
sphinxcompiler Documentation
mpark@sphinxcompiler.com

Introduction
Sphinx is a Propeller-based compiler for the Spin language (including 
Propeller assembly language). It consists of a suite of programs. Some of 
the programs constitute the compiler itself, the rest support the compiler by 
performing the functions of a minimal operating system.

Compiling and linking: a SOB story
The process of building a program with Sphinx is divided into two steps, 
compiling and linking. Compiling transforms a Spin source file into a Spin 
Object Binary (SOB) file. Linking converts a SOB and its sub-SOBs into an 
executable binary image.
Compiling

The Sphinx "compiler" proper actually consists of two programs, lex.bin and 
codegen.bin, but they work so closely together that they are best considered 
a unit. Lex.bin reads a .spn file, tokenizes it, and produces an 
intermediate .tok file. Codegen.bin reads the .tok file, parses it, and 
generates object code which it saves in a .sob file.
 
A SOB contains the Spin bytecodes for the object's PUB and PRI methods. 
In addition, it contains a list of the object's imports (sub-objects) and its 
exports (constants and PUB method signatures). A SOB is the compiled 
essence of an object. As far as Sphinx is concerned, a SOB contains the 
same information as its corresponding Spin file, just in convenient binary 
form. 
 
The compiler only compiles a single .spn file at a time. If the .spn file 
contains a sub-object, the compiler reads the .sob file for that sub-object and 
retrieves its exported information. This gives the compiler enough information 
to compile the .spn file without having to compile additional .spn files.
 
This also means that programs have to be compiled from the bottom up. 
That is, sub-objects have to be compiled before any containing objects are 
compiled.
 
Consider a simple program that prints "Hello, world" on the screen. The top 
object, hello, contains a sub-object, tv_text. Tv_text in turn contains sub-
object tv. When you compile hello.spn, the compiler will need to read 
tv_text.sob, so you have to have compiled tv_text.spn beforehand. Similarly, 
before compiling tv_text.spn, you must compile tv.spn to produce tv.sob. So 
to compile hello from a standing start you must issue these commands:
c tv
c tv_text
cl hello
 
Of course, subsequently you will not have to compile all three objects every 
time, just the objects that change.
Linking

You invoke the linker (link.bin) with the name of the top-level object. The 
linker reads the top-level SOB and goes through its list of imports (in other 
words, its sub-objects). The linker recursively reads the sub-SOBs and their 
sub-SOBs.
 
Once all the SOBs are read, the linker determines how it will lay out all the 
objects' bytecode in memory and adjusts the various inter-object pointers so 
that they all refer to one another correctly. Then it writes an executable 
binary image (.bin file).
Timestamps

Consider the following situation:
1. sub.spn is compiled, producing sub.sob.
2. top.spn is compiled using sub.sob, producing top.sob.
3. sub.spn is modified and recompiled, producing a new sub.sob.

Now the top SOB is based on an old version of the sub-SOB. When the 
objects are linked, the resulting executable file may well fail because of that 
version mismatch.
 
In order to detect such version mismatches, Sphinx maintains a 32-bit 
"timestamp" in a file named timestmp.d8a. Every time you compile an 
object, Sphinx increments the timestamp and stores it in the .sob file. (Of 
course an actual timestamp could be used, but Sphinx takes this approach 
so as not to require a real-time clock.)
 
The linker compares timestamps and warns if any object being linked is out 
of date with respect to a sub-object.
 
Note that this timestamp mechanism cannot detect when a .sob file is out of 
date with respect to its .spn counterpart. That is, Sphinx cannot tell if a .spn 
file has been modified after being compiled. If you edit a source file, it is your 
responsibility to remember to compile it.

mailto:mpark@sphinxcompiler.com
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin


The process of building a program with Sphinx is divided into two steps, 
compiling and linking. Compiling transforms a Spin source file into a Spin 
Object Binary (SOB) file. Linking converts a SOB and its sub-SOBs into an 
executable binary image.
Compiling

The Sphinx "compiler" proper actually consists of two programs, lex.bin and 
codegen.bin, but they work so closely together that they are best considered 
a unit. Lex.bin reads a .spn file, tokenizes it, and produces an 
intermediate .tok file. Codegen.bin reads the .tok file, parses it, and 
generates object code which it saves in a .sob file.
 
A SOB contains the Spin bytecodes for the object's PUB and PRI methods. 
In addition, it contains a list of the object's imports (sub-objects) and its 
exports (constants and PUB method signatures). A SOB is the compiled 
essence of an object. As far as Sphinx is concerned, a SOB contains the 
same information as its corresponding Spin file, just in convenient binary 
form. 
 
The compiler only compiles a single .spn file at a time. If the .spn file 
contains a sub-object, the compiler reads the .sob file for that sub-object and 
retrieves its exported information. This gives the compiler enough information 
to compile the .spn file without having to compile additional .spn files.
 
This also means that programs have to be compiled from the bottom up. 
That is, sub-objects have to be compiled before any containing objects are 
compiled.
 
Consider a simple program that prints "Hello, world" on the screen. The top 
object, hello, contains a sub-object, tv_text. Tv_text in turn contains sub-
object tv. When you compile hello.spn, the compiler will need to read 
tv_text.sob, so you have to have compiled tv_text.spn beforehand. Similarly, 
before compiling tv_text.spn, you must compile tv.spn to produce tv.sob. So 
to compile hello from a standing start you must issue these commands:
c tv
c tv_text
cl hello
 
Of course, subsequently you will not have to compile all three objects every 
time, just the objects that change.
Linking

You invoke the linker (link.bin) with the name of the top-level object. The 
linker reads the top-level SOB and goes through its list of imports (in other 
words, its sub-objects). The linker recursively reads the sub-SOBs and their 
sub-SOBs.
 
Once all the SOBs are read, the linker determines how it will lay out all the 
objects' bytecode in memory and adjusts the various inter-object pointers so 
that they all refer to one another correctly. Then it writes an executable 
binary image (.bin file).
Timestamps

Consider the following situation:
1. sub.spn is compiled, producing sub.sob.
2. top.spn is compiled using sub.sob, producing top.sob.
3. sub.spn is modified and recompiled, producing a new sub.sob.

Now the top SOB is based on an old version of the sub-SOB. When the 
objects are linked, the resulting executable file may well fail because of that 
version mismatch.
 
In order to detect such version mismatches, Sphinx maintains a 32-bit 
"timestamp" in a file named timestmp.d8a. Every time you compile an 
object, Sphinx increments the timestamp and stores it in the .sob file. (Of 
course an actual timestamp could be used, but Sphinx takes this approach 
so as not to require a real-time clock.)
 
The linker compares timestamps and warns if any object being linked is out 
of date with respect to a sub-object.
 
Note that this timestamp mechanism cannot detect when a .sob file is out of 
date with respect to its .spn counterpart. That is, Sphinx cannot tell if a .spn 
file has been modified after being compiled. If you edit a source file, it is your 
responsibility to remember to compile it.

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin


The process of building a program with Sphinx is divided into two steps, 
compiling and linking. Compiling transforms a Spin source file into a Spin 
Object Binary (SOB) file. Linking converts a SOB and its sub-SOBs into an 
executable binary image.
Compiling

The Sphinx "compiler" proper actually consists of two programs, lex.bin and 
codegen.bin, but they work so closely together that they are best considered 
a unit. Lex.bin reads a .spn file, tokenizes it, and produces an 
intermediate .tok file. Codegen.bin reads the .tok file, parses it, and 
generates object code which it saves in a .sob file.
 
A SOB contains the Spin bytecodes for the object's PUB and PRI methods. 
In addition, it contains a list of the object's imports (sub-objects) and its 
exports (constants and PUB method signatures). A SOB is the compiled 
essence of an object. As far as Sphinx is concerned, a SOB contains the 
same information as its corresponding Spin file, just in convenient binary 
form. 
 
The compiler only compiles a single .spn file at a time. If the .spn file 
contains a sub-object, the compiler reads the .sob file for that sub-object and 
retrieves its exported information. This gives the compiler enough information 
to compile the .spn file without having to compile additional .spn files.
 
This also means that programs have to be compiled from the bottom up. 
That is, sub-objects have to be compiled before any containing objects are 
compiled.
 
Consider a simple program that prints "Hello, world" on the screen. The top 
object, hello, contains a sub-object, tv_text. Tv_text in turn contains sub-
object tv. When you compile hello.spn, the compiler will need to read 
tv_text.sob, so you have to have compiled tv_text.spn beforehand. Similarly, 
before compiling tv_text.spn, you must compile tv.spn to produce tv.sob. So 
to compile hello from a standing start you must issue these commands:
c tv
c tv_text
cl hello
 
Of course, subsequently you will not have to compile all three objects every 
time, just the objects that change.
Linking

You invoke the linker (link.bin) with the name of the top-level object. The 
linker reads the top-level SOB and goes through its list of imports (in other 
words, its sub-objects). The linker recursively reads the sub-SOBs and their 
sub-SOBs.
 
Once all the SOBs are read, the linker determines how it will lay out all the 
objects' bytecode in memory and adjusts the various inter-object pointers so 
that they all refer to one another correctly. Then it writes an executable 
binary image (.bin file).
Timestamps

Consider the following situation:
1. sub.spn is compiled, producing sub.sob.
2. top.spn is compiled using sub.sob, producing top.sob.
3. sub.spn is modified and recompiled, producing a new sub.sob.

Now the top SOB is based on an old version of the sub-SOB. When the 
objects are linked, the resulting executable file may well fail because of that 
version mismatch.
 
In order to detect such version mismatches, Sphinx maintains a 32-bit 
"timestamp" in a file named timestmp.d8a. Every time you compile an 
object, Sphinx increments the timestamp and stores it in the .sob file. (Of 
course an actual timestamp could be used, but Sphinx takes this approach 
so as not to require a real-time clock.)
 
The linker compares timestamps and warns if any object being linked is out 
of date with respect to a sub-object.
 
Note that this timestamp mechanism cannot detect when a .sob file is out of 
date with respect to its .spn counterpart. That is, Sphinx cannot tell if a .spn 
file has been modified after being compiled. If you edit a source file, it is your 
responsibility to remember to compile it.

The Sphinx operating environment
Sphinx I/O is performed by device drivers that reside entirely in the 
Propeller's cogs, taking up almost no hub memory. For example, the video 
driver runs in a cog and maintains its screen buffer (13 lines of 40 
characters) in its cog memory. It communicates with the rest of Sphinx 
through a single long memory location (known as a rendezvous, to use 
terminology borrowed from fsrw) at the top of hub RAM space. 
 
Similarly, the keyboard driver occupies no hub memory except for a 
rendezvous location.
 
The SD card driver is somewhat more complicated. It takes up three cogs. 
One is a low-level SD SPI driver (fsrw's sdspiqasm, lightly modified). The 
other two cogs implement a very barebones FAT16 file system that provides 
basic read, write, and execute functionality. Programs can open multiple files 
but must allocate some hub memory for each file. Communication with the 
file system is through several rendezvous locations. The file system requires 
a 512-byte buffer for metadata.
 
There are simple interface objects that hide the details of using the drivers.
 

Sphinx memory and cog usage
 
Sphinx.bin installs the drivers when it first boots up. From that point on, the 
drivers remain resident and running even as different programs execute in 
hub memory (as long as they are Sphinx-aware programs). For example, if 
you run link.bin by typing "link" at the command prompt, what happens is 
this:

1. Sphinx.bin uses the Sphinx file system to load link.bin into hub 
memory and execute it while leaving all cogs running.

2. Link.bin runs, using the Sphinx drivers to perform TV, keyboard, and 
file I/O. Note that link.bin does not install any drivers.

3. When link.bin terminates, it uses the file system to load and execute 
sphinx.bin. Sphinx.bin determines that the drivers are already running 
and does not re-install them. It prints a prompt and awaits the next 
command.

Sphinx-aware programs do not have to carry device driver code inside 
themselves; they can rely on Sphinx drivers. Sphinx-aware programs can 
execute other programs, typically sphinx.bin, but not necessarily (for 
example, lex.bin executes codegen.bin so that the two parts of the compiler 
run seamlessly). Running sphinx.bin puts up a command prompt immediately 
after a program ends, without the long delay that a reset would cause. This, 
coupled with the fact that the display accumulates the output from each 
program (rather than clearing between each program), gives the convincing 
illusion of a traditional command-line shell.
 
Sphinx can also execute regular (that is, non-Sphinx-aware) programs by 
performing the equivalent of a reset before running the program. This shuts 
down the driver cogs. The program must perform its own I/O. When the 
program finishes, a reboot will presumably occur, either programmatically or 
manually. At that time, Sphinx will load in from EEPROM and install the 
Sphinx drivers.

http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/lexbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/codegenbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/reference/linkbin
http://www.sphinxcompiler.com/Home/sphinx-documentation/the-sphinx-operating-environment/sphinx2.PNG?attredirects=0


Sphinx I/O is performed by device drivers that reside entirely in the 
Propeller's cogs, taking up almost no hub memory. For example, the video 
driver runs in a cog and maintains its screen buffer (13 lines of 40 
characters) in its cog memory. It communicates with the rest of Sphinx 
through a single long memory location (known as a rendezvous, to use 
terminology borrowed from fsrw) at the top of hub RAM space. 
 
Similarly, the keyboard driver occupies no hub memory except for a 
rendezvous location.
 
The SD card driver is somewhat more complicated. It takes up three cogs. 
One is a low-level SD SPI driver (fsrw's sdspiqasm, lightly modified). The 
other two cogs implement a very barebones FAT16 file system that provides 
basic read, write, and execute functionality. Programs can open multiple files 
but must allocate some hub memory for each file. Communication with the 
file system is through several rendezvous locations. The file system requires 
a 512-byte buffer for metadata.
 
There are simple interface objects that hide the details of using the drivers.
 

Sphinx memory and cog usage
 
Sphinx.bin installs the drivers when it first boots up. From that point on, the 
drivers remain resident and running even as different programs execute in 
hub memory (as long as they are Sphinx-aware programs). For example, if 
you run link.bin by typing "link" at the command prompt, what happens is 
this:

1. Sphinx.bin uses the Sphinx file system to load link.bin into hub 
memory and execute it while leaving all cogs running.

2. Link.bin runs, using the Sphinx drivers to perform TV, keyboard, and 
file I/O. Note that link.bin does not install any drivers.

3. When link.bin terminates, it uses the file system to load and execute 
sphinx.bin. Sphinx.bin determines that the drivers are already running 
and does not re-install them. It prints a prompt and awaits the next 
command.

Sphinx-aware programs do not have to carry device driver code inside 
themselves; they can rely on Sphinx drivers. Sphinx-aware programs can 
execute other programs, typically sphinx.bin, but not necessarily (for 
example, lex.bin executes codegen.bin so that the two parts of the compiler 
run seamlessly). Running sphinx.bin puts up a command prompt immediately 
after a program ends, without the long delay that a reset would cause. This, 
coupled with the fact that the display accumulates the output from each 
program (rather than clearing between each program), gives the convincing 
illusion of a traditional command-line shell.
 
Sphinx can also execute regular (that is, non-Sphinx-aware) programs by 
performing the equivalent of a reset before running the program. This shuts 
down the driver cogs. The program must perform its own I/O. When the 
program finishes, a reboot will presumably occur, either programmatically or 
manually. At that time, Sphinx will load in from EEPROM and install the 
Sphinx drivers.

http://www.sphinxcompiler.com/Home/sphinx-documentation/the-sphinx-operating-environment/sphinx2.PNG?attredirects=0

