New Angle definitions shown at new baseline height definition and starting position

Redefining horizontal position to be offset from starting position

Stride is currently 4", a bit more than D/2 Note starting position front and back angles are not equal

Note front foot is closer to upper joint (horizontally) compared to rear foot in this current starting position

Probably need limb length to do the math

Note front and rear limbs are same length in current design

Need to calculate these angles as a function of dx and then splice in limb advancement For robot's inertial frame of reference, making center of upper joints the origin point Making down the positive Y direction

Vector Math: B1 = (-D/2, 0) B2 = B1 + (-U*cos(BU), U*sin(BU)) BL'=BL-BU B3 = B2 + (L*cos(BL'), L*sin(BL')) F1 = (D/2, 0) F2 = F1 + (-U*cos(FU), U*sin(FU)) FL'=FL-FU F3 = F2 + (L*cos(FL'), L*sin(FL'))

Now to solve for angles as a function of dx:

- Y F3 = (S-dx, H) = F2 + (L*cos(FL'), L*sin(FL')) = F2 + (L*cos(FL-FU), L*sin(FL-FU))
 - $F3x = S-dx = F2x + L^*\cos(FL-FU) = F1x U^*\cos(FU) + L^*\cos(FL-FU)$
 - $S-dx = D/2 U^* cos(FU) + L^* cos(FL-FU)$
 - F3y = H = F2y + L*sin(FL-FU) = F1y + U*sin(FU) + L*sin(FL-FU)
 - H = U*sin(FU) + L*sin(FL-FU)

No way to solve this! What now? Try something else...

Found example of the math here: Inverse Kinematics: how to move a robotic arm (and why this is harder than it seems) · Applied Go

Define new angles: BA & BB , FA & FB

Math is a bit tricky... Need ArcCosine

X=S-D/2+dx = known H=known Length C= sqrt(H*H+X*X) = known U and L are known

Law of Cosines: C*C = U*U + L*L - 2*U*L*cos(BL) BL = acos((U*U+L*L-C*C)/(2*U*L)) BC = acos(H/C) BA = acos((U*U+C*C-L*L)/(2*U*C))BU=90-BA-BC

Think can use same math for front limbs...

Checking the math, distances in mils

S=4000 D=6980 dx = 0 for starting position X=S-D/2+dx = 510 H=5370 Length C= $sqrt(H^*H+X^*X) = 5394$ U =3550, and L=3160

Law of Cosines: $C^*C = U^*U + L^*L - 2^*U^*L^*cos(BL) =$ $BL = acos((U^*U+L^*L-C^*C)/(2^*U^*L))$ BC = acos(H/C) $BA = acos((L^*L+C^*C-L^*L)/(2^*U^*C))$ BU=90-BA-BC

Think can use same math for front limbs...

Now for front where B3 can have larger x than B1

Will say X is positive when foot in front of shoulder

Just sign changes in equations for X and FU

Appears that front and back angles would be the same if S==D