Propeller Programming Protocol

Software developers use the Propeller Programming Protocol to build downloader systems that can deliver
compiled applications to an embedded Propeller P8X32A microcontroller. This document describes the
protocol in detail, covering basic principles, timing constraints, and specific implementation for different
transmission mediums.

NOTICE: This document is still a work-in-progress. All items currently documented are accurate;
however, there are many enhancements and tips still being developed for inclusion here.

Table of Contents

Programming Interface (Electrical Connections)
Programming Interface (Protocol)
General Principles
Image G1 - Example Host Tx Signal (blue)
Calibration
Handshake and Connection
Version
Command
Table G1: Protocol Commands (32-bits each)
Protocol Proper
Metrics
Protocol Proper Algorithm
Identification Sequence
Image P1 - Full Identification Sequence
Image P2 - Reset Pulse
Image P3 - Calibration Pulses
Image P4 - Handshake Pattern
Image P5 - Connection Response
Image P6 - Version
Image P7 - Command (Shutdown)
Program RAM Sequence
Image P8 - Full Program RAM Sequence
Image P9 - Command (LoadRun) and Application Size
Image P10 - Application Image
Image P11 - Acknowledge (RAM Checksum)
Program EEPROM Sequence
Image P12 - Full Program EEPROM Sequence
Image P13 - EEPROM Program and Checksum Acknowledge
Protocol RS-232
Metrics
Protocol RS-232 Algorithm
Identification Sequence
Image RS1 - Full Identification Sequence
Image RS2 - Reset Pulse

Image RS3 - Calibration Pulses
Image RS4 - Handshake Pattern
Image RSS5 - Connection Response
Image RS6 - Version
Image RS7 - Command (Shutdown)
Appendix A - Handshake and Connection
Auto-generated Values
Pre-generated Values
Usage During Communication
Appendix B - PropellerLoader.spin
Appendix C - Propeller's ROM-Based Boot Loader
Appendix D - Logic Analyzer

Programming Interface (Electrical Connections)

The Propeller P8X32A is in-circuit programmable via a simple electrical interface. Programming can be
done by a host device (PC, Mac, microcontroller, etc.) without the need for any special programmer device.
In its simplest form, the programming interface may be only 4-wires. More sophisticated communication
interfaces (like RS-232 or USB-to-Serial) may be used, but will require extra circuitry and data manipulation
for proper electrical and protocol conversion.

Programming Interface (Protocol)

The Propeller Programming Protocol (referred to as "protocol" from here on) is a variable bit-size, flexible
bit-rate, asynchronous serial communication mechanism that functions even with inaccurate clock sources.
It is designed for communicating through direct-connect digital circuitry (simple wires) and also through
RS-232 devices. The protocol is described here in the following ways:

e General Principles - attributes that apply to all forms of the protocol
e Protocol Proper - its pure form, compatible with digital /0O pins
e Protocol RS-232 - compatible with UART and USB Virtual COM Port based serial mediums

Developers should deploy the form most appropriate for an application's needs. However, it is
recommended that they study General Principles and Protocol Proper in order to fully understand other
variations.

General Principles

Protocol assumes two participants; a Propeller to be programmed and a “host” that initiates contact and
serves the new program content. To maximize throughput, communication consists mostly of host
transmissions and very few Propeller transmissions (host receptions). Throughout the transaction, the
Propeller doesn’t speak unless spoken to, even during a response phase of the protocol.

Data bits are transferred as low pulses of two different widths, with values of 1 and 0 being communicated
as low pulses of time t and 2t (twice the width of t), respectively. The width of t is flexible as long as it
remains consistent within the given serial stream. High pulses serve only as data bit spacers (separators)
whose widths are unimportant. The high pulse between any two low pulses must not exceed 100 ms or the
Propeller will give up and move on, ignoring any further communication.

Image G1 - Example Host Tx Signal (blue)

oo ool ofio

Only low pulses matter; t-width pulse means binary 1, 2t-width pulse means binary 0.
High pulses vary in width and are interpreted as spacers between data bits.

The first half of the protocol always communicates the same information (calibration, handshake,
connection, and version) and the second half communicates differing information (command, application
size, application image, and acknowledgments).

Calibration

At strategic points in the communication, the host transmits calibration pulses; conveying the two bit values
(1 and 0) as their t-sized and 2t-sized low pulses. The Propeller expects and measures these calibration
pulses in order to reliably read, and occasionally respond to, the transmission.

Handshake and Connection
The handshake and connection streams are specific patterns of bits used to validate the host and the
Propeller. See Appendix A - Handshake and Connection for detailed information on this pattern.

Version
The Propeller version is an 8-bit value transmitted by the Propeller LSB-First; value of 1 = P8X32A.

Command
The protocol command is issued by the host to indicate the intent of the communication.

Table G1: Protocol Commands (32-bits each)

Name Value Definition
Shutdown $00000000 | Terminate all cogs until next reset/power-up. This command
(aka Identify) is issued immediately after receiving the Propeller's Version

value if identification was the only intent.

LoadRun $00000001 | Load application into RAM, then execute application.

ProgramShutdown $00000002 | Load application into RAM, program into EEPROM, then
terminate all cogs until next reset/power-up. This command
is usually not implemented by hosts.

ProgramRun $00000003 | Load application into RAM, program into EEPROM, then
execute application.

After version is received, the host sends a command (a 32-bit value from this table) telling the
Propeller what it intends to do next.

Protocol Proper

Protocol Proper is the pure form of the protocol designed for communication over simple direct-connect
digital circuitry. The Spin object PropellerLoader.spin implements Protocol Proper between one Propeller
(acting as the host) and another Propeller (the one being programmed). Developers knowledgeable in Spin
can gain insight into Protocol Proper by reading this code example; see Appendix B - PropellerLoader.spin.

Metrics

Reset Pulse - Drive low > 10 ps, then release (hi-z)

Post-Reset Delay - 60 ms to 210 ms (90 ms to 100 ms is recommended)
Data Bit Order - LSB-First

Low Pulse (t) - Represents bit value 1

Low Pulse (2t) - Represents bit value 0

Low Pulse (t) Width - 4.3 ps to 26 ys (recommend = 8.6 ps) @

High Pulse Width - 4.3 us to 90 ms (recommend =t us)

david
Sticky Note
115200 bd = lo of 8.68uS

Protocol Proper Algorithm

The following describes the steps for Protocol Proper from the perspective of the host. The images
afterwards contain additional vital information using actual annotated examples.

When implementing this protocol from scratch, try attempting only an identification operation (the first half of
the algorithm) then the final steps (in the second half) will generally be easier to implement.

e Reset the Propeller [Image P1, Image P2]
o Drive RESn low > 10 ps, set Tx high / Rx input, then release RESn (hi-z)
e Wait for Post-Reset Delay [Image P1, Image P2]
o 90 to 100 ms recommended
e Transmit Calibration Pulses [Image P3]
o 2-bits (%01) LSB-First
e Transmit Handshake Pattern [Image P4]
o 250-bits; see Appendix A - Handshake and Connection
e Receive Connection Response [Image P5]
o 250 iterations of: transmit 2-bit Calibration Pulse, receive 1-bit Connection Response Bit; see Appendix A
o If Propeller does not respond to any Calibration Pulse pair, or Connection Response bit is invalid, abort
communication; connection error
e Receive Version [Image P6]
o 8 iterations of: transmit 2-bit Calibration Pulse, receive 1-bit Version Pulse
o If Propeller does not respond to any Calibration Pulse pair, or if Version is bad, transmit Shutdown
Command, abort communication; version error
o Valid Propeller Version = 1 (8-bit value, received LSB-first)
e Transmit Command [Image P7, Image P8 - Image P9]
o 32-bits; often Shutdown (ID only), LoadRun (RAM only) or ProgramRun (RAM & EEPROM); see Table G1
o If transmitted Command is Shutdown (aka Identify), success; terminate communication
e Transmit Size of Application in longs [Image P9]
o 32-bits; this value should come from word 9:8 of the application image, shifted right by 2 bits
e Transmit Application Image [Image P10]
o Stream of 8-bit bytes
e Wait for Acknowledge (RAM Checksum) [Image P11]
o Up to 250 ms of: transmit 2-bit Calibration Pulse, check for 1-bit Ack (0) or Nak (1)
o If no response before timeout or Negative Acknowledge (Nak) received, abort communication; transmission
error or RAM verify error, respectively
e If Command is LoadRun [Image P11]
o Success; terminate communication
e Else, Command is ProgramShutdown or ProgramRun [Image P12]
o Wait for EEPROM Program [Image P13]
m Up to 5 s of: transmit 2-bit Calibration Pulse, check for 1-bit Ack (0) or Nak (1)
m If no response before timeout or Negative Acknowledge (Nak) received, abort communication;
EEPROM program error

o Wait for EEPROM Verify [Image P13]

m Up to 2 s of: transmit 2-bit Calibration Pulse, check for 1-bit Ack (0) or Nak (1))
m If no response before timeout or Negative Acknowledge (Nak) received, abort communication;
EEPROM verify error

o Success; terminate communication

The following images are actual logic analyzer captures of Protocol Proper. The example system consists of
a “host” Propeller, running PropellerLoader.spin, that is connected to a Propeller to-be-programmed.

Identification Sequence
The first set of images demonstrates the identification process (Reset through Command) which covers the
first half of the Propeller Proper Algorithm.

Image P1 - Full Identification Sequence

M 0.1001 s

Host Tx

This image shows a full identification sequence with Protocol Proper. Driven signals rest high; Host Rx isn’t driven by the
Propeller until it recognizes the host. Note the approximate 100 ms post-reset delay (after Reset’s low pulse) before host
transmission begins (Host Tx). The following are zoomed-in views of this image.

Image P2 - Reset Pulse

W 0,1001 s

Post-Reset Delay

Reset Pulse

The Host-driven Reset Pulse (when connected to the Propeller's RESn pin) causes the Propeller to stop any activity and
perform a boot sequence. The Reset Pulse is shown here followed by an approximate 100 ms delay before Host Tx
communication begins. The Host Tx signal (connected to the Propeller's Rx pin) must “rest” high before the Propeller wakes
up on the rising edge of the Reset signal.

Image P3 - Calibration Pulses

— W 0.1001 5s—=

1 15 ps E— W 20 ps —

® 0

Approximately 100 ms after the rising edge of the Reset Pulse, Host Tx communication begins with Calibration Pulses. This
is the host’s way of saying, “This is how | talk.” The 2-bit calibration sequence consists of a low pulse (of width t), a spacer
(high) pulse, and a second low pulse (of width 2t) followed by a spacer (high).

Image P4 - Handshake Pattern

Host Tx n q n q ® []]
Handshake (Tx) Pattern: 010111001111010111110...
Host Rx

The Handshake pattern (the host-transmitted pattern of 250 bits) immediately follows the Calibration Pulses. This is the
host’s way of saying, “I'm a qualified Propeller host trying to speak to a Propeller.” Pulse widths of the 250-bit pattern closely
match the timing indicated by the Calibration Pulses. The contents of this pattern is described in Appendix A.

Image P5 - Connection Response

gamamun®

Host always samples during and after each leading
Calibration Pulse. First sample is 0 if Propeller
responded, second sample is bit value (0 or 1).

—_
Last two bits of
Host Rx Handshake (Tx) n

Propeller sets its Tx to — -
output, resting high, right Connection Response (Rx) Pattern: 010000...
after final Handshake (Tx) bit -

matches what is expected

The Connection Response (a Propeller-transmitted pattern of 250 bits) occurs right after the Handshake. It is the Propeller's
way of saying, “I'm a Propeller that hears and acknowledges the qualifications of the host.” After the last bit of the
Handshake, the Propeller transmits one bit of the Connection Response for each Calibration Pulse pair it receives from the
host. The host transmits 250 Calibration Pulse pairs in order to receive all Connection Response bits. The host always
samples the Propeller’s transmission (Host Rx) during and right after each leading Calibration Pulse bit; the first sample is
always 0 if the Propeller responded at all and the second sample is 0 or 1, the actual bit value of the Connection bit. NOTE:
The Propeller doesn’t set its Tx line (connected to Host Rx) to output (resting high) until after the last correct Handshake
pattern bit is received. The contents of this Connection Response pattern is described in Appendix A.

Image P6 - Version

Calibration Pulzes

Version: 10000000 (LSB First) = %00000001 =1

Last bit of Connection
FHesponse

The Version is an 8-bit value transmitted by the Propeller immediately after the Connection Response; 1 bit (LSB-first) for
every Calibration Pulse pair the host transmits.

Image P7 - Command (Shutdown)

Command: Shutdown

Calibration Pulses
Host Tx ssssEEnEnEeneennnnnnunnns S00000000 wmsmeneEEEEEEEEEEeEEEEEEEES

Host
disconnects

Last bit of Version Propeller shuts down

After Version is received, the host transmits the Command (the intent of the communication); in this case, Shutdown, aka
Identify. The Command is a 32-bit value (LSB-first). If the Command were other than Shutdown, communication would
continue as shown in the images below.

Program RAM Sequence

The next set of images expands on the sequence shown above by demonstrating a Program RAM
sequence, where the LoadRun command is used and an actual Propeller Application is transmitted. All
communication prior to the LoadRun command is exactly the same as before.

Image P8 - Full Program RAM Sequence

W 0.1001 s

Host Tx

This is an entire Program RAM sequence with Protocol Proper (LoadRun Command). The leading signals, up until the
LoadRun command is transmitted, is exactly the same as in the Identification sequence shown in prior images. The following
are zoomed-in views of this image.

Image P9 - Command (LoadRun) and Application Size

Host Tx
e —_ e —
Host Rx

Last bit of Version

After Version is received, the host transmits the LoadRun command followed by the Application Size. Each are 32-bit values
transmitted LSB-first. The actual Propeller Application image is expected to follow.

Image P10 - Application Image

Last bit of
Application Size

Host Tx semens SO0 "=smmmn snnny SB4 ramun snun1SC4 sumnn snmmnw: $04 semunr wuwmmi S6F smawm semmySCB rummx

Application image:

After the Application Size is transmitted, the host transmits each byte of the Application Image. Each 8-bit value is
transmitted LSB-first. The small Propeller Application used in this example consists of 44 bytes, transmitted using the same
low-pulse method as before: 00 B4 ¢4 04 6F CB 10 00 2C 00 34 00 18 00 38 00 1C 00 02 00 08 00 00 00 37 03 3D D6 1C 37
033D D4 47 35C0 3F 91 EC 23 04 73 32 00. You can use this same application data during protocol development; when
successfully downloaded, it will make the Propeller toggle 1/0 pin P16 high or low every second (assuming the Propeller has
a 5 MHz crystal connected).

Image P11 - Acknowledge (RAM Checksum)

Last bytes of Calibration Pulses; looking for Propeller responded;
Application Image RAM Checksum Acknowledge SUCCESS

Propeller terminates

connection and
Host Tx rung application

Calibration Pulses

Host terminates connection

Pr::anllE!l' response Propelier launches Spin
- Acknowledge (D) Interpreter and runs application

After the last bytes of the Application Image are transmitted, the host polls for a RAM Checksum Acknowledgement by
periodically transmitting Calibration Pulses and checking for a Propeller response. Polling may continue for up to 250 ms
with delays between polls of > 10 ms and < 100 ms recommended. The Propeller responds with an Ack (0) if the received
Application Image has been verified in RAM (via RAM Checksum) or with a Nak (1) if RAM verification failed. If Ack is
received and the Command is LoadRun (as in this example), this is the end of the download process. If Ack is received and
the Command is ProgramRun or ProgramShutdown, communication continues as in the following images.

Program EEPROM Sequence

The final set of Protocol Proper images, below, expands on the previous by demonstrating a Program
EEPROM sequence, where the ProgramRun command is used instead. All communication is exactly like
above except the Command is ProgramRun and two more polling sequences occur after the positive
Acknowledge (RAM Checksum) is received.

Image P12 - Full Program EEPROM Sequence

F— W 0.1001 s

Host Tx

This is an entire Program EEPROM sequence with Protocol Proper (ProgramRun Command). Communication is exactly like
in previous images, except for the ProgramRun command and the extra polling sequences. The following is a zoomed-in
view of this image.

Image P13 - EEPROM Program and Checksum Acknowledge

Calibration Pulzes, looking for
EEPROM Program Acknowledge

Calibration Pulzes, looking for j
EEPROM Checksum Acknowledge

Calibration Pulses; Calibration Pulses; Calibration Pulses;
looking for EEPROM looking for EEPROM looking for EEPROM
Program Acknowledge Checksum Acknowledge Checksum Acknowledge

Host terminates
connection

Host Tx Host Tx

Propeller response Propeller rezponse -
- EEPRCM Program EEPROM Checksum
Acknowledge (0} Acknowledge (0)

Propeller begins EEPROKM ® Propeller launches Spin
Checksum verification Interpreter and runs application

Assuming the Command is ProgramRun or ProgramShutdown, after the Propeller acknowledges the RAM Checksum, it
immediately starts the EEPROM programming and verification processes. The host polls for an EEPROM Program
Acknowledgement by periodically transmitting Calibration Pulses and checking for a Propeller response. Polling may
continue for up to 5 s with delays between polls of > 10 ms and < 100 ms recommended. The Propeller responds with an
Ack (0) if EEPROM Programming is done, or with a Nak (1) if EEPROM programming failed. If Ack is received, the host
once again polls (this time for EEPROM checksum verification) similar to before, but only for up to 2 s. Once a final Ack is
received, that marks the end of the download process. NOTE: If the Command is ProgramShutdown, the Propeller
terminates the connection swiftly after final acknowledgement, rather than launching the Spin Interpreter and application.

Protocol RS-232

This implementation is fit for UART and USB Virtual COM Port based connections from the host to the
Propeller. Developers are urged to read through and understand Protocol Proper, even if they only intend to
implement Protocol RS-232, since full understanding of the intent can not be gained otherwise.

Protocol RS-232 takes the nature of Protocol Proper and carefully translates it to fit the constraints of the
RS-232 protocol. The resulting signals are, from the Propeller’s perspective, indistinguishable from that of
Protocol Proper except in terms of timing. The same exact General Principles apply here as well.

Except for cases where special techniques are applied to overcome behaviors of typical host systems, it can
be said that Protocol RS-232 is simply a translation wrapper around Protocol Proper.

Metrics

Baud Rate - 38,400 to 230,400 bps (115,200 recommended).
Data Bits - 8

Parity - None

Stop Bits - 1

Flow Control - Off

Delay Between Bytes - < 90 ms

Protocol RS-232 Algorithm

The following describes the steps for Protocol RS-232 from the perspective of the host. The images
afterwards contain additional vital information using actual annotated examples.

When implementing this protocol from scratch, try attempting only an identification operation (the first half of
the algorithm) then the final steps (in the second half) will generally be easier to implement.

e Reset the Propeller [[mage RS1, Image RS2]
o Set DTR/RTS (which drives Propeller RESn low) > 10 us, then clear DTR/RTS
e Wait for Post-Reset Delay [Image RS1, Image RS2]
o 90 to 100 ms recommended
e Transmit Calibration Pulses [Image RS3]
o 2-bits encoded in 1 byte ($F9; %11111001)
e Transmit Handshake Pattern [[mage RS4]
o 250-bits encoded into multiple bytes; see Appendix A - Handshake and Connection
e Receive Connection Response [Image RS5]
o 250 iterations of: transmit 2-bit Calibration Pulse as 1 byte ($F9), receive 1-bit Connection Response Bit as
byte ($FE or $FF); see Appendix A
o If Propeller does not respond to any ibration Pulse, or Connection Response bit is invalid, abort
communication; connection error
e Receive Version [Image RS6]
o 8 iterations of: transmit 2-bit Calibration Pulse as 1 byte ($F9), receive 1-bit Version Pulse as byte ($FE or
$FF)
o If Propeller does not respond to any Calibration Pulse, or if Version is bad, transmit Shutdown Command,
abort communication; version error
o Valid Propeller Version = 1 (8-bit value, received LSB-first)

e Transmit Command [Image RS7]

david
Sticky Note
Dont forget the start bit is a low so the prop sees

 ...111110111110011111....

decodes..........1..........0...........

 s01234567s........

 s=start s=stop

so other codes than $F9 would also work

david
Sticky Note
 $FE=...1111001111111111

decodes.....................1.............

 s011111111s...

o 32-bits as multiple bytes; often Shutdown (ID), LoadRun (RAM) or ProgramRun (EEPROM); see Table G1
o If transmitted Command is Shutdown (aka Identify), success; terminate communication
Transmit Size of Application in longs []
o 32-bits as multiple bytes; value should come from word 9:8 of the application image, shifted right by 2 bits
Transmit Application Image []
o Stream of bits encoded into multiple bytes
Wait for Acknowledge (RAM Checksum) []
o Up to 250 ms of: transmit 2-bit Calibration Pulse as 1 byte ($F9), check for Ack ($FE) or Nak ($FF)
o If no response before timeout or Negative Acknowledge (Nak) received, abort communication; transmission
error or RAM verify error, respectively
If Command is LoadRun []
o Success; terminate communication
Else, Command is ProgramShutdown or ProgramRun []
o Wait for EEPROM Program []

m Up to 5 s of: transmit 2-bit Calibration Pulse as 1 byte ($F9), check for Ack ($FE) or Nak ($FF)
m If no response before timeout or Negative Acknowledge (Nak) received, abort communication;
EEPROM program error

o Wait for EEPROM Verify []

m Up to 2 s of: transmit 2-bit Calibration Pulse as 1 byte ($F9), check for Ack ($FE) or Nak ($FF))
m If no response before timeout or Negative Acknowledge (Nak) received, abort communication;
EEPROM verify error

o Success; terminate communication

The following images are actual logic analyzer captures of Protocol RS-232. The example system consists
of a “host” computer whose USB-based serial converter device is connected to a Propeller. The host’s
RS-232 baud rate is set to 115.2 k. The signals are illustrated from the host’s perspective but were captured
from the Propeller side of the connection.

Identification Sequence
The first set of images demonstrates the identification process (Reset through Command) which covers the
first half of the Propeller RS-232 Algorithm.

Image RS1 - Full Identification Sequence

This image shows a full identification sequence with Protocol RS-232. Signals rest high. Note the approximate 90 ms
post-reset delay (after DTR/RTS’s low pulse) before host transmission begins (Host Tx). The following are zoomed-in views
of this image.

Image RS2 - Reset Pulse

Post-Reset Delay

Reset Pulse
Host Tx

The host-driven Reset Pulse on DTR/RTS (when connected to the Propeller's RESn pin) causes the Propeller to stop any
activity and perform a boot sequence. The Reset Pulse is shown here followed by an approximate 90 ms delay before Host
Tx communication begins.

Image RS3 - Calibration Pulses

DTR/RTS

Host Tx

@ Data Bit 0 Data Bit1 Data Bit 2 Data Bit 3 Data Bit 4 Data Bit5 Data Bit6 DataBit 7 Stop Bit

AN NN NN NN EEE NN NN EEE SerialByteValue:sFS EEE NN NN NN NN EEEEEEEEEEEN

Approximately 90 ms after the rising edge of the Reset Pulse (DTR/RTS), Host Tx communication begins with Calibration
Pulses. This is the host’s way of saying, “This is how | talk.” The same 2-bit calibration sequence described by Protocol
Proper is actually communicated by Protocol RS-232 as a serial byte value of $F9 (%11111001), at 115.2 kbaud in this case.
Note that the effective signal looks very similar to Protocol Proper’s Calibration Pulses and, with the General Principles in
mind, translates to exactly the same data; a binary 1 and a binary 0 communicated as a low pulse (of width t), a spacer
(high), and a second low pulse (of width 2t) followed by a spacer (high). Also note that the serial start bit itself (a low pulse
signaling the beginning of a serial byte) is always a data bit as interpreted by Protocol Proper. Similarly, the stop bit itself (a
high pulse marking the end of a serial byte) is always a spacer as interpreted by Protocol Proper.

Image RS4 - Handshake Pattern

0xF39 OxFE OxFF OxFE OxFF OxFF OxFF OxFE OxFE OxFF OxFF OxFF OxFF OxFE OxFF OxFE OxFF OxFF OxFF 0OxFF 0OxFF OxFE

Host Tx q q q q [] [] L
B Handshake (Tx) Paftern: 010171001111010711170..,
Host Rx »

The Handshake pattern (the host-transmitted pattern of 250 bits) immediately follows the Calibration Pulses. This is the
host’s way of saying, “I'm a qualified Propeller host trying to speak to a Propeller.” As with the Calibration Pulses, the 250-bit
pattern matches that of Protocol Proper (looking at low pulses only). In this example of Protocol RS-232, binary 0 is
expressed with serial byte value $FE (%11111110) and a binary 1 as serial byte value $FF (%11111111). Remember, the
start bit of each serial byte is a data bit as interpreted by Protocol Proper. This serial stream translates to the same data as,
and looks similar to, Protocol Proper’'s Handshake. The contents of the Handshake pattern is described in Appendix A.

Image RS5 - Connection Response

Most hosts have UART receive buffers that will
automatically fill with the Propeller's responses; full

0xFF 0xF3
bytes of SFE = bit value 0, and 5FF = bit value 1.
Host Tx

——
Last two bits of
Host Rx Handshake (Tx)
__..—-""'_-—’ =
Connection Response (Rx) Pattern: 010000...

The Connection Response (a Propeller-transmitted pattern of 250 bits) occurs right after the Handshake. It is the Propeller's
way of saying, “I'm a Propeller that hears and acknowledges the qualifications of the host.” After the last bit of the
Handshake, the Propeller transmits one bit of the Connection Response for each Calibration Pulse pair it receives from the
host. The host transmits 250 Calibration Pulse pairs (as serial bytes $F9) in order to receive all Connection Response bits; 1
bit per response byte. The host usually has a UART receive buffer that automatically fills with the Propeller’s responses; full
bytes of $FE (meaning bit value 0) and $FF (meaning bit value 1). NOTE: The Propeller doesn’t set its Tx line (connected to
Host Rx) to output until after the last correct Handshake bit is received. Some circuitry mistakenly treats this initially-floating
signal as actual bytes received- this necessitates careful flushing of the host’s receive buffer to properly parse the
Connection Response. The contents of this Connection Response pattern is described in Appendix A.

Image RS6 - Version

.
u---------ll"‘ Famy
mum®
llll‘l‘
mammnn’®
muunni

0xF3 0xF9

Calibration Pulzes
HostTx | |,|. o|s o o 4% . e

Last bit of Connection - -
Response Version: 10000000 (LSE First) = %00000001 =1

The Version is an 8-bit value transmitted by the Propeller immediately after the Connection Response; 1 bit per byte
(LSB-first) for every Calibration Pulse pair (byte) the host transmits. The host should parse the LSBs of the 8 response bytes
into a single 8-bit value to validate the Version response.

Image RS7 - Command (Shutdown)

(]
IIII'IIIIIIIIIIII
mm

--'.-Ill

0x52 0=92 0x92 092 0x92

Host Tx EEE NSNS NN NEEEEEENEEEEEEEsssEsnen S00000000 CTEEEEEEEENEEENEEEEEEEEEEEEEENEEEEEEEEEEEEE

Host
disconnects and
Propeller shuts

down

After Version is received, the host transmits the Command (the intent of the communication); in this case, Shutdown, aka
Identify. The Command is a 32-bit value (LSB-first) encoded into multiple bytes (11 in this case). If the Command were
other than Shutdown, communication would continue as shown in the images below.

Appendix A - Handshake and Connection

The Handshake and Connection pattern (aka Handshake Tx and Handshake Rx) is a pseudo-random
sequence of 500-bits that the host and Propeller use to identify and validate each other. The bit pattern is
derived from an 8-bit Linear Feedback Shift Register (LFSR) tap that generates 255 different 8-bit values
(pseudo-randomly) before repeating (on the 256th iteration). The host and the Propeller use the same
LFSR tap value to independently generate the same bit sequence, and each relies on the nature of the
repetition boundary as part of the sequence.

The bit pattern itself can easily be auto-generated at run time (algorithmically) or can be pre-generated and
read from memory at run-time. Both methods are described below.

Auto-generated Values

This algorithm assumes that a globally-scoped, byte-sized variable (named LFSR) is pre-set to the initial
seed value of 80 ($50), the ASCII value of character ‘P’. The LFSR tap bits are 7, 5, 4, and 1. Upon every
iteration, the current values of the LFSR variable’s tap bits are exclusive-or’d together, the current 8-bit
LFSR value is shifted left 1 bit, and the 1-bit result of the aforementioned exclusive-or'd tap set is stored into
the LFSR’s bit 0.

Algorithm for function IterateLFSR:
1. Set Result to: LFSR
2. SetLFSRto: (LFSR<<1) | (((LFSR>>7) " (LFSR >> 5) * (LFSR >>4) * (LFSR >> 1)) & 1)

NOTE: & is bitwise AND, * is bitwise XOR, | is bitwise OR, << is bitwise shift left, and >> is bitwise shift right

Each call of the function /lterateLFSR returns the current value of LFSR and then updates LFSR to the next
8-bit value in the pseudo-random number sequence. Though the LFSR variable holds an 8-bit value, only
the least significant bit (LSB; bit 0) of each generated value is transmitted or received as part of the
Handshake or Connection stream. NOTE: For simplicity, the /terateLFSR function can be made to return
only the current LSB, instead of the entire LFSR value.

Pre-generated Values

The lterateLFSR function noted above generates the 255 values shown here, in order. Further iterations
beyond the 255th call of lterateLFSR repeat this exact sequence again.

LFSR Output (255 8-bit Hex Values)

50 Al 42 85 OB 17 2E 5C B9 73 E7 CF 9E 3D 7A F5 EB D7 AF 5F BE 7C F8 F1 E3 C7 8E 1C 39 72 E5 CA
94 28 51 A3 47 8F 1E 3C 78 FO E1 C2 84 09 12 24 49 92 25 4B 97 2F 5E BC 79 F2 E4 C8 91 22 44 88
11 23 46 8D 1B 36 6D DB B7 6E DC B8 71 E2 C5 8B 16 2C 59 B3 66 CC 99 32 65 CB 96 2D 5B B6 6C D9
B2 64 C9 93 27 4E 9D 3A 75 EA D5 AA 55 AB 57 AE 5D BB 76 ED DA B5 6B D6 AD 5A B4 69 D3 A7 4F 9F
3F 7F FF FE FC F9 F3 E6 CD 9B 37 6F DE BD 7B F7 EE DD BA 74 E8 DO A0 40 80 01 02 05 0OA 15 2B 56
AC 58 Bl 63 C6 8C 19 33 67 CE 9C 38 70 EO CO 81 03 07 OF 1F 3E 7D FA F4 E9 D2 A5 4A 95 2A 54 A9
52 A4 48 90 20 41 82 04 08 10 21 43 87 OE 1D 3B 77 EF DF BF 7E FD FB F6 EC D8 BO 61 C3 86 0C 18
31 62 C4 89 13 26 4C 98 30 60 C1 83 06 OD 1A 34 68 D1 A2 45 8A 14 29 53 A6 4D 9A 35 6A D4 A8

The least significant bits of the sequence above, assembled as a 255-bit stream, looks like the following. As
should be expected, beyond the 255th bit, the exact sequence repeats again.

LSB of LFSR Output (255-bit stream)
0101110011110101111100011100101000111100001001001011110010001000
1101101110001011001100101101100100111010101011101101011010011111
1110011011110111010000000101011000110011100000011111010010101001
000001000011101111110110000110001001100000110100010100110101000

Either one of the above value sequences can be stored and retrieved from memory to process the
Handshake and Connection phase of communication.

Usage During Communication

When protocol communication begins, both the host and the Propeller prepare for their own copy of the
Handshake and Connection sequence, whether it be auto-generated or pre-generated.

During the Handshake phase, the host transmits the LSB of each of the first 250 values in the LFSR
sequence. The Propeller follows along, comparing those received bits to its own sequence, and if they all
match, the Propeller switches to the Connection phase. In the Connection phase, the two sides swap roles;
the Propeller transmits the LSB of each of the next 250 values in the sequence (ie: starting at value 251)
and the host follows along, comparing those to the rest if its own sequence. The pattern of the two 250-bit
sequences intentionally overlaps the repetition boundary by 5 bits. If both sides see that the streams match
what was expected, each considers the other side validated and qualified to continue the conversation.

This is illustrated in the Protocol Proper Algorithm and the data can be seen when you compare the first bits
of the sequences (shown above) to the patterns in Image P4 - Handshake Pattern and Image P5 -
Connection Response as well as Image RS4 - Handshake Pattern and Image RS5 - Connection Response.
Keep in mind, the sequence repeats after 255 bits, but the Handshake phase only outputs the first 250 bits.
The Connection phase (which also outputs 250 bits) continues where the other left off... first using the last 5
bits of the remaining sequence and then repeating the first 245 bits of the same sequence.

Appendix B - PropellerLoader.spin

The Spin object, PropellerLoader.spin, implements Protocol Proper from one Propeller (the host) to another
(being programmed). The source is provided below for review and the object file can also be downloaded
from the Propeller Object Exchange.

PropellerLoader.spin

TVlhkkhkkhkhkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkkhkhkhkhkkhkhkkhkhkkhkkhkkkkxk
''* Propeller Loader v1.0 *
''"* Author: Chip Gracey *
''* Copyright (c) 2006 Parallax, Inc. *

''* See end of file for terms of use. *
T Vlkkkhkhkhkhkhkhkkkkkhkhkhkhkhkhkhkhkkkkkhkhkhkhkhkhkhkhkkkkkkhkhkkk

' v1l.0 - 13 June 2006 - original version

''This object lets a Propeller chip load up another Propeller chip in the same
'way the PC normally does.

'To do this, the program to be loaded into the other Propeller chip must be
'compiled using "F8" (be sure to enable "Show Hex") and then a "Save Binary
'File" must be done. This binary file must then be included so that it will be

'resident and its address can be conveyed to this object for loading.
T

'Say that the file was saved as "loadme.binary". Also, say that the Propeller
'which will be performing the load/program operation has its pins 0..2 tied to
'the other Propeller's pins RESn, P31, and P30, respectively. And we'll say
'we're working with Version 1 chips and you just want to load and execute the

'program. Your code would look something like this:
T

''OBJ loader : "PropellerLoader"

''DAT loadme file "loadme.binary"

''PUB LoadPropeller

T
'' loader.Connect (0, 1, 2, 1, loader#LoadRun, @loadme)
T

''This object drives the other Propeller's RESn line, so it is recommended that
''the other Propeller's BOEn pin be tied high and that its RESn pin be pulled

''to VSS with a 1M resistor to keep it on ice until showtime.
T

CON

#1, ErrorConnect, ErrorVersion, ErrorChecksum, ErrorProgram, ErrorVerify
#0, Shutdown, LoadRun, ProgramShutdown, ProgramRun

http://obex.parallax.com/object/472

VAR

long P31, P30, LFSR, Ver, Echo

PUB Connect (PinRESn, PinP31, PinP30, Version, Command, CodePtr)

'set P31 and P30

P31 := PinP31

P30 := PinP30
'RESn low
outa[PinRESn] := 0
dira[PinRESn] := 1

'P31 high (our TX)
outa[PinP31] :=1
dira[PinP31]

|
=

'P30 input (our RX)
dira[PinP30] := 0

'RESn high
outa[PinRESn] := 1

'wait 100ms
waitcnt (clkfreq / 10 + cnt)

'Communicate (may abort with error code)

if Error := \Communicate (Version, Command,
dira[PinRESn] := 0

'P31 float

dira[PinP31] := 0

PRI Communicate (Version, Command, CodePtr) |

'output calibration pulses
BitsOut (%01, 2)

'send LFSR pattern
LESR := "P"
repeat 250
BitsOut (IteratelLFSR, 1)

'receive and verify LFSR pattern
repeat 250
if WaitBit(l) <> IterateLFSR
abort ErrorConnect

'receive chip version
repeat 8
Ver := WaitBit(l) << 7 + Ver >> 1

'if version mismatch, shutdown and abort
if Ver <> Version

BitsOut (Shutdown, 32)

abort ErrorVersion

CodePtr)

ByteCount

Error

'send command
BitsOut (Command, 32)

'handle command details
if Command

'send long count
ByteCount := byte[CodePtr][8] | byte[CodePtr][9] << 8
BitsOut (ByteCount >> 2, 32)

'send bytes
repeat ByteCount
BitsOut (byte[CodePtr++], 8)

'allow 250ms for positive checksum response
if WaitBit (25)
abort ErrorChecksum

'eeprom program command
if Command > 1

'allow 5s for positive program response
if WaitBit (500)
abort ErrorProgram

'allow 2s for positive verify response
if WaitBit (200)
abort ErrorVerify

PRI IterateLFSR : Bit

'get return bit
Bit := LFSR & 1

'iterate LFSR (8-bit, $B2 taps)

LFSR := LFSR << 1 | (LFSR >> 7 ~ LFSR >> 5 ~ LFSR >> 4 ~ LFSR >> 1) & 1
PRI WaitBit (Hundredths) : Bit | PriorEcho

repeat Hundredths

'output 1t pulse
BitsOut (1, 1)

'sample bit and echo
Bit := ina[P30]
PriorEcho := Echo

'output 2t pulse
BitsOut (0, 1)

'if echo was low, got bit
if not PriorEcho
return

'wait 10ms
waitcnt (clkfreq / 100 + cnt)

'timeout, abort
abort ErrorConnect

PRI BitsOut (Value, Bits)
repeat Bits

if vValue & 1
'output 'l' (1t pulse)
outa[P31l] := 0
Echo := ina[P30]
outa[P31l] :=1

else
'output '0' (2t pulse)
outa[P31l] := 0
outa[P31l] := 0

Echo := ina[P30]
Echo := ina[P30]

Value >>= 1

{{

TERMS OF USE: MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

b}

Appendix C - Propeller’s ROM-Based Boot Loader

The following Propeller assembly code (PASM) is the actual source used to build the ROM-resident Boot
Loader that starts up in the Propeller when it is powered up or reset. Developers that know PASM can gain
important insight into Protocol Proper, and more, by studying this code. Note: During development, the
codename for the Propeller was “PNut.”

! Kk kkkhk ok kkhhkkkhkkhkkhkhhkhkhkkhhkkhkhkhhk
PNut Booter
Version 0.1 12/10/2004

(C) 2004 Parallax, Inc.

* % % ok F %k *
* % % ok F Ok *

' dhkkhkkhkkhkkhkkkx

' Entry
1
DAT org
test mask rx,ina wC 'if rx high, check for host
if nc jmp #boot 'else, boot from eeprom
call #rx bit 'measure rx calibration pulses (SF9)
mov threshold, delta 'and calculate threshold
call #rx bit ' (any timeout results in eeprom boot)
add threshold, delta
shr threshold, #1
mov count, #250 'ready to receive/verify 250 lfsr bits
:1fsrin call #rx bit 'receive bit (SFE/SFF) into c
muxc 1fsr, #5100 'compare to lfsr 1lsb
test 1fsr, #5101 wC
if c jmp #boot 'if mismatch, boot from eeprom
test lfsr, #$B2 wC 'advance lfsr
rcl 1fsr, #1
djnz count, #:1fsrin
or outa,mask tx 'host present, make tx high output
or dira,mask_tx
mov count, #250 'ready to transmit 250 lfsr bits
:1fsrout test 1fsr, #501 WZ 'send 1lfsr bit (SFE/SFF)
call #tx bit
test 1fsr, #$B2 wC 'advance lfsr
rcl 1fsr, #1
djnz count, #:1fsrout
rdbyte bits,hFFFIFFFF 'get version byte at S$FFFF
mov count, #8 'send version byte
:version test bits, #$01 WZ
call #tx bit
shr bits, #1
djnz count, #:version
call #rx_ long 'receive command
mov command, rxdata
tjz command, #shutdown 'if command 0, shutdown
cmp command, #4 wC 'if command 4+, shutdown
if nc jmp #shutdown
call #rx_ long 'get long count
mov count, rxdata

mov address, #0 'get longs into ram

call
wrlong
add
djnz

:longs

mov
sub
shr

if nz wrlong

if nz add

if nz djnz

tzZero

rdword
sub
wrlong
sub
wrlong

mov
rdbyte
add
add
djnz
test

:checksum

call
if nz Jjmp

djnz
jmp

#rx long
rxdata, address
address, #4
count, #:1longs

count, h8000

count, address
count, #2 Wz
zero,address
address, #4

count, #:zero

bits, #50004+6
bits, #4
hFFFOFFFF,bits
bits, #4
hFFFOFFFF,bits

bits, #0
rxdata, count
bits, rxdata

count, #1
address, #:checksum
bits, #$FF wz

#tx bit align
#shutdown

command, #program
#launch

' Program and verify eeprom from ram

program mov

mov
call
mov
rdbyte
call

if ¢ jmp
add
djnz
call
cmp

if nz jmp

:page

:byte

call

call
call
rdbyte
cmp

if nz jmp
add
djnz
call

:verify

call
mov

djnz
jmp

smode, #1

address, #0

#ee write
count, #$40
eedata, address
#ee transmit
#shutdown
address, #1
count, #:byte
#ee_stop
address, h8000 WZ
i :page

#tx bit align

#ee read

#ee receive
bits,address
bits,eedata WZ
#shutdown
address, #1

count, #:verify
#ee_stop

#tx bit align
smode, #0

command, #launch
#shutdown

' Load ram from eeprom and launch

boot mov

call

smode, #0

#ee read

'zero remainder of ram

' (count=0, address=$8000)

'get dbase address
'set pcurr to S$FFF9

'set pbase flags

'compute ram checksum

'z=1 if checksum okay

'send checksum okay/error

'if checksum error,

'if command 2-3,
'else command 1,

shutdown

program eeprom
launch

'set mode in case error

'reset address

'send program command
'page-program $40 bytes

'get ram byte
'send ram byte
'if no ack,
'inc address

shutdown

'loop until page sent
'initiate page-program cycle
'check for address $8000

'loop until done

'program done,

(z=1 after)

send okay (z=1)

'send read command

'get eeprom byte

'get ram byte
'compare bytes

'if verify error,

'inc address

'loop until done

shutdown

'end read (z=1 from before)

'verify done, send okay (z=1)

'clear mode in case error

'if command 3,
'else command 2,

launch

shutdown

'clear mode in case error

'send read command

(sends error)

:loop call #ee receive 'get eeprom byte

wrbyte eedata,address 'write to ram
add address, #1 'inc address
djnz count, #:1loop 'loop until done
call #ee stop 'end read (followed by launch)

]

1

' Launch program in ram

L}

launch rdword address, #50004+2 'if pbase address invalid, shutdown
cmp address, #$0010 wz

if nz jmp #shutdown

rdbyte address,#$0004 'if xtal/pll enabled, start up now
and address, #$F8 '..while remaining in rcfast mode

clkset address
:delay djnz time xtal, #:delay 'allow 20ms @20MHz for xtal/pll to settle

rdbyte address, #$0004 'switch to selected clock
clkset address

coginit interpreter 'reboot cog with interpreter
1
L}
' Shutdown
1
shutdown mov ee jmp, #0 'deselect eeprom (replace jmp with nop)
:call call #eeistop ' (always returns)
cmp smode, #0 WZ 'if serial mode, send error (z=0)
if nz mov smode, #0 '(only do once)
if nz mov :call, #0 ' (replace call with nop)
if nz call #tx bit align ' (may return to shutdown, no problem)
mov dira, #0 'cancel any outputs
mov smode, #$02 'stop clock
clkset smode ' (suspend until reset)

!
!

Vdededkkdkdedokokkdddkokkddedk ke k ko okkkdkkokkok
'* I2C routines for 24x256/512 EEPROM *
'* assumes fastest RC timing - 20MHz *

Tk SCL low time = 8 inst, >l.6us *
'* SCL high time = 4 inst, >0.8us *
'k SCL period = 12 inst, >2.4us *

Thhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkhkhkkhkhkhhkkk

v

' Begin eeprom read

ee read mov address, #0 'reset address
call fee write 'begin write (sets address)
mov eedata, #SA1 'send read command
call #ee start
if c jmp #shutdown 'if no ack, shutdown
mov count, h8000 'set count to $8000
ee read ret ret

' Begin eeprom write

ee write call #ee wait 'wait for ack and begin write
mov eedata, address 'send high address
shr eedata, #8
call #ee transmit

if c jmp #shutdown 'if no ack, shutdown

mov eedata, address 'send low address

call #ee_ transmit
if ¢ jmp #shutdown 'if no ack, shutdown
ee write ret ret
1
Al
' Wait for eeprom ack
Al
ee wait mov count, #400 ! 400 attempts > 10ms @20MHz
:loop mov eedata, #SA0 'l send write command
call #ee start '132+
if c djnz count, #:1oop '1 if no ack, loop until done
if ¢ jmp #shutdown ' if no ack, shutdown
ee wait ret ret
1
1
' Start + transmit
Al
ee start mov bits, #9 1 ready 9 start attempts
:loop andn outa,mask scl 1) ready scl low
or dira,mask_scl 1! scl low
nop 'l
andn dira,mask sda ‘1! sda float
call #delayb 'S
or outa,mask scl '1! scl high
nop 'l
test mask_sda, ina wC 'h?h sample sda
if nc djnz bits, #:1lo0p '1,2 if sda not high, loop until done
if nc jmp #shutdown 'l if sda still not high, shutdown
or dira,mask sda 1! sda low
Al
Al
' Transmit/receive
Al
ee transmit shl eedata, #1 'l ready to transmit byte and receive ack
or eedata, #%00000000 1 'l
Jmp #ee tr "1
ee receive mov eedata, #%11111111 0 '1 ready to receive byte and transmit ack
ee tr mov bits, #9 "1 transmit/receive byte and ack
:loop test eedata, #$100 wz '1 get next sda output state
andn outa,mask _scl 1! scl low
rcl eedata, #1 'l shift in prior sda input state
muxz dira,mask sda ‘1! sda low/float
call #delay4d "4
test mask sda, ina weC 'h?h sample sda
or outa,mask scl '1! scl high
nop '1
djnz bits, #:1loop '1,2 if another bit, loop
and eedata, #SFF 'l isolate byte received
ee receive ret
ee transmit ret
ee start ret ret 'l nc=ack
Al
1
' Stop
L}
ee stop mov bits, #9 'l ready 9 stop attempts
:loop andn outa,mask scl ‘1! scl low
nop 'l
or dira,mask sda '1! sda low
call #delayb '5
or outa,mask_scl 1! scl high
call #delay3 '3

andn dira,mask_sda 1! sda float

call #delayd "4

test mask sda, ina wC 'h?h sample sda

if nc djnz bits, #:1oo0p '1,2 if sda not high, loop until done
ee jmp 1if nc jmp #shutdown 'l if sda still not high, shutdown
ee_stop_ret ret 'l
1
L}
' Cycle delays
1
delay5b nop 'l
delavyi4 nop '1
delay3 nop 'l
delay?2
delay2 ret
delay3 ret
delay4 ret

delay5 ret ret 'l

A}

Thhkhkkkhkkhkhkhkkkkhkhkhkkkkkkx
'* Serial routines *
Thhkhkhkhkkkkhkhkhkkkkhkhkkkk

v

' Transmit bit (nz)
' conveys incoming $F9 on rx to FE/SFF on tx

v

tx bit align mov time, time load 'reset time limit
ralign call #rx bit 'align to next $F9
if ¢ jmp #:align
tx bit mov time, time load 'reset time limit
:high test mask rx,ina wC 'wait while high
if ¢ djnz time, #:high
if ¢ jmp #shutdown 'if timeout, shutdown
andn outa,mask_tx 'tx low
:low test mask rx,ina wC 'wait while low
if nc djnz time, #:1low
if nc jmp #shutdown 'if timeout, shutdown
muxnz outa,mask_tx 'tx low/high
:high2 test mask rx,ina wWC 'wait while high
if ¢ djnz time, #:high2
if c jmp #shutdown 'if timeout, shutdown
or outa,mask tx 'tx high
:low2 test mask rx,ina wC 'wait while low
if nc djnz time, #:1low2
if nc jmp #shutdown 'if timeout, shutdown

tx bit ret
tx bit align ret ret

v

' Receive long

rx_long mov time, time load 'reset time limit
mov bits, #32 'ready for 32 bits
:loop call #rx bit 'input bit
rcr rxdata, #1 'shift into long
djnz bits, #:1loop 'loop until done

rx long ret ret
Al

' Receive bit

rx bit
if ¢
if c
:loop
if nc
if nc

rx bit ret
Al

1

' Constants
Al

mask rx
mask tx
mask sda
mask scl
time

time load
time xtal
lfsr

zZero

smode
hFFFOFFFF
h8000

interpreter
1

1

' Variables
]

command
address
count
bits
eedata
rxdata
delta
threshold

(c)

test
djnz
jmp

mov

test
djnz
jmp

sub
cmp

ret

long
long
long
long
long
long
long
long
long
long
long
long
long

res
res
res
res
res
res
res
res

mask rx,ina
time, #rx bit
#boot

delta, time
mask rx,ina
time, #:1loop

#boot

delta, time

wC

wC

delta, threshold wc

$80000000
$40000000
$20000000
$10000000
150 * 20000

/
100 * 20000 /

/ 2
/ 2

20 * 20000 / 4 / 1

llPll

0

0
SFFFOFFFF
$8000

'wait while rx high

'if timeout, boot from eeprom
'time while rx low

'h?h 2 instructions/loop

'1 400ns @20MHz...lus @8MHz

'if timeout, boot from eeprom

'delta = rx low time in loops
'resolve bit into ¢

'150ms (Q@Q20MHz, 2 inst/loop)
'100ms (@20MHz, 2 inst/loop)
'20ms (@20MHz, 1 inst/loop)

50001 << 18 + $3C01 << 4 + %0000

el

Appendix D - Logic Analyzer

A critical tool for properly implementing protocols is a logic analyzer or oscilloscope to see what’s actually
going on at the signal level, in a digital and analog sense.

Parallax recommends the very compact and affordable Saleae Logic series of analyzers that provide both
digital and analog measurement. These small hardware devices plug into a computer’'s USB port for
analyzing signals using dedicated software. Capture, zoom, protocol analysis, and many other features
make this a great tool; a vital part of an embedded system designer’s toolkit.

The Saleae Logic 8 model was used to create all the logic capture images in this document.

https://www.saleae.com/

Encoded LFSR (8-bit Bin) [Tx Handshake Pattern for Protocol RS-232]

FE
FF
FF
FE
FF
FF
FE
FF
FE
FE

FF
FE
FF
FF
FE
FF
FE
FF
FE
FE

FE
FE
FF
FE
FF
FF
FE
FF
FF
FF

FF
FF
FF
FF
FE
FF
FF
FF
FF
FF

FF
FE
FE
FF
FF
FF
FE
FF
FF
FE

FF
FF
FE
FE
FE
FF
FF
FE
FE
FE

FE
FE
FF
FE
FF
FE
FE
FF
FF
FE

FE
FE
FE
FF
FE
FE
FF
FE
FF
FE

FF
FE
FE
FF
FF
FF
FF
FE
FF
FE

FF
FF
FE
FE
FF
FF
FE
FF
FF
FF

FF
FF
FF
FE
FF
FE
FE
FE
FF
FF

FF
FF
FE
FF
FE
FF
FE
FF
FF
FE

FE
FF
FE
FE
FF
FF
FF
FE
FE
FF

FF
FE
FE
FF
FF
FF
FF
FF
FF
FE

FE
FE
FF
FF
FE
FF
FE
FE
FF
FE

FF
FE
FF
FE
FF
FE
FE
FE
FE
FE

FF
FE
FE
FF
FE
FF
FF
FF
FE
FF

Encoded LFSR (8-bit Bin) [Rx Connection Pattern for Protocol RS-232]

FE
FE
FF
FF
FF
FF
FF
FE
FE
FF

FF
FE
FE
FF
FE
FE
FE
FE
FE
FE

FE
FE
FE
FF
FE
FE
FE
FE
FF
FE

FE
FF
FF
FE
FF
FF
FE
FE
FE
FE

FE
FF
FE
FE
FF
FF
FE
FE
FE
FF

FE
FF
FF
FE
FF
FF
FE
FF
FE
FE

FF
FE
FF
FF
FE
FF
FE
FF
FE
FE

FE
FE
FF
FE
FF
FF
FE
FF
FF
FF

FF
FF
FF
FF
FE
FF
FF
FF
FF
FF

FF
FE
FE
FF
FF
FF
FE
FF
FF
FE

FF
FF
FE
FE
FE
FF
FF
FE
FE
FE

FE
FE
FF
FE
FF
FE
FE
FF
FF
FE

FE
FE
FE
FF
FE
FE
FF
FE
FF
FE

FF
FE
FE
FF
FF
FF
FF
FE
FF
FE

FF
FF
FE
FE
FF
FF
FE
FF
FF
FF

FF
FF
FF
FE
FF
FE
FE
FE
FF
FF

FF
FF
FE
FF
FE
FF
FE
FF
FF
FE

FF
FF
FF
FF
FF
FF
FF
FE
FE
FE

FE
FF
FE
FE
FF
FF
FF
FE
FE
FF

FF
FE
FF
FE
FF
FF
FF
FE
FE
FF

FF
FE
FE
FF
FF
FF
FF
FF
FF
FE

FF
FE
FE
FE
FE
FE
FE
FE
FF
FE

FE
FE
FF
FF
FE
FF
FE
FE
FF
FE

FE
FF
FF
FF
FF
FF
FE
FE
FF
FE

FF
FE
FF
FE
FF
FE
FE
FE
FE
FE

Scratch Pad (To be moved or deleted when document is finished).

FE
FE
FF
FE
FE
FE
FE
FE
FE
FF

FF
FE
FE
FF
FE
FF
FF
FF
FE
FF

FE
FE
FF
FE
FE
FE
FE
FF
FE
FF

FF
FF
FF
FF
FF
FF
FF
FE
FE
FE

FF
FF
FE
FF
FF
FE
FE
FE
FE
FE

FF
FE
FF
FE
FF
FF
FF
FE
FE
FF

FF
FE
FE
FF
FF
FE
FE
FE
FF
FF

FF
FE
FE
FE
FE
FE
FE
FE
FF
FE

