
sphinxcompiler Reference
mpark@sphinxcompiler.com

Reference

Core programs

• sphinx.bin
• lex.bin
• codegen.bin
• link.bin

Editor

• ed.bin

Utilities

• echo
• cogcheck
• dir
• copy
• del

Device drivers

• sxfs
• sxkb
• sxtv

Device interfaces

• isxfs
• isxkb
• isxtv
• sxfile

PC utilities

• put
• get

Core programs

sphinx.bin
Sphinx.bin installs the Sphinx drivers for the keyboard, TV, and SD card. It also 
acts as a simple command-line shell.
A command line can take any of the following forms:

• filename arg1 arg2 ... argn
• run filename arg1 arg2 ... argn
• c filename arg1 arg2 ... argn
• cl filename arg1 arg2 ... argn

The first form loads and executes the file named filename. If filename ends with 

mailto:mpark@sphinxcompiler.com
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sphinxbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/edbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfs
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxkb
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxtv
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxfs
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxkb
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxtv
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfile
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/pc-utilities
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/pc-utilities


".bin" or ".eep", sphinx.bin will execute the file of that name (if it exists, of 
course). Otherwise, sphinx.bin will attempt to execute filename.bin and, if that 
fails, filename.eep.
 
The second form, the run command, also loads and runs filename. The 
difference between these two forms of command is that the first one leaves the 
Sphinx device driver cogs running, while the second stops all cogs (it effectively 
resets the Propeller). Use the first form to execute Sphinx-aware programs; use 
the run command to execute regular programs.
 
The c command compiles filename.spn and generates filename.sob (assuming 
no errors). This command runs lex.bin and codegen.bin, passing any command-
line arguments to both programs (see below).
 
The cl command compiles and links filename.spn, generating filename.sob and 
filename.bin (again, assuming no errors). This command runs lex.bin, 
codegen.bin, and link.bin, passing its command-line arguments to all three 
programs.
 
Sphinx.bin should be stored in EEPROM so that the Propeller boots into Sphinx. 
Sphinx.bin should also exist on the SD card so that Sphinx-aware programs can, 
once they've finished their work, load and execute sphinx.bin. 
Command-line arguments

Sphinx.bin stores arguments as ASCII strings in a file named "args.d8a". A 
program launched from Sphinx can read the argument strings from that file. The 
first byte of the file is the number of arguments; it is followed by that number of 
strings, each null-terminated.
 
As noted earlier, the c and cl commands run several programs and each 
program receives the same arguments. This is because they do not modify 
args.d8a before executing the next program in the sequence. Each program 
pays attention to the arguments it understands and ignores any that it does not.

lex.bin
Lex.bin is the first phase of the compiler. It takes a .spn file as input, tokenizes 
it, and writes the result to a .tok file. On successful completion, lex.bin can 
automatically run codegen.bin, the next compiler phase.
 
Usage:

   lex filename [options]

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin


Options:

• /c -- run codegen.bin automatically on successful completion.
• /l -- run codegen.bin automatically on successful completion and tell it to 

run link.bin.
• /v n -- set verbosity to 0, 1, 2, or higher (default is 0). The higher the 

verbosity, the more messages lex.bin prints as it runs.

Example:

   lex tv_text /c

This command tokenizes tv_text.spn, producing tv_text.tok, and then runs 
codegen.bin. Note that you don't have to add ".spn" to the input filename. 
Lex.bin will add it automatically.
 
You should never have to run lex.bin directly; instead, use the convenient  c 
command (provided by sphinx.bin) which is equivalent to running lex with the /c 
option. 
 

codegen.bin
Codegen.bin is the second phase of the compiler. It takes a .tok file generated 
by lex.bin and compiles it to a .sob file. On successful completion, codegen.bin 
can automatically run link.bin (of course, linking should only be done on the top 
object, not child objects, so don't use the /l option too freely).
 
Typically you will never run codegen.bin directly. Instead you will use the c and 
cl commands (provided by sphinx.bin) which run codegen.bin for you.
 
Usage:

   codegen filename [options]

Options:

• /l -- run link.bin automatically on successful completion.
• /s n -- set stack size to n bytes (default is 2300). If codegen.bin fails 

because of stack overflow, run it again with a larger stack. n must be a 
multiple of 4.

• /t n -- set symbol table size to n bytes (default is 6000). If codegen.bin 
fails because the symbol table becomes full, run it again with a larger 
symbol table. n must be a multiple of 4.

• /v n -- set verbosity to 0, 1, 2, or higher (default is 0). The higher the 

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sphinxbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sphinxbin


verbosity, the more messages codegen.bin prints as it runs.

Example:

codegen howdy /v 3 /t 7000

This command compiles howdy.tok and produces howdy.sob. While running, 
codegen.bin prints many informative(?) messages. The symbol table size is 
7,000 bytes. Note that you do not have to add ".tok" to the input filename. 
Codegen.bin will add it automatically.
 

link.bin
Link.bin is the linker. It takes a top object .sob file and links it together with any 
child .sob files it requires, producing a .bin file.
 
Usage:

   link filename [options]

Options:
• /i -- ignore out-of-date errors.
• /v n -- set verbosity to 0, 1, 2, or higher (default is 0). The higher the 

verbosity, the more messages link.bin prints as it runs.

 

Editor 

ed.bin
Ed is a simple full-screen text editor. It displays 13 lines of 40 characters. There 
is no word-wrap; the whole screen scrolls sideways if the cursor is at the end of 
a long line. Ed is always in insert mode.
 
You invoke ed at the Sphinx prompt by typing "ed" followed optionally by a 
filename.
 
Ed understand the following key commands:

• ENTER -- Carriage return  
• BKSP -- Delete to the left 
• DEL -- Delete to the right
• arrow keys -- Cursor movement  



• HOME -- Go to start of line  
• CTRL-HOME -- Go to start of file  
• END -- Go to end of line  
• CTRL-END -- Go to end of file  
• PGUP -- Page up
• PGDN -- Page down  
• CTRL-O -- Open a file  
• CTRL-S -- Save to a file
• CTRL-Q -- Save and quit to Sphinx

The last three commands give you the opportunity to enter or edit a filename. To 
accept the filename, hit ENTER. To cancel the file operation, hit ESC.

Implementation notes

Ed is a Sphinx-aware program that uses Sphinx keyboard and file I/O, but it 
uses its own video driver. Sxtv does not provide cursor positioning and other 
functions that ed needs, so ed contains a modified version of the Parallax 
tv_text object (which in turn contains the Parallax tv object). Ed uses 
sxtv.Disable to turn off Sphinx video while it's running. When ed is about to 
transfer control back to Sphinx, it calls sxtv.Enable to turn Sphinx video back 
on.

Utilities
  
cogcheck
Prints which cogs are active and which are free.
 
Usage:

   cogcheck

copy
Copies a file.
 
Usage:

   copy srcfile dstfile



Copies srcfile to dstfile. If overwriting dstfile, will ask for confirmation first.

del
Deletes files.
 
Usage:

   del files [options]

Options:

• /Y -- delete without asking for confirmation

files can contain wildcard characters ("?" and "*").

dir
Prints a directory of files.
 
Usage:

   dir [files]

files can contain wildcard characters ("?" and "*"). If files is not specified, it 
defaults to "*.*".

echo
Prints its arguments.
 
Usage:

   echo [arguments]

Not particularly useful, just an example of reading arguments from args.d8a.

Device drivers



 
sxfs
Sxfs is the Sphinx file system. It implements a barebones FAT16 file system on 
SD cards. It occupies three cogs and requires 139 longs of hub memory, most 
of which is a 512-byte metadata buffer. Sxfs supports multiple open files. Every 
open file requires 134 longs for a sector buffer and housekeeping variables. Sxfs 
can read a file, write a file, and load a file into hub memory and execute it.
 
Programs that want to use sxfs's functionality should use the sxfs interface 
object, isxfs, or a higher level file object such as sxfile. Only programs that need 
to install the sxfs driver, such as sphinx.bin, should use the sxfs object itself.

Spin interface method

• pub Start( sdPin ) -- starts the three sxfs cogs if they are not already 
running. Returns true if the cogs needed to be started, false if they were 
already running.

Implementation notes

Communication to and from sxfs is done through a rendezvous of four longs. 
(The three sxfs cogs communicate with each other through their own private 
rendezvous locations.) The four longs are command, param0, param1, and 
param2 (starting at hub address $7fcc). To perform a file operation, set up the 
parameters and then set command to a command value. Wait until command 
becomes 0, indicating that the operation has completed, and exmine param0 for 
a return code. A negative return code indicates that an error has occurred.
 
Instead of waiting, one could arrange to continue doing something else while the 
file operation completes asynchronously. Sphinx does not take advantage of this 
capability.
 
The commands and their parameters are as follows:

 comm
and 

 para
m0 

 param
1 

 para
m2 

 Description 

 "?"     Does nothing but acknowledge to indicate that 
sxfs cog is active.

 "O"  filest
uff

 filena
me

 mode  Open a file, populate filestuff fields. mode is "R" 
or "W".

 "R"  filest
uff

 buffer  num  Reads num bytes into buffer from file specified by 
filestuff.

 "W"  filest
uff

 buffer  num  Writes num bytes from buffer to file specified by 
filestuff.

 "C"  filest
uff

   Closes file specified by filestuff.

 "X"  filest
uff

 exec
mode

 cog  Executes file. See below.

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxfs
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfile


 comm
and 

 para
m0 

 param
1 

 para
m2 

 Description 

 "?"     Does nothing but acknowledge to indicate that 
sxfs cog is active.

 "O"  filest
uff

 filena
me

 mode  Open a file, populate filestuff fields. mode is "R" 
or "W".

 "R"  filest
uff

 buffer  num  Reads num bytes into buffer from file specified by 
filestuff.

 "W"  filest
uff

 buffer  num  Writes num bytes from buffer to file specified by 
filestuff.

 "C"  filest
uff

   Closes file specified by filestuff.

 "X"  filest
uff

 exec
mode

 cog  Executes file. See below.

filestuff is a pointer to a 134-long area of hub memory. Each open file requires 
its own filestuff area.
 
The execute command reads 63 contiguous sectors from the SD card into hub 
memory. It does not read 64 sectors because the 64th sector would overwrite 
the rendezvous locations for the various Sphinx drivers. This could conceivably 
cause some files not to run properly.
 
Because sxfs assumes that a 32k file occupies 64 contiguous sectors on the 
SD card, the card must be formatted with a cluster size of at least 32k.
 
Of course, .bin files do not necessarily take up all 32k. Sxfs reads 63 sectors 
but then clears memory above the actual extent of the file.
 
If execmode is 0, sxfs starts up a Spin interpreter in cog cog. If execmode is 
non-0, sxfs shuts down all cogs except cog cog; it also resets the system clock 
if necessary.
 
The isxfs object takes care of all those details. The sxfile object additionally 
encapsulates a filestuff area.
 
One of the sxfs cogs runs a slightly modified version of sdspiqasm.spin by 
Tomas Rokicki.

sxkb
Sxkb is the Sphinx keyboard driver. It is functionally similar to comboKeyboard 
in the Object Exchange but, once installed, it occupies no hub memory except 
for one long used to communicate with the rest of the Propeller. It maintains a 
queue of up to 15 keystrokes in cog memory.
 

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxfs
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfile
http://obex.parallax.com/objects/105/


Programs that just want to use sxkb's functionality should use the sxkb interface 
object, isxkb. Only programs that need to install the sxkb driver, such as 
sphinx.bin, should use the sxkb object itself. 

Spin interface methods 
• PUB start(pingroup) -- starts the keyboard driver. An even value 

for pingroup indicates a Demo/Protoboard-compatible keyboard interface; 
an odd value indicates a HYDRA-style keyboard interface.

• PUB startx(pingroup, locks, auto) -- similar to start but also lets you 
specify lock key behavior and auto-repeat timing. See sxkb.spn for 
details.

• PUB peekkey -- returns the next keycode but does not remove it from the 
queue. Returns 0 if no key pressed.

• PUB key -- returns the next keycode. Returns 0 if no key pressed.
• PUB getkey -- returns the next keycode. If no keys are in the queue, this 

method will wait until one is.

Implementation notes

The rendezvous location for sxkb is $7ff8.If no keyboard input is available, the 
value at the rendezvous remains 0. If keyboard input is available, sxkb stores 
the next keycode at the rendezvous.
 
A program consuming keyboard input should wait for a non-0 value at the 
rendezvous, read the non-0 keycode, then clear the rendezvous to 0 so that 
sxkb can set it to the next keycode.
Sxkb is a moderately modified version of comboKeyboard by Mike Green.

sxtv
Sxtv is the Sphinx TV driver. It displays 13 lines of 40 characters. It is 
functionally very similar to the standard tv_text driver from Parallax, but it 
maintains its screen buffer in cog memory. Once installed, it occupies no hub 
memory except for a single long.
 
Programs that just want to use sxtv's functionality should use the sxtv interface 
object, isxtv. Only programs that need to install the sxtv driver, such as 
sphinx.bin, should use the sxtv object itself. 

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxkb
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/isxtv


Spin interface methods

• PUB start(basepin, rv) -- Sphinx.bin calls this to start the driver. The first 
parameter is the video base pin (this is hard-coded into sphinx.spin at 
installation). The second parameter is the rendezvous location, defined in 
Sphinx as $7ffc (but in theory you could use sxtv in your own programs 
and use any long as the rendezvous).

• PUB stop -- stops the driver.
• PUB GetBasepin -- returns the video base pin (set by the call to start).
• PUB str(stringptr) -- prints the null-terminated string at address stringptr.
• PUB dec(value) -- prints value as a decimal number.
• PUB hex(value, digits) -- prints value as a hexadecimal number of digits 

digits.
• PUB bin(value, digits) -- prints value as a binary number of digits bits.
• PUB out(c) -- prints the character c. $08 is interpreted as backspace, $0d 

is interpreted as a carriage return.

Implementation notes

Once sxtv is installed by sphinx.bin, it monitors the long at hub address $7ffc 
(known as the rendezvous, as in a meeting place; this is where sxtv and the rest 
of the Propeller meet to exchange information). As long as that long is 0, sxtv 
does nothing. Generally, sxtv waits for a non-0 value, does something with that 
value, then resets the long to 0 and resumes waiting.
 
Conversely, a program that wants to send information to sxtv waits for the 
rendezvous long to become 0, then sets it to a non-0 value.
 
If the long is a number between 1 and 255, sxtv prints the corresponding 
character (ASCII plus special Parallax characters) on the screen. Sxtv interprets 
backspace ($08) and carriage return ($0d) only.
 
If the long is "D"<<8, sxtv disables its video output. It still updates its internal 
screen buffer. This is useful for programs such as ed that use their own video 
drivers.
 
If the long is "E"<<8, sxtv enables its video output. This is the default state.
 
If the long is -1, sxtv sets the long to basepin<<8 and does not clear it. In this 
one situation, the long is used to convey information out from sxtv. Typically 
sphinx.bin uses this to determine whether sxtv is already running. Ed uses this 
to retrieve which pins the video hardware uses.

http://www.sphinxcompiler.com/Home/installation
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/edbin


 
The preceding details are hidden by convenient PUB methods; however, note 
that communication with sxtv is not limited to Spin programs. Any cog can 
access the rendezvous location. This means that a PASM program can output 
to the screen (very handy for debugging).
 
Sxtv.spn is a heavily modified version of tv.spin by Chip Gracey.

Device interfaces

isxfs
Isxfs provides a convenient low-level interface to the Sphinx file system (sxfs). 
You must provide a 136-long area of memory (known in Sphinx as filestuff) for 
each file you want to open and pass the address of that area to each isxfs 
method you use. For a higher-level file object, see sxfile.

 Spin interface methods

• PUB Open(pFilestuff, pFilename, mode) -- opens a file. mode is either "R" 
or "W".  Returns 0 on success. If opening for reading, returns 1 if file not 
found. 

• PUB Close(pFilestuff) -- closes a file.
• PUB Read(pFilestuff, pBuffer, nBytes) -- reads nBytes bytes from a file 

into hub memory starting at pBuffer.
• PUB Write(pFilestuff, pBuffer, nBytes) -- writes nBytes bytes to a file from 

hub memory starting at pBuffer.
• PUB Execute(pFilestuff, execmode) -- loads a file into memory and 

executes it. If execmode is non-0, perform the equivalent of a system 
reset before starting execution.

• PUB Command(cmd, param0, param1, param2) -- execute an sxfs 
command.

isxkb
Isxkb is a lightweight interface object between Sphinx-aware programs and the 
Sphinx keyboard driver (sxkb).
 
Note that any object in a program's object hierarchy can use isxkb, not just the 
top object. This allows keyboard input anywhere in a program and can be very 
useful.

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfs
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxfile
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxkb


Spin interface methods 

• PUB peekkey -- returns the next keycode but does not remove it from the 
queue. Returns 0 if no key pressed.

• PUB key -- returns the next keycode. Returns 0 if no key pressed.
• PUB getkey -- returns the next keycode. If no keys are in the queue, this 

method will wait until one is.

Example

' A simple demonstration of isxkb
' Note: Sphinx-aware programs don't need clock 

settings
obj
  kb : "isxkb"
  term : "isxtv"
  f: "sxfile"
pub Main | ch
  term.str( string("Are you alive? ") )
  ch := kb.getkey
  term.out( ch ) ' echo keystroke
  term.out( 13 )
  if ch == "y" or ch == "Y"
    term.str( string("That's a relief", 13) )
  else
    term.str( string("Uh-oh", 13) )
  ' Our work here is done. Now back to the command 

shell:
  f.Open( string("sphinx.bin"), "R" )
  f.Execute( 0 )

  

isxtv
Isxtv is a lightweight interface object between Sphinx-aware programs and the 
Sphinx TV driver (sxtv).

Note that any object in a program's object hierarchy can use isxtv, not just the 
top object. This allows output from anywhere in a program and can be very 

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/sxtv


useful.

Spin interface methods

• PUB GetBasepin -- returns the video base pin.
• PUB str(stringptr) -- prints the null-terminated string at address stringptr.
• PUB dec(value) -- prints value as a decimal number.
• PUB hex(value, digits) -- prints value as a hexadecimal number of digits 

digits.
• PUB bin(value, digits) -- prints value as a binary number of digits bits.
• PUB out(c) -- prints the character c. $08 is interpreted as backspace, $0d 

is interpreted as a carriage return.

Example

' A simple demonstration of isxtv
' Note: Sphinx-aware programs don't need clock 

settings
obj
  term : "isxtv"
  f: "sxfile"
pub Main
  term.str( string("Howdy") )
  term.out( 13 )
  ' Our work here is done. Now back to the command 

shell:
  f.Open( string("sphinx.bin"), "R" )
  f.Execute( 0 )

  

sxfile
Sxfile is a file object. Use it to read, write, or execute files on the SD card.
 
Each sxfile instance in a program refers to a different file, so you can have 
multiple files open concurrently.

Spin methods

• PUB Open(pFilename, mode) -- pFilename points to a null-terminated 8.3 
filename (e.g., "test.spn"). mode is either "R" or "W". If mode is "R" and 
the specified file does not exist, this method returns 1; otherwise, this 



method returns 0 to indicate success and aborts if an error occurs.
• PUB Close -- closes an open file. You must close files that have been 

opened for writing in order to flush buffers to the SD card. Closing files 
opened for reading is less important (actually optional).

• PUB Read(ptr, n) -- read n bytes into hub memory starting at address ptr. 
Returns the number of bytes actually read, or -1 if the end of file is 
reached.

• PUB Write(ptr, n) -- write n bytes from hub memory starting at address ptr.
• PUB Length -- returns the length of the file. The file must first be opened 

for reading.
• PUB Execute(mode) -- executes the file. The file must first be opened for 

reading. A non-0 mode causes the equivalent of a system reset before the 
file runs.

• PUB ReadString(p, MAXLENGTH) -- reads a null-terminated string into 
hub memory starting at address p. If the string exceeds MAXLENGTH 
characters, this method aborts.

• PUB ReadStringUpperCase(p, MAXLENGTH) -- similar to ReadString 
but converts all lower-case characters to upper-case.

• PUB WriteString(p) -- writes a null-terminated string to the file (including 
terminating null).

• PUB ReadNumber -- reads a null-terminated string representing a decimal 
number and returns the numeric value (e.g. if the file contains "123" 
followed by a null byte, this method will return 123). This method aborts if 
a non-numeric character is encountered.

• PUB ReadByte -- reads a byte from the file.
• PUB WriteByte(b) -- writes a byte to the file.
• PUB ReadWord -- reads a 2-byte quantity from the file.
• PUB WriteWord(w) -- writes a 2-byte quantity to the file.
• PUB ReadLong -- reads a 4-byte quantity from the file.
• PUB WriteLong(l) -- writes a 4-byte quantity to the file.
• PUB SkipBytes(n) -- skips over the next n bytes in the file. 

PC utilities
Although Sphinx is ultimately intended to enable standalone Propeller 
development, it is undeniably convenient to be able to transfer files to and from 
the PC via USB. The two utility programs described here are run on the PC. 
Sphinx.bin must be running on the Propeller.

get
Transfers a file from Sphinx to the PC.



 
Usage:

   get portname filename

portname is the serial port connected to the Propeller. filename is the name of 
the file on the SD card to transfer to the PC.
 
Example:

   get com7 hello.spn

This command transfers hello.spn from the SD card to hello.spn on the PC.
 
Source code for get is provided on the downloads page. It is a C# program 
requiring .Net 2.0 or later. It runs on Windows and should run on Linux with 
Mono. Conversion to other languages should be straightforward.

put
Transfers a file from the PC to Sphinx.
 
Usage:

   put portname filename [filename2]

portname is the serial port connected to the Propeller. filename is the name of 
the file on the PC to transfer to the SD card. If filename ends with ".spin", 
".binary", or ".eeprom", the file on the SD card will have a name ending in ".spn", 
".bin", or ".eep". Optionally, you can specify the filename you want the SD card 
file to have (filename2).
 
Example:

   put com7 hello.spin

This commands transfers hello.spin from the PC to hello.spn on the SD card.
Source code for put is provided on the downloads page. It is a C# program 
requiring .Net 2.0 or later. It runs on Windows and should run on Linux with 
Mono. Conversion to other languages should be straightforward.

http://www.sphinxcompiler.com/Home/downloads
http://www.sphinxcompiler.com/Home/downloads

