary of the picture. This was a problem 
because digitized images often have artifacts along the 
edges corresponding to windowing or other effects, and 
initializing the LBG algorithm with unrepresentative vec- 
tors degraded its performance significantly. We also al- 
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Picture 

baboon 
lake 
airport 
lcna 
peppers 
plane 
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Codebook Development Algorithm 
LBG in i t id id  with fast LBC initialized with 

6.55 7.21 6.54 
2.60 2.65 2.38 
1.75 1.51 I .38 
1 . 1 i  1.26 1.11  
1.2i 1.33 1.20 
1.42 1.441 I .25 

random training uectors P N N  fast PSN codes 

ways ran the LBG algorithm as enhanced by the use of 
k-d tree nearest neighbor searching. This alone reduced 
computation by a factor of two as reported in [6] and [7]. 
We also used other computational enhancements such as 
those cited in [15] and [la]. 

B. Full Search PNN versus “Fast” PNN 
The “full search’’ PNN algorithm of Section 11-A is a 

slow and costly process. Since it requires an unacceptable 
amount of computation, the pertinent question is how 
much the “fast” PNN algorithm degrades performance 
as compared to the full search algorithm. It was found that 
the fast PNN algorithm increased coding error (squared 
error in this case) by approximately 0.4-0.6 dB for single 
image encoding. This figure increased as the overall cod- 
ing error increased. 

C. Execution Time of PNN versus LBG 
The fast implementation of the PNN algorithm was 

compared to the LBG algorithm (enhanced to use k-d tree 
searching) and was found in this application to require 
less than 5 percent of the amount of time needed by LBG 
algorithm (see Table I). Recall that for these examples, 
the training set is a single picture ( T  = 16,384 for 512 X 
512 pictures by 4 x 4 codewords), although in practice 
the training set might be composed of several pictures 
which belong to a certain “class of pictures.’’ 

D. Numerical PNN Quality versus LBG Quality 
The quality of images generated by any VQ design al- 

gorithm is of great importance because even an extremely 
fast algorithm is useless if it produces bad pictures. What 
is desired is a fast alternative with performance equivalent 
to LBG performance, and as Table I1 shows, PNN distor- 
tion is comparable in all cases. It should be noted that the 
codebooks generated by the PNN algorithm are subopti- 
mal since the LBG algorithm can always improve on them 
by running a few iterations. On the other hand, the LBG 
algorithm is not necessarily globally optimal. A typical 
picture is shown in Fig. 6 along with the images produced 
by each algorithm blown up to show detail (see Figs. 6- 
8). These images were coded at 1 /2 bit per pixel. 

E. PNN as LBG Initializer 
As can be seen by Table 11, when the output from the 

PNN clustering algorithm was used as the initializer for 
the LBG algorithm, total coding error was lower in all 
cases than for the LBG codebook with random initializa- 
tion. In addition, with the PNN initializer the LBG algo- 
rithm always converged in fewer iterations (often half as 
many), so the computation time overall was lower also, 
as one or two iterations alone take more time than the 
entire execution of the fast PNN algorithm. Conse- 
quently, it is clear that even if the PNN algorithm were 
to be considered unacceptable because it usually does not 
generate an “optimal” codebook, it appears to be an ex- 

TABLE 1 
EXECUTION TIME OF LBG VERSUS PNN 

Picture 

baboon 

airport 
lena 
PePPaB 
plane 

16089 
6930 
8602 

33 9577 400 

Fig. 6. “Peppers” original. 

cellent altemative to random initialization for the LBG 
algorithm, and used this way results in excellent perfor- 
mance as well as computational savings. 

F. Performance Outside Training Set 
Tests were performed to determine if the PNN algo- 

rithm would continue to perform comparably with the 
LBG algorithm when coding pictures outside the training 
set. In these cases, picture reconstruction was understand- 
ably worse, but picture quality with PNN codebooks re- 
mained comparable to that achieved using LBG code- 
books. The computational advantage of the PNN 
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fraction of the time previously required. The PNN algo- 
rithm is not sensitive to initializations and is guaranteed 
to terminate in a finite amount of time. The PNN algo- 
rithm is shown to take slightly less time the larger the 
codebook desired and allows one the option of either min- 
imizing coding distortion subject to a rate constraint, or 
minimizing rate subject to a distortion constraint. In ad- 
dition, since practical implementations of the PNN algo- 
rithm use local nearest neighbor searching, processing can 
be done in parallel to take advantage of the added speed 
that extra hardware can bring. 

When applied to image coding with small training sets, 
the time required to execute the PNN algorithm is dem- 
onstrated to be just 5 percent of that typically required by 
the LBG algorithm. Reconstructed pictures generated with 
this new algorithm were shown to be as good as those 
generated with the standard algorithm. It is interesting to 
note that the PNN algorithm makes it computationally 
feasible to develop a different codebook for each image. 
Sending the codebook to the receiver before the encoded 
image would take an additional 1/8 bit per pixel with 
parameters as stated. 

Fig. 7. Blowup (250 x 250 pixels) of “Peppers” coded with LBG code- 
book. 

Fig. 8. Blowup (250 x 250 pixels) of “Peppers” coded with fast PNN 
codebook. 

algorithm over the LBG algorithm became more pro- 
nounced as the size of the training set increased. 

IV. CONCLUSIONS 
The Pairwise Nearest Neighbor (PNN) algorithm was 

presented as a noniterative way to generate vector quan- 
tization codebooks comparable to those generated by the 
LBG algorithm. This algorithm is useful for applications 
involving squared error and weighted squared error dis- 
tortion measures. The PNN algorithm’s main “feature” 
is that it develops codebooks in a diminishingly small 

It was also shown that using PNN code words as an 
LBG initialization for image coding results in much better 
codebooks (with fewer iterations) than does “random in- 
itialization.” This provides for a way to generate better 
codebooks and indicates that the LBG algorithm using 
random training vectors as an initializer typically con- 
verges to suboptimal codebooks, a fact often not given 
adequate attention. It is the opinion of the author, how- 
ever, that the main usefulness of the PNN algorithm is as 
a fast alternative to the LBG algorithm which allows vec- 
tor quantization to be used in situations where it had pre- 
viously been computationally prohibitive, such as in re- 
petitive experimental work, or in situations with large 
training sets or codebooks. 
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