

HELLO Propeller P2 EXAMPLES
User Notes

WRD william robert drury Rev08
bob_drury@hotmail.com

Abstract
 Spin2 Example Programs

Page 2of 484

 Foreward
The notes are a summation of various documents produced either by Parllax or Forum Topic

submissions (thanks) while the Propeller II was being developed.

Sections 1.0-11.0 are Hardware product related. Sections 12.0-17.0 are programming related. The

Appendix are either details of Propeller function or general support information.

The “Hello Propeller P2 Examples.zip” document is to be used in conjunction with the Propeller

examples that are independent Spin2\PASM files provided in the “Hello Propeller II Examples.zip” file.

If there are any suggestions for clarification and improvements(or outright mistakes). Please forward
this too: bob_drury@hotmail.com Your input would be appreciated.

Propeller II has smart pins allowing any pin to be either digital In,digital Out, analog In or analog Out.
This feature sets the propeller apart from most microprocessors.

The smart pins also have built in logic allowing functions to run independent of the processor(s) and to
request servicing.

The 8 independent cores with the same clock ,can run separately or co-operatively with “OR” digiatal
busing makes a unique hardware configuration.

Propeller firmware has custom “debug” routime which facilitates learning and debugging programs
which is another unique feature from other microprocessors.

Propeller assembly language allows self modifying operands , again this unique feature allows for
implementing pointers . Normally self modifying code is considered risky in the programming world.

The Propeller 2 features a pseudo-random number generator (PRNG) based on the Xoroshiro128**
algorithm.

The Propeller 2 (Hub) contains a 54-stage pipelined CORDIC solver (Coordinate Rotation Digital

Computer) useful for 32 bit arithmetic and Cartesion to Polar conversions.

mailto:bob_drury@hotmail.com

Page 3of 484

1.0) Smart Pin Block Diagram
Each of the 64 I/O pins in a Propeller-2 microcontroller can operate as a Smart Pin. In brief, every Smart

Pin provides access to internal functions such as analog-to-digital converters, digital-to-analog

converters, signal generators, PWM controllers, and so on. The Propeller-2 architecture lets these

functions operate independent of the cogs so they don't rely on software interactions to

"micromanagement" their control and operation. Normally, a DIR bit controls an I/O pin's output

enable, while the IN bit returns the pin's state. In Smart Pin modes, though, these bits serve different

purposes. The DIR bit controls an active-low (logic-0) reset signal for the selected Smart Pin's circuitry,

while a configuration bit controls the pin's output enable state. In some modes, the Smart-Pin circuit

directly controls the pin's output state, in which case the OUT bit gets ignored. The IN bit serves as a

"finished" flag that indicate to a cog(s) that the Smart Pin has completed some function, or an event has

occurred. Depending on the operation, software might need to acknowledge a set IN flag (and reset it?).

The block diagram below shows the main functions for a Smart Pin. At first this information might seem

complicated, but later explanations of the functions, registers, and instructions clarify their use.

Page 4of 484

1.1) Smart Pin Schematic
Every I/O pin features versatile digital and analog capabilities as well as autonomous state machine

functions that would otherwise require processor time to perform. The combination provides adept

functionality for application design, increasing the Propeller 2 potential beyond what multi-core

architecture alone provides. There are 24 low-level 'pin' modes and 34 high-level 'smart' modes. Pin

Modes Each I/O pin has 13 low-level pin mode configuration bits which determine the operation of its

3.3 V circuit.

The pin mode is set using the WRPIN instruction, where the 13

%MMMMMMMMMMMMM bits within the instruction's D

operand go directly to these bits. Note though that in some

smart pin modes, these bits are partially overwritten to set

things like DAC values.

Note: Maybe should read 32 instances

Note: Upon startup or reset, all I/O pins default to input (high impedance), meaning each cog's direction
registers are initialized to zero. Each cog's output registers are initialized to zero as well, but this low
(ground) state is not reflected on the pin until the pin is set to the output direction (via the direction
register).
Pins to avoid for starndard configuration:
SP58: MISO (connection to SPI Flash Data Out pin or Micro SD MISO pin)
P59: MOSI (connection to SPI Flash Data In pin or Micro SD MOSI pin)
P60: CLK / CS (connection to SPI Flash CLK pin or Micro SD CS pin)
P61: CS / CLK (connection to SPI Flash CS pin or Micro SD CLK pin)
P62: Serial Tx (connection to host's Serial Rx)
P63: Serial Rx (connection to host's Serial Tx)

Page 5of 484

1.2) Smart Pin WRPIN,WXPIN and WYPIN

Smart Modes Each I/O pin has built-in 'smart pin' circuitry which, when enabled, performs an
autonomous function on the pin. Smart pins free the cogs from the need to micromanage many I/O
operations by providing high-bandwidth concurrent hardware functions that cogs could otherwise not
perform as well through I/O pin manipulating instructions.

In normal operation, an I/O pin's output enable is controlled by its DIR bit, its output state is controlled
by its OUT bit, and its IN bit returns the pin's read state.

With smart pin mode enabled, its DIR bit is used as an active-low reset signal to the smart pin circuitry,
while the output enable state is controlled by a configuration bit. In some modes, the smart pin circuit
takes over driving the output state, in which case the OUT bit gets ignored. Its IN bit serves as a flag to
indicate to the cog(s) that the smart pin has completed some function or an event has occurred, and
acknowledgment is perhaps needed.

To configure a smart pin, first set its DIR bit to low (holding it in reset) then use WRPIN, WXPIN, and
WYPIN to establish the mode and related parameters. Once configured, DIR can be raised high and the
smart pin will begin operating.

After that, depending on the mode, you may feed it new data via WXPIN/WYPIN or retrieve results using
RDPIN/RQPIN. These activities are usually coordinated with the IN signal going high; explained later.
Note that while a smart pin is configured, the %TT bits (of the WRPIN instruction's D operand) will
govern the pin's output enable, regardless of the DIR state.

Page 6of 484

Smart pins have four 32-bit registers inside of them:

These four registers are written and read via the following PASM 2-clock instructions, in which S/# is
used to select the pin number (0..63) and D/# is the 32-bit data conduit:

Note: S/# indicates a literal 9-bit pin number (0..63) or a symbol such as LED_pin, you defined earlier.
 D/# is the data conduit.

WRPIN D/#,S/# - Set smart pin S/# mode to D/#, ack pin

WXPIN D/#,S/# - Set smart pin S/# parameter X to D/#, ack pin

WYPIN D/#,S/# - Set smart pin S/# parameter Y to D/#, ack pin

RDPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, ack pin

RQPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, don't ack pin

AKPIN S/# - Acknowledge pin S/#

The format of the D (pin setup) operand value is:

 D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

● A = PINA input selector
● B = PINB input selector
● F = PINA and PINB input logic/filtering (after PINA and PINB input selectors)
● M = pin mode
● T = pin DIR/OUT control (default = %00)
● S = smart mode

Each smart pin has a 34-bit input bus and a 33-bit output bus that connect it to the cogs. To configure
and control smart pins, each cog writes data and acknowledgement signals to the smart pin input bus.
Each smart pin OR's all incoming 34-bit buses from the collective of cogs in the same way DIR and OUT
bits are OR'd before going to the pins. Therefore, if you intend to have multiple cogs execute WRPIN /
WXPIN / WYPIN / RDPIN / AKPIN instructions on the same smart pin, you must be sure that they do so at
different times, in order to avoid clobbering each other's bus data.

Page 7of 484

Reading a smart pin with RDPIN can cause the same conflict; however, any number of cogs can read a
smart pin simultaneously without bus conflict by using RQPIN ('read quiet'), since it does not utilize the
smart pin input bus for acknowledgement signalling (like RDPIN does).

Each smart pin has an outgoing 33-bit bus which conveys its Z result and a special flag. RDPIN and RQPIN
are used to multiplex and read these buses, so that a pin’s Z result is read into D and its special flag can
be read into C. C will be either a mode-related flag or the MSB of the Z result.

Any number of cogs can read a smart pin simultaneously, without bus conflict, by using RQPIN (‘read
quiet’), since it does not utilize the 34-bit cog-to-smart-pin bus for acknowledge signalling, like RDPIN
does.

 When a mode-related event occurs in a smart pin, it raises its IN signal to alert the cog(s) that new data
is ready, new data can be loaded, or some process has finished. A cog can test for this signal via the
TESTP instruction and can acknowledge a smart pin by executing a WRPIN, WXPIN, WYPIN, RDPIN, or
AKPIN instruction for it. This acknowledgement causes the smart pin to lower its IN signal so that it can
be raised again on the next event. After a WRPIN/WXPIN/WYPIN/RDPIN/AKPIN, it takes two clocks for IN
to drop, before it can be polled again. A smart pin can be reset at any time, without the need to
reconfigure it, by clearing and then setting its DIR bit. To return a pin to normal mode, do a 'WRPIN
#0,pin'

WRPIN instruction writes 32-bit data, D/#, to the Mode register for I/O pin identified
by the S/# value or symbol. Note: The WRPIN instruction sets two logic modes for each
Smart Pin. The following tables describe the data fields in the WRPIN instruction. Most
likely you will refer often to this table as you study the Smart-Pin modes. Each Smart-
Pin mode requires 32 bits that define how pins and internal circuits will function. To
make operations easier to understand, we break the 32-bit value into six sections. The
LSB always equals 0.
D/# = %AAAA_BBBB_FFF_PPPPPPPPPPPPP_TT_MMMMM_0

You might ask, Why would a Smart Pin need to get information from a nearby pin?
This capability comes in handy when you want to monitor an input stream to calculate a
serial-input bit rate, or to test an input with a different cog to obtain debug or diagnostic
information. Some mode examples that follow use A and B signals for data and a clock,
two encoder inputs, an input and a logic control, and so on.

Page 8of 484

1.2.1) PinA or PinB Input Selector

1.2.2) PinA or PinB Logic\Filtering

Page 9of 484

1.2.3) M Pin Modes
13-bit M PAD_IO Mode field are described by this table

Page 10of 484

1.2.4) TT DIR\Out Control

Page 11of 484

1.2.5) SSSSS Smart Pin Mode Setting

Page 12of 484

Page 13of 484

1.3) Smart Pin Symbol Names

Smart Pin Symbol Value Symbol Name Details

A Input Polarity (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_TRUE_A (default) True A input

%1000_0000_000_0000000000000_00_00000_0 P_INVERT_A Invert A input

A Input Selection (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_LOCAL_A (default) Select local pin

for A input

%0001_0000_000_0000000000000_00_00000_0 P_PLUS1_A Select pin+1 for

A input

%0010_0000_000_0000000000000_00_00000_0 P_PLUS2_A Select pin+2 for

A input

%0011_0000_000_0000000000000_00_00000_0 P_PLUS3_A Select pin+3 for

A input

%0100_0000_000_0000000000000_00_00000_0 P_OUTBIT_A Select OUT bit

for A input

%0101_0000_000_0000000000000_00_00000_0 P_MINUS3_A Select pin-3 for A

input

%0110_0000_000_0000000000000_00_00000_0 P_MINUS2_A Select pin-2 for A

input

%0111_0000_000_0000000000000_00_00000_0 P_MINUS1_A Select pin-1 for A

input

B Input Polarity (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_TRUE_B (default) True B input

%0000_1000_000_0000000000000_00_00000_0 P_INVERT_B Invert B input

B Input Selection (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_LOCAL_B (default) Select local pin

for B input

%0000_0001_000_0000000000000_00_00000_0 P_PLUS1_B Select pin+1 for B

input

Page 14of 484

%0000_0010_000_0000000000000_00_00000_0 P_PLUS2_B Select pin+2 for B

input

%0000_0011_000_0000000000000_00_00000_0 P_PLUS3_B Select pin+3 for B

input

%0000_0100_000_0000000000000_00_00000_0 P_OUTBIT_B Select OUT bit

for B input

%0000_0101_000_0000000000000_00_00000_0 P_MINUS3_B Select pin-3 for B

input

%0000_0110_000_0000000000000_00_00000_0 P_MINUS2_B Select pin-2 for B

input

%0000_0111_000_0000000000000_00_00000_0 P_MINUS1_B Select pin-1 for B

input

A, B Input Logic (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_PASS_AB (default) Select A, B

%0000_0000_001_0000000000000_00_00000_0 P_AND_AB Select A & B, B

%0000_0000_010_0000000000000_00_00000_0 P_OR_AB Select A | B, B

%0000_0000_011_0000000000000_00_00000_0 P_XOR_AB Select A ^ B, B

%0000_0000_100_0000000000000_00_00000_0 P_FILT0_AB Select FILT0

settings for A, B

%0000_0000_101_0000000000000_00_00000_0 P_FILT1_AB Select FILT1

settings for A, B

%0000_0000_110_0000000000000_00_00000_0 P_FILT2_AB Select FILT2

settings for A, B

%0000_0000_111_0000000000000_00_00000_0 P_FILT3_AB Select FILT3

settings for A, B

Low-Level Pin Modes (pick one)

Logic/Schmitt/Comparator Input Modes

%0000_0000_000_0000000000000_00_00000_0 P_LOGIC_A (default) Logic level A →

IN, output OUT

Page 15of 484

%0000_0000_000_0001000000000_00_00000_0 P_LOGIC_A_FB Logic level A →

IN, output

feedback

%0000_0000_000_0010000000000_00_00000_0 P_LOGIC_B_FB Logic level B →

IN, output

feedback

%0000_0000_000_0011000000000_00_00000_0 P_SCHMITT_A Schmitt trigger A

→ IN, output

OUT

%0000_0000_000_0100000000000_00_00000_0 P_SCHMITT_A_FB Schmitt trigger A

→ IN, output

feedback

%0000_0000_000_0101000000000_00_00000_0 P_SCHMITT_B_FB Schmitt trigger B

→ IN, output

feedback

%0000_0000_000_0110000000000_00_00000_0 P_COMPARE_AB A > B → IN,

output OUT

%0000_0000_000_0111000000000_00_00000_0 P_COMPARE_AB_FB A > B → IN,

output feedback

%xxxx_xxxx_xxx_xxxxSIOHHHLLL_xx_xxxxx_x

Sync mode,

IN/output

polarity, high/low

drive

ADC Input Modes

%0000_0000_000_1000000000000_00_00000_0 P_ADC_GIO ADC GIO → IN,

output OUT

%0000_0000_000_1000010000000_00_00000_0 P_ADC_VIO ADC VIO → IN,

output OUT

%0000_0000_000_1000100000000_00_00000_0 P_ADC_FLOAT ADC FLOAT →

IN, output OUT

%0000_0000_000_1000110000000_00_00000_0 P_ADC_1X ADC 1x → IN,

output OUT

%0000_0000_000_1001000000000_00_00000_0 P_ADC_3X ADC 3.16x → IN,

output OUT

Page 16of 484

%0000_0000_000_1001010000000_00_00000_0 P_ADC_10X ADC 10x → IN,

output OUT

%0000_0000_000_1001100000000_00_00000_0 P_ADC_30X ADC 31.6x → IN,

output OUT

%0000_0000_000_1001110000000_00_00000_0 P_ADC_100X ADC 100x → IN,

output OUT

%xxxx_xxxx_xxx_xxxxxxOHHHLLL_xx_xxxxx_x

O = output

polarity,

HHH/LLL =

high/low drive

DAC Output Modes

DIR enables

output, OUT

enables ADC

%0000_0000_000_1010000000000_00_00000_0 P_DAC_990R_3V DAC 990Ω, 3.3V

peak, ADC 1x →

IN

%0000_0000_000_1010100000000_00_00000_0 P_DAC_600R_2V DAC 600Ω, 2.0V

peak, ADC 1x →

IN

%0000_0000_000_1011000000000_00_00000_0 P_DAC_124R_3V DAC 123.75Ω,

3.3V peak, ADC

1x → IN

%0000_0000_000_1011100000000_00_00000_0 P_DAC_75R_2V DAC 75Ω, 2.0V

peak, ADC 1x →

IN

%xxxx_xxxx_xxx_xxxxxDDDDDDDD_xx_xxxxx_

x

DDDDDDDD =

8-bit DAC value

Level-Comparison Modes

DIR enables

output (1.5kΩ

drive)

%0000_0000_000_1100000000000_00_00000_0 P_LEVEL_A A > Level → IN,

output OUT

%0000_0000_000_1101000000000_00_00000_0 P_LEVEL_A_FBN A > Level → IN,

output negative

feedback

Page 17of 484

%0000_0000_000_1110000000000_00_00000_0 P_LEVEL_B_FBP B > Level → IN,

output positive

feedback

%0000_0000_000_1111000000000_00_00000_0 P_LEVEL_B_FBN B > Level → IN,

output negative

feedback

%xxxx_xxxx_xxx_xxxxSLLLLLLLL_xx_xxxxx_x

S = Synchronous,

LLLLLLLL = 8-

bit Level

Low-Level Pin Sub-Modes

Sync Mode (pick one) (for

Logic/Schmitt/Co

mparator/Level

modes)

%xxxx_xxxx_xxx_xxxxSxxxxxxxx_xx_xxxxx_x

Sync mode bit

%0000_0000_000_0000000000000_00_00000_0 P_ASYNC_IO (default) Select

asynchronous I/O

%0000_0000_000_0000100000000_00_00000_0 P_SYNC_IO Select

synchronous I/O

IN Polarity (pick one) (for

Logic/Schmitt/Co

mparator modes)

%xxxx_xxxx_xxx_xxxxxIxxxxxxx_xx_xxxxx_x

IN polarity bit

%0000_0000_000_0000000000000_00_00000_0 P_TRUE_IN (default) True IN bit

%0000_0000_000_0000010000000_00_00000_0 P_INVERT_IN Invert IN bit

Output Polarity (pick one) (for

Logic/Schmitt/Co

mparator/ADC

modes)

%xxxx_xxxx_xxx_xxxxxxOxxxxxx_xx_xxxxx_x

Output polarity

bit

%0000_0000_000_0000000000000_00_00000_0 P_TRUE_OUTPUT

(default)

Select true output

Page 18of 484

%0000_0000_000_0000001000000_00_00000_0 P_INVERT_OUTPUT Select inverted

output

Drive-High Strength (pick one) (for

Logic/Schmitt/Co

mparator/ADC

modes)

%xxxx_xxxx_xxx_xxxxxxxHHHxxx_xx_xxxxx_x

Drive-high

selector bits

%0000_0000_000_0000000000000_00_00000_0 P_HIGH_FAST

(default)

Drive high fast

(30mA)

%0000_0000_000_0000000001000_00_00000_0 P_HIGH_1K5 Drive high 1.5kΩ

%0000_0000_000_0000000010000_00_00000_0 P_HIGH_15K Drive high 15kΩ

%0000_0000_000_0000000011000_00_00000_0 P_HIGH_150K Drive high 150kΩ

%0000_0000_000_0000000100000_00_00000_0 P_HIGH_1MA Drive high 1mA

%0000_0000_000_0000000101000_00_00000_0 P_HIGH_100UA Drive high 100μA

%0000_0000_000_0000000110000_00_00000_0 P_HIGH_10UA Drive high 10μA

%0000_0000_000_0000000111000_00_00000_0 P_HIGH_FLOAT Float high

Drive-Low Strength (pick one) (for

Logic/Schmitt/Co

mparator/ADC

modes)

%xxxx_xxxx_xxx_xxxxxxxxxxLLL_xx_xxxxx_x

Drive-low

selector bits

%0000_0000_000_0000000000000_00_00000_0 P_LOW_FAST (default) Drive low fast

(30mA)

%0000_0000_000_0000000000001_00_00000_0 P_LOW_1K5 Drive low 1.5kΩ

%0000_0000_000_0000000000010_00_00000_0 P_LOW_15K Drive low 15kΩ

%0000_0000_000_0000000000011_00_00000_0 P_LOW_150K Drive low 150kΩ

%0000_0000_000_0000000000100_00_00000_0 P_LOW_1MA Drive low 1mA

%0000_0000_000_0000000000101_00_00000_0 P_LOW_100UA Drive low 100μA

Page 19of 484

%0000_0000_000_0000000000110_00_00000_0 P_LOW_10UA Drive low 10μA

%0000_0000_000_0000000000111_00_00000_0 P_LOW_FLOAT Float low

DIR/OUT Control (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_TT_00 (default) TT = %00

%0000_0000_000_0000000000000_01_00000_0 P_TT_01 TT = %01

%0000_0000_000_0000000000000_10_00000_0 P_TT_10 TT = %10

%0000_0000_000_0000000000000_11_00000_0 P_TT_11 TT = %11

%0000_0000_000_0000000000000_01_00000_0 P_OE Enable output in

smart pin mode

%0000_0000_000_0000000000000_01_00000_0 P_CHANNEL Enable DAC

channel in non-

smart pin DAC

mode

%0000_0000_000_0000000000000_10_00000_0 P_BITDAC Enable BITDAC

for non-smart pin

DAC mode

Smart Pin Modes (pick one)

%0000_0000_000_0000000000000_00_00000_0 P_NORMAL (default) Normal mode (not

smart pin mode)

%0000_0000_000_0000000000000_00_00001_0 P_REPOSITORY Long repository

(non-DAC mode)

%0000_0000_000_0000000000000_00_00001_0 P_DAC_NOISE DAC Noise (DAC

mode)

%0000_0000_000_0000000000000_00_00010_0 P_DAC_DITHER_RND DAC 16-bit

random dither

(DAC mode)

%0000_0000_000_0000000000000_00_00011_0 P_DAC_DITHER_PW

M

DAC 16-bit PWM

dither (DAC

mode)

%0000_0000_000_0000000000000_00_00100_0 P_PULSE Pulse/cycle output

%0000_0000_000_0000000000000_00_00101_0 P_TRANSITION Transition output

Page 20of 484

%0000_0000_000_0000000000000_00_00110_0 P_NCO_FREQ NCO frequency

output

%0000_0000_000_0000000000000_00_00111_0 P_NCO_DUTY NCO duty output

%0000_0000_000_0000000000000_00_01000_0 P_PWM_TRIANGLE PWM triangle

output

%0000_0000_000_0000000000000_00_01001_0 P_PWM_SAWTOOTH PWM sawtooth

output

%0000_0000_000_0000000000000_00_01010_0 P_PWM_SMPS PWM switch-

mode power

supply I/O

%0000_0000_000_0000000000000_00_01011_0 P_QUADRATURE A-B quadrature

encoder input

%0000_0000_000_0000000000000_00_01100_0 P_REG_UP Inc on A-rise

when B-high

%0000_0000_000_0000000000000_00_01101_0 P_REG_UP_DOWN Inc on A-rise

when B-high, dec

on A-rise when B-

low

%0000_0000_000_0000000000000_00_01110_0 P_COUNT_RISES Inc on A-rise,

optionally dec on

B-rise

%0000_0000_000_0000000000000_00_01111_0 P_COUNT_HIGHS Inc on A-high,

optionally dec on

B-high

%0000_0000_000_0000000000000_00_10000_0 P_STATE_TICKS For A-low and A-

high states, count

ticks

%0000_0000_000_0000000000000_00_10001_0 P_HIGH_TICKS For A-high states,

count ticks

%0000_0000_000_0000000000000_00_10010_0 P_EVENTS_TICKS For X A-

highs/rises/edges,

count ticks /

Timeout on X

ticks of no A-

high/rise/edge

Page 21of 484

%0000_0000_000_0000000000000_00_10011_0 P_PERIODS_TICKS For X periods of

A, count ticks

%0000_0000_000_0000000000000_00_10100_0 P_PERIODS_HIGHS For X periods of

A, count highs

%0000_0000_000_0000000000000_00_10101_0 P_COUNTER_TICKS For periods of A

in X+ ticks, count

ticks

%0000_0000_000_0000000000000_00_10110_0 P_COUNTER_HIGHS For periods of A

in X+ ticks, count

highs

%0000_0000_000_0000000000000_00_10111_0 P_COUNTER_PERIOD

S

For periods of A

in X+ ticks, count

periods

%0000_0000_000_0000000000000_00_11000_0 P_ADC ADC

sample/filter/capt

ure, internally

clocked

%0000_0000_000_0000000000000_00_11001_0 P_ADC_EXT ADC

sample/filter/capt

ure, externally

clocked

%0000_0000_000_0000000000000_00_11010_0 P_ADC_SCOPE ADC scope with

trigger

%0000_0000_000_0000000000000_00_11011_0 P_USB_PAIR USB pin pair

%0000_0000_000_0000000000000_00_11100_0 P_SYNC_TX Synchronous

serial transmit

%0000_0000_000_0000000000000_00_11101_0 P_SYNC_RX Synchronous

serial receive

%0000_0000_000_0000000000000_00_11110_0 P_ASYNC_TX Asynchronous

serial transmit

%0000_0000_000_0000000000000_00_11111_0 P_ASYNC_RX Asynchronous

serial receive

Page 22of 484

2.0) Digitial Pin Operation Logic Output (Smart Pin Off)

00000M7M6M5M4M3M2M1M0 = 00000 I O HHH LLL = Logic (output)
Even though Pin mode is being set as an Output the sinking and sourcing resistors allow the Pin to be a
Input. To use Pin as a traditional Output the Low and High drive currents should be set to Fast.
LLL = M2M1M0 = 000 H2H1H0 = M5M4M3 = 000

For Sinking Input the Direction bit DIR must be set High (1) for Output and the Output bit must be set
Low (0) with the appropriate Low dirve bits LLL(M2M1M0) set for sink value (Resistor Load or Current
Load).The High drive bits do not matter(don’t care)

For Sourcing Input the Direction bit DIR must be set High (1) for Output and the Output bit must be set
High (1) with the appropriate High drive bits HHH(M5M4M3) set for source value(Resistor Load or
Current Load). The Low drive bits do not matter(don’t care).

The Logic operation for InPut and Output can be inverted using mode bits M7 and M6
M6 [O(out)] = 1 invert pin (OUTx = !PinStatus) M6[O(out)] = 0 Non invert pin (OUTx = PinStatus)
M7[I(in)] = 1 invert pin (PinStatus = !Inx) M7[I(in)] = 0 Non invert pin (PinStatus = Inx)

Example
1.5K source Non invert out and Non Invert in M7M6 =00 M5M4M3M2M1M0 =001000
1.5k sink Non invert out and Non Invert in M7M6 =00 M5M4M3M2M1M0 =000001

Page 23of 484

2.0.1 Sketch of 15K Sinking Source Input Push Button
The “Drive” Logic block is broken into the following components:

Page 24of 484

The resistors/current sources are a kind of drive strength. To get a pullup, you need to set the pin to

output with a drive strength of 1.5k or 15k or 150k Ohm for HHH and you need to output a High

(OUTx=1). Also if the pin is set to output, you still can read the input.

If the pin is in smartmode, the red labels are valid, DIRx and OUTx do no longer control the IO signals.

D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

AAAA = 0000 “x000 this pin read state”
BBBB = 0000 “x000 this pin read state”
FFF = 000 “A,B default filter
MMMMMMMMMMMMM = 000000000000 “Fast”
TT = 00 “can’t figure out what table says
SSSSS = 00000 “smart pin off”

By default Propeller II starts with ('WRPIN #0,pin') Fast Logic Mode
D = %0000_0000_000_0000000000000_00_00000_0

If you're familiar with the assembly-language input-output instructions for the Propeller-1

microcontroller you will recognize the following six instructions a Propeller-2 program also may use

these registers. These registers give you direct access to I/O pins:

DIRA direction register pins P0..P31, 1= output, 0 = disable output
DIRB direction register pins P63-P32, 1= output, 0 = disable output
OUTA output register bits for pins P0..P31
OUTB output register bits for pins P32..P63
INA input register bits for pins P0..P31
INB input register bits for pins P32..P63

Propeller II does not have instructions to above registers as propeller 1 DIRA[0]~~ but the registers can
be accessed with:

mov dira,#0

mov reg1,ina

mov outa,#1

Page 25of 484

Definition of PinField

PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins

The above direction and output registers can be affected using special instructions which operate on 1
to 32 bits within each register.
In the following lists, {#}D denotes an 11-bit value,(PinField) with the 6 lower bits pointing to a base pin
and the next upper 5 bits expressing an additional number of pins within the same I/O register.
{#}D = PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
11 bits for PinField LLLLL 5bits for number of additional pins PPPPPP 6 bits for base pin number
%00011_000101 base pin 5 plus 3 pins P3 P4 P5 P6 total 4 pins
%11111_0010000 base pin 8 plus 31 pins wrapping occurs P8-P31 plus P0-P7 (P0-P31)
PinField ≔ BasePin addpins Add_pins eg. PinField ≔ 0 addpins 7 ‘ P0-P7 assigned

In these instructions, bit 5 of {#}D selects between DIRA/DIRB or OUTA/OUTB.
10-09-08-07-06__05-04-03-02-01-00
16 08 04 02 01 __32 16 08 04 02 01

The ADDPINS operator can be used to set the additional-bits field in {#}D as follows:

DIRH #8 ‘Drive P8 high
DIRH #10 ADDPINS 7 'Drive P10..P17 high {#}D = 00111_001010 = LLLLL_PPPPPP

Each cog has its own pairs of 32-bit I/O Direction Registers (DIRA & DIRB) and 32-bit I/O Output

Registers (OUTA & OUTB) to influence the directions and output states of the Propeller 2’s 64 I/O pins. A

cog's desired I/O directions and output states are communicated through the entire cog collective to

ultimately become what is applied to the I/O pins.

The result of this I/O pin wiring configuration can easily be described in the following simple rules:

* A pin is an input only if no active cog sets it to an output.

* A pin outputs low only if all active cogs that set it to output also set it to low.

* A pin outputs high if any active cog sets it to an output and also sets it high.

The Propeller 2 is a CMOS device, so the I/O pin digital logic threshold is approximately 1/2 Vdd.
With the Propeller 2's I/O pins powered by 3.3 V (via the corresponding Vxxyy pins), the I/O pin digital
logic threshold is about 1.65 V.
An input pin will interpret a voltage below 1.65 V as a digital logic level low, and will interpret a voltage
above 1.65 V as a digital logic level high.
An output pin will produce 0 V for digital low and 3.3 V for digital high.

Page 26of 484

2.0.1_Example_WRD_Set Pinfor Sinking Input Using Spin2
00000MMMMMMMM = Pin Logic

M5M4M3M2M1M0 = H2H1H0L2L1L0 =000010
M6 = 0 Non invert pin (OUTx = PinStatus)
M7 = 0 Non invert pin (PinStatus = Inx)
P_LOW_15K = %0000_0000_000_0000000000010_00_00000_0

D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0
AAAA = 0000 “x000 this pin read state”
BBBB = 0000 “x000 this pin read state”
FFF = 000 “A,B default filter
00000MMMMMMMM = 0000000000010 “15k Sink”
TT = 00 “can’t figure out what table says
SSSSS = 00000 “smart pin off”

2.0.2_Example_WRD_Set pin 21 for sinking input using PASM2

2.0.3_Example_WRD_Set pin 21 for sinking using PASM2 and read using PASM2

Page 27of 484

2.1) PASM Pin Digital Commands

2.1.1) DIR Bit Instruction

{#}D = PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
These instruction bits affect the associated DIR direction bit:

DIRL {#}D Set direction bit(s) to logic 0 (input)
DIRH {#}D Set direction bit(s) to logic 1 (output)
DIRC {#}D Set direction bit(s) to Carry flag
DIRNC {#}D Set direction bit(s) to inverse of Carry flag
DIRZ {#}D Set direction bit(s) to Zero flag
DIRNZ {#}D Set direction bit(s) to inverse of Zero flag
DIRRND {#}D Set direction bit(s) to random state(s)
DIRNOT {#}D Invert direction bit(s)
Example: DIRL #20 'Set P20 as an input pin

2.1.2)Pin-Output Instructions

{#}D = PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
These Instructions change the associated OUT bit(s)

OUTL {#}D Set output bit(s) to logic 0
OUTH {#}D Set output bit(s) to logic 1
OUTC {#}D Set output bit(s) to Carry flag
OUTNC {#}D Set output bit(s) to inverse of Carry flag
OUTZ {#}D Set output bit(s) to Zero flag
OUTNZ {#}D Set output bit(s) to inverse of Zero flag
OUTRND {#}D Set output bit(s) to random state(s)
OUTNOT {#}D Invert output bit(s)
Example: OUTNOT $20 'Invert the logic state of the P20 output

2.1.3)Pin-Float Instructions

{#}D = PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
These instructions change the asscoiaed DIR bit(s) to logic-0(input float)
FLTL {#}D Set output bit(s) to logic 0

FLTH {#}D Set output bit(s) to logic 1

FLTC {#}D Set output bit(s) to Carry flag

FLTNC {#}D Set output bit(s) to inverse of Carry flag

FLTZ {#}D Set output bit(s) to Zero flag

FLTNZ {#}D Set output bit(s) to inverse of Zero flag

FLTRND {#}D Set output bit(s) to random state(s)

FLTNOT {#}D Invert output bit(s)

Example: FLTC #20 'Make P20 input with its output bit set to C.

Page 28of 484

2.1.4) Pin-Drive Instructions

{#}D = PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
These instructions change the associated DIR bit(s) to logic-1 (output).
DRVL {#}D Set output bit(s) to logic-0

DRVH {#}D Set output bit(s) to logic-1

DRVC {#}D Set output bit(s) to Carry flag value

DRVNC {#}D Set output bit(s) to inverse of Carry flag

DRVZ {#}D Set output bit(s) to Zero flag

DRVNZ {#}D Set output bit(s) to inverse of Zero flag

DRVRND {#}D Set output bit(s) to random state(s)

DRVNOT {#}D Invert output bit(s)

Example: DRVZ #20 'Make P20 output the Z-flag state.

2.1.5) Input-Pin Instructions

{#}D (pinfield)represents a pin number.
Two instructions, TESTP and TESTPN can read the state of a single bit within an INA/INB register and
either write that bit to the Carry (C) or Zero (Z) flag, or perform a logic operation on the flag.

TESTP {#}D WC/WZ Get a pin's state and write it into the C or Z flag.
TESTP {#}D ANDC/ANDZ Get a pin's state and AND it into the C or Z flag.
TESTP {#}D ORC/ORZ Get a pin's state and OR it into the C or Z flag.
TESTP {#}D XORC/XORZ Get a pin's state and XOR it into the C or Z flag.
TESTPN {#}D WC/WZ Get a pin's NOT-state and write it into the C or Z flag.
TESTPN {#}D ANDC/ANDZ Get a pin's NOT-state and AND it into the C or Z flag.
TESTPN {#}D ORC/ORZ Get a pin's NOT-state and OR it into the C or Z flag.
TESTPN {#}D XORC/XORZ Get a pin's NOT-state and XOR it into the C or Z flag.
 Example: TESTP #10 ORZ 'Read P10 and or its state into Z.

Page 29of 484

2.1.5)Input-Output-Bit Timing
When an instruction changes a DIRx or OUTx bit, the processor needs three (3) additional system-clock

cycles after the instruction before the pin starts to transition to its new state. The figure below shows

the delay for a DRVH instruction:

When an instruction reads the contents of the IN register associated with a pin, the processor receives

the state of the pins as they existed three (3) system-clock cycles before the start of the instruction. The

figure below shows the timing for a the TESTB INA,#0 operation:

When a program uses a TESTP or TESTPN instruction to read the state of a pin, the processor receives

the state of the pins as they existed two (2) system-clock cycles before the start of the instruction. So,

the TESTP and TESTPN gather "fresher" INx data than is available via the INx registers. The figure below

shows the timing for a TESTP instruction:

Page 30of 484

2.1.1_Example_WRD_PASM_DIRH_OUTH
DIRH {#}D Set direction bit(s) to logic 1 (output)
OUTH {#}D Set output bit(s) to logic 1
P0 used with 1k resitor to LED

2.1.2_Example_Wrd_PASM_DRVH_DRVL.spin2
P0-P7 used with 1k resitor to LED

2.1.3_Example_WRD_PASM_Cog_Assembly
Demonstartes Calling an assembly program

2.1.4_Example_WRD_PASM_Cog_Assembly
Demonstrates running two cog programs simultaneously

Page 31of 484

2.2) SPIN I/O Digital Methods
PinField = 11 bits %LLLLL_PPPPPP %extrapins_basepins
PinField = %00011_000101 base pin 5 plus 3 pins P3 P4 P5 P6 total 4 pins
%11111_0010000 base pin 8 plus 31 pins wrapping occurs P8-P31 plus P0-P7 (P0-P31)
PinField ≔ BasePin addpins Add_pins eg. PinField ≔ 0 addpins 7 ‘ P0-P7 assigned
addpins is a Propeller Tool directive to create PinField
The following are spin 2 commands:

Pin Methods Details

PINW | PINWRITE(PinField, Data) Drive PinField pin(s) with Data

PINL | PINLOW(PinField) Drive PinField pin(s) low

PINH | PINHIGH(PinField) Drive PinField pin(s) high

PINT | PINTOGGLE(PinField) Drive and toggle PinField pin(s)

PINF | PINFLOAT(PinField) Float PinField pin(s)

PINR | PINREAD(PinField) : PinStates Read PinField pin(s)

PINSTART(PinField, Mode, Xval, Yval) Start PinField smart pin(s): DIR=0, then WRPIN=Mode,

WXPIN=Xval, WYPIN=Yval, then DIR=1

PINCLEAR(PinField) Clear PinField smart pin(s): DIR=0, then WRPIN=0

WRPIN(PinField, Data) Write 'mode' register(s) of PinField smart pin(s) with Data

WXPIN(PinField, Data) Write 'X' register(s) of PinField smart pin(s) with Data

WYPIN(PinField, Data) Write 'Y' register(s) of PinField smart pin(s) with Data

AKPIN(PinField) Acknowledge PinField smart pin(s)

RDPIN(Pin) : Zval Read Pin smart pin and acknowledge, Zval[31] = C flag from

RDPIN, other bits are RDPIN data

RQPIN(Pin) : Zval Read Pin smart pin without acknowledge, Zval[31] = C flag

from RQPIN, other bits are RQPIN data

Page 32of 484

2.2.1_Example_WRD_SPIN_PINT_PINREAD_PINF_PINCLEAR
Demonstrates following Spin commands LED for P0-P7 1k resistor
PINT | PINTOGGLE(PinField) Drive and toggle PinField pin(s)
PINR | PINREAD(PinField) : PinStates Read PinField pin(s)
PINCLEAR(PinField) Clear PinField smart pin(s): DIR=0, then WRPIN=0
PINF | PINFLOAT(PinField) Float PinField pin(s)

2.2.2_Example_WRD_SPIN_PINW_PINL_PINH
Demonstrates following commands LED for P0-P7 1k resistor
PINW | PINWRITE(PinField, Data) Drive PinField pin(s) with Data
PINL | PINLOW(PinField) Drive PinField pin(s) low
PINH | PINHIGH(PinField) Drive PinField pin(s) high
PINR | PINREAD(PinField) : PinStates Read PinField pin(s)
PINCLEAR(PinField) Clear PinField smart pin(s): DIR=0, then WRPIN=0
PINF | PINFLOAT(PinField) Float PinField pin(s)

Page 33of 484

3.0) PWM Pulse Width Modulation with Smart Pin

The mechanism typically used to control the brightness of an LED is called PWM (Pulse Width
Modulation). In our blink example the LED was either always on or always off. If we want an intermediate
brightness, we need to have it partially on; this is the purpose of PWM.
In this figure the on-time portion of the waveform is 30% of the entire cycle (on-time plus off-time). The
ratio of on-time to cycle-time is called the duty cycle.

pinstart(led, m, x, y)

m := P_PWM_SAWTOOTH | P_OE

%0000_0000_000_0000000000000_00_0

1001_0

P_PWM_SAWTOOT

H

PWM sawtooth output

%0000_0000_000_0000000000000_01_0

0000_0

P_OE Enable output in smart pin

mode

The first step is to select the PWM mode (sawtooth is the easiest to implement) and to make the smart

pin an output with the P_OE constant. The output enable flag is required because in smart pin mode,

the pin direction bit is used to enable or disable the smart pin.

If the Common Cathode connection is used the output being high will turn on the LED if the Common
Anode connection is used the output being high will turn off the LED.

Page 34of 484

The output can be inverted by setting the P_INVERT_OUTPUT bit in the mode register:
m |= P_INVERT_OUTPUT

%0000_0000_000_0000001000000_00_0

0000_0

P_INVERT_OUTPUT Select inverted output

x.word[1] := 255

The high word of the smart pin X register holds the value that will set the output to 100% duty cycle. As

discussed, we will use 255.

x.word[0] := 1 #> ((clkfreq / hz) / 255) <# $FFFF

Finally, the low word of the smart pin X register holds the number of system ticks in one unit for the
desired PWM frequency. This takes a little bit of math, but, again, is fairly straightforward.
It works out like this: the system clock frequency (clkfreq) is divided by the desired PWM frequency (hz);
this gives us the number of system ticks in one PWM period. That is divided by the number of units in
100% (255) to get the number of system ticks in one unit. The #> and <# operators constrain the value to
a legal 16-bit number for the low word of X.

Y register which holds the current level; in our setup this will be 0 (0%) to 255 (100%). To change the LED

brightness at any time we can write to the smart pin Y register like this:

wypin(LED, 128) this sets 50% duty cycle

Page 35of 484

3.1_Example_ WRD_PWM_Demo.spin2
Demonstrate Square Wave Scope

Page 36of 484

4.0) Analog Out Smart Pin(DAC)

4.1) DAC Digital to Analog Conversion

Figure 4.1.0

The above Schematic is the standard Method for Dac P2 Uses a Voltage Divider approach:

Figure 4.1.1

The above schematic is how the propeller II implements a Dac using a voltage divider

Page 37of 484

The main difference between a standard voltage divider and the Prop2 the Pro2 uses a more robust and

faster acting arrangement that doesn't have the buffering op-amp. Therefore the output is pure

resistive, hence why the output resistance is specied. The side effect of better linearity may be a result.

Note: The first Figure 4.1.0 is called a "binary weighted resistor" DAC. Linearity of that type becomes a

major issue at higher word sizes. Figure 4.1.1The "R-2R ladder" DAC is effectively the same but greatly

improves on the linearity. Prop2 uses what's called a "Thermometer coded" or "Unary coded" DAC. It's

pretty heavy on real-estate but does deliver high precision at speed.

Propeller smart pins each have 2 Dac’s , one DAC has 255 resistors of 252K and the other DAC has 255

resistors of 31.6k. The resistors are pulled high or low dependant on the magnitude of the value

essentially an 8 bit dac is created. If all resistors are pulled high the Voltage is 100% or value 255 (3.3v) if

the value is 128 ($80) the voltage is 50% half resistors high half low. If 0 is used all resistors pulled low.

255 resistors in parallel would be 252K/255 Plus the driver circuit impedance aprox 990 ohm. For video

on DAC see: https://www.youtube.com/c/ParallaxInc/playlists The essence of this dac is a voltage

divider network that is set by a clocked Flip Flops.

1) Variable “pin” may be a PinField need to make sure only 1 pin is configured.

PinField = lllll_pppppp lllll = 5 bits for addpins pppppp = 6 bits for P0-P63 0-63
let pin = lllll_pppppp
0000_0000_0000_0000_0000_0lll_llpp_pppp = pin
0000_0000_0000_0000_0000_0000_ 0011_1111 = $3F
pin &= $3F ‘include this instruction to clear llll upper addpins
0000_0000_0000_0000_0000_0000_00pp_pppp = pin

2) Disable analog smart pin if previously configured
pinclear(Pin) ' disable smart pin

3) Following Spin method sets Pin for Digital output
pinstart(pin, P_DAC_DITHER_PWM | P_DAC_990R_3V | P_OE, 256, 0)' 16-bit dac

-- https://docs.google.com/document/d/16qVkmA6Co5fUNKJHF6pBfGfDupuRwDtf-

wyieh_fbqw/edit#heading=h.1h0sz9w9bl25

Built-In Symbols for Smart Pin Configuration; use Ctrl+F for searching strings

%0000_0000_000_0000000000000_00_00011_0 P_DAC_DITHER_PWM DAC 16-bit PWM dither (DAC mode)

%0000_0000_000_1010000000000_00_00000_0 P_DAC_990R_3V DAC 990Ω, 3.3V peak, ADC 1x → IN

%0000_0000_000_0000000000000_01_00000_0 P_OE Enable output in smart pin mode

https://www.youtube.com/c/ParallaxInc/playlists
https://docs.google.com/document/d/16qVkmA6Co5fUNKJHF6pBfGfDupuRwDtf-wyieh_fbqw/edit#heading=h.1h0sz9w9bl25
https://docs.google.com/document/d/16qVkmA6Co5fUNKJHF6pBfGfDupuRwDtf-wyieh_fbqw/edit#heading=h.1h0sz9w9bl25

Page 38of 484

4.1_Example_WRD_Analog_Out_Demo

PINSTART(PinField, Mode, Xval, Yval)
 Start PinField smart pin(s): DIR=0, then WRPIN=Mode, WXPIN=Xval, WYPIN=Yval, then DIR=1

 P_DAC_DITHER_PWM = %0000_0000_000_0000000000000_00_00011_0 DAC 16-bit PWM dither
(DAC)
 P_DAC_990R_3V = %0000_0000_000_1010000000000_00_00000_0 DAC 990Ω, 3.3V peak
 POE = %0000_0000_000_0000000000000_01_00000_0 Enable smart pin mode
 MODE = %0000_0000_000_1010000000000_01_00011_0 above values or'ed

 PINFIELD (Pin) = 25 from calling 4.1_Example_WRD_Analog_Output_Demo
 MODE = %0000_0000_000_1010000000000_01_00011_0 above values or'ed
 WXPIN = 256 max unsigned 16 bit $FFFF
 WYPIN = 0 min unsigned

Pinstart(pin,MODE,WXPIN,WYPIN)
pinstart(pin, P_DAC_DITHER_PWM | P_DAC_990R_3V | P_OE, 256, 0) ' 16-bit dac selection

The pinstart method writes to the 3 registers WRPIN,WXPIN,WYPIN (below are the PASM instructions

that can be used to write directly to these registers:

D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

● A = PINA input selector
● B = PINB input selector
● F = PINA and PINB input logic/filtering (after PINA and PINB input selectors)
● M = pin mode
● T = pin DIR/OUT control (default = %00)
● S = smart mode

WRPIN D/#,S/# - Set smart pin S/# mode to D/#, ack pin
WXPIN D/#,S/# - Set smart pin S/# parameter X to D/#, ack pin
WYPIN D/#,S/# - Set smart pin S/# parameter Y to D/#, ack pin

Page 39of 484

4.1_Example_WRD_Analog_Output
File....... jm_analog_out.spin2
Purpose.... Simple P2 analog output using smart pin
Author..... Jon "JonnyMac" McPhalen Copyright (c) 2020-2021 Jon McPhalen MIT Licenc
PUB start(Pin,lo,hi) pin for analog out lo range 0 and high range 3300 for 3.3v

PINSTART(PinField, Mode, Xval, Yval)
Start PinField smart pin(s): DIR=0, then WRPIN=Mode, WXPIN=Xval, WYPIN=Yval, then DIR=1
WXPIN = 256 max unsigned 16 bit $FFFF
WYPIN = 0 min unsigned
PINFIELD (Pin) = 25 from calling 4.1_Example_WRD_Analog_Output_Demo

P_DAC_DITHER_PWM = %0000_0000_000_0000000000000_00_00011_0 DAC 16-bit PWM dither
P_DAC_990R_3V = %0000_0000_000_1010000000000_00_00000_0 DAC 990Ω, 3.3V peak, ADC
POE = %0000_0000_000_0000000000000_01_00000_0 Enable output smart mode
MODE = %0000_0000_000_1010000000000_01_00011_0 above values or'ed

Page 40of 484

5.0) Analog Input Smart Pin (ADC)

5.1) ADC Analog Digital Conversion
Comparator Circuit

Figure 5.1.0

An analogue comparator such as the LM339N which has two analogue inputs, one positive and

one negative, and which can be used to compare the magnitudes of two different voltage levels.

A voltage input, (VIN) signal is applied to one input of the comparator, while a reference voltage,

(VREF) to the other. A comparison of the two voltage levels at the comparator’s input is made to

determine the comparators digital logic output state, either a “1” or a “0”.

The reference voltage, VREF is compared against the input voltage, VIN applied to the other input.

For an LM339 comparator, if the input voltage is less than the reference voltage, (VIN < VREF)

the output is “OFF”, and if it is greater than the reference voltage, (VIN > VREF) the output will be

“ON”. Thus a comparator compares two voltage levels and determines which one of the two is

higher.

2-bit ADC Using Diodes

Figure 5.1.1

Page 41of 484

Prop2's ADCs are what's called a "sigma-delta modulator" or "delta-sigma modulator". Just a single fast

comparator with feedback, which oscillates in the MHz region producing a natural bit-stream known as

pulse-density-modulation (PDM). This is subsequently vacuumed up by a counter configured as a "Sinc

filter/decimator" from which you then get your typical PCM samples.

5.1_Example_WRD_Analog_Input_Demo

D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

● A = PINA input selector
● B = PINB input selector
● F = PINA and PINB input logic/filtering (after PINA and PINB input selectors)
● M = pin mode
● T = pin DIR/OUT control (default = %00)
● S = smart mode

WRPIN D/#,S/# - Set smart pin S/# mode to D/#, ack pin
WXPIN D/#,S/# - Set smart pin S/# parameter X to D/#, ack pin
WYPIN D/#,S/# - Set smart pin S/# parameter Y to D/#, ack pin

5.1_Example_WRD_Analog_Input
Demonstrate Analog out call object “5.1_Example_WRD_Analog_Input”
Uses following spin functions:
PINCLEAR(PINFIELD) Clear PinField smart pin(s): DIR=0, then WRPIN=0

PINFLOAT(PinField) Float PinField pin(s)
LONGMOVE(Dest, Source, Count) Move Count longs from Source to Dest
LONGFILL(Dest, Value, Count) Fill Count longs at Dest with Value
RDPIN(Pin) :Zval Read Pin smart pin and acknowledge, Zval[31] = C flag from RDPIN, other bits are
RDPIN Data

Page 42of 484

6.0) AnalogIn and AnalogOut Demo
Using P24 as an analog Input fed from P25 as an analog output a 25 K load resistor is tied to Pins and

ground. Two objects are included “4.1_Example_WRD_analog_output.spin2” and

“5.1_Example_WRD_analog_input.spin2”. These programs were previously used in section 4.0 and 5.0.

6.1_Example_WRD_AnalogIn_AnalogOut_Demo
Analog out is fed to Analog In and displayed
 analogInP24 = 24 'P24 analog pin input
 analogInP24_LO = 0 'Lo range analog out
 analogInP24_HI = 3300 'Hi range analog out
 analogOutPinP25 = 25 'P25 20k Load Resistor
 analogOutP25_LO = 0 'Lo range analog out
 analogOutP25_HI = 3300 'Hi range analog out

Page 43of 484

7.0) P2 Eval PB/LED Control Add-on Board (64006-ES)

 Led_P16 Led_P17 Led_P18 Led_P19 Pb_P20 Pb_21 Pb_22 Pb_23 Pb-24

wrpin (20 , P_LOW_15K) 'select P20 pull-down enable sets pin as a sink
result0:=pinread(20) 'read status of P20 button press
pinhigh(17) 'set P17 led High = 1 (out high enable on)

“7.1_Example_WRD_Control_Board_01” and “7.2_Example_WRD_Control_Board_02” illustrates how to

press input button to turn on the corresponding LED using two different methods.

Page 44of 484

7.1_Example_WRD_Control_Board_01
Demonstrat PB\LED Control Board64006-FS
 result0:=pinread(Base_Pin + 4) 'read status of P20 button press set P17 LED
 result1:=pinread(Base_Pin + 5) 'read status of P21 button press set P16 LED
 result2:=pinread(Base_Pin + 6) 'read status of P22 button press set P18 LED
 result3:=pinread(Base_Pin + 7) 'read status of P23 button press set P19 LED

7.2_Example_WRD_Control_Board_02
Demonstrate PinField and PINWRITE command

Page 45of 484

8.0) P2 Eval LED Matrix Add-on Board (#64006C)

8.1_Example_WRD_P2_LED_Matrix_Digits
Demonstrate LED MATRIX by displaying digits 0-9

Page 46of 484

9.0) P2 Eval Serial Device Add-on Board (SKU 64006F)

Two user controlled activity LEDs (red and blue) are located beside each microUSB-type socket.

Copyright © Parallax Inc. P2 Eval Add-on Boards (#64006 Series)

Function

0 Blue LED with 1 kΩ series resistor. Assert high to light.
1 Red LED with 1 kΩ series resistor. Assert high to light.
2 Serial channel 1 : Data D-
3 Serial channel 1 : Data D+
4 Serial channel 2 : Data D-
5 Serial channel 2 : Data D+
6 Blue LED with 1 kΩ series resistor. Assert high to light.
7 Red LED with 1 kΩ series resistor. Assert high to light

Page 47of 484

10.0) P2 Eval Serial Host Add-on Board (SKU 64006B)

10.1) USB host overview
The Universal Serial Bus, or USB, is an external port that interfaces between external devices and a

computer.

When a port is in USB host mode, it powers the bus, and enumerates connected USB devices.

 Host: The host is the computer or item that acts as the main element or controller for the

USB system. The host has a hub contained within it and this is called the Root Hub.

 Hub: The hub is a device that effectively expands the number of ports available - it will

have one connection to the upstream connection, and several downstream. It is possible

to plug one hub into another to expand the capability and connectivity further.

 Port: This is the socket through which access to the USB network is gained. It can be on

a host, or a hub.

 Function: These are the peripherals or items to which the USB link is connected. Mice,

keyboards, Flash memories, etc, etc.

 Device: This term is collectively used for hubs and functions.

Page 48of 484

10.2) Selecting USB function destination

With data for all devices beings sent along the bus, it is necessary for the USB operation that the

data is only accepted by the required function.

To achieve this, when a device is attached to the bus it is assigned a unique number or address by the

host for the time it is connected.

In addition to the address, the device also contains endpoints. These are the actual sources and

destinations for communications between the host and the device.

Endpoints can only operate in one direction, i.e. input or output, but not both, and devices can

have up to 16, of which one each for the input and output must be reserved as the 'Zero Endpoint'

for that direction. Although each device can have sixteen input and sixteen output endpoints, it is

very rare for them all to be used.

The zero endpoints are used for a variety of activities including auto-detection and configuration

of the device on the bus and the two zero endpoints are the only ones accessible until the device

is properly connected on the bus.

10.3) USB data pipes
The communication within USB is based around the concept of using data pipes. These can be

considered as being logical channels within the data flow on the bus.

In reality, a USB data pipe is a connection from the host controller to a logical entity within a device, i.e.

the endpoint. Because pipes correspond to endpoints, the terms are sometimes used interchangeably.

The host then uses the concept of a data pipe to ensure the data to and from a device is correctly

directed or the source is known. The data pipe uses a combination of the address, endpoint and also the

direction to define it.

To communicate with the zero endpoints a special form of data pipe is needed because it needs to be

used to establish the initial communication. It is called the Default Control Pipe and it can be used when

the initial physical connection is made.

Page 49of 484

There are two types of USB pipe:

 Message Pipe : This type is a bi-directional USB pipe and it is used for control data. Message

pipes are typically used for short, simple commands to the device, and for status responses from

the device. They can be used by the bus control pipe number 0.

 Stream Pipe: This form of USB pipe is uni-directional and it is connected to a uni-directional

endpoint that transfers data using an isochronous, interrupt, or bulk transfers (see below).

 h

10.4) USB signalling and data transfer basics
For USB 1 and 2 a four wire system is employed. As detailed elsewhere, the cables carry: power, ground

and then there is a twisted pair for the differential data transfer.

The lines are designated Data+, D+ and Data-, D- for USB 1 and USB 2. For USB 3, new lines were

introduced. For each port there are TX1+ & TX1- and TX2+ & TX2- to cover the transmitted data and

then for the received data the lines are RX1+ & RX1- and RX2+ & RX2-.

The use of twisted pairs and differential signaling reduces the effects of external interference that may

picked up. It also reduces the effect of any hum loops, etc that could cause issues. As it is not related to

ground, but the difference between the two lines, the effects of hum are significantly reduced

The data uses an NRZI system, i.e. non-return to zero.In terms of operation, when the USB host powers

up, it polls each of the slave devices in turn.

The USB host has address 0, and then assigns addresses to each device as well as discovering the slave

device capabilities in a process called enumeration. [Enumeration takes place when a new device is

connected].

Transactions between the host and device comprise a number of packets. As there are several different

types of data that can be sent, a token indicating the type is required, and sometimes an

acknowledgement is also returned.

Each packet that is sent is preceded by a sync field and followed by an end of packet marker. This

defines the start and end of the packet and also enables the receiving node to synchronize properly so

that the various date elements fall into place.

There are four basic types of data transaction that can be made within USB.

Control: This type of data transaction within the overall USB protocol is used by the host to send

commands or query parameters. The packet lengths are defined within the protocol as 8 bytes for Low

speed, 8-64 bytes for Full, and 64 bytes for High Speed devices.

Interrupt: The USB protocol defines an interrupt message. This is often used by devices sending small

amounts of data, e.g. mice or keyboards. It is a polled message from the host which has to request

specific data of the remote device

Bulk: This USB protocol message is used by devices like printers for which much larger amounts of data

are required. In this form of data transfer, variable length blocks of data are sent or requested by the

Host. The maximum length is 64-byte for full speed Devices or 512 bytes for high speed ones. The data

Page 50of 484

integrity is verified using cyclic redundancy checking, CRC and an acknowledgement is sent. This USB

data transfer mechanism is not used by time critical peripherals because it utilises bandwidth not used

by the other mechanisms.

Isochronous: This form of data transfer is used to stream real time data and is used for applications like

live audio channels, etc. It does not use and data checking, as there is not time to resend any data

packets with errors - lost data can be accommodated better than the delays incurred by resending data.

Packet sizes can be up to 1024 bytes.

The data transfer methodology and protocol for USB provides an effective method of transferring the

data across the interface in an effective and reliable manner.

10.5) USB data packets
Within the USB system, there are four different types of data packets each used for different types of

data transfer.

Token Packets: Essentially a Token USB data packet indicates the type of transaction is to follow.

Data Packets: The USB data packets carry the payload data, carrying the data as required.

Handshake Packets: The handshake packets are used acknowledging data packets received or for

reporting errors, etc.

Start of Frame Packets: The Start of Frame packets used to indicate the start of a new frame of data.

Although USB has developed from USB 1 through USB 2 to USB 3 and now USB 4, it still utilizes the same

basic approach to data transfer. There are many USB connectors and leads available, and these leads

now have many more wires for higher rate data transfer. Accordingly the data transfer speeds have

increased many fold over the first USB specification that was released and the devices that were

available.

10.6) USB 3 capabilities

The USB 3.0, Superspeed and 3.1, Superspeed+ specifications enable much higher rates of data

transfer. This is in keeping with requirements for downloading video and many other

applications.

Page 51of 484

11.0) P2 Eval A/V (Audio/Video) Breakout Add-on Board (#64006H)

Page 52of 484

11.1) VGA Object (ansi_vgatext_demo.spin2)
Using the library file from the “Propeller Tool”(ansi_vgatext_demo.spin2) for VGA output (No resistor

wire Pins directly to VGA Test Plug)

Set clock to 200_000_000 scren size to 600x800 set “CELL_SIZE = 4” call demo.spin2.
VGA Connector (No dropping resistors uses DAC to generate signal)
Pin- Function- VGA Pin - Wirecolour (VGA Test Plug)
P48 H 13 Torquise-Yel
P49 B 3 RED-yel
P50 G 2 BROWN-yel
P51 R 1 BLACK-yel
P52 V 14 BLUE/White-yel
GND 5,6,7,8,10 purple blue green yellow grey –blk

Page 53of 484

12.0 COG Overview
The Propeller 2 contains eight (8) processors, called cogs, numbered 0 to 7. Each cog contains the same
components, including a Processor block, Cog RAM, Event Tracker, Cog Attention strobes, Streamer,
Colorspace Converter, Pixel Mixer, DAC Channels, an I/O Output Register, and an I/O Direction
Register. Each cog is designed exactly the same and can run tasks independently from the others.

All eight cogs are driven from the same clock source, the System Clock, so they each maintain the same
time reference and all active cogs execute instructions simultaneously. They also all have access to the
same shared resources, like I/O pins, Hub RAM, the System Counter, and CORDIC math solver.

Cogs can be started and stopped at-will, performing independent or cooperative tasks simultaneously.
Regardless of the nature of their use, the Propeller application developer has full control over how and
when each cog is employed; there is no compiler-driven or operating system-driven splitting of tasks
between multiple cogs. This empowers the developer to deliver absolutely deterministic timing, power
consumption, and response to the embedded application.

Any cog can start or stop any other cog, or restart or stop itself. Each of the eight cogs has a unique
three-bit ID which can be used to start or stop it. It's also possible to start free (stopped or never
started) cogs, without needing to know their ID's. This way, entire applications can be written which
simply start free cogs, as needed, and as those cogs retire by stopping themselves or getting stopped by
others, they return to the pool of free cogs and become available, again, for restarting.

Instruction Pipeline

To optimize execution speed, cogs employ a pipelined execution architecture for PASM2. The nature of
the pipeline is summarized by these attributes:

 There are five stages of processing per instruction, performed in a minimum of five clock cycles.
 Instructions are overlapped to effectively execute in as little as two clock cycles when the

pipeline is full.
 Branch instructions cause the pipeline to be flushed; the first instruction following the branch

will take at least five clock cycles (13 or 14 if branching to a hub address) since the pipeline is
refilling.

 Any instruction that is conditionally cancelled will not execute but will still take effectively two
clocks (or at least five clocks, if following a branch) to pass through the pipeline.

 If an instruction stalls for additional clock cycles, all following instructions in the pipeline are
also stalled.

https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.fzfqcrgwor5b
https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.oiu4it94h7rh

Page 54of 484

An instruction's five stages of processing are illustrated below.

Isolated Instruction Processing

I = Instruction opcode
D = Destination operand
S = Source operand
ALU = Arithmetic Logic Unit, i.e. Adder
R = Result of instruction execution; ALU output value including C and Z flags

Note that most stages are performed (completed) upon the rising edge of the following clock signal,
indicated by the arrows (→).

The first three stages ("fetch" phase) involve reading the 32-bit PASM2 instruction (I) opcode from RAM,
latching (saving) the instruction opcode for decoding, and reading/latching the instruction's source (S)
and destination (D) values (32-bits each). The final two stages ("execute" phase) perform the
instruction's intended operation via the arithmetic logic unit (ALU) and writes the resulting 32-bit value
as well as the carry and zero flags if required. At that point (five clock cycles in this case) the
instruction is fully executed.

 Each individual result value, carry, and zero flag outcome is either written to RAM or is
discarded, depending on the specific instruction and given effects (WC / WZ / WCZ)

 As needed for proper processing, an instruction may stall (i.e. one or more extra clock cycles
may be inserted, without any stage advancement) at any point in the instruction's five-stage
journey

In the pipeline, instructions are overlapped by three stages, resulting in an effective two-cycle execution
per instruction when the pipeline is full; known as Fetch and Execute (or Wait). Compare the instruction
from the illustration above with the multi-instruction pipeline flow below— this seven-cycle slice of time
is processing six contiguous instructions. Each stage of the instruction above appears in the next
illustration with the prefix "a" and other instructions use prefixes "b", "c", etc.

Page 55of 484

Instruction Pipeline Flow

Ix = Instruction opcode
Dx = Destination operand
Sx = Source operand
ALUx = Arithmetic Logic Unit, i.e. Adder
Rx = Result of instruction execution; ALU output value including C and Z flags
a, b, c, etc. = [Suffixes] Process path of instruction a, instruction b, instruction c, etc.

In typical operation, each cycle of the instruction pipeline simultaneously processes different stages of
2 or 3 contiguous instructions. In this example, instruction "'a" is read in the first cycle which is the
same moment its two previous instructions ("y" and "z") write results and latch for later ALU operation,
respectively.

When an instruction requires a resource that is not yet available (such as Hub RAM), the whole pipeline
waits (halts temporarily) before the instruction's Execute phase, for as many clock cycles as it takes for
that resource. Afterwards, processing continues again for all instructions in the pipeline. For example,
if instruction "a" needed to wait 2 extra cycles to execute properly, the pipeline flow (above) would be
stretched starting at cycle 4— instead of "Execute a," two "Wait" cycles would occur, delaying the ALU
(and subsequent Write) for instruction 'a' as well as the latching and reading stages of instructions "b,"
"c," and "d."

Page 56of 484

Locks (Semaphores)

For application-defined cog coordination, the hub provides a pool of 16 semaphore bits, called
locks. Cogs may use locks, for example, to manage exclusive access of a resource or to represent an
exclusive state, shared among multiple cogs. What a lock represents is completely up to the application
using it; they are a means of allowing one cog at a time the exclusive status of 'owner' of a particular
lock ID. In order to be useful, all participant cogs must agree on a lock's ID and what purpose it serves.

The LOCK instructions are:
LOCKNEW D {WC}

LOCKRET {#}D

LOCKTRY {#}D {WC}

LOCKREL {#}D {WC}

Lock Usage

In order to use a lock, one cog must first allocate a lock from the lock pool with LOCKNEW and
communicate that lock's ID with other cooperative cogs. If successful, LOCKNEW returns the lock ID in D
and, if WC is given, will clear C (0) if a lock was available or set C (1) if all locks were already allocated. A
cog may allocate more than one lock if needed.

Cooperative cogs then use LOCKTRY to take ownership of the state which that lock represents. The Hub
arbitrates lock ownership in a round-robin fashion (as with all exclusive resources) so any cog waiting to
take ownership of a lock will get its fair turn and only one will be awarded ownership at any given
time. Here's an example of looping until ownership of a lock is successful:

'Keep trying to capture lock until successful
.try LOCKTRY write_lock WC
 IF_NC JMP #.try

Once lock ownership is successful, the cog should perform the task the lock was designed to protect
while all other cogs in this cooperative arrangement should be busy with other tasks or waiting for lock
ownership approval in a loop similar to the above. It is recommended that lock-protected steps be
intentionally swift so as not to hold up other cogs waiting for ownership to perform their lock-protected
counter steps.

After the designated task is performed, the cog must immediately use LOCKREL to release ownership of
the lock; allowing other cogs potential ownership of the lock. Only the cog that has taken ownership of
the lock can release it; however, a lock will also be implicitly released if the cog that's holding ownership
is stopped (COGSTOP), restarted (COGINIT), or if LOCKRET is executed for that lock.

If the lock is no longer needed by the application (i.e. no cogs need it for the designed purpose), it may
be returned to the unallocated lock pool by executing LOCKRET. Any cog can return a lock, even if it
wasn't the cog that allocated it with LOCKNEW.

Page 57of 484

12.1)Cog Components

Shared Resources
The interaction between each cog and the Hub is vital for sharing resources in the Propeller 2. At any
given time, the Hub gives a specific cog momentary exclusive access to certain shared resources such
as a region of Hub RAM and system configuration settings. This happens for each cog in a “round robin”
fashion– timing is consistent regardless of how many cogs are running. Cogs can choose to use or
ignore those resources depending on their current needs; often processing internally (in Cog RAM) in
parallel and only accessing exclusive resources in bursts.

There are two types of shared resources in the Propeller 2: 1) common, and 2) exclusive. Common
resources can be accessed at any time by any number of cogs; they include Smart I/O Pins, the System
Counter, and the Pseudo-Random Number Generator results. Exclusive resources can also be accessed
by each cog, but only by one cog at a time; they include Hub RAM, the CORDIC solver, Lock bits and the
seeder functionality for the Pseudo-Random Number Generator. The Hub helps govern access to
exclusive elements by granting each cog a turn to use it, one at a time, facilitating atomic operations
without any contention. For cases involving multiple elements (ex: a block of Hub RAM locations)
where an atomic operation is not intrinsically possible, lock bits can be used to cooperatively share
access between cogs. See the Appendix “I” Hub Operation section for more information.

file://///dnas/Family_Personal/WRD/Documents/Training%20Documents/I%23_Appendix_

Page 58of 484

Common Resources

System Clock

The System Clock is the central clock source for nearly every component of the Propeller 2. All cogs
and I/O pins perform their next step upon the next System Clock's clock edge. The System Clock itself is
driven from one of three selectable sources: 1) the Internal RC Oscillator, 2) the Phase-Locked Loop
(PLL), or 3) the Crystal Oscillator (an internal circuit that operates an external crystal or receives an
external oscillator signal). The PLL uses the Crystal Oscillator as its reference clock input. The System
Clock source is selected by the CLK register setting, which is configurable both at compile time and at
run time.

The System Clock speed chosen for any Propeller application is of vital importance to timing
calculations in code. If coded properly via the clock setting constants (_clkfreq, _xinfreq,
_xtlfreq, _rcslow, or _rcfast) the compiled clock mode is reflected in clkfreq_ and
clkmode_. When set via the HUBSET or ASMCLK instructions, the run time CLKFREQ and CLKMODE
values reflect the current System Clock speed.

See Appendix “J” System Clock for more information.

System Counter

The System Counter (CT) is a 64-bit free-running counter that increments upon every clock cycle. It is a
shared resource, accessible by all cogs at any time, serving as the official time reference for many
instructions and events. It is often used for brief, relative time measurements; however, since it is
cleared to zero upon every power-up/reset, it is also a system up time reference.

To read the current System Counter value:

GETCT X 'read lower 32-bits of system counter into X register
--or--

GETCT X WC 'read upper 32-bits of system counter into X register
GETCT Y 'read lower 32-bits of system counter into Y register

Note: to get the full 64-bit System Counter value, it is important to read the upper 32-bits first (as shown
above) and immediately read the lower 32-bits second. This sequence employs a special mechanism
that avoids phase issues; CT's lower 32-bits are returned exactly as they were back at the moment in
which the upper 32-bits had been read.

For event handling, there are three hidden registers dedicated to System Counter timing and events:
CT1, CT2, and CT3. These represent a target moment in time (future CT value), settable via the ADDCTx
instructions and used (read) internally by many event instructions.

To mark a moment in time to wait for, use GETCT with ADDCTx (1, 2, or 3) and WAITCTx (1, 2, or 3):

GETCT x 'get current CT
ADDCT1 x,#500 'make target CT1 (500 cycles later)
WAITCT1 'wait for CT to pass CT1 target

This can easily be extended to create a 500-cycle activity-loop instead.

file://///dnas/Family_Personal/WRD/Documents/Training%20Documents/J%23_Appendix_

Page 59of 484

The event-timing instructions that utilize the System Counter are: ADDCTx, POLLCTx, WAITCTx, JCTx,
and JNCTx. In addition, by using a SETQ right before any WAITxxx instruction, a timeout is created to
abort the wait in case the target event never arrives.

Exclusive Resources

Cordic Solver

Appendix “L”

Hub Ram

Appendix “I” Hub Operation

LOCKS

file://///dnas/Family_Personal/WRD/Documents/Training%20Documents/L%23_Appendix_
file://///dnas/Family_Personal/WRD/Documents/Training%20Documents/I%23_Appendix_

Page 60of 484

Memory
The Propeller 2 has three memory regions: Register RAM, Lookup RAM, and Hub RAM. Each cog has its
own Register RAM and Lookup RAM (collectively called Cog RAM), while the Hub RAM is shared by all
cogs.

Propeller 2 (P2X8C4M64P) RAM Memory Configuration

Region Depth Width Address Range
(Hex)

PASM Instruction D/S
Address Range (Hex)

PC Increment 1

Cog "Register" RAM 512 32 bits $00000..$001FF $000..$1FF 1

Cog "Lookup" RAM 512 32 bits $00200..$003FF $000..$1FF 1

Hub RAM 524,288 8 bits $00400..$7FFFF $00000..$7FFFF 4

1 PC is the Program Counter for PASM execution; incrementing relative to width to retrieve 32-bit
instructions.

The Spin2 interperter terperter fits between $124 to $1D7 for 172 bytes .The are registers
Also use below $1D7.

Page 61of 484

Cog Memory

Each cog has its own internal RAM that it uses to execute code and to store and manipulate data
independent of every other cog. This internal RAM is organized into two contiguous blocks of 512 longs
(512 x 32), called Register RAM and Lookup RAM, each with special attributes. See RAM Memory
Configuration.

Note that $1FE (INA) and $1FF (INB) are also the debug interrupt call address and return address,
respectively.

Register RAM

Each cog's primary 512 x 32-bit dual-port Register RAM (Reg RAM for short) provides for code
execution, fast direct register access, and special use. It is read and written as longs (4 bytes) and
contains general purpose, dual-purpose, and special-purpose registers.

General Purpose Registers

Register RAM locations $000 through $1EF are general-purpose registers for code and data usage.
Register unnamed are from $000-$1D7:

Address Name Purpose

$1D8
$1D9
$1DA
$1DB
$1DC
$1DD
$1FE
$1DF

PR0
PR1

 PR2
PR3
PR4
PR5

 PR6
 PR7

communication

Note : It is thought at this time spin 2 uses $1E0 to $1EF and should be avoided could be used in PASM

https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.h78p5tez6kv0
https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.h78p5tez6kv0

Page 62of 484

Dual-Purpose Registers

Register RAM locations $1F0 through $1F7 may either be used as general-purpose registers, or may be
used as special-purpose registers if their associated functions are enabled.

Address Name Purpose

$1F0
$1F1
$1F2
$1F3
$1F4
$1F5
$1F6
$1F7

RAM / IJMP3
RAM / IRET3
RAM / IJMP2
RAM / IRET2
RAM / IJMP1
RAM / IRET1
RAM / PA
RAM / PB

Interrupt call address for INT3
Interrupt return address for INT3
Interrupt call address for INT2
Interrupt return address for INT2
Interrupt call address for INT1
Interrupt return address for INT1
CALLD-imm return, CALLPA parameter, or LOC address
CALLD-imm return, CALLPB parameter, or LOC address

Special-Purpose Registers

RAM registers $1F8 through $1FF give mapped access to eight special-purpose functions. In general,
when specifying an address between $1F8 and $1FF, the PASM2 instruction accesses a special-
purpose register, not just the underlying RAM.

Address Name Purpose

$1F8
$1F9
$1FA
$1FB
$1FC
$1FD
$1FE
$1FF

PTRA
PTRB
DIRA
DIRB
OUTA
OUTB

INA1
INB2

Pointer A to Hub RAM
Pointer B to Hub RAM
Output enables for P31..P0
Output enables for P63..P32
Output states for P31..P0
Output states for P63..P32
Input states for P31..P0
Input states for P63..P32

1 Also debug interrupt call address
2 Also debug interrupt return address

Lookup RAM

Each cog's secondary 512 x 32-bit dual-port Lookup RAM (LUT RAM for short) is read and written as
longs (4 bytes). It is useful for:

 Scratch space
 Streamer access
 Bytecode execution lookup table
 Smart pin data source
 Paired-Cog communication mechanism
 Code execution

Scratch Space

In contrast to Register RAM, the cog cannot directly reference Lookup RAM locations in the majority of
its PASM instructions. Instead, the desired location(s) must be read or written between Lookup RAM
and Register RAM using the RDLUT and WRLUT instructions, respectively. This is synonymous with
other hardware architecture's scratch storage using "LOAD" and "STORE" instructions. When using the
RDLUT and WRLUT instructions, the Lookup RAM's locations $200..$3FF are addressable as $000..$1FF.

Page 63of 484

Paired-Cog Communication Mechanism

Adjacent cogs whose ID numbers differ by only the LSB (cogs 0 and 1, 2 and 3, etc.) can each allow their
Lookup RAMs to be written by the other cog via its local Lookup RAM writes. This allows adjacent cogs
to share data very quickly through their Lookup RAMs.

Warning: Lookup RAM writes from the adjacent cog are implemented on the Lookup RAM's 2nd port.
The 2nd port is also shared by the streamer in DDS/LUT modes. If an external write occurs on the same
clock as a streamer read, the external write gets priority. It is not intended that external writes would be
enabled at the same time the streamer is in DDS/LUT mode.

To use this feature, start two adjacent cogs using a special mechanism of the COGINIT instruction,
enable the feature with the SETLUTS instruction, and if needed, facilitate handshaking between cogs
using the SETSE1..4 instructions.

Page 64of 484

Execution
Cogs use 20-bit addresses for their program counters (PC); the upper bit is a "don't care" bit - this
affords an execution space of up to 512 KB. Depending on the value of a cog's PC, an instruction will be
fetched from either its Register RAM, its Lookup RAM, or the Hub RAM. See RAM Memory
Configuration.

Register Execution

When the PC is in the range of $00000 to $001FF, the cog fetches instructions from Cog Register
RAM. This is referred to as "cog execution." There are no special considerations when branching to a
cog register address.

Lookup Execution

When the PC is in the range of $00200 to $003FF, the cog fetches instructions from Cog Lookup
RAM. This is referred to as "lut execution." There are no special considerations when branching to a
cog lookup address.

Hub Execution

When the PC is in the range of $00400 to $7FFFF, the cog fetches instructions from Hub RAM. This is
referred to as "hub execution mode." Special considerations are involved with hub execution.

1. The PC rolling beyond $003FF will not initiate hub execution (it will just wrap back to $00000); a
branch must occur to get from register or lookup execution to hub execution.

2. Branching to a hub address takes a minimum of 13 clock cycles. If the instruction being
branched to is not long-aligned, one additional clock cycle is required.

3. When executing from Hub RAM, the cog employs the FIFO hardware to spool up instructions so
that a stream of instructions will be available for continuous execution. This means the FIFO
cannot be used for anything else. So, during hub execution these instructions cannot be used:

RDFAST / WRFAST / FBLOCK
RFBYTE / RFWORD / RFLONG / RFVAR / RFVARS
WFBYTE / WFWORD / WFLONG
XINIT / XZERO / XCONT - when the streamer mode engages the FIFO

It is not possible to execute code from hub addresses $00000 through $003FF, as the cog will instead
read instructions from the cog's Register RAM or Lookup RAM as indicated above.

https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.h78p5tez6kv0
https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.h78p5tez6kv0

Page 65of 484

CogInit\CogStop
In Spin2 the Cogspin(CogNum,Spin_Method(<(parameters)>,@stack) instruction is used to start cog

running a “spin method”

In PASM the Coginit(CogID,AsmAddress,Paramater) instruction is used to start cog to run a “PASM”
program

COGSPIN(CogNum, Method({Pars}), StkAddr) Start Spin2 method in a cog, returns cog's ID

if used as an expression element, -1 = no cog

free

COGINIT(CogNum, PASMaddr, PTRAvalue) Start PASM code in a cog, returns cog's ID if

used as an expression element, -1 = no cog

free

COGSTOP(CogNum) Stop cog CogNum

COGID() : CogNum Get this cog's ID

COGCHK(CogNum) : Running Check if cog CogNum is running, returns -1 if

running or 0 if not

Starting And Stopping Cogs

Any cog can start or stop any other cog, or restart or stop itself. Each cog has a unique ID which can be
used to start or stop it. It is also possible to start free (stopped or never started) cogs, without needing
to know their IDs. This way, applications can simply start free cogs, as needed, and as those cogs retire
by stopping themselves or getting stopped by others, they return to the pool of free cogs to become
available again for restarting.

To start a free cog:

COGINIT id, addr WC '(id=$30) start a free cog at addr, C=0 and id=Cog ID if okay
To (re)start a specific cog:
COGINIT #1, #$100 'load and start cog 1 from hub address $100
To start a cog, passing in a pointer or 32-bit value:

SETQ ptra_val 'ptra_val will go into target cog's PTRA register
COGINIT #%0_1_0000, addr 'load and start a free cog at addr
To retrieve this cog's ID:
COGID myID 'my cog ID is written to myID
To stop this cog:
COGID myID 'get my ID
COGSTOP myID 'halt myself

Page 66of 484

REGLOAD and REGEXEC calling PASM
The Spin2 instructions REGLOAD(HubAddress) and REGEXEC(HubAddress) are used to load or load-and-
execute PASM code and/or data chunks from hub RAM into cog registers.
The chunk of PASM code and/or data must be preceded with two words which provide the starting
register and the number of registers (longs) to load, minus 1.

PUB go()
 REGLOAD(@chunk) 'load self-defined chunk from hub into registers
 REPEAT
 CALL(#start) 'call program within chunk at register address
 WAITMS(100)
DAT
chunk WORD start,finish-start-1 'define chunk start and size-1
 ORG $120 'org can be $000..$130-size
start DRVRND #56 ADDPINS 7 'some code
 RET DRVNOT #0 'more code + return
finish

REGEXEC works like REGLOAD, but it also CALLs to the start register of the chunk after loading it.
In the example below, REGEXEC launches a chunk of code in upper register memory which sets up a
timer interrupt and then returns to Spin2. Meanwhile, as the Spin2 method repeatedly randomizes pins
60..63 every 100ms, the chunk of code loaded into upper register memory perpetuates the timer
interrupt and toggles pins 56..59 every 500ms. Note that registers $000..$127 are still free for other
code chunks and interrupts 2 and 3 are still unused.

PUB go()

 REGEXEC(@chunk) 'load self-defined chunk and execute it
 'chunk starts timer interrupt and returns
 REPEAT
 PINWRITE(60 ADDPINS 3, GETRND()) 'randomize pins 60..63
 WAITMS(100) 'pins 56..59 toggle via interrupt
DAT
chunk WORD start,finish-start-1 'define chunk start and size-1
 ORG $128 'org can be $000..$130-size
start MOV IJMP1,#isr 'set int1 vector
 SETINT1 #1 'set int1 to ct-passed-ct1 event
 GETCT PR0 'get ct
 ret ADDCT1 PR0,bigwait 'set initial ct1 target, return to Spin2
isr DRVNOT #56 ADDPINS 3 'interrupt service routine, toggle 56..59
 ADDCT1 PR0,bigwait 'set next ct1 target
 RETI1 'return from interrupt
bigwait LONG 20_000_000 / 2 '500ms second on RCFAST
finish

Page 67of 484

Cog Attention

Each cog can request the attention of other cogs by using the COGATN instruction. One or more of the D
operand's lower 8 bits may be set high (1) to signal the corresponding cog or cogs.

COGATN #00001100 'Get attention of cogs 2 and 3

For each high bit, the matching cog sees an attention event for POLLATN / WAITATN / JATN / JNATN
and for interrupt use. The attention strobe outputs from all cogs are OR'd together to form a composite
set of 8 strobes from which each cog receives its particular strobe.

Examples:

POLLATN WC 'has attention been requested?

WAITATN 'wait for attention request

JATN addr 'jump to addr if attention requested

JNATN addr 'jump to addr if attention not requested

In the intended use case, the cog receiving an attention request knows which other cog is strobing it
and how to respond. In cases where multiple cogs may request the attention of a single cog, some
messaging structure may need to be implemented in Hub RAM to differentiate requests.

Page 68of 484

Pseudo-Random Number Generator
The Propeller 2 features a pseudo-random number generator (PRNG) based on the Xoroshiro128**
algorithm. Note that the "**" is part of the name, indicating the exact variation of the Xoroshiro128
algorithm used.

The Xoroshiro128** PRNG iterates on every clock cycle, generating 64 fresh bits which get spread
among all cogs and smart pins. From this 64-bit pool, upon every clock cycle, each cog receives a
unique set of 32 different bits (in a scrambled arrangement with some bits inverted) and each smart pin
receives a similarly-unique set of 8 different bits. Cogs can read their current 32-bit pseudo-random
value using the GETRND instruction and directly apply them using the BITRND and DRVRND
instructions. Smart pins utilize their 8 bits as noise sources for DAC dithering and noise output.

After reset, the bootloader seeds the Xoroshiro128** PRNG fifty times, each time with 31 bits of thermal
noise gleaned from pin 63 while in ADC calibration mode. This establishes a very random seed which
the PRNG iterates from, thereafter. There is no need to do this again, but here is how you would do it if 'x'
contained a seed value:

SETB x,#31 'set the MSB of x to make a PRNG seed command
HUBSET x 'seed 32 bits of the Xoroshiro128** state

Note: using HUBSET, with D's MSB set, will seed the 128-bit PRNG. This will write all bits of D into 32
bits of the PRNG, affecting 1/4th of its total state. The required high MSB bit in D ensures that the
overall state will not go to zero. Because the PRNG

's 128 state bits rotate, shift, and XOR against each other, they are thoroughly spread around within a
few clocks, so seeding from a fixed set of 32 bits should not pose a limitation on seeding quality.

Note there is also another pseudo-random number feature, accessed via the XORO32 instruction;
however it doesn't use the Xoroshiro128** PRNG— instead, it iterates a register value to make a
relatively good PRNG sequence under software control.

Page 69of 484

12.2)Built-In Symbols for COGINIT Usage

COGINIT

Symbol Value

Symbol Name Details

%00_0000 COGEXEC (default) Use "COGEXEC + CogNumber" to start a cog

in cogexec mode

%10_0000 HUBEXEC Use "HUBEXEC + CogNumber" to start a cog

in hubexec mode

%01_0000 COGEXEC_NEW Starts an available cog in cogexec mode

%11_0000 HUBEXEC_NEW Starts an available cog in hubexec mode

%01_0001 COGEXEC_NEW_PAIR Starts an available eve/odd pair of cogs in

cogexec mode, useful for LUT sharing

%11_0001 HUBEXEC_NEW_PAIR Starts an available eve/odd pair of cogs in

hubexec mode, useful for LUT sharing

12.3) Built-In Symbol for COGSPIN Usage

COGINIT Symbol Value Symbol Name Details

%01_0000 NEWCOG Starts an available cog

Page 70of 484

12.4) PASM Propeller Assembly Machine Language
PASM stands for propeller assembly language program. PASM can be inline with spin2 code or called

and loaded separately. There are two different languages PASM for propeller 1 (32 I/O) and PASM for

propeller 2 (64 I/O). Most of the instructions are similar but are not 100% equivalent.

The boot procedure requires spin code to initiated. The spin interpreter then can be used to launch

PASM code. The propeller 1 and propeller 2 do not operate in the same manner conderning assembly

code and hub access.

12.5) In Line PASM Code

Spin2 methods can execute in-line PASM code by preceding the PASM code with an 'ORG

{$000..$12F}' and terminating it with an END.

PUB go() | x

 repeat

 org

 getrnd wc 'rotate a random bit into x

 rcl x,#1

 end

 pinwrite(56 addpins 7, x) 'output x to the P2 Eval board's LEDs

 waitms(100)

Your PASM code will be assembled with a RET instruction added at the end to ensure that it

returns to Spin2, in case no early _RET_ or RET executes.

Here's the internal Spin2 procedure for executing in-line PASM code:

 Save the current streamer address for restoration after the PASM code executes.

 Copy the method's first 16 long variables, including any parameters, return values, and

local variables, from hub RAM to cog registers $1E0..$1EF.

 Copy the in-line PASM-code longs from hub RAM into cog registers, starting at the

ORG address (default is $000).

Page 71of 484

 CALL the PASM code.

 Restore the 16 longs in cog registers $1E0..$1EF back to hub RAM, in order to update

any modified method variables.

 Restore the streamer address and resume Spin2 bytecode execution.

Within your in-line PASM code, you can do all these things:

 Read and write the following register areas:

o $000..$12F, which your PASM code loads into. You can even load different

PASM programs at different addresses within this range and CALL them from

Spin2.

o $1D8..$1DF, which are general-purpose registers, named PR0..PR7, available to

both PASM and Spin2 code.

o $1E0..$1EF, which temporarily contain the method's first 16 long hub RAM

variables and are temporarily assigned the same symbolic names.

o $1F0..$1FF, which include IJMP3, IRET3, IJMP2, IRET2, IJMP1, IRET1, PA,

PB, PTRA, PTRB, DIRA, DIRB, OUTA, OUTB, INA, and INB.

o Avoid writing to $130..$1D7 and LUT RAM, since the Spin2 interpreter occupies

these areas. You can look in "Spin2_interpreter.spin2" to see the interpreter code.

 Use the streamer temporarily.

 Use up to 5 levels of the hardware stack for nested CALLs, including CALLs to hub

RAM.

 Declare and reference regular and local symbols. These symbols will not be accessible

outside of your PASM code.

 Declare BYTE, WORD, and LONG data.

 Use the RES, ORGF, and FIT directives. The directives ORG, ORGH, ALIGNW,

ALIGNL, and FILE are not allowed within in-line PASM code.

 Establish an interrupt which executes your code remaining in cog registers $000..$12F.

Spin2 accommodates interrupts and only stalls them briefly, when necessary.

 Return to Spin2, at any point, by executing an _RET_ or RET instruction.

Page 72of 484

12.6) Calling PASM from Spin2

You can do a CALL(address) in Spin2 to execute PASM code in either cog register space or

hub RAM.

PUB go() | x

 repeat

 call(@random)

 pinwrite(56 addpins 7, pr0)

 waitms(100)

DAT orgh 'hub PASM program to rotate a random bit into pr0

random getrnd wc

 ret rcl pr0,#1

Here's the internal Spin2 procedure for executing a CALL:

 Save the current streamer address for restoration after the PASM code executes.

 CALL the PASM code.

 Restore the streamer address and resume Spin2 bytecode execution.

Within code which you CALL, you can do all these things:

 Read and write the following register areas:

o $000..$12F, which may contain PASM code and/or data which you previously

loaded.

o $1D8..$1DF, which are general-purpose registers, named PR0..PR7, available to

both PASM and Spin2 code.

o $1E0..$1EF, which are available for scratchpad use, but will likely be rewritten

when Spin2 resumes.

o $1F0..$1FF, which include IJMP3, IRET3, IJMP2, IRET2, IJMP1, IRET1, PA,

PB, PTRA, PTRB, DIRA, DIRB, OUTA, OUTB, INA, and INB.

o Avoid writing to $130..$1D7 and LUT RAM, since the Spin2 interpreter occupies

these areas. You can look in "Spin2_interpreter.spin2" to see the interpreter code.

 Use the streamer temporarily.

 Use up to 5 levels of the hardware stack for nested CALLs, including CALLs to hub

RAM.

 Establish an interrupt which executes your code remaining in cog registers $000..$12F.

Spin2 accommodates interrupts and only stalls them briefly, when necessary.

 Return to Spin2, at any point, by executing an _RET_ or RET instruction.
 A symbol declared under ORGH will return its hub address when referenced.

Page 73of 484


 A symbol declared under ORG will return its cog address when referenced,
 but can return its hub address, instead, if preceded by '@':

 COGINIT #0,#@newcode


 For immediate-branch and LOC address operands, "#" is used before the
 address. In cases where there is an option between absolute and relative
 addressing, the assembler will choose absolute addressing when the branch
 crosses between cog and hub domains, or relative addressing when the
 branch stays in the same domain. Absolute addressing can be forced by
 following "#" with "\".

Page 74of 484

12.7) Launching Cogs with SpinMethod at StackPointer

Cogspin(CogNum,Spin_Method(<(parameters)>,@stack)

returns cogID if started and running or -1 if no cog free

Note: Followin Stack Space was for P1 assignments
Stack Space should be over estimated and then "Stack Space Tool" can be used to determine
actual size of stack required
2 longs for return address
1 long for return result
1 long for each method parameter
1 long for each local variable
1 long for each intermediate concurrent calculation

Page 75of 484

12.8) Launching Cogs with Assembly Program
The COGINIT instruction is used to start cogs from a PASM program:
COGINIT D/#,S/# {WC}

D/# = %0_x_xxxx The target cog loads its own registers $000..$1F7 from the hub,
starting at address S/#, then begins execution at address $000.
 %1_x_xxxx The target cog begins execution at address S/#.
 %x_0_CCCC The target cog's ID is %CCCC.
 %x_1_xxx0 If a cog is free (stopped), then start it.
 To know if this succeeded, D must be a register and WC must be
used. If successful, C will be cleared and D will be over-
written with the target cog's ID. Otherwise, C will be set and D will be overwritten with $F.
 %x_1_xxx1 If an even/odd cog pair is free (stopped), then start them.
To know if this succeeded, D must be a register and WC must be
used. If successful, C will be cleared and D will be over-
written with the even/lower target cog's ID. Otherwise, C will be
set and D will be overwritten with $F.

S/# = address This value is either the hub address from which the target cog
Will load from, or it is the cog/hub address from which the target
Cog will begin executing at, depending on D[5]. This 32-bit value
Will be written into the target cog's PTRB register.

If COGINIT is preceded by SETQ, the SETQ value will be written into the target cog's PTRA register. This is
intended as a convenient means of pointing the target cog's program to some runtime data structure or
passing it a 32-bit parameter. If no SETQ is used, the target cog's PTRA register will be cleared to zero.

COGINIT #1,#$100 'load and start cog 1 from $100

COGINIT #%1_0_0101,PTRA 'start cog 5 at PTRA

SETQ ptra_val 'ptra_val will go into target cog's PTRA register
COGINIT #%0_1_0000,addr 'load and start a free cog at addr

COGINIT #%1_1_0001,addr 'start a pair of free cogs at addr (lookup RAM sharing)

COGINIT id,addr WC '(id=$30) start a free cog at addr, C=0 and id=cog if okay

COGID myID 'reload and restart me at PTRB
COGINIT myID,PTRB

The COGSTOP instruction is used to stop cogs. The 4 LSB's of the D/# operand supply the target cog ID.

COGSTOP #0 'stop cog 0

COGID myID 'stop me
COGSTOP myID

Page 76of 484

A cog can discover its own ID by doing a COGID instruction, which will return its ID into D[3:0], with
upper bits cleared. This is useful, in case the cog wants to restart or stop itself, as shown above.

If COGID is used with WC, it will not overwrite D, but will return the status of cog D/# into C, where C=0
indicates the cog is free (stopped or never started) and C=1 indicates the cog is busy (started).

COGID ThatCog WC 'C=1 if ThatCog is busy

Page 77of 484

12.1_Example_WRD_COGINIT_COGEXEC_NEW
Demonstrate Launching Cog wit COGINIT with COEXEC_NEW(start next available cog)

12.2_Example_WRD_COGINIT_COGEXEC_CogID
Demonstrate Launching Cog With COGINIT and COGEXEC+COG_ID(specific cog value)

12.3_Example_WRD_COGINIT_HUBEXEC
Demonstrate Launching Cog in HUB usin ORGH

12.4_Example_WRD_REGLOAD
Demonstrat Running Code in same Cog as Spin

12.5_Example_WRD_8CogSpin_Demo
 Demonstrates 8 cogs run separately. (1k resistor with LED P0-p7)

12.6_Example_WRD_8CogSpin_Demo_Rev
Demonstrates 8 cogs run separately. (1k resistor with LED P0-p7) different order run.

Page 78of 484

13.0) Debug for Testing and Troubleshooting
The Spin2 compiler contains a stealthy debugger program that can be automatically downloaded with

your application. It uses the last 16KB of RAM plus a few bytes for each Spin2 DEBUG statement and one

instruction for each PASM DEBUG statement. You place DEBUG statements in your application which

contain output commands that will serially transmit the state of variables and equations as your

application runs. Each time a DEBUG statement is encountered during execution, the debugger is

invoked and it outputs the message for that statement. Debugging is initiated by adding the Ctrl key to

the usual F10 to 'run' or F11 to 'program'. This compiles your application with all the DEBUG

statements, adds the debugger to the download, and then brings up the DEBUG Output window which

begins receiving messages at the start of your application. DEBUG can be used in Spin2 or PASM.

13.1) Things to know about the DEBUG system

 To use the debugger, you must configure at least a 10 MHz clock derived from a crystal

or external input. You cannot use RCFAST or RCSLOW.

 The debugger occupies the top 16 KB of hub RAM, remapped to $FC000..$FFFFF and

write-protected. The hub RAM at $7C000..$7FFFF will no longer be available.

 Data defining each DEBUG statement is stored within the debugger image in the top 16

KB of RAM, minimizing impact on your application code.

 In Spin2, each DEBUG statement adds three bytes, plus any code needed to reference

variables and resolve run-time expressions used in the DEBUG statement.

 In PASM, each DEBUG statement adds one instruction (long).

 DEBUG statements are ignored by the compiler when not compiling for DEBUG mode,

so you don't need to comment them out when debugging is not in use.

 If no DEBUG statements exist in your application, you will still get notification messages

when cogs are started.

 Debugging is invoked by pressing the CTRL key before the usual F9..F11 keys, which

compile, download, and program to flash.

 During execution, as DEBUG statements are encountered, text messages are sent out

serially on P62 at 2 Mbaud in 8-N-1 format.

 DEBUG messages always start with "CogN ", where N is the cog number, followed by

two spaces, and they always end with CR+LF (new line).

 Up to 255 DEBUG statements can exist within your application, since the BRK

instruction is used to interrupt and select the particular DEBUG statement definition.

 You can define several symbols to modify debugger behavior: DEBUG_COG,

DEBUG_DELAY, DEBUG_PIN, DEBUG_TIMESTAMP, etc. See table.

 Each time a debug-enabled cog is started, a debug message is output to indicate the cog

number, code address (PTRB), parameter (PTRA), and 'load' or 'jump' mode.

 For Spin2, DEBUG statements can output expression and variable values, hub

byte/word/long arrays, and register arrays.

 For PASM, DEBUG statements can output register values/arrays, hub byte/word/long

arrays, and constants. PASM syntax is used: implied register or #immediate.

 DEBUG output data can be displayed in decimal, hex, or binary, signed or unsigned, and

sized to byte, word, long, or auto. Hub character strings are also supported.

Page 79of 484

 DEBUG output commands show both the source and value: "DEBUG(UHEX(x))" might

output "x = $123".

 DEBUG commands which output data can have multiple sets of parameters, separated by

commas: SDEC(x,y,z) and LSTR(ptr1,size1,ptr2,size2)

 Commas are automatically output between data: "DEBUG(UHEX_BYTE(d,e,f),

SDEC(g))" might output "d = $45, e = $67, f = $89, g = -1_024".

 All DEBUG output commands have alternate versions, ending in "_" which output only

the value: DEBUG(UHEX_BYTE_(d,e,f)) might output "$45, $67, $89".

 DEBUG statements can contain comma-separated strings and characters, aside from

commands: DEBUG("We got here! Oh, Nooooo...", 13, 13)

 DEBUG statements may contain IF() and IFNOT() commands to gate further output

within the statement. An initial IF/IFNOT will gate the entire message.

 DEBUG statements may contain a final DLY(milliseconds) command to slow down a

cog's messaging, since messages may stream at the rate of ~10,000 per second.

 DEBUG serial output can be redirected to a different pin, at a different baud rate, for

displaying/logging elsewhere.

 LOCK[15] is allocated by the debugger and used among all cogs during their debug

interrupts to time-share the DEBUG serial-transmit pin.

 Command-line supports DEBUG-only mode: PNut -debug {CommPort if not 1}

{BaudRate if not 2_000_000}

Page 80of 484

DEBUG Statement (v=100,

BYTE[a]=1,2,3,4,5)

DEBUG Message Output Note

DEBUG("`LOGIC MyDisplay

SAMPLES ", SDEC_(v))

Cog0 `LOGIC MyDisplay

SAMPLES 100

Regular DEBUG syntax can drive DEBUG

displays, but it's not optimal.

DEBUG(`LOGIC MyDisplay

SAMPLES 100)

`LOGIC MyDisplay

SAMPLES 100

DEBUG-display syntax is simpler and

'CogN' is omitted in the output.

DEBUG(`LOGIC MyDisplay

SAMPLES `(v))

`LOGIC MyDisplay

SAMPLES 100

Decimal numbers are output using

`(value) notation. Short for SDEC_.

DEBUG(`LOGIC MyDisplay

SAMPLES `$(v))

`LOGIC MyDisplay

SAMPLES $64

Hex numbers are output using `$(value)

notation. Short for UHEX_.

DEBUG(`LOGIC MyDisplay

SAMPLES `%(v))

`LOGIC MyDisplay

SAMPLES %1100100

Binary numbers are output using

`%(value) notation. Short for UBIN_.

DEBUG(`LOGIC MyDisplay TITLE

'`#(v)')

`LOGIC MyDisplay TITLE

'd'

Characters are output using `#(value)

notation.

DEBUG(`MyDisplay

`UDEC_BYTE_ARRAY_(@a,5))

`MyDisplay 1, 2, 3, 4, 5 Regular DEBUG commands can follow the

backtick, as well.

Page 81of 484

13.2) Simple DEBUG example in Spin2

CON _clkfreq = 10_000_000 'set 10 MHz clock (assumes 20 MHz crystal)

PUB go() | i

 REPEAT i FROM 0 TO 9 'count from 0 to 9

 DEBUG(UDEC(i)) 'debug, output i

When run with Ctrl-F10, the Debug window opens and this is what appears:

Cog0 INIT $0000_0000 $0000_0000 load

Cog0 INIT $0000_0D6C $0000_10BC jump

Cog0 i = 0

Cog0 i = 1

Cog0 i = 2

Cog0 i = 3

Cog0 i = 4

Cog0 i = 5

Cog0 i = 6

Cog0 i = 7

Cog0 i = 8

Cog0 i = 9

Page 82of 484

In the first line of the report, you see Cog0 loading the Spin2 set-up code from $00000. In the

second line, the Spin2 interpreter is launched from $00D58 with its stack space starting at

$0101C. After that, the Spin2 program is running and you see 'i' iterating from 0 to 9.

If you change the "9" to "99" in the REPEAT, data will scroll too fast to read, but by adding a

DLY command at the end of the DEBUG statement, you can slow down the output:

 debug(udec(i), dly(250)) 'debug, output i with a 250ms delay after each report

Let's say you want to limit the messages being output, so that only odd values of 'i' are shown.

You could use an IF at the start of your DEBUG statement to check the least-significant bit of 'i'.

When the IF is false, no message will be output, causing only the odd values of i to be shown:

 debug(if(i & 1), udec(i), dly(250)) 'debug, output only odd i values with a 250ms delay after

each report

Page 83of 484

13.3) Simple DEBUG example in PASM

CON _clkfreq = 10_000_000 'set 10 MHz clock (assumes 20 MHz crystal)

DAT ORG

 MOV i,#9 'set i to 9

loop DEBUG (UHEX_LONG(i)) 'debug, output i in hex

 DJNF i,#loop 'decrement i and loop if not -1

 JMP #$ 'don't go wandering off, stay here

i RES 1 'reserve one register as 'i'

When run with Ctrl-F10, the Debug window opens and this is what appears:

Cog0 INIT $0000_0000 $0000_0000 load

Cog0 i = $0000_0009

Cog0 i = $0000_0008

Cog0 i = $0000_0007

Cog0 i = $0000_0006

Cog0 i = $0000_0005

Cog0 i = $0000_0004

Cog0 i = $0000_0003

Page 84of 484

Cog0 i = $0000_0002

Cog0 i = $0000_0001

Cog0 i = $0000_0000

In the first line of the report, you see Cog0 loading our PASM program from $00000. After that,

the program runs and you see 'i' iterating from 9 down to 0.

If you change the "9" to "99" in the MOV instruction and you'd like to slow things down, add a

DLY command to the DEBUG statement and be sure to express the milliseconds as #250, since a

plain 250 would be understood as register 250:

 debug (uhex_long(i), dly(#250)) 'debug, output i in hex and delay for 250ms after each

report

Page 85of 484

There are two steps to using graphical DEBUG displays. First, they must be instantiated and, second,

they must be fed:

To Use a

Display:

1st 2nd 3rd 4th Note

First,

instantiate

it.

` display_type unknown_symbol keyword(s),

number(s),

string(s)

Unknown_symbol

becomes

instance_name.

Then, feed

it.

` instance_name(s) keyword(s),

number(s), string(s)

Multiple displays can

be fed the same data.

To bring this all together, let's show a sawtooth wave on a SCOPE display:

CON _clkfreq = 10_000_000

PUB go() | i

 debug(`SCOPE MyScope SIZE

254 84 SAMPLES 128)

 debug(`MyScope 'Sawtooth' 0

63 64 10 %1111)

 repeat

 debug(`MyScope `(i & 63))

 i++

 waitms(50)

Step 1 Instanitiate Graphic Display

Page 86of 484

debug(`SCOPE Scope_Name SIZE 254 84 SAMPLES 128) ‘note the backtick “ ` ”

debug(`Scope_Name ‘Sawtooth’ 0 63 64 10 %1111) ‘note strings have single quote ‘Sawtooth’

Step 2 Feed Data to Window (Display)

Debug(`Scope_Name (i & 63))

Debug(`Scope_Name

In the example above, a SCOPE is instantiated called MyScope that is 254 x 84 pixels and shows 128

samples. A width of 254 was chosen since samples are numbered 0..127 and I wanted them to be

spaced at a constant two-pixel pitch (127 * 2 = 254). A height of 84 was chosen so that there would be

10 pixels above and below the waveform, which will have a height of 64 pixels.

A channel called "Sawtooth" is defined which, for the purpose of display, has a bottom value of 0 and a

top value of 63, is 64 pixels tall within that range, and is elevated 10 pixels off the bottom of the scope

window. The %1111 enables top and bottom legend values and top and bottom lines. Within the

REPEAT block, the SCOPE is fed a repeating pattern of 0..63 which forms the sawtooth wave. The SCOPE

updates its display each time it receives a value. If there were eight channels defined, instead of just

one, it would update the display on every eighth value received, drawing all eight channels.

Page 87of 484

13.4) Commands for use in DEBUG statements

Conditionals Details

IF(condition) If condition <> 0 then continue at the next command within the DEBUG

statement, else skip all remaining commands and output CR+LF. If used

as the first command in the DEBUG statement, IF will gate ALL output

for the statement, including the "CogN "+CR+LF. This way, DEBUG

messages can be entirely suppressed, so that you can filter what is

important.

IFNOT(condition) If condition = 0 then continue at the next command within the DEBUG

statement, else skip all remaining commands and output CR+LF. If used

as the first command in the DEBUG statement, IFNOT will gate ALL

output for the statement, including the "CogN "+CR+LF. This way,

DEBUG messages can be entirely suppressed, so that you can filter what

is important.

String Output * Details Output

ZSTR(hub_pointer) Output zero-terminated string at hub_pointer "Hello!"

LSTR(hub_pointer,size) Output 'size' characters of string at hub_pointer "Goodbye."

Decimal Output, unsigned * Details Min Output Max Output

UDEC(value) Output

unsigned

decimal value

0 4_294_967_295

UDEC_BYTE(value) Output byte-

size unsigned

decimal value

0 255

UDEC_WORD(value) Output word-

size unsigned

decimal value

0 65_535

UDEC_LONG(value) Output long-

size unsigned

decimal value

0 4_294_967_295

UDEC_REG_ARRAY(reg_pointer

,size)

Output

register array

as unsigned

0 4_294_967_295

Page 88of 484

decimal

values

UDEC_BYTE_ARRAY(hub_poin

ter,size)

Output hub

byte array as

unsigned

decimal

values

0 255

UDEC_WORD_ARRAY(hub_poi

nter,size)

Output hub

word array as

unsigned

decimal

values

0 65_535

UDEC_LONG_ARRAY(hub_poin

ter,size)

Output hub

long array as

unsigned

decimal

values

0 4_294_967_295

Decimal Output, signed * Details Min Output Max Output

SDEC(value) Output signed

decimal value

-

2_147_483_648

 2_147_483_647

SDEC_BYTE(value) Output byte-

size signed

decimal value

-128 127

SDEC_WORD(value) Output word-

size signed

decimal value

-32_768 32_767

SDEC_LONG(value) Output long-

size signed

decimal value

-

2_147_483_648

 2_147_483_647

SDEC_REG_ARRAY(reg_pointer

,size)

Output

register array

as signed

decimal

values

-

2_147_483_648

 2_147_483_647

SDEC_BYTE_ARRAY(hub_point

er,size)

Output hub

byte array as

signed

-128 127

Page 89of 484

decimal

values

SDEC_WORD_ARRAY(hub_poi

nter,size)

Output hub

word array as

signed

decimal

values

-32_768 32_767

SDEC_LONG_ARRAY(hub_poin

ter,size)

Output hub

long array as

signed

decimal

values

-

2_147_483_648

 2_147_483_647

Hexadecimal Output, unsigned * Details Min Output Max Output

UHEX(value) Output auto-

size unsigned

hex value

$0 $FFFF_FFFF

UHEX_BYTE(value) Output byte-

size unsigned

hex value

$00 $FF

UHEX_WORD(value) Output word-

size unsigned

hex value

$0000 $FFFF

UHEX_LONG(value) Output long-

size unsigned

hex value

$0000_0000 $FFFF_FFFF

UHEX_REG_ARRAY(reg_pointe

r,size)

Output

register array

as unsigned

hex values

$0000_0000 $FFFF_FFFF

UHEX_BYTE_ARRAY(hub_poin

ter,size)

Output hub

byte array as

unsigned hex

values

$00 $FF

UHEX_WORD_ARRAY(hub_poi

nter,size)

Output hub

word array as

unsigned hex

values

$0000 $FFFF

Page 90of 484

UHEX_LONG_ARRAY(hub_poin

ter,size)

Output hub

long array as

unsigned hex

values

$0000_0000 $FFFF_FFFF

Hexadecimal Output, signed * Details Min Output Max Output

SHEX(value) Output auto-

size signed

hex value

-$8000_0000 $7FFF_FFFF

SHEX_BYTE(value) Output byte-

size signed

hex value

-$80 $7F

SHEX_WORD(value) Output word-

size signed

hex value

-$8000 $7FFF

SHEX_LONG(value) Output long-

size signed

hex value

-$8000_0000 $7FFF_FFFF

SHEX_REG_ARRAY(reg_pointer

,size)

Output

register array

as signed hex

values

-$8000_0000 $7FFF_FFFF

SHEX_BYTE_ARRAY(hub_point

er,size)

Output hub

byte array as

signed hex

values

-$80 $7F

SHEX_WORD_ARRAY(hub_poi

nter,size)

Output hub

word array as

signed hex

values

-$8000 $7FFF

SHEX_LONG_ARRAY(hub_poin

ter,size)

Output hub

long array as

signed hex

values

-$8000_0000 $7FFF_FFFF

Binary Output, unsigned * Details Min Output Max Output

UBIN(value) Output auto-

size unsigned

binary value

%0 %11111111_11111111_1

1111111_11111111

Page 91of 484

UBIN_BYTE(value) Output byte-

size unsigned

binary value

%00000000 %11111111

UBIN_WORD(value) Output word-

size unsigned

binary value

%00000000_00

000000

%11111111_11111111

UBIN_LONG(value) Output long-

size unsigned

binary value

%00000000_00

000000_000000

00_00000000

%11111111_11111111_1

1111111_11111111

UBIN_REG_ARRAY(reg_pointer,

size)

Output

register array

as unsigned

binary values

%00000000_00

000000_000000

00_00000000

%11111111_11111111_1

1111111_11111111

UBIN_BYTE_ARRAY(hub_point

er,size)

Output hub

byte array as

unsigned

binary values

%00000000 %11111111

UBIN_WORD_ARRAY(hub_poin

ter,size)

Output hub

word array as

unsigned

binary values

%00000000_00

000000

%11111111_11111111

UBIN_LONG_ARRAY(hub_point

er,size)

Output hub

long array as

unsigned

binary values

%00000000_00

000000_000000

00_00000000

%11111111_11111111_1

1111111_11111111

Binary Output, signed * Details Min Output Max Output

SBIN(value) Output auto-

size signed

binary value

-

%10000000_00

000000_000000

00_00000000

%01111111_11111111_1

1111111_11111111

SBIN_BYTE(value) Output byte-

size signed

binary value

-%10000000 %01111111

SBIN_WORD(value) Output word-

size signed

binary value

-

%10000000_00

000000

%01111111_11111111

Page 92of 484

SBIN_LONG(value) Output long-

size signed

binary value

-

%10000000_00

000000_000000

00_00000000

%01111111_11111111_1

1111111_11111111

SBIN_REG_ARRAY(reg_pointer,

size)

Output

register array

as signed

binary values

-

%10000000_00

000000_000000

00_00000000

%01111111_11111111_1

1111111_11111111

SBIN_BYTE_ARRAY(hub_point

er,size)

Output hub

byte array as

signed binary

values

-%10000000 %01111111

SBIN_WORD_ARRAY(hub_poin

ter,size)

Output hub

word array as

signed binary

values

-

%10000000_00

000000

%01111111_11111111

SBIN_LONG_ARRAY(hub_point

er,size)

Output hub

long array as

signed binary

values

-

%10000000_00

000000_000000

00_00000000

%01111111_11111111_1

1111111_11111111

Delay to Pace

Messages

Details

DLY(milliseconds) Delay for some milliseconds to slow down continuous message outputs

for this cog. DLY is only allowed as the last command in a DEBUG

statement, since it releases LOCK[15] before the delay, permitting other

cogs to capture LOCK[15] so that they may take control of the DEBUG

serial-transmit pin and output their own DEBUG messages.

* These commands accept multiple parameters, or multiple sets of parameters. Alternate

commands with the same names, but ending in "_", are also available for value-only output (i.e.

ZSTR_, LSTR_, UDEC_).

Page 93of 484

13.5) Symbols you can define to modify DEBUG behavior

CON Symbol Default Purpose

DEBUG_COGS %11111111 Selects which cogs have debug interrupts enabled.

Bits 7..0 enable debugging interrupts in cogs 7..0.

DEBUG_DELAY 0 Sets a delay in milliseconds before your

application runs and DEBUG messages start

appearing.

DEBUG_PIN 62 Sets the DEBUG serial output pin. For DEBUG

windows to open, DEBUG_PIN must be 62.

DEBUG_BAUD 2_000_000 Sets the DEBUG baud rate.

DEBUG_TIMESTAMP undefined By declaring this symbol, each DEBUG message

will be time-stamped with the 64-bit CT value.

DEBUG_LOG_SIZE 0 Sets the maximum size of the 'DEBUG.log' file

which will collect DEBUG messages. A value of 0

will inhibit log file generation.

DEBUG_LEFT (dynamic) Sets the left screen coordinate where the DEBUG

message window will appear.

DEBUG_TOP (dynamic) Sets the top screen coordinate where the DEBUG

message window will appear.

DEBUG_WIDTH (dynamic) Sets the width of the DEBUG message window.

DEBUG_HEIGHT (dynamic) Sets the height of the DEBUG message window.

DEBUG_DISPLAY_LEFT 0 Sets the overall left screen offset where any

DEBUG displays will appear (adds to 'POS' x

coordinate in each DEBUG display).

DEBUG_DISPLAY_TOP 0 Sets the overall top screen offset where any

DEBUG displays will appear (adds to 'POS' y

coordinate in each DEBUG display).

DEBUG_WINDOWS_OFF 0 Disables any DEBUG windows from opening

after downloading, if set to a non-zero value.

Page 94of 484

13.6) Packed-Data Modes
Packed-data modes are used to efficiently convey sub-byte data types, by having the host side unpack

them from bytes, words, or longs it receives. As well, bytes can be sent within words and longs, and

words can be sent within longs for some efficiency improvement.

To establish packed-data operation, you must specify one of the modes listed below, followed by

optional 'ALT' and 'SIGNED' keywords:

packed_mode {ALT} {SIGNED}

The ALT keyword will cause bits, double-bits, or nibbles, within each byte sent, to be reordered on the

host side, within each byte. This simplifies cases where the raw data you are sending has its bitfields out-

of-order with respect to the DEBUG display you are using. This is most-likely to be needed for bitmap

data that was composed in standard formats.

The SIGNED keyword will cause all unpacked data values to be sign-extended on the host side.

Packed-Data

Modes

Descriptions Final

Values

Final Values

if SIGNED

LONGS_1BIT Each value received is translated into 32

separate 1-bit values, starting from the LSB of

the received value.

0..1 -1..0

LONGS_2BIT Each value received is translated into 16

separate 2-bit values, starting from the LSBs

of the received value.

0..3 -2..1

LONGS_4BIT Each value received is translated into 8

separate 4-bit values, starting from the LSBs

of the received value.

0..15 -8..7

LONGS_8BIT Each value received is translated into 4

separate 8-bit values, starting from the LSBs

of the received value.

0..255 -128..127

LONGS_16BIT Each value received is translated into 2

separate 16-bit values, starting from the LSBs

of the received value.

0..65,535 -

32,768..32,767

Page 95of 484

WORDS_1BIT Each value received is translated into 16

separate 1-bit values, starting from the LSB of

the received value.

0..1 -1..0

WORDS_2BIT Each value received is translated into 8

separate 2-bit values, starting from the LSBs

of the received value.

0..3 -2..1

WORDS_4BIT Each value received is translated into 4

separate 4-bit values, starting from the LSBs

of the received value.

0..15 -8..7

WORDS_8BIT Each value received is translated into 2

separate 8-bit values, starting from the LSBs

of the received value.

0..255 -128..127

BYTES_1BIT Each value received is translated into 8

separate 1-bit values, starting from the LSB of

the received value.

0..1 -1..0

BYTES_2BIT Each value received is translated into 4

separate 2-bit values, starting from the LSBs

of the received value.

0..3 -2..1

BYTES_4BIT Each value received is translated into 2

separate 4-bit values, starting from the LSBs

of the received value.

0..15 -8..7

Page 96of 484

13.7) Graphical DEBUG Displays

DEBUG messages can invoke special graphical DEBUG displays which are built into the tool.

These graphical displays each take the form of a unique window. Once instantiated, displays can

be continuously fed data to generate animated visualizations. These displays are very handy for

development and debugging, as various data types can be viewed in their native contexts. Up to

32 graphical displays can be running simultaneously.

Currently, the following graphical DEBUG displays are implemented, but more will be added in the

future:

Display

Types

Descriptions

LOGIC Logic analyzer with single and multi-bit labels, 1..32 channels, can trigger on pattern

SCOPE Oscilloscope with 1..8 channels, can trigger on level with hysteresis

SCOPE_XY XY oscilloscope with 1..8 channels, persistence of 0..512 samples, polar mode, log scale

mode

FFT Fast Fourier Transform with 1..8 channels, 4..2048 points, windowed results, log scale

mode

SPECTRO Spectrograph with 4..2048-point FFT, windowed results, phase-coloring, and log scale

mode

PLOT General-purpose plotter with cartesian and polar modes

TERM Text terminal with up to 300 x 200 characters, 6..200 point font size, 4 simultaneous

color schemes

BITMAP Bitmap, 1..2048 x 1..2048 pixels, 1/2/4/8/16/32-bit pixels with 19 color systems, 15

direction/autoscroll modes, independent X and Y pixel size of 1..256

MIDI Piano keyboard with 1..128 keys, velocity depiction, variable screen scale

Page 97of 484

When a DEBUG message contains a backtick (`) character (ASCII $60), a string, containing everything

from the backtick to the end of the message, is sent to the graphical DEBUG display parser. The parser

looks for several different element types, treating any commas as whitespace:

Element Type Example Description

display_type LOGIC, SCOPE, PLOT,

BITMAP

This is the formal name of the graphical DEBUG display

type you wish to instantiate.

unknown_symbol MyLogicDisplay Each graphical DEBUG display Instance must be given a

unique symbolic name.

instance_name MyLogicDisplay Once instantiated, a graphical DEBUG display instance is

referenced by its symbolic name.

keyword TITLE, POS, SIZE,

SAMPLES

Keywords are used to configure displays. They might be

followed by numbers, strings, and other keywords.

number 1024, $FF, %1010 Numbers can be expressed in decimal, hex ($), and binary

(%).

string 'Here is a string' Strings are expressed within single-quotes.

Before getting into how all this fits together, we need to go over some special DEBUG-display syntax

that can be used for displays. This syntax is invoked when the first character in the DEBUG statement is

the backtick. This causes everything in the DEBUG statement to be viewed as a string, except when

subsequent backticks act as 'escape' characters to allow normal or shorthand DEBUG commands.

Page 98of 484

DEBUG Statement (v=100, BYTE[a]=1,2,3,4,5) DEBUG Message Output Note

DEBUG("`LOGIC MyDisplay SAMPLES ",

SDEC_(v))

Cog0 `LOGIC MyDisplay

SAMPLES 100

Regular DEBUG syntax can drive DEBUG

displays, but it's not optimal.

DEBUG(`LOGIC MyDisplay SAMPLES 100) `LOGIC MyDisplay

SAMPLES 100

DEBUG-display syntax is simpler and 'CogN' is

omitted in the output.

DEBUG(`LOGIC MyDisplay SAMPLES `(v)) `LOGIC MyDisplay

SAMPLES 100

Decimal numbers are output using `(value)

notation. Short for SDEC_.

DEBUG(`LOGIC MyDisplay SAMPLES `$(v)) `LOGIC MyDisplay

SAMPLES $64

Hex numbers are output using `$(value)

notation. Short for UHEX_.

DEBUG(`LOGIC MyDisplay SAMPLES `%(v)) `LOGIC MyDisplay

SAMPLES %1100100

Binary numbers are output using `%(value)

notation. Short for UBIN_.

DEBUG(`LOGIC MyDisplay TITLE '`#(v)') `LOGIC MyDisplay TITLE

'd'

Characters are output using `#(value) notation.

DEBUG(`MyDisplay

`UDEC_BYTE_ARRAY_(@a,5))

`MyDisplay 1, 2, 3, 4, 5 Regular DEBUG commands can follow the

backtick, as well.

There are two steps to using graphical DEBUG displays. First, they must be instantiated and, second,

they must be fed:

To Use a

Display:

1st 2nd 3rd 4th Note

First,

instantiate

it.

` display_type unknown_symbol keyword(s),

number(s),

string(s)

Unknown_symbol

becomes

instance_name.

Then, feed

it.

` instance_name(s) keyword(s),

number(s), string(s)

Multiple displays can

be fed the same data.

Page 99of 484

Note: The backtick is critical and the variables must have single quotes

debug(`BobTerm 0 '`udec(x)' 9 '`udec(y)') ‘gives decimal value

debug(`BobTerm 0 '`uhex(x)' 9 '`uhex(y)') ‘gives hex value

debug(`BobTerm 0 '`ubin(x)' 9 '`ubin(y)') ‘gives binary value

debug(`BobTerm 0 'Var x = `(x)' 9 'Var y = `(y)') ‘gives decimal value

debug(`BobTerm 0 '`$(x)' 9 '`$(y)') ‘gives hex value

debug(`BobTerm 0 '`%(x)' 9 '`%(y)') ‘gives binary value

Page 100of 484

CON _clkfreq = 10_000_000

PUB go() | i

 debug(`SCOPE MyScope SIZE 254 84 SAMPLES 128)

 debug(`MyScope 'Sawtooth' 0 63 64 10 %1111)

 repeat

 debug(`MyScope `(i & 63))

 i++

 waitms(50)

In the example above, a SCOPE is instantiated called MyScope that is 254 x 84 pixels and shows 128

samples. A width of 254 was chosen since samples are numbered 0..127 and I wanted them to be

spaced at a constant two-pixel pitch (127 * 2 = 254). A height of 84 was chosen so that there would be

10 pixels above and below the waveform, which will have a height of 64 pixels. A channel called

"Sawtooth" is defined which, for the purpose of display, has a bottom value of 0 and a top value of 63, is

64 pixels tall within that range, and is elevated 10 pixels off the bottom of the scope window. The %1111

enables top and bottom legend values and top and bottom lines. Within the REPEAT block, the SCOPE is

fed a repeating pattern of 0..63 which forms the sawtooth wave. The SCOPE updates its display each

time it receives a value. If there were eight channels defined, instead of just one, it would update the

display on every eighth value received, drawing all eight channels.

Page 101of 484

13.8) Logic Analyzer Display
Logic analyzer with single and multi-bit labels, 1..32 channels, can trigger on pattern

CON _clkfreq = 10_000_000

PUB go() | i

 debug(`LOGIC MyLogic SAMPLES

32 'Low' 3 'Mid' 2 'High')

 debug(`MyLogic TRIGGER $07 $04

HOLDOFF 2)

 repeat

 debug(`MyLogic `(i & 63))

 i++

 waitms(25)

LOGIC Instantiation Description Default

TITLE 'string' Set the window caption to 'string'. <none>

POS left top Set the window position. 0, 0

SAMPLES 4_to_2048 Set the number of samples to track and

display.

32

SPACING 2_to_32 Set the sample spacing. The width of the

display will be SAMPLES * SPACING.

8

RATE 1_to_2048 Set the number of samples (or triggers, if

enabled) before each display update.

1

Page 102of 484

LINESIZE 1_to_7 Set the line size. 1

TEXTSIZE 6_to_200 Set the legend text size. Height of text

determines height of logic levels.

editor text size

COLOR back_color

{grid_color}

Set the background and grid colors *. BLACK,

GREY 4

'name' {1_to_32 {color}} Set the first/next channel or group name,

optional bit count, optional color *.

1, default color

packed_data_mode Enable packed-data mode. See description at

end of this section.

<none>

LOGIC Feeding Description Default

TRIGGER mask match

sample_offset

Trigger on (data & mask) = match. If mask =

0, trigger is disabled.

0, 1,

SAMPLES / 2

HOLDOFF 2_to_2048 Set the minimum number of samples required

from trigger to trigger.

SAMPLES

data Numerical data is applied LSB-first to the

channels.

CLEAR Clear the sample buffer and display, wait for

new data.

SAVE {WINDOW}

'filename'

Save a bitmap file (.bmp) of either the entire

window or just the display area.

CLOSE Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED /

MAGENTA / YELLOW / GREY followed by an optional 0..15 for brightness (default is 8).

The LOGIC display can be used to display data that was captured at high speed. In the example

below, the P2 is generating 8-N-1 serial at 333 Mbaud using a smart pin. This bit stream can be

captured by the streamer. On every clock, the streamer will record the smart pin's IN signal and

its output state, as read from an adjacent pin. Every time it gets four two-bit sample sets, it does

an RFBYTE to save them to hub RAM, forming contiguous bytes, words, and longs. By

invoking the LONGS_2BIT packed-data mode, we can have the LOGIC display unpack the two-

bit sample sets from longs, yielding 16 sets per long.

Page 103of 484

13.9) Scope Display
SCOPE Display Oscilloscope with 1..8 channels, can trigger on level with hysteresis

CON _clkfreq = 100_000_000

PUB go() | a, af, b, bf

 debug(`SCOPE MyScope)

 debug(`MyScope 'FreqA' -1000 1000 100 136 15

MAGENTA)

 debug(`MyScope 'FreqB' -1000 1000 100 20 15

ORANGE)

 debug(`MyScope TRIGGER 0 HOLDOFF 2)

 repeat

 a := qsin(1000, af++, 200)

 b := qsin(1000, bf++, 99)

 debug(`MyScope `(a,b))

 waitus(200)

SCOPE Instantiation Description Default

TITLE 'string' Set the window caption to 'string'. <none>

POS left top Set the window position. 0, 0

SIZE width height Set the display size (32..2048 x 32..2048) 255, 256

SAMPLES 16_to_2048 Set the number of samples to track and display. 256

Page 104of 484

RATE 1_to_2048 Set the number of samples (or triggers, if

enabled) before each display update.

1

DOTSIZE 0_to_32 Set the dot size in pixels for showing exact

sample points.

0

LINESIZE 0_to_32 Set the line size in half-pixels for connecting

sample points.

3

TEXTSIZE 6_to_200 Set the legend text size. editor text size

COLOR back_color {grid_color} Set the background and grid colors *. BLACK, GREY 4

packed_data_mode Enable packed-data mode. See description at end

of this section.

<none>

Page 105of 484

SCOPE Feeding Description Default

'name' {min {max {y_size {y_base

{legend {color}}}}}}

Set first/next channel name, min value, max

value, y size, y base, legend, and color *. Legend

is %abcd, where %a to %d enable max legend,

min legend, max line, min line.

full, no legend,

default color

TRIGGER channel {arm_level

{trigger_level {offset}}}

Set the trigger channel, arm level, trigger level,

and right offset. If channel=-1, disabled.

-1, -1, 0, width / 2

HOLDOFF 2_to_2048 Set the minimum number of samples required

from trigger to trigger.

SAMPLES

data Numerical data is applied to the channels in

ascending order.

CLEAR Clear the sample buffer and display, wait for new

data.

SAVE {WINDOW} 'filename' Save a bitmap file (.bmp) of either the entire

window or just the display area.

CLOSE Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED / MAGENTA /

YELLOW / GREY followed by an optional 0..15 for brightness (default is 8).

Page 106of 484

13.10) Scope_XY Display
SCOPE_XY Display XY oscilloscope with 1..8 channels, persistence of 1..512 samples, polar mode,

log scale mode

CON _clkfreq = 100_000_000

PUB go() | i

 debug(`SCOPE_XY MyXY RANGE

500 POLAR 360 'G' 'R' 'B')

 repeat

 repeat i from 0 to 500

 debug(`MyXY `(i, i, i, i+120, i,

i+240))

 waitms(5)

SCOPE_XY Instantiation Description Default

TITLE 'string' Set the window caption to 'string'. <none>

POS left top Set the window position. 0, 0

SIZE radius Set the display radius in pixels. 128

RANGE 1_to_7FFFFFFF Set the unit circle radius for incoming data $7FFFFFFF

SAMPLES 0_to_512 Set the number of samples to track and display

with persistence. Use 0 for infinite

persistence.

256

RATE 1_to_512 Set the number of samples before each display

update.

1

Page 107of 484

DOTSIZE 2_to_20 Set the dot size in half-pixels for showing

sample points.

6

TEXTSIZE 6_to_200 Set the legend text size. editor text size

COLOR back_color

{grid_color}

Set the background and grid colors *. BLACK,

GREY 4

POLAR {twopi {offset}} Set polar mode, twopi value, and offset. For a

twopi value of $100000000 or -$100000000,

use 0 or -1.

$100000000, 0

LOGSCALE Set log-scale mode to magnify points within

the unit circle.

<off>

'name' {color} Set the first/next channel name and optionally

assign it a color *.

default color

packed_data_mode Enable packed-data mode. See description at

end of this section.

<none>

SCOPE_XY Feeding Description Default

x y X-Y data pairs are applied to the channels in

ascending order. In polar mode, x=length and

y=angle.

CLEAR Clear the sample buffer and display, wait for

new data.

SAVE {WINDOW}

'filename'

Save a bitmap file (.bmp) of either the entire

window or just the display area.

CLOSE Close the window.

* Color is rgb24 value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED /

MAGENTA / YELLOW / GREY followed by an optional 0..15 for brightness (default is 8).

Page 108of 484

13.11) TERM Display

Terminal for displaying text

CON _clkfreq = 10_000_000

PUB go() | i

 debug(`TERM MyTerm SIZE 9 1

TEXTSIZE 40)

 repeat

 repeat i from 50 to 60

 debug(`MyTerm 1 'Temp = `(i)')

 waitms(500)

TERM Instantiation Description Default

TITLE 'string' Set the window caption to 'string'. <none>

POS left top Set the window position. 0, 0

SIZE columns rows Set the number of terminal columns (1..256) and

terminal rows (1..256).

40, 20

TEXTSIZE size Set the terminal text size (6..200). editor text

size

COLOR text_color

back_color ...

Set text-color and background-color combos

#0..#3. *

default

colors

BACKCOLOR color Set the display background color. * BLACK

UPDATE Set UPDATE mode. The display will only be

updated when fed an 'UPDATE' command.

automatic

update

TERM Feeding Description Default

Page 109of 484

character 0 = Clear terminal display and home cursor.

1 = Home cursor.

2 = Set column to next character value.

3 = Set row to next character value.

4 = Select color combo #0.

5 = Select color combo #1.

6 = Select color combo #2.

7 = Select color combo #3.

8 = Backspace.

9 = Tab to next 8th column.

13+10 or 13 or 10 = New line.

32..255 = Printable character.

'string' Print string.

CLEAR Clear the display to the background color.

UPDATE Update the window with the current text screen.

Used in UPDATE mode.

SAVE {WINDOW}

'filename'

Save a bitmap file (.bmp) of either the entire

window or just the display area.

CLOSE Close the window.

* Color is a modal value, else BLACK / WHITE or ORANGE / BLUE / GREEN / CYAN / RED

/ MAGENTA / YELLOW / GREY followed by an optional 0..15 for brightness (default is 8).

Page 110of 484

13.1_Example_WRD_DEBUG_zstr_lstr_udec_ubin_uhex
{{13.1_Example_WRD_DEBUG_zstr_lstr_udec_ubin_uhex}}
{{
ZSTR(hub_pointer) Output zero-terminated string at hub_pointer "Hello Propeller"
LSTR(hub_pointer,size) Output 'size' characters of string at hub_pointer "Hello"
UDEC(value) Output unsigned decimal value 0 .. 4_294_967_295
UHEX(value) Output auto-size unsigned hex value $0 .. $FFFF_FFFF
UBIN(value) Output auto-size unsigned binary value
%0..%11111111_11111111_11111111_11111111
}}
Con
 _clkfreq = 200_000_000
Var
long varMsg
long varDec
long varBin
long varHex
Pub main()|x,y
 varMsg := string("Hello Parallax") 'returns address of string
 varDec := 5432
 varBin := %1111_1111
 varHex := $F123

 debug("Output a Message Header")
 debug(zstr(@MyString)) 'output zero terminated string
 debug(Lstr(@MyString,5)) 'output the 5 characters at adress @MyString
 debug(zstr(varMsg))
 debug(udec(varDec))
 debug(ubin(varBin))
 debug(uhex(varHex))
DAT
MyString Byte "Hello Propeller",0

Page 111of 484

14.0) Program Structure

14.0.1) Propeller Tool (IDE)
There are several programming tools other than the “Propeller Tool” but this document will only use the
“Propeller Tool” with Parallax SPIN and PASM (Propeller Assembly Machine Language).

The “Propeller Tool” is Parallax IDE (integrated development environment) allows the programs to have

code and document comments to organize the documentation:

 ‘ single line code comment (apostrophe)
‘’ single line document comment (two apostrophe not quotation)
{…} Multi Line Code Comment
{{…}} Multi Line document comment

Full Source all code and comments
Condensed code and Inline comments
Summary Constants, Variables, Methods (no comments)
Documentation Memeory usage comments and Mehtods

The “Propeller Tool” Compiles the user program from “Top Object” selected. Objects are compiled from
“Libray” file folder and the current directory the “Top Object” is stored in (current working directory)

The default template file under “EDIT→PREFERNCES” can be used to customize User definitions for
“New Projects”.

Edit →Find/Replace useful for editing files case is not used by the compiler this has advantages and
disadvantages.

Page 112of 484

14.0.1.1) Spin Propeller Tool (IDE) Compiler Directives

CON VAR PUB PRI DAT OBJ

14.0.2) PASM Propeller Tool (IDE) Compilet Directives

ORG Adjust Compile-time cog Address Pointer

FIT validate that instruction/data fit in cog (511registers)

RES reserve next long(s) for symbol

$ current address here JMP #here = < Symbol> JMP #$

$+/- value offset to current address JMP #$-4 or JMP #$+4

Page 113of 484

14.0.2) P2 Memory Organization
Cogs use 20-bit addresses for program counters (PC). This affords an execution space of up to

1MB. Depending on the value of a cog's PC, an instruction will be fetched from either its register RAM,

its lookup RAM, or the hub RAM.

PC Address Instruction Source Memory Width PC Increment

$00000..$001FF cog register RAM 32 bits 1

$00200..$003FF cog lookup RAM 32 bits 1

$00400..$FFFFF hub RAM 8 bits 4

REGISTER EXECUTION
When the PC is in the range of $00000 and $001FF, the cog is fetching instructions from cog register RAM. This is
commonly referred to as "cog execution mode." There is no special consideration when taking branches to a cog
register address.

LOOKUP EXECUTION
When the PC is in the range of $00200 and $003FF, the cog is fetching instructions from cog lookup RAM. This is
commonly referred to as "lut execution mode." There is no special consideration when taking branches to a cog
lookup address,

HUB EXECUTION

When the PC is in the range of $00400 and $FFFFF, the cog is fetching instructions from hub RAM. This is
commonly referred to as "hub execution mode." When executing from hub RAM, the cog employs the FIFO
hardware to spool up instructions so that a stream of instructions will be available for continuous
execution. Branching to a hub address takes a minimum of 13 clock cycles. If the instruction is not aligned to a slice,
one additional clock cycle is required.

While in hub execution mode, the FIFO cannot be used for anything else. So, during hub

execution these instructions must be avoided:

RDFAST / WRFAST / FBLOCK

Page 114of 484

RFBYTE / RFWORD / RFLONG / RFVAR / RFVARS

WFBYTE / WFWORD / WFLONG

XINIT / XZERO / XCONT - when the streamer mode engages the FIFO

It is not possible to execute code from hub addresses $00000 through $003FF, as the cog will

instead read instructions from the cog register or lookup RAM as indicated above.

Page 115of 484

14.0.3) COG RAM
Each cog has a primary 512 x 32-bit dual-port RAM, which can be used in multiple ways:

 Direct/Register access

 As a source of program instructions

GENERAL PURPOSE REGISTERS
RAM registers $000 through $1EF are general-purpose registers for code and data usage.

DUAL-PURPOSE REGISTERS
RAM registers $1F0 through $1F7 may either be used as general-purpose registers, or may be used as special-
purpose registers if their associated functions are enabled.

$1F0 RAM / IJMP3 interrupt call address for INT3
$1F1 RAM / IRET3 interrupt return address for INT3
$1F2 RAM / IJMP2 interrupt call address for INT2
$1F3 RAM / IRET2 interrupt return address for INT2
$1F4 RAM / IJMP1 interrupt call address for INT1
$1F5 RAM / IRET1 interrupt return address for INT1
$1F6 RAM / PA CALLD-imm return, CALLPA parameter, or LOC address
$1F7 RAM / PB CALLD-imm return, CALLPB parameter, or LOC address

SPECIAL-PURPOSE REGISTERS
Each cog contains 8 special-purpose registers that are mapped into the RAM register address space from
$1F8 to $1FF. In general, when specifying an address between $1F8 and $1FF, the instruction is
accessing a special-purpose register, not just the underlying RAM.

$1F8 PTRA pointer A to hub RAM
$1F9 PTRB pointer B to hub RAM
$1FA DIRA output enables for P31..P0
$1FB DIRB output enables for P63..P32
$1FC OUTA output states for P31..P0
$1FD OUTB output states for P63..P32
$1FE INA * input states for P31..P0
$1FF INB ** input states for P63..P32

* also debug interrupt call address
** also debug interrupt return address

Page 116of 484

LOOKUP RAM
Each cog has a secondary 512 x 32-bit dual-port RAM, which can be used in multiple ways:

 Load/Store access

 As a source or destination for the streamer hardware

 As a lookup table for bytecode execution

 As a data source for smart pins

 As a "RAM sharing" mechanism between paired cogs

 As a source of program instructions (see COGS > INSTRUCTION MODES > LOOKUP

EXECUTION)

NOTE: The term "lookup" (and "lut", which is short for "look-up table") is due to historical

usage in the original Propeller microcontroller. This RAM can still be used in a "lookup"

context, but can also be used for many other purposes, as indicated above.

PASM Communication Registers
Each of these cog registers can be referenced by name PR0-PR7

PR0 $1D8

PR1 $1D9

PR2 $1DA

PR3 $1DB

PR4 $1DC

PR5 $1DD

PR6 $1DE

PR7 $1DF

https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit#heading=h.sip3znh0gf5f
https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit#heading=h.sip3znh0gf5f

Page 117of 484

14.0.4) Program Blocks

Spin2 programs are built from one or more objects. Objects are files which contain at least one

public method, along with optional constants, child objects, variables, additional methods, and

data. Objects are assembled together into a top-level object with an internal hierarchy of sub-

objects. Each object instance, at run-time, gets its own set of variables, as defined by the object,

to maintain its unique operating state.

Different parts of an object are declared within blocks, which all begin with 3-letter block

identifiers.

The compiler can actually generate PASM-only programs, as well as Spin2+PASM programs,

depending upon which blocks are present in the .spin2 file.

Block

Identifier

Block Contents Spin2+PASM

Programs

PASM-

only

Programs

CON Constant declarations (CON is the initial/default

block type)

Permitted Permitted

OBJ Child-object instantiations Permitted Not

Allowed

VAR Variable declarations Permitted Not

Allowed

PUB Public method for use by the parent object and

within this object

Required Not

Allowed

PRI Private method for use within this object Permitted Not

Allowed

DAT Data declarations, including PASM code Permitted Required

Here are some minimal Spin2 and PASM-only programs. If you copy and paste these into

PNut.exe, you can hit F10 to run them.

Page 118of 484

Minimal

Spin2

Program

PUB MinimalSpin2Program() 'first PUB method executes

 REPEAT

 PINWRITE(63..56, GETRND()) 'write a random pattern to P63..P56

 WAITMS(100) 'wait 1/10th of a second, loop

Minimal

PASM

Program

DAT ORG 'start PASM at hub $00000 for cog $000

loop DRVRND #56 ADDPINS 7 'write a random pattern to P63..P56

 WAITX ##clkfreq_/10 'wait 1/10th of a second, loop

 JMP #loop

Here is a Spin2 program which contains every block type.

All-

Block

Spin2

Program

CON _clkfreq = 297_000_000 'set clock frequency

OBJ vga : "VGA_640x480_text_80x40" 'instantiate vga object

VAR time, i 'declare object-wide variables

PUB go() 'this first public method executes, cog stops after

Page 119of 484

 vga.start(8) 'start vga on base pin 8

 SEND := @vga.print 'establish SEND pointer

 SEND(4, $004040, 5, $00FFFF) 'set light cyan on dark cyan

 time := GETCT() 'capture time

 i := @text 'print file to vga screen

 REPEAT @textend-i

 SEND(byte[i++])

 time := GETCT() - time 'capture time delta in clock cycles

 time := MULDIV64(time, 1_000_000, clkfreq) 'get time delta in microseconds

 SEND(12, "Time elapsed during printing was ", dec(time), "

microseconds.") 'print time delta

PRI dec(value) | flag, place, digit 'private method prints decimals, three

local variables

 flag~ 'reset digit-printed flag

Page 120of 484

 place := 1_000_000_000 'start at the one-billion's place and work

downward

 REPEAT

 IF flag ||= (digit := value / place // 10) || place == 1 'print a digit?

 SEND("0" + digit) 'yes

 IF LOOKDOWN(place : 1_000_000_000, 1_000_000, 1_000) 'also print a

comma?

 SEND(",") 'yes

 WHILE place /= 10 'next place, done?

DAT

text FILE "VGA_640x480_text_80x40.txt" 'include raw file data for

printing

textend

14.1) CON Block
Symbolic constants are global to the object. If an object reference is declared in another object
constants Of the child object can be referenced using :
OBJ
 Num : “Numbers” - Num.Constant_Symbol

Syntax 1 Symbol = Expression (constants)
Symbol –desired name of constant
Expression –any valid integer for floating point, or constant algebraic expression
Note: Constant can be used in algebraic expression but must be previously defined.

- Symbolic constants resolve to 32-bit values.

- Symbolic constants can be assigned using '=' or by just expressing their names in an

enumeration list.

- Symbolic constants can be referenced by every block within the file, including CON blocks.

Page 121of 484

- Symbolic constants can be referenced by the parent object's methods via

'objectname.constantname' syntax.

- If a decimal point is present, the value is encoded in IEEE-754 single-precision format.

CON ‘Direct Assignment

 EnableFlow = 8 'single assignments LONG data type

 x = 5, y = -5, z = 1 'comma-separated assignments

 HalfPi = 1.5707963268 'single-precision float values

 xy = x*y

Syntax 2 #Symbol (enumerated constants

CON ‘Direct Assignment
#3, a,b,c 'a=3 b=4 c=5precision float values

14.1.1) CON Compiler Enumeration Step option #conVar[step]

 #0,a,b,c,d 'a=0, b=1, c=2, d=3 (start=0, step=1)

 #1,e,f,g,h 'e=1, f=2, g=3, h=4 (start=1, step=1)

 #4[2],i,j,k,l 'i=4, j=6, k=8, l=10 (start=4, step=2)

 #-1[-1],m,n,p 'm=-1, n=-2, p=-3 (start=-1, step=-1)

 #true,on,off 'true = $FFFF_FFFF ,on = $FFFF_FFFF,off = %0

 #true +true,on,off 'true = $FFFF_FFFE ,on = $FFFF_FFFE,off = $FFFF_FFFF

Page 122of 484

14.1.2) Vertical Constant Enumeration
Note: Constant[Step Increment] changes the step value for next constant if not defined the default step

is 1 for example conVar[3] would increase next step value by 3

 #16 'start=16, step=1 set enumeration

 q 'q=16

 r[0] 'r=17 ([0] is a step multiplier)

 s 's=17

 t 't=18

 u[2] 'u=19 ([2] is a step multiplier)

 v 'v=21

 w 'w=22

 #16[2] 'start=16 step=2 set enumeration

 a 'a= 16

 b 'b= 18

 c 'c= 20

 d 'd= 22

 e 'e= 24

Page 123of 484

14.1_Example_WRD_Constant_Enumeration

The #TRUE directive causes the enumeration constant value to be evaluated and then assigned to

constants.

The case of “true or True or tRUe” all are legal and will resolve to TRUE. Case does not matter in spin2.

Page 124of 484

14.2) OBJ Block
Symbol<[count]>: “Object_Name”

Symbol –name for Object
count –number of objects to be made
Object_Name –object filename without extension

- Up to 32 different child objects can be incorporated into a parent object.

- Child objects can be instantiated singularly or in arrays of up to 255.

- Up to 1024 child objects are allowed per parent object.

OBJ
NUM: “Numbers”
Term: “Terminal”
Public Methods are accessed alias dot method: NUM.ToStr

OBJ

Child-Object

Instantiations

OBJ vga : "VGA_Driver" 'instantiate "VGA_Driver.spin2" as "vga"

 mouse : "USB_Mouse" 'instantiate "USB_Mouse.spin2" as "mouse"

 v[16] : "VocalSynth" 'instantiate an array of 16 objects

 '..v[0] through v[15]

14.2.1) Including Objects during Compiling
The example used as a child object is the “14.2_Example_WRD_FullDuplexSerial.spin2”. This object is

used to communicate with PST(Parallax Serial Terminal) which is launched from the “Propeller Tool”.

The bauda rate is 230400 bps and the com port is to match the loading for programs over pins :

RX1 = 63 { I } rogramming / debug
TX1 = 62 { O }

“14.2_Example_WRD_FullDuplesSerial_Demo.spin2” declares the Object “term” to be compiled with the

program:

obj
 term : "14.2_Example_WRD_FullDuplexSerial" 'serial IO for terminal

This is similar to an include file that a “C” program would use. The “spin2” extension is not included in

the object declaration. The “Propeller Tool” checks the library folder and the folder containing the

calling program for a file with the name and spin2 extension. Suggest keep all objects in the same folder

as the parent program.

Page 125of 484

14.2.2) Accessing Constants and Pub Method from Objects
From within a parent-object method, a child-object method can be called by using the syntax:

 object_name.method_name({any_parameters})

term.dec(123) 'Send character string representing decimal value 123
term.fhex($FFFF,8) 'Send string representing hex value $FFFF padded with 0 for 8 digits 0000FFFF

From within a parent-object method, a child-object constant can be referenced by using the syntax:

 object_name.constant_name

 term.tx(term.LF) 'Send Constant in object term for Line Feed term.LF =10
 term.tx(term.CR) 'Send Constant in object term for Carriage Return term.CR =11

Page 126of 484

Page 127of 484

14.1_Example_WRD_SmartSerial_Demo
This demo calls “1.1_Example_WRD_SmartSerial” as object and uses “ Propeller IDE terminal program

PST (Parallax Serial Terminal) check baud rate to match program. The PST reconizes the following sreen

control Charaters

Parallax Serial Terminal
 HOME = 1 , CRSR_XY = 2, CRSR_LF = 3, CRSR_RT = 4, CRSR_UP = 5
 CRSR_DN = 6 , BELL = 7, BKSP = 8, TAB = 9, LF = 10
 CLR_EOL = 11 , CLR_DN = 12, CR = 13, CRSR_X = 14, CRSR_Y = 15
 CLS = 16

Page 128of 484

14.2_Example_WRD_FullDuplexSerial_Demo
{{14.2_Example_WRD_FullDuplexSerial_Demo}}
{{
===
'' File....... P2USB-format_strings_demo
'' Based on jm_formatted_strings_test.spin2
'' Objects: term : "jm_fullduplexserial"
'' Secondary Object: nstr : "jm_nstr"
'' Purpose.... Demonstrate Propeller II Serial
'' Author..... WRD Copyright (c) 2020 Bob Drury
'' -- see below for terms of use
'' E-mail..... bob_drury@hotmail.com
'' Rev01...... 2020 Jan 5
===
Object term: "jm_fullduplexserial"

Public Function Call
 term.null()
 term.tstart(baud) : result
 term.start(rxpin, txpin, mode, baud) : result
 term.stop()
 term.rx() : b
 term.rxcheck() : b
 term.rxtime(ms) : b
 term.rxtix(tix) : b
 term.available() : count
 term.rxflush()
 term.tx(b) "send single byte b to PST"
 term.txn(b, n) "send single byte b for n times to PST"
 term.str(p_str) '
 term.substr(p_str, len)
 term.padstr(p_str, width, pad)
 term.txflush()
 term.fstr0(p_str) "
 term.fstr1(p_str, arg1)
 term.fstr2(p_str, arg1, arg2)
 term.fstr3(p_str, arg1, arg2, arg3)
 term.fstr4(p_str, arg1, arg2, arg3, arg4)
 term.fstr5(p_str, arg1, arg2, arg3, arg4, arg5)
 term.fstr6(p_str, arg1, arg2, arg3, arg4, arg5, arg6)
 term.format(p_str, p_args)
 term.lower(c) : result
 term.fmt_number(value, base, digits, width, pad)
 term.dec(value) "Send string of characters representing decimal value to PST"
 term.fdec(value, digits) "Send characters representing decimal value padded with 0 to digits PST"
 term.jdec(value, digits, width, pad) "Send characters 8 digits with width padded to complete with pad
 term.dpdec(value, dp) "Send value as decimal with decimal point of dp size

Page 129of 484

 term.jdpdec(value, dp, width, pad)
 term.hex(value)
 term.fhex(value, digits)
 term.jhex(value, digits, width, pad)
 term.oct(value)
 term.foct(value, digits)
 term.joct(value, digits, width, pad)
 term.qrt(value)
 term.fqrt(value, digits)
 term.jqrt(value, digits, width, pad)
 term.bin(value)
 term.fbin(value, digits)
 term.jbin(value, digits, width, pad)
 RX1 = 63 { I } Pin for serial input
 TX1 = 62 { O } Pin for serial output

Parallax Serial Terminal
 term.HOME = 1
 term.CRSR_XY = 2
 term.CRSR_LF = 3
 term.CRSR_RT = 4
 term.CRSR_UP = 5
 term.CRSR_DN = 6
 term.BELL = 7
 term.BKSP = 8
 term.TAB = 9
 term.LF = 10
 term.CLR_EOL = 11
 term.CLR_DN = 12
 term.CR = 13
 term.CRSR_X = 14
 term.CRSR_Y = 15
 term.CLS = 16

Formatted Arguments
 %w.pf print argument as decimal width decimal point
 %[w[.p]]d print argument as decimal
 %[w[.p]]u print argument as unsigned decimal
 %[w[.p]]x print argument as hex
 %[w[.p]]o print argument as octal
 %[w[.p]]q print argument as quarternary
 %[w[.p]]b print argument as binary
 %[w]s print argument as string
 %[w]c print argument as character (

 -- w is field width
 * positive w causes right alignment in field

Page 130of 484

 * negative w causes left alignment in field
 -- %ws aligns s in field (may truncate)
 -- %wc prints w copies of c
 -- p is precision characters
 * number of characters to use, aligned in field
 -- prefix with 0 if needed to match p
 -- for %w.pf, p is number of digits after decimal point
Escaped characters

 \\ backslash char
 \% percent char
 \q double quote
 \b backspace
 \t tab (horizontal)
 \n new line (vertical tab)
 \r carriage return
 \nnn arbitrary ASCII value (nnn is decimal)

}}
con { timing }

 _clkfreq = 200_000_000 ' set system clock
 BR_TERM = 230_400 ' terminal baud rate
 'set Parallax Serial Terminal 230_400 Baud
con { fixed io pins }

 RX1 = 63 { I } ' programming / debug
 TX1 = 62 { O }

 FS_CS = 61 { O } ' flash storage
 FS_SCLK = 60 { O }
 FS_MOSI = 59 { O }
 FS_MISO = 58 { I }

 SD_SCLK = 61 { O } ' usd card storage
 SD_CS = 60 { O }
 SD_MOSI = 59 { O }
 SD_MISO = 58 { I }

 SDA1 = 57 { IO } ' i2c (optional)
 SCL1 = 56 { IO }
con
 BUF_SIZE = 32 'input character buffer size

Page 131of 484

obj
 term : "14.2_Example_WRD_FullDuplexSerial" ' * serial IO for terminal
var

 Byte buffer[BUF_SIZE]
 Long x00,x01,x02,x03,x04,x05
 Byte C01,C02,C03,C04,C05
 Long xFloat
dat
 Device byte "P2X8C4M64P\r", 0
 Arg00 byte "Arg00",0
 Arg01 byte "Arg01",0
 Arg02 byte "Arg02",0
 Arg03 byte "Arg03",0
 Arg04 byte "Arg04",0
 Arg05 byte "Arg05",0
 Char01 byte "A"
 Char02 byte "B"
 Char03 byte "C"
 Char04 byte "D"
 Char05 byte "E"
pub main() | x, y

 setup()

 wait_for_terminal(true)

 term.fstr1(string("%s Formatted Strings Demo\r"), @Device)
 term.fstr1(string("%033c\r\r"), "-")
 term.fstr0(string("Enter to run Program: "))
 get_str(BUF_SIZE-2)
 term.fstr1(string("\r\rHello, %s, let me show you some \rformatted strings...\r\r"), @buffer)
 waitms(1000)
 repeat 10
 term.tx("a")
 term.tx(term.LF) 'Send Constant in object term for Line Feed term.LF
 term.tx(term.CR) 'Send Constant in object term for Carriage Return term.CR
 term.str(string("Hello Universe")) 'Send zero inline terminated string
 term.tx(term.LF)
 term.tx(term.CR)
 waitms(1000)
 term.dec(123) 'Send character string representing decimal value 123
 term.tx(term.LF)
 term.tx(term.CR)
 term.fdec(123,8) 'Send c string representing decimal value 123 padded with 0 for 8 digits 00000123
 term.tx(term.LF)
 term.tx(term.CR)

Page 132of 484

 term.jdec(-123,8,11,"*") 'Total length of 11 with 8 digits padded with "*"
 term.tx(term.LF)
 term.tx(term.CR)
 term.dpdec(12300, 2) 'Send character string representing decimal with 2 decimal place
 term.tx(term.LF)
 term.tx(term.CR)
 term.jdpdec(54312, 2, 8, "*") 'Send string valuewith dp decimal total length width padding with pad
 term.tx(term.LF)
 term.tx(term.CR)
 term.str(@Device) 'Send zero terminated string ignors format escape sequence
 term.tx(term.LF)
 term.tx(term.CR)
 term.hex(255) 'Send character string representing hex value for decimal 255
 term.tx(term.LF)
 term.tx(term.CR)
 term.hex($FF) 'Send character string representing hex value $FF
 term.tx(term.LF)
 term.tx(term.CR)
 term.fhex($FFFF,8) 'Send string representing hex value $FFFF padded with 0 for 8 digits 0000FFFF
 term.tx(term.LF)
 term.tx(term.CR)
 term.jhex($256,8,11,"*") 'Convert Decimal to hex of 11 with 8 digits padded with "*"
 term.tx(term.LF)
 term.tx(term.CR)
 term.oct(15) 'Convert Decimal to oct and send character string
 term.tx(term.LF)
 term.tx(term.CR)
 term.oct($FF) 'Convert Hex to Oct and send character string
 term.tx(term.LF)
 term.tx(term.CR)
 term.foct($3FF,5) 'Convert Hex to Oct and send character string ($3FF = 1023 = 1777 octal)
 term.tx(term.LF)
 term.tx(term.CR)
 term.joct($3FF,8,11,"*") 'Convert Hex to Oct send string of 11 with 8 digits padded with "*"
 term.tx(term.LF)
 term.tx(term.CR)
 term.qrt(85) 'Convert 85 decimal to quartenary 1111 Base 4
 term.tx(term.LF)
 term.tx(term.CR)
 term.fqrt($55,8) 'Convert hex $55 to quartenary 1111 Base 4
 term.tx(term.LF)
 term.tx(term.CR)
 term.jqrt($55,8,11,"*") 'Convert hex $55 to qrt send string of 11 with 8 digits padded with "*"
 term.tx(term.LF)
 term.tx(term.CR)
 term.bin(16) 'Convert 16 decimal to binary 10000 Base 2
 term.tx(term.LF)

Page 133of 484

 term.tx(term.CR)
 term.fbin($10,8) 'Convert hex $10 to binary 10000 Base2 with 0 padded 8 digits
 term.tx(term.LF)
 term.tx(term.CR)
 term.jbin($10,8,11,"*") 'Convert hex $F to binary send character string of 11 with 8 digits padded with
"*"
 term.tx(term.LF)
 term.tx(term.CR)
 waitms(1000)
 C01 := 65 'ASCII Dec 65 = A
 term.tx(C01) 'Send Var C01
 term.tx(term.LF) 'Send Constant in object term for Line Feed term.LF
 C01 := 66 'ASCII Dec 66 = B
 term.tx(C01) 'Send Var C01
 term.tx(term.LF) 'Send Constant in object term for Line Feed term.LF
 term.tx(term.CR) 'Send Constant in object term for Carriage Return term.CR
 term.tx("C") 'Send Character C
 term.tx(10) 'Send Number 10 to PST which causes LF
 term.tx(13) 'Send Number 13 to PST which causes CR
 term.txn("∞",45) 'Send character A for 45 times
 term.fstr0(string("\r")) 'Send CR and LF
 term.tx(term.LF) 'Send Constant in object term for Line Feed term.LF
 term.tx(term.CR) 'Send Constant in object term for Carriage Return term.CR
 term.fstr0(string("\176")) 'Send ASCII degree symbol° Use character chart to print
 term.tx(10) 'Send Number 10 to PST which causes LF
 term.tx(13) 'Send Number 13 to PST which causes CR
 waitms(1000)
 term.fstr0(@Device) 'Send string from Dat Address @Device
 term.fstr1(string("fstr01 %s\r"),@Arg01)
 term.fstr2(string("fstr02 %s %s\r"),@Arg01,@Arg02)
 term.fstr3(string("fstr03 %s %s %s\r"),@Arg01,@Arg02,@Arg03)
 term.fstr4(string("fstr04 %s %s %s %s\r"),@Arg01,@Arg02,@Arg03,@Arg04)
 term.fstr5(string("fstr05 %s %s %s %s %s\r"),@Arg01,@Arg02,@Arg03,@Arg04,@Arg05)
 waitms(1000)
 x01 := 101
 x02 := 102
 x03 := 103
 x04 := 104
 x05 := 105
 xFloat := 12.345
 term.fstr1(string("xFloat= %f\r"),xFloat)
 term.fstr1(string("x01= %d\r"),x01)
 term.fstr2(string("x01= %d x02= %d\r"),x01,x02)
 term.fstr3(string("x01= %d x02= %d x03= %d\r"),x01,x02,x03)
 term.fstr4(string("x01= %d x02= %d x03= %d x04= %d\r"),x01,x02,x03,x04)
 term.fstr5(string("x01= %d x02= %d x04= %d x04= %d x05= %d\r"),x01,x02,x03,x04,x05)
 waitms(1000)

Page 134of 484

 term.fstr1(string("Char01= %c\r"),Char01)
 term.fstr2(string("Char01= %c Char02= %c\r"),Char01,Char02)
 term.fstr3(string("Char01= %c Char02= %c Char03= %c\r"),Char01,Char02,Char03)
 term.fstr4(string("Char01= %c Char02= %c Char03= %c Char04= %c\r"),Char01,Char02,Char03,Char04)
 term.fstr5(string("Char01= %c Char02= %c Char04= %c Char04= %c Char05=
%c\r"),Char01,Char02,Char03,Char04,Char05)
 waitms(1000)
 C01 := "A"
 C02 := "B"
 C03 := "C"
 C04 := "D"
 C05 := "E"
 term.fstr1(string("C01= %c\r"),C01)
 term.fstr2(string("C01= %c C02= %c\r"),C01,C02)
 term.fstr3(string("C01= %c C02= %c C03= %c\r"),C01,C02,C03)
 term.fstr4(string("C01= %c C02= %c C03= %c C04= %c\r"),C01,C02,C03,C04)
 term.fstr5(string("C01= %c C02= %c C04= %c C04= %c C05= %c\r"),C01,C02,C03,C04,C05)
 waitms(1000)
 term.fstr1(string("%040c\r"),"-")
 term.fstr1(string("%040c\r"),"*")
 term.fstr1(string("%040c\r"),176) '176 is the decimal ascii for degree with PST
 term.fstr1(string("x01 float= %13.3f\r"),x01)
 term.fstr2(string("x01 in hex= %4x --> x01 in dec= %4d\r"),x01,x01)
 term.fstr2(string("%d\176C --> %d\176F\r\r"),x01,x01*9/5+32)
 term.fstr2(string("%-10d %13.3f\r"), x01, x01)
 waitms(1000)
 repeat x from 123 to 255
 term.fstr1(string("%040c\r"),x)
 waitms(3000)

Page 135of 484

pub get_str(maxlen) : len | k
 bytefill(@buffer, 0, BUF_SIZE) ' clear input buffer
 term.rxflush() ' clear trash from terminal
 repeat
 k := term.rx() ' wait for a character
 case k
 31..127 : ' if valid
 if (len < maxlen) ' and room
 buffer[len++] := k ' add to buffer

 term.BKSP :
 if (len > 0) ' if character(s) in buffer
 buffer[--len] := 0 ' backup and erase last

 term.CR :
 buffer[len] := 0 ' terminate string
 return ' and return to caller

pub wait_for_terminal(clear)

 term.rxflush()
 term.rx() ' wait for keypress
 if (clear)
 term.tx(term.CLS)

pub setup()

 term.start(RX1, TX1, %0000, BR_TERM) ' start terminal serial
con { license }
{{
 MIT License}}

Page 136of 484

14.2_Example_WRD_FullDuplexSerial
{{14.2_Example_WRD_FullDuplexSerial}}
{{
===
''
'' File....... jm_fullduplexserial.spin2
'' Purpose.... Buffered serial communications using smart pins
'' -- mostly matches FullDuplexSerial from P1
'' -- does NOT support half-duplex communications using shared RX/TX pin
'' Authors.... Jon McPhalen
'' -- based on work by Chip Gracey
'' -- see below for terms of use
'' E-mail..... jon.mcphalen@gmail.com
'' Started....
'' Updated.... 06 SEP 2020
''
===
 Note: Buffer size no longer has to be power-of-2 integer.
 Note: The dec(), bin(), and hex() methods will no longer require the digits parameter as
 in older versions of FullDuplexSerial. Use fdec(), fbin(), and fhex() for code that
 requires a specific field width.
 The smart pin uarts use a 16-bit value for baud timing which can limit low baud rates for
 some system frequencies -- beware of these limits when connecting to older devices.

 Baud 20MHz 40MHz 80MHz 100MHz 200MHz 300MHz
 ------ ----- ----- ----- ------ ------ ------
 300 No No No No No No
 600 Yes No No No No No
 1200 Yes Yes No No No No
 2400 Yes Yes Yes Yes No No
 4800 Yes Yes Yes Yes Yes Yes
}}
con { fixed io pins }

 RX1 = 63 { I } ' programming / debug
 TX1 = 62 { O }

 SF_CS = 61 { O } ' serial flash
 SF_SCK = 60 { O }
 SF_SDO = 59 { O }
 SF_SDI = 58 { I }

Page 137of 484

con { pst formatting }
 HOME = 1
 CRSR_XY = 2
 CRSR_LF = 3
 CRSR_RT = 4
 CRSR_UP = 5
 CRSR_DN = 6
 BELL = 7
 BKSP = 8
 TAB = 9
 LF = 10
 CLR_EOL = 11
 CLR_DN = 12
 CR = 13
 CRSR_X = 14
 CRSR_Y = 15
 CLS = 16
Con {FullDuplexSerial}
 BUF_SIZE = 64

obj

 nstr : "14.2_Example_WRD_Num_To_Str" ' number-to-string

var

 long cog ' cog flag/id

 long rxp ' rx smart pin
 long txp ' tx smart pin
 long rxhub ' hub address of rxbuf
 long txhub ' hub address of txbuf

 long rxhead ' rx head index
 long rxtail ' rx tail index
 long txhead ' tx head index
 long txtail ' tx tail index

 long txdelay ' ticks to transmit one byte

 byte rxbuf[BUF_SIZE] ' buffers
 byte txbuf[BUF_SIZE]

 byte pbuf[80] ' padded strings

Page 138of 484

pub null()
'' This is not a top-level object

pub tstart(baud) : result
'' Start FDS with default pins/mode for terminal (e.g., PST)
 return start(RX1, TX1, %0000, baud)

pub start(rxpin, txpin, mode, baud) : result | baudcfg, spmode
'' Start simple serial coms on rxpin and txpin at baud
'' -- rxpin... receive pin (-1 if not used)
'' -- txpin... transmit pin (-1 if not used)
'' -- mode.... %0xx1 = invert rx
'' %0x1x = invert tx
'' %01xx = open-drain/open-source tx

 stop()

 if (rxpin == txpin) ' pin must be unique
 return false

 longmove(@rxp, @rxpin, 2) ' save pins
 rxhub := @rxbuf ' point to buffers
 txhub := @txbuf

 txdelay := clkfreq / baud * 11 ' tix to transmit one byte

 baudcfg := muldiv64(clkfreq, $1_0000, baud) & $FFFFFC00 ' set bit timing
 baudcfg |= (8-1) ' set bits (8)

 if (rxp >= 0) ' configure rx pin if used
 spmode := P_ASYNC_RX
 if (mode.[0])
 spmode |= P_INVERT_IN
 pinstart(rxp, spmode, baudcfg, 0)

 if (txp >= 0) ' configure tx pin if used
 spmode := P_ASYNC_TX | P_OE
 case mode.[2..1]
 %01 : spmode |= P_INVERT_OUTPUT
 %10 : spmode |= P_HIGH_FLOAT ' requires external pull-up
 %11 : spmode |= P_INVERT_OUTPUT | P_LOW_FLOAT ' requires external pull-down
 pinstart(txp, spmode, baudcfg, 0)

 cog := coginit(COGEXEC_NEW, @uart_mgr, @rxp) + 1 ' start uart manager cog

Page 139of 484

 return cog

pub stop()

'' Stop serial driver
'' -- frees a cog if driver was running

 if (cog) ' cog active?
 cogstop(cog-1) ' yes, shut it down
 cog := 0 ' and mark stopped

 longfill(@rxp, -1, 2) ' reset object globals
 longfill(@rxhub, 0, 7)

pub rx() : b

'' Pulls byte from receive buffer if available
'' -- will wait if buffer is empty

 repeat while (rxtail == rxhead) ' hold while buffer empty

 b := rxbuf[rxtail] ' get a byte
 if (++rxtail == BUF_SIZE) ' update tail pointer
 rxtail := 0

pub rxcheck() : b

'' Pulls byte from receive buffer if available
'' -- returns -1 if buffer is empty

 if (rxtail <> rxhead) ' something in buffer?
 b := rxbuf[rxtail] ' get it
 if (++rxtail == BUF_SIZE) ' update tail pointer
 rxtail := 0
 else
 b := -1 ' mark no byte available

pub rxtime(ms) : b | mstix, t

'' Wait ms milliseconds for a byte to be received
'' -- returns -1 if no byte received, $00..$FF if byte

 mstix := clkfreq / 1000

Page 140of 484

 t := getct()
 repeat until ((b := rxcheck()) >= 0) || (((getct()-t) / mstix) >= ms)

pub rxtix(tix) : b | t

'' Waits tix clock ticks for a byte to be received
'' -- returns -1 if no byte received

 t := getct()
 repeat until ((b := rxcheck()) >= 0) || ((getct()-t) >= tix)

pub available() : count

'' Returns # of bytes waiting in rx buffer

 if (rxtail <> rxhead) ' if byte(s) available
 count := rxhead - rxtail ' get count
 if (count < 0)
 count += BUF_SIZE ' fix for wrap around

pub rxflush()

'' Flush receive buffer

 repeat while (rxcheck() >= 0)

pub tx(b) | n
'' Move byte into transmit buffer if room is available
'' -- will wait if buffer is full
 repeat
 n := txhead - txtail ' bytes in buffer
 if (n < 0) ' fix for index wrap-around
 n += BUF_SIZE
 if (n < BUF_SIZE-1)
 quit
 txbuf[txhead] := b ' move to buffer
 if (++txhead == BUF_SIZE) ' update head pointer
 txhead := 0

Page 141of 484

pub txn(b, n)
'' Emit byte n times
 repeat n
 tx(b)

pub str(p_str)
'' Emit z-string at p_str
 repeat (strsize(p_str))
 tx(byte[p_str++])

pub substr(p_str, len) | b
'' Emit len characters of string at p_str
'' -- aborts if end of string detected
 repeat len
 b := byte[p_str++]
 if (b > 0)
 tx(b)
 else
 quit

pub padstr(p_str, width, pad)
'' Emit p_str as padded field of width characters
'' -- pad is character to use to fill out field
'' -- positive width causes right alignment
'' -- negative width causes left alignment
 str(nstr.padstr(p_str, width, pad))

pub txflush()
'' Wait for transmit buffer to empty
'' -- will delay one byte period after buffer is empty
 repeat until (txtail == txhead) ' let buffer empty
 waitct(getct() + txdelay) ' delay for last byte

pub fstr0(p_str)
'' Emit string with formatting characters.
 format(p_str, 0)

pub fstr1(p_str, arg1)
'' Emit string with formatting characters and one argument.
 format(p_str, @arg1)

pub fstr2(p_str, arg1, arg2)
'' Emit string with formatting characters and two arguments.
 format(p_str, @arg1)

Page 142of 484

pub fstr3(p_str, arg1, arg2, arg3)
'' Emit string with formatting characters and three arguments.
 format(p_str, @arg1)

pub fstr4(p_str, arg1, arg2, arg3, arg4)
'' Emit string with formatting characters and four arguments.
 format(p_str, @arg1)

pub fstr5(p_str, arg1, arg2, arg3, arg4, arg5)
'' Emit string with formatting characters and five arguments.
 format(p_str, @arg1)

pub fstr6(p_str, arg1, arg2, arg3, arg4, arg5, arg6)
'' Emit string with formatting characters and six arguments.
 format(p_str, @arg1)

Page 143of 484

pub format(p_str, p_args) | idx, c, asc, field, digits
'' Emit formatted string with escape sequences and embedded values
'' -- p_str is a pointer to the format control string
'' -- p_args is pointer to array of longs that hold field values
'' * field values can be numbers, characters, or pointers to strings
 idx := 0 ' value index
 repeat
 c := byte[p_str++]
 if (c == 0)
 return
 elseif (c == "\")
 c := lower(byte[p_str++])
 if (c == "\")
 tx("\")
 elseif (c == "%")
 tx("%")
 elseif (c == "q")
 tx(34)
 elseif (c == "b")
 tx(BKSP)
 elseif (c == "t")
 tx(TAB)
 elseif (c == "n")
 tx(LF)
 elseif (c == "r")
 tx(CR)
 elseif ((c >= "0") and (c <= "9"))
 --p_str
 p_str, asc, _ := get_nargs(p_str)
 if ((asc >= 0) and (asc <= 255))
 tx(asc)
 elseif (c == "%")
 p_str, field, digits := get_nargs(p_str)
 c := lower(byte[p_str++])
 if (c == "d")
 str(nstr.fmt_number(long[p_args][idx++], "d", digits, field, " "))
 elseif (c == "u")
 str(nstr.fmt_number(long[p_args][idx++], "u", digits, field, " "))
 elseif (c == "f")
 str(nstr.fmt_number(long[p_args][idx++], "f", digits, field, " "))
 elseif (c == "b")
 str(nstr.fmt_number(long[p_args][idx++], "b", digits, field, " "))
 elseif (c == "q")
 str(nstr.fmt_number(long[p_args][idx++], "q", digits, field, " "))
 elseif (c == "o")
 str(nstr.fmt_number(long[p_args][idx++], "o", digits, field, " "))
 elseif (c == "x")

Page 144of 484

 str(nstr.fmt_number(long[p_args][idx++], "x", digits, field, " "))
 elseif (c == "s")
 str(nstr.padstr(long[p_args][idx++], field, " "))
 elseif (c == "c")
 txn(long[p_args][idx++], (abs field) #> 1)
 else
 tx(c)

pub lower(c) : result
 if ((c >= "A") && (c <= "Z"))
 c += 32
 return c

pri get_nargs(p_str) : p_str1, val1, val2 | c, sign
'' Parse one or two numbers from string in n, -n, n.n, or -n.n format
'' -- dpoint separates values
'' -- only first # may be negative
'' -- returns pointer to 1st char after value(s)
 c := byte[p_str] ' check for negative on first value
 if (c == "-")
 sign := -1
 ++p_str
 else
 sign := 0
 repeat ' get first value
 c := byte[p_str++]
 if ((c >= "0") && (c <= "9"))
 val1 := (val1 * 10) + (c - "0")
 else
 if (sign)
 val1 := -val1
 quit
 if (c == ".") ' if dpoint
 repeat ' get second value
 c := byte[p_str++]
 if ((c >= "0") && (c <= "9"))
 val2 := (val2 * 10) + (c - "0")
 else
 quit
 p_str1 := p_str - 1 ' back up to non-digit

Page 145of 484

pub fmt_number(value, base, digits, width, pad)
'' Emit value converted to number in padded field
'' -- value is converted using base as radix
'' * 99 for decimal with digits after decimal point
'' -- digits is max number of digits to use
'' -- width is width of final field (max)
'' -- pad is character that fills out field
 str(nstr.fmt_number(value, base, digits, width, pad))

pub dec(value)
'' Emit value as decimal
 str(nstr.itoa(value, 10, 0))

pub fdec(value, digits)
'' Emit value as decimal using fixed # of digits
'' -- may add leading zeros
 str(nstr.itoa(value, 10, digits))

pub jdec(value, digits, width, pad)
'' Emit value as decimal using fixed # of digits
'' -- aligned in padded field (negative width to left-align)
'' -- digits is max number of digits to use
'' -- width is width of final field (max)
'' -- pad is character that fills out field
 str(nstr.fmt_number(value, "d", digits, width, pad))

pub dpdec(value, dp)
'' Emit value as decimal with decimal point
'' -- dp is number of digits after decimal point
 str(nstr.dpdec(value, dp))

pub jdpdec(value, dp, width, pad)
'' Emit value as decimal with decimal point
'' -- aligned in padded field (negative width to left-align)
'' -- dp is number of digits after decimal point
'' -- width is width of final field (max)
'' -- pad is character that fills out field
 str(nstr.fmt_number(value, "f", dp, width, pad))

Page 146of 484

pub hex(value)
'' Emit value as hexadecimal
 str(nstr.itoa(value, 16, 0))

pub fhex(value, digits)
'' Emit value as hexadecimal using fixed # of digits
 str(nstr.itoa(value, 16, digits))

pub jhex(value, digits, width, pad)
'' Emit value as quarternary using fixed # of digits
'' -- aligned inside field
'' -- pad fills out field
 str(nstr.fmt_number(value, "x", digits, width, pad))

pub oct(value)
'' Emit value as octal
 str(nstr.itoa(value, 8, 0))

pub foct(value, digits)
'' Emit value as octal using fixed # of digits
 str(nstr.itoa(value, 8, digits))

pub joct(value, digits, width, pad)
'' Emit value as octal using fixed # of digits
'' -- aligned inside field
'' -- pad fills out field
 str(nstr.fmt_number(value, "o", digits, width, pad))

pub qrt(value)
'' Emit value as quarternary
 str(nstr.itoa(value, 4, 0))

pub fqrt(value, digits)
'' Emit value as quarternary using fixed # of digits
 str(nstr.itoa(value, 4, digits))

pub jqrt(value, digits, width, pad)
'' Emit value as quarternary using fixed # of digits
'' -- aligned inside field
'' -- pad fills out field
 str(nstr.fmt_number(value, "q", digits, width, pad))

pub bin(value)
'' Emit value as binary
 str(nstr.itoa(value, 2, 0))

Page 147of 484

pub fbin(value, digits)
'' Emit value as binary using fixed # of digits
 str(nstr.itoa(value, 2, digits))

pub jbin(value, digits, width, pad)
'' Emit value as binary using fixed # of digits
'' -- aligned inside field
'' -- pad fills out field
 str(nstr.fmt_number(value, "b", digits, width, pad))
dat { smart pin uart/buffer manager }

 org

uart_mgr setq #4-1 ' get 4 parameters from hub
 rdlong rxd, ptra

uart_main testb rxd, #31 wc ' rx in use?
 if_nc call #rx_serial

 testb txd, #31 wc ' tx in use?
 if_nc call #tx_serial

 jmp #uart_main

rx_serial testp rxd wc ' anything waiting?
 if_nc ret

 rdpin t3, rxd ' read new byte
 shr t3, #24 ' align lsb
 mov t1, p_rxbuf ' t1 := @rxbuf
 rdlong t2, ptra[4] ' t2 := rxhead
 add t1, t2
 wrbyte t3, t1 ' rxbuf[rxhead] := t3
 incmod t2, #(BUF_SIZE-1) ' update head index
 ret wrlong t2, ptra[4] ' write head index back to hub

tx_serial rdpin t1, txd wc ' check busy flag
 if_c ret ' abort if busy

 rdlong t1, ptra[6] ' t1 = txhead
 rdlong t2, ptra[7] ' t2 = txtail
 cmp t1, t2 wz ' byte(s) to tx?
 if_e ret

Page 148of 484

 mov t1, p_txbuf ' start of tx buffer
 add t1, t2 ' add tail index
 rdbyte t3, t1 ' t3 := txbuf[txtail]
 wypin t3, txd ' load into sp uart
 incmod t2, #(BUF_SIZE-1) ' update tail index
 ret wrlong t2, ptra[7] ' write tail index back to hub

' --

rxd res 1 ' receive pin
txd res 1 ' transmit pin
p_rxbuf res 1 ' pointer to rxbuf
p_txbuf res 1 ' pointer to txbuf

t1 res 1 ' work vars
t2 res 1
t3 res 1

 fit 472
con { license }

{{

 Terms of Use: MIT License
}}

Page 149of 484

14.2_Example_WRD_NUM_To_STR
{{14.2_Example_WRD_NUM_To_STR}}
{{
===
''
'' File....... WRD_nstr.spin2
'' Purpose.... Convert numbers to strings
'' Authors.... Jon McPhalen
'' -- Copyright (c) 2020 Jon McPhalen
'' -- see below for terms of use
'' E-mail..... jon.mcphalen@gmail.com
'' Started....
'' Updated.... 29 AUG 2020
''
===
}}
con
 NBUF_SIZE = 48
 PBUF_SIZE = 128
var
 byte nbuf[NBUF_SIZE] ' number conversions
 byte pbuf[PBUF_SIZE] ' padded strings

pub null()
'' This is not a top level object

pub fmt_number(value, radix, digits, width, pad) : p_str ' *** changed 19 AUG 2020 ***
'' Return pointer to string of value converted to number in padded field
'' -- value is converted using radix
'' -- radix is chararacter indicating type ' *** used to be number ***
'' -- digits is max number of digits to use
'' -- width is width of final fields (max)
'' -- pad is character used to pad final field (if needed)
 case radix
 "d", "D" : p_str := padstr(itoa(value, 10, digits), width, pad)
 "u", "U" : p_str := padstr(usdec(value, digits), width, pad)
 "f", "F" : p_str := padstr(dpdec(value, digits), width, pad)
 "b", "B" : p_str := padstr(itoa(value, 2, digits), width, pad)
 "q", "Q" : p_str := padstr(itoa(value, 4, digits), width, pad)
 "o", "O" : p_str := padstr(itoa(value, 8, digits), width, pad)
 "x", "X" : p_str := padstr(itoa(value, 16, digits), width, pad)
 other : p_str := string("?")

Page 150of 484

pub dec(value, digits) : p_str | sign, len
'' Convert decimal value to string
'' -- digits is 0 (auto size) to 10
 p_str := itoa(value, 10, digits)

pub usdec(value, digits) : p_str | len
'' Convert unsigned decimal value to string
'' -- digits is 0 (auto size) to 10
 digits := 0 #> digits <# 10 ' limit printable digits
 bytefill(@nbuf, 0, NBUF_SIZE) ' clear buffer
 p_str := @nbuf + 9 ' point to end of udec string
 len := 0
 repeat
 byte[--p_str] := (value +// 10) + "0" ' extract digit, convert to ASCII
 value +/= 10 ' remove digit from value
 if (digits) ' length limited?
 if (++len == digits) ' check size
 quit
 else
 if (value == 0) ' done?
 quit

pub dpdec(value, dp) : p_str | len, byte scratch[12]
'' Convert value to string with decimal point
'' -- dp is digits after decimal point
'' -- returns pointer to updated fp string
'' -- modifies original string
'' -- return pointer to converted string
 p_str := itoa(value, 10, 0)
 if (dp <= 0) ' abort if no decimal point
 return p_str
 len := strsize(p_str) ' digits
 bytefill(@scratch, 0, 12) ' clear scratch buffer
 if (value < 0) ' ignore "-" if present
 ++p_str
 --len
 if (len < (dp+1)) ' insert 0s?
 bytemove(@scratch, p_str, len) ' move digits to scratch buffer
 bytefill(p_str, "0", dp+2-len) ' pad string with 0s
 bytemove(p_str+dp+2-len, @scratch, len+1) ' move digits back
 byte[p_str+1] := "." ' insert dpoint
 else
 bytemove(@scratch, p_str+len-dp, dp) ' move decimal part to buffer
 byte[p_str+len-dp] := "." ' insert dpoint
 bytemove(p_str+len-dp+1, @scratch, dp+1) ' move decimal part back
 if (value < 0) ' fix pointer for negative #s
 --p_str

Page 151of 484

pub itoa(value, radix, digits) : p_str | sign, len, d
'' Convert signed integer to string
'' -- supports radix 10, 2, 4, 8, and 16
'' -- digits is 0 (auto size) to limit for long using radix
 bytefill(@nbuf, 0, NBUF_SIZE) ' clear buffer
 p_str := @nbuf ' point to it
 case radix ' limit printable digits
 02 : digits := 0 #> digits <# 32
 04 : digits := 0 #> digits <# 16
 08 : digits := 0 #> digits <# 11
 10 : digits := 0 #> digits <# 10
 16 : digits := 0 #> digits <# 8
 other :
 byte[p_str] := 0
 return
 if ((radix == 10) && (value < 0)) ' deal with negative decimals
 if (value == negx)
 sign := 2
 value := posx
 else
 sign := 1
 value := -value
 else
 sign := 0
 len := 0
 repeat
 d := value +// radix ' get digit (1s column)
 byte[p_str++] := (d < 10) ? d + "0" : d - 10 + "A" ' convert to ASCII
 value +/= radix ' remove digit
 if (digits) ' length limited?
 if (++len == digits) ' check size
 quit
 else
 if (value == 0) ' done?
 quit
 if (sign)
 byte[p_str++] := "-" ' add sign if needed
 if (sign == 2)
 nbuf[0] := "8" ' fix negx if needed
 byte[p_str++] := 0 ' terminate string
 return revstr(@nbuf) ' fix order (reverse)

Page 152of 484

pub revstr(p_str) : result | first, len, last
'' Reverse the order of characters in a string.
 result := first := p_str ' start
 len := strsize(p_str) ' length
 last := first + len - 1 ' end
 repeat (len >> 1) ' reverse them
 byte[first++], byte[last--] := byte[last], byte[first]

pub padstr(p_str, width, padchar) : p_pad | len
'' Pad string with padchar character
'' -- positive width uses left pad, negative field width uses right pad
'' -- truncate if string len > width
'' -- input string is not modified
'' -- returns pointer to padded string
 bytefill(@pbuf, 0, PBUF_SIZE) ' clear padded buffer
 len := strsize(p_str) ' get length of input
 width := -PBUF_SIZE+1 #> width <# PBUF_SIZE-1 ' constrain to buffer size
 if (width > 0) ' right-justify in padded field
 if (width > len)
 bytefill(@pbuf, padchar, width-len)
 bytemove(@pbuf+width-len, p_str, len)
 p_pad := @pbuf
 else
 bytemove(@pbuf, p_str+len-width, width) ' truncate to right-most characters
 p_pad := @pbuf
 elseif (width < 0) ' left-justify in padded field
 width := -width
 if (width > len)
 bytemove(@pbuf, p_str, len)
 bytefill(@pbuf+len, padchar, width-len)
 p_pad := @pbuf
 else
 bytemove(@pbuf, p_str, width) ' truncate to leftmost characters
 p_pad := @pbuf
 else
 p_pad := p_str
con { license }
{{
 Terms of Use: MIT License
}}

Page 153of 484

14.3) VAR Block
VAR is an object Block where variables are defined of 3 data types Byte,Word and Long. The VAR block

declares global variables to the object.

VAR
 byte a,b,c '8bits
 word a,b,c '16bits
 long a,b,c '32bits

- Variables can be longs (32 bits), words (16 bits), and bytes (8 bits).

- Variables can be declared as singles or arrays.

- Variables are packed in memory in the order they are declared, beginning at a long-aligned

address.

- Variables are initialized to zero at run time.

- Each object's first 15 longs of variable memory are accessed via special bytecodes for improved

efficiency.

- Each instance of an object will require one long, plus its declared amount of VAR space, plus 0..3

bytes to long-align for the next object's variable space.

143.1) VAR Compiler Directive
VAR
byte temp ‘temp is a VAR of type byte at address @temp
byte temp[20] ‘reserve 20 bytes at address @temp[0]

Program Usage
Some_Var ≔ Byte[@MyData] ‘read 1 byte from address @MyData
Some_Var ≔ Byte[@MyData][Index++] ‘read 1 byte from @MyData+Index offset

VAR
word temp ‘temp is a VAR of type two byte at address @temp
word temp[20] ‘reserve 40 bytes at address @temp[0]

14.3.2) Program Usage
Some_Var ≔ word[@MyData] ‘read 2 byte from address @MyData
Some_Var ≔ word[@MyData][Index++] ‘read 2 byte from @MyData+Index offset

VAR
Long temp ‘temp is a VAR of type byte at address @temp
Long temp[20] ‘reserve 80 bytes at address @temp[0]

Program Usage
Some_Var ≔ Long[@MyData] ‘read 4 byte from address @MyData

Page 154of 484

Some_Var ≔ Long[@MyData][Index++] ‘read 4 byte from @MyData+Index offset

14.3.3) Variables that are pre-defined and Permanent
In Spin2, there are both user-defined and permanent variables. The user-defined variable sources are
listed below and the permanent variables are shown in the table.

VAR variables (hub)
PUB/PRI parameters, return values, and local variables (hub)
DAT symbols (hub)
Cog registers

Variables

(all LONG)

Variable

Name

Address

or

Offset

Description Useful

in

Spin2

Useful

in

Spin2-

PASM

Useful

in

PASM-

Only

Hub

Locations

CLKMODE

CLKFREQ

$00040

$00044

Clock mode value

Clock frequency value

Yes

Yes

Yes

Yes

No

No

Hub VAR VARBASE +0 Object base pointer, @VARBASE is

VAR base, used by method-pointer

calls

Maybe No No

Cog

Registers

PR0

PR1

PR2

PR3

PR4

PR5

PR6

PR7

IJMP3

IRET3

$1D8

$1D9

$1DA

$1DB

$1DC

$1DD

$1DE

$1DF

$1F0

$1F1

Spin2 <-> PASM communication

Interrupt JMP's and RET's

Pointer registers

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Yes

Yes

Page 155of 484

IJMP2

IRET2

IJMP1

IRET1

PA

PB

PTRA

PTRB

DIRA

DIRB

OUTA

OUTB

INA

INB

$1F2

$1F3

$1F4

$1F5

$1F6

$1F7

$1F8

$1F9

$1FA

$1FB

$1FC

$1FD

$1FE

$1FF

Data pointer passed from COGINIT

Code pointer passed from COGINIT

Output enables for P31..P0

Output enables for P63..P32

Output states for P31..P0

Output states for P63..P32

Input states from P31..P0

Input states from P63..P32

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

In Spin2, all variables can be indexed and accessed as bitfields. Additionally, symbolic hub variables can

have BYTE/WORD/LONG size overrides:

Variable Usage Example Description

Plain AnyVar

HubVar.WORD

BYTE[address]

REG[register]

Hub or permanent register variable

Hub variable with BYTE/WORD/LONG size

override

Hub BYTE/WORD/LONG by address

Register, 'register' may be symbol declared in

ORG section

Page 156of 484

With Index AnyVar[index]

HubVar.BYTE[index]

LONG[address][index]

REG[register][index]

Hub or permanent register variable with index

Hub variable with size override and index

Hub BYTE/WORD/LONG by address with index

Register with index

With Bitfield AnyVar.[bitfield]

HubVar.LONG.[bitfield]

WORD[address].[bitfield]

REG[register].[bitfield]

Hub or permanent register variable with

bitfield

Hub variable with size override and bitfield

Hub BYTE/WORD/LONG by address with

bitfield

Register with bitfield

With Index and

Bitfield

AnyVar[index].[bitfield]

HubVar.BYTE[index].[bitfield]

LONG[address][index].[bitfield]

REG[register][index].[bitfield]

Hub or permanent register variable with index

and bitfield

Hub variable with size override, index, and

bitfield

Hub BYTE/WORD/LONG by address with index

and bitfield

Register with index and bitfield

14.3.4) Accessing Bytes of Larger-Sized Variables
Var
Word WordVar
Long LongVar

Pub Main()
 WordVar.Byte[0] ≔ 0 ‘ 0000_0000
 WordVar.Byte[1] ≔ 100 ‘0110_0100 = 64 + 32 + 4 =100
 ‘0110_0100_0000_0000 = 16384 + 8192 + 1024 = 25600
 LongVar.byte[0] ≔ 25
 LongVar.byte[1] ≔ 50
 LongVar.byte[2] ≔ 75
 LongVar.byte[3] ≔ 100
 ‘01100100_01001011_00110010_00011001 = 1,682,649,625

14.3.1_Example_WRD_VAR
Demonstrates use of Variables

Page 157of 484

14.4) PUB Block
PUB methodname({parameter{,...}}) {: result{,...}} {| {ALIGNW/ALIGNL} {BYTE/WORD/LONG}

localvar{[count]}{,...}}

PUB ObJectMethod(a,b,c) : result01,result02,result03)| var01,var02,var03

a,b,c are preloaded passed parameters from method call all longs

result01,result02,result03 all longs are cleared to zero before entry and return with a result from
method, you must be able to receive the same number of result parameters.

var01,var02,var03 all lonfs are local parameters and could be pre-loaded from a previous method call
you must manually clear this in the method unless you are using this retentive feature.

Note: In the P1 result was automatically understood as the return method value. In the P2 if no return
parameter is declared in the method no return values are generated , ie result is not automatic you
must declare if you want a return value.

14.4.1) PUB Block Constraints
- PUB methods are available to the parent object, as well as to the object they are defined in.

- PRI methods are available only to the object they are defined in.

- The first PUB method in an object is what executes when that object is run as the top-level

object.

- Methods can have from 0 to 127 input parameters, all of which are single longs.

- Methods can have from 0 to 15 output results, all of which are single longs.

- Methods can have up to 64KB of local variables, which can be bytes, words, and longs (default),

in both singles and arrays.

- Local variable size overrides (BYTE/WORD) apply only to the variable being declared, not

subsequent variables.

- Results are initialized to zero on method entry, while local variables are undefined.

- Parameters, then results, and then local variables are packed into stack memory in the order

they are declared.

- In-line PASM code can access the first 16 longs of parameters...results...locals via registers with

the same symbolic names.

Page 158of 484

14.4.1_Example_WRD_Multiple_Result_Method
Note: The common naming convention do not clash because they are generated local to the method,
result01,result02,result03 are separate and independent. Compiler keeps track.

Page 159of 484

14.4.2_Example_WRD_GETRND

14.4.3_Example_WRD_XYPOL (Polar Co-ordinates xy to length,angle32bit)

14.4.4_Example_WRD_POLXY(Polar Co-Ordinates Length,angle32bit to xy)

14.4.5_Example_WRD_ROTXY (Polar Co-Ordinate Rotation)

14.4.6_Example_WRD_QSIN_QCOS

14.4.7_Example_WRD_QSin_QCOS_Simple_Scope

14.4.8_Example_WRD_MULDIV64

14.4.9_Example_WRD_STRING

14.4.10_Example_WRD_REPEAT

14.4.11_Example_WRD CASE
ThHe CASE construct sequentially compares a target value to a list of possible matches. When a match is
found, the related code executes.
Match values/ranges must be indented past the CASE keyword. Multiple match values/ranges can be
expressed with comma separators. Any additional lines of code related to the match value/range must
be indented past the match value/range:
CASE target - CASE with target value
 <match> : <code> - match value and code
 <indented code>
 <match..match> : <code> - match range and code
 <indented code>
 <match>,<match..match> : <code> - match value, range, and code
 <indented code>
 OTHER : <code> - optional OTHER case, in case no match found
 <indented code>

Page 160of 484

14.4.12_Example_WRD_CASE_FAST

CASE_FAST is like CASE, but rather than sequentially comparing the target to a list of possible

matches, it uses an indexed jump table of up to 256 entries to immediately branch to the

appropriate code, saving time at a possible cost of larger compiled code. If there are only

contiguous match values and no match ranges, the resulting code will actually be smaller than a

normal CASE construct with more than several match values.

For CASE_FAST to compile, the match values/ranges must be unique constants which are all

within 255 of each other.

CASE flag
 0: CASE_FAST chr
 0: BYTEFILL(@screen, " ", screen_size)
 col := row := 0
 1: col := row := 0
 2..7: flag := chr
 RETURN
 8: IF col
 col--
 9: REPEAT
 out(" ")
 WHILE col & 7
 10: RETURN
 11: color := $00
 12: color := $80
 13: newline()
 OTHER: out(chr)

 2: col := chr // cols
 3: row := chr // rows
 4..7: background0_[flag-$04] := chr << 8
 flag := 0

Page 161of 484

14.4.13_Example_WRD_IF_IFNOT_ELSEIF_ELSEIFNOT_ELSE
The IF construct begins with IF or IFNOT and optionally employs ELSEIF, ELSEIFNOT, and ELSE. To all be
part of the same decision tree, these keywords must have the same level of indentation.
The indented code under IF or ELSEIF executes if <condition> is not zero. The code under IFNOT or
ELSEIFNOT executes if <condition> is zero. The code under ELSE executes if no other indented code
executed:
IF / IFNOT <condition> - Initial IF or IFNOT
 <indented code>
ELSEIF / ELSEIFNOT <condition> - Optional ELSEIF or ELSEIFNOT
 <indented code>
ELSE - Optional final ELSE
 <indented code>

14.4.14_Example_WRD_SPIN2_Differences

Page 162of 484

14.5) PRI Block
PRI methodname({parameter{,...}}) {: result{,...}} {| {ALIGNW/ALIGNL} {BYTE/WORD/LONG}

localvar{[count]}{,...}}

The private methods are internal to the object and can not be referenced from outside the object.

result –is the return value

PRI privateMethod()
 Code

Page 163of 484

14.6) Dat Block
Memory Declaration:
<Symbol> Alignment <Size> <Data> ‘ reserved memory
Symbol –optional name for the reserved space
Alignment <Size> –the byte alignment for reserved data byte,word,long (1byte,2byte,4byte)
Data –constant expression or comma separated variable or quoted strings treated as same
PASM Propeller Assembly Machine Code:
<Symbol> <Condition> Instruction <Effects> ‘Propeller Assembly Code
Symbol –optional name for the command line
Condition –flag condition C Carry or Z Zero IF_C, IF_NC, IF_Z, IF_NZ
Instruction –assembly language Instruction eg. ADD,MOV,etc
Effects –effects that cause the result to be written when executed WR,WC,WZ

14.6.1) Common Dat Declaration Alignment
Data is declared with alignment and size.(Byte(1),Word(2),Long(4)).

Long 0 1

Word 0 1 2 3

Byte 0 1 2 3 4 5 6 7

Data 40 41 53 74 72 69 6E 67

Long 2 3

Word 4 5 6 7

Byte 8 9 10 11 12 13 14 15

Data 00 00 C2 FF F8 24 00 00

 0 PAD

0 PAD 0 PAD

Long 4 5

Word 8 9 10 11

Byte 16 17 18 19 20 21 22 23

Data 11 22 33 44 20 00 00 00

Dat

 Byte 64, "A" ,"String" ,0

 Word $FFC2, 75000

Page 164of 484

 Long $44,332,211 32

 S t r i n g

String 53 74 72 69 6E 67

A 41

75000 124F8

124F8 Is larger than what a word can hold so upper nibbles lost

Long data type will always be placed with an alignment of 4 bytes from the beginning of memory and
Will be padded to maintain convention. Word data type will always be placed with an alignment of 2
bytes from the beginning of memory and will be padded or truncated. Byte data will align to a single
byte.

Dat
 Byte word $FFAA ,long $BB995511

The above example specifies byte aligned data,but a word sized value followed by a long sized value.
The result that memory contains consecutive data:

Long 0 1

Word 0 1 2 3

Byte 0 1 2 3 4 5 6 7

Data FF C2 11 55 99 BB

Dat

 byte word FFC2 long BB995511

This looks to be away to pack data and avoid 0 Padding.

DAT
MyData byte 64,’$AA, 55 ‘creates data table
MyString byte “Hello World”,0 ‘Zero 0 terminated string

Pub GetData |Temp
 Temp ≔ MyData[0] ‘get first byte of Data Table

Page 165of 484

Pub GetData | Temp
 Tem ≔ BYTE[@MyData][0]

DAT
MyData word 40_000, $BB50
MyList word long $FF995544, long 1000 ‘needs clarification book may be wrong pg332

DAT
MyData Long 640_000, $BB50
MyList byte long $FF995544, long 1000 ‘needs clarification book may be wrong pg237

Page 166of 484

DAT

Data Pointers

DAT

Str0 BYTE "Monkeys",0 'strings with symbols

Str1 BYTE "Gorillas",0

Str2 BYTE "Chimpanzees",0

Str3 BYTE "Humanzees",0

StrList WORD @Str0 'in Spin2, these are offsets of strings relative to start of object

 WORD @Str1 'in Spin2, @@StrList[i] will return address of Str0..Str3 for i = 0..3

 WORD @Str2 'in PASM-only programs, these are absolute addresses of strings

 WORD @Str3 '(use of WORD supposes offsets/addresses are under 64KB)

14.6.2) Filling Data Tables

symbol data_type fill_value[array_length]

DAT
Custom long -1[C_CHARS]

That is the equivalent of defining C_CHARS (length) longs filling the value of -1 in the DAT block -- it's

creating a DAT array with all values initialized to -1. You can address each long individully using

Custom[idx] where idx is 0 to 7. If you need the address of the array you can get it with @Custom. If you

later need 10 longs, you only have to change the definition of C_CHARS.

Page 167of 484

14.6.1_Example_WRD_ Data Block Address
{{14.6.1_Example_WRD_ Data Block Address}}
{{
Self Modifying Code and Pointer to Tables

ALTS D,{#}S
Alter S field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9].

MOV D,{#}S {WC/WZ/WCZ}
Move S into D. D = S. C = S[31]. *
}}
CON
 _clkfreq = 200_000_000 ''Debug clock must be greater than 10MHZ
 P0 =0 , P1 = 1 , P2 = 2
VAR
Byte cogRunning 'cog ID started is returned or -1 if not started
PUB main()
 debug("--------------------------------------")
 debug("Self Modifying Code")
 debug("Example Modifies MOV Destination Field")
 debug("Allows Pointer to increment through Table")
 debug("To Display TABLE Values In single variable Value")
 debug("--------------------------------------")
 cogRunning := COGINIT(COGEXEC_NEW,@S0_Dat,0)
 debug(udec(cogRunning))
 repeat 'keep cog 0 running

DAT
 ORG 0
S0_Dat DRVH #P0 'P0 on program running
 debug("--------------------------------------")
 MOV Pointer,#valTable 'set Pointer to first address in valTable
_Next ALTS Pointer,Index
 MOV Value,#0 'place holder #0 value comes from ALTS D,S = Pointer +Index
 debug(udec(Pointer),udec(Index),udec(Value))
 debug("---------------------------------------")
 ADD Index,#1
 CMP Index,#4 WZ
 IF_Z JMP #_Loop1
 JMP #_Next
_Loop1 NOP
 JMP #_Loop1 'remember # imediate
Index long 0
Pointer long 0
Value long 0
valTable long 0,1,2,3

Page 168of 484

15.0) Operators

15.1) Pre and Post Operators

15.2) Operator ?? PsedoRandomNumberGenerator
PRNG of XOR032 requires variable to be non zero initially "Xorshift RNGs" by George Marsaglia describes
a very efficient system for generating high-quality random numbers using very little compute and
storage.
- https://forums.parallax.com/discussion/168188/xoroshiro-random-number-generator/p1

Here is the xoroshiro++ pseudo code:

;{s1,s0} = state (input and output)
;prn = pseudo-random number (output)
;tmp and prn can be the same register

;xoroshiro+
 xor s1,s0 ;s1 = s1 ^ s0
 mov tmp,s1
 rol s0,a ;s0 = s0 rol a
 shl tmp,b ;tmp = (s1 ^ s0) shl b
 xor s0,tmp
 xor s0,s1 ;s0 = s0 rol a ^ (s1 ^ s0) shl b ^ s1 ^ s0
 rol s1,c ;s1 = (s1 ^ s0) rol c
 mov prn,s0
 add prn,s1 ;prn = s0 + s1
;xoroshiro++ enhancement

http://www.jstatsoft.org/v08/i14/paper
https://forums.parallax.com/discussion/168188/xoroshiro-random-number-generator/p1

Page 169of 484

15.1_Example_WRD_ Pre_and_Post_Operators

15.2_Example_ Address_Operators

15.3_Example_WRD_Bitwise_Decod_and_ENCOD
Note: |< Decode 0-31 Does not exist In P2 works for P1

DECOD create a binary bit set in accordance with bit number 0-31 BinPattern = DECOD PinNum
PinNum =31 BinPattern %10000000_00000000_00000000_00000000
ENCOD create a Decimal number of the highest bit set in a given number PinNum = ENCOD BinPattern
BinPattern = %11111111_11111111_11111111_11111111 PinNum = 31

15.4_Example_WRD_##_Operator
The 9 bit data field can be augmentated with ## using AUGS or AUGD which is transparent compiler
Expands the ## operator .
{{
 15.4_Example_WRD_##_Operation
Pr0 $1D8 Pr1 $1D9 Pr2 $1DA Pr3 $1DB Pr4 $1DC Pr5 $1DD Pr6 $1DE Pr7 $1DF
}}
CON
 _clkfreq = 200_000_000 ' system freq as a constant
 NumCon01 = $1DA
 NumCon02 = $1DB
PUB main()
 org
 mov Pr0,##NumCon01+NumCon02 'constant NumCon01 + NumCon02 is added imediate load to
Pr0
 mov Pr1,##(NumCon01+NumCon02) '#imediate stops a register reference load
 mov Pr2,#$1DA
 mov Pr3,##Pr2
 end
 debug(udec(Pr0),udec(Pr1),uhex(Pr2),uhex(Pr3))

Page 170of 484

16.0) Method Pointer
Method pointers are LONG values which point to a method and are then used to call that method

indirectly. To establish a method pointer, you can assign a long variable using "@" before the method

name.

Note that there are no parentheses after the method name:

LongVar := @SomeMethod 'a method within the current object
LongVar := @SomeObject.SomeMethod 'a method within a child object
LongVar := @SomeOject[index].SomeMethod 'a method within an indexed child object

Method pointers can be generated on-the-fly and passed as parameters:

SetUpIO(@InMethod,@OutMethod)

Method pointers are then used in the following ways to call methods:

 LongVar() 'no parameters and no return values
LongVar(Par1, Par2) 'two parameters and no return values
 Var := LongVar():1 'no parameters and one return value
 Var1,Var2 := LongVar(Par1):2 'one parameters and two return values
Var1,Var2 := POLXY(LongVar(Par1,Par2,Par3):2) 'three parameters and two return values

There is no compile-time awareness of how many parameters the method pointed to actually has. You

need to code your method pointer usage such that you supply the proper number of parameters and

specify the proper number of return values after a ":" , so that there is agreement with the method

pointed to.

Method pointers can be passed through object hierarchies to enable direct calling of any method from

anywhere. They can also be used to dynamically point to different methods which have the same

numbers of parameters and return values.

How Method Pointers Work

An @method expression generates a 32-bit value which has two bit fields:

 [31..20] = Index of the method, relative to the method's object base. The index of the first method will

be twice the number of objects instantiated

 [19..0] = Address of the method's VAR base. The method's VAR base, in turn, contains the address of

the method's object base.

 By putting the method's index and VAR base address together into the 32-bit value, and having the VAR

base contain the method's object base address, a complete method pointer is established in a single

long, which can be treated as any other variable.

 To accommodate method pointers, each object instance reserves the first long of its VAR space for the

object base address. When an @method expression executes, that first long is written with the object's

base address.

Page 171of 484

1.6.0.1_Example_WRD_METHOD_POINTER
{{16.0.1_Example_WRD_METHOD_POINTER}}
{{
LongVar := @SomeMethod 'a method within the current object
LongVar := @SomeObject.SomeMethod 'a method within a child object
LongVar := @SomeOject[index].SomeMethod 'a method within an indexed child object
}}
con
 _clkfreq = 200_000_000
var
long testMethodPointer
pub main()| byte Pin,long debugMsg1,long debugMsg2
 Pin := 0
 testMethodPointer := @OutMethodBlink
 debugMsg1,debugMsg2 := testMethodPointer(Pin):2 'must declare number of return variables
 debug(zstr(debugMsg1),zstr(debugMsg2)) 'send messages
 repeat 'keep cog0 running
pub OutMethodBlink(Ppin):result1,result2
 pinhigh(Ppin)
 result1 := @msgON
 result2 := @msgReturn
 waitms(500)
dat
msgON byte "Pin is ON high ",0 'zero terminated string
msgReturn byte "OutMethodBlink Executed ",0 'zero terminated string

16.0.2_Example_WRD_METHOD_POINTER_Object
{{16.0.2_Example_WRD_METHOD_POINTER_Object}}
{{
LongVar := @SomeMethod 'a method within the current object
LongVar := @SomeObject.SomeMethod 'a method within a child object
LongVar := @SomeOject[index].SomeMethod 'a method within an indexed child object
}}
con
 _clkfreq = 200_000_000
obj
 methodPointer : "16.0.1_Example_WRD_METHOD_POINTER" 'define object to include
var
 long testMethodPointerInObject
pub main()| byte Pin,long debugMsg1,long debugMsg2
 Pin := 0 'P0 led 1k
 testMethodPointerInObject := @methodPointer.OutMethodBlink 'indirect object method pointer
 debugMsg1,debugMsg2 := testMethodPointerInObject(Pin):2 'declare number of return variables
 debug(zstr(debugMsg1),zstr(debugMsg2)) 'send messages
 repeat

Page 172of 484

16.0.3_Example_WRD_METHOD_POINTER_Object_Array
{{16.0.3_Example_WRD_METHOD_POINTER_Object_Array}}
{{
LongVar := @SomeMethod 'a method within the current object
LongVar := @SomeObject.SomeMethod 'a method within a child object
LongVar := @SomeOject[index].SomeMethod 'a method within an indexed child object
}}
con
 _clkfreq = 200_000_000
obj
 methodPointer[4] : "16.0.1_Example_WRD_METHOD_POINTER" 'define object to include
var
 long testMethodPointerInObject
pub main()| byte Pin,long debugMsg1,long debugMsg2
 Pin := 0 'P0 led 1k
 testMethodPointerInObject := @methodPointer[0].OutMethodBlink 'indirect object method pointer
 debugMsg1,debugMsg2 := testMethodPointerInObject(Pin):2 'declare number of return variables
 debug(udec(Pin),zstr(debugMsg1),zstr(debugMsg2)) 'send messages
 Pin := 1 'P1 led 1k
 testMethodPointerInObject := @methodPointer[1].OutMethodBlink 'indirect object method pointer
 debugMsg1,debugMsg2 := testMethodPointerInObject(Pin):2 'declare number of return variables
 debug(udec(Pin),zstr(debugMsg1),zstr(debugMsg2)) 'send messages
 Pin := 2 'P2 led 1k
 testMethodPointerInObject := @methodPointer[2].OutMethodBlink 'indirect object method pointer
 debugMsg1,debugMsg2 := testMethodPointerInObject(Pin):2 'declare number of return variables
 debug(udec(Pin),zstr(debugMsg1),zstr(debugMsg2)) 'send messages
 repeat

Page 173of 484

16.1) SEND

SEND is a special method pointer which is inherited from the calling method and, in turn,

conveyed to all called methods. It's purpose is to provide an efficient output mechanism for data.

SEND can be assigned like a method pointer, but it must point to a method which takes one

parameter and has no return values:

SEND := @OutMethod

When used as a method, SEND will pass all parameters, including any return values from called

methods, to the method SEND points to:

SEND("Hello! ", GetDigit()+"0", 13)

Any methods called within the SEND parameters will inherit the SEND pointer, so that they can

do SEND methods, too:

PUB Go()

 SEND := @SetLED

 REPEAT

 SEND(Flash(),$01,$02,$04,$08,$10,$20,$40,$80)

PRI Flash() : x

 REPEAT 2

 SEND($00,$FF,$00)

 RETURN $AA

PRI SetLED(x)

 PINWRITE(56 ADDPINS 7, !x)

 WAITMS(125)

In the above example, the following values are output in repeating sequence: $00, $FF, $00, $00,

$FF, $00, $AA, $01, $02, $04, $08, $10, $20, $40, $80 (but inverted for LEDs)

Page 174of 484

Though a called method inherits the current SEND pointer, it may change it for its own purposes.

Upon return from that method, the SEND pointer will be back to what it was before the method

was called. So, the SEND pointer value is propagated in method calls, but not in method returns.

SEND acts as a special type of method pointer, inherited from the calling method and, in turn, conveyed

to all called methods. It provides an efficient output mechanism for data.

You may assign SEND as you would any method pointer, but it must point to a method that 1. takes one

parameter and 2. has no return values:

SEND := @OutMethod 'SEND points to OutMethod

SEND will pass all parameters, including any return values from called methods, to the method SEND

points to:

SEND("Hello! ", GetDigit()+"0", 13)

Any methods called from within the SEND parameters, such as GetDigit() in the example above, will

inherit the SEND pointer, so that they also may use the SEND method. The following code provides an

example of SEND use. It sends 8-bit patterns of 0s and 1s to LEDS at pins P56 through P63:

PUB go()

 SEND := @SetLED

 REPEAT

 SEND($01, $02, $04, $08, $10, $20, $40, $80)

PRI SetLED(x)

 PINWRITE(56 ADDPINS 7, !x)

 WAITMS(125)

Note: LEDs on the P2 EVAL Board are driven by active-low signals.

Within the go() method, the statement SEND := @SetLED, gives SEND the pointer to the SetLED method.

This method satifies the requirement: only one variable and no return value. Note the SetLED method

above includes a short delay so the LED patterns remain visible long enough so you can see them.

Next the REPEAT loop executes the SEND($01, $02...) statement that transfers the first parameter $01 to

Page 175of 484

the SetLED method. The LED at pin P56 turns on. When this method finishes, it returns control to the

SEND statement, which then sends $02 to the SetLED method, which turns on the LED at P57. Each LED

turns on and off in sequence again and again in the REPEAT loop.

A second example shows how other methods can inherit the SEND pointer. An added method, Flash(),

will turn all LEDs on and off. This method includes a SEND statement, too.

PUB go()

 SEND := @SetLED

 REPEAT

 SEND(Flash(), $01, $02, $04, $08, $10, $20, $40, $80)

PRI Flash() : x

 REPEAT 2

 SEND($00,$FF,$00)

 RETURN $AA

PRI SetLED(x)

 PINWRITE(56 ADDPINS 7, !x)

 WAITMS(125)

The program will call the Flash() method (in the first SEND() parameter) and will eventually pass the

return value from Flash() to the SetLED() method (after Flash() has fully executed).

First, the Flash() method will run and send its own values, $00, $FF, $00, to the LEDs two times. Then, if

you watch the LEDs, they next display $AA next. Why?

The Flash() method returns the value $AA to the SEND statement: SEND(Flash(),$01,$02... In effect the

$AA value gets inserted in place of the call to Flash() in the list of parameters, making the whole

program execution behave as if the SEND(Flash(), $01, $02...) had really been:

SEND($00,$FF,$00)

SEND($00,$FF,$00)

SEND($AA, $01, $02...)

Page 176of 484

The Flash() method inherited the SetLED() address and can use it independent of other uses in this

program

16.1_Example_WRD_Send_Led
{{16.1_Example_WRD_Send_Led}}
{{
SEND can be assigned like a method pointer, but it must point to a method which takes one parameter
and has no return values:

SEND := @OutMethod 'method can be either PUB or PRI
SEND(anotherMethod(),parameter) 'anotherMethod single return value is sent

Any methods called within the SEND parameters will inherit the SEND pointer, so that they can do SEND
methods, too:

Pub anotherMethod() :result
 send(parameter) 'SEND method Pointer @OutMethod is inherited and can be called by
anotherMethod
 result := $FF

Pub OutMethod
 "code to go here"
}}
con
 _clkfreq = 200_000_000
PUB Go()
 SEND := @SetLED
 REPEAT
 SEND(Flash(),$0F,Flash(),$33,$DD,$33,$DD)
PRI Flash() : y
 y := $F0
 waitms(500)
PRI SetLED(x)
 PINWRITE(0 ADDPINS 7, x)
 WAITMS(500)

Page 177of 484

16.2) RECV

RECV, like SEND, is a special method pointer which is inherited from the calling method and,

in turn, conveyed to all called methods. It's purpose is to provide an efficient input mechanism

for data.

RECV can be assigned like a method pointer, but it must point to a method which takes no

parameters and returns a single value:

RECV := @InMethod

An example of using RECV:
VAR i
PUB Go()
 RECV := @GetPattern
 REPEAT
 PINWRITE(56 ADDPINS 7, !RECV())
 WAITMS(125)
PRI GetPattern() : Pattern
 RETURN DECOD(i++ & 7)

In the above example, the following values are output in repeating sequence: $01, $02, $04, $08,

$10, $20, $40, $80 (but inverted for LEDs)

Though a called method inherits the current RECV pointer, it may change it for its own

purposes. Upon return from that method, the RECV pointer will be back to what it was before

the method was called. So, the RECV pointer value is propagated in method calls, but not in

method returns.

Page 178of 484

16.2_Example_WRD_Receive_Led
{{16.2_Example_WRD_Receive_Led}}
{{
RECV := @InMethod
DECOD create a binary bit set in accordance with bit number 0-31 BinPattern = DECOD PinNum
PinNum =31 BinPattern %10000000_00000000_00000000_00000000
}}
VAR i
PUB Go()
 RECV := @GetPattern
 REPEAT
 i := 0
 REPEAT 7
 PINWRITE(0 ADDPINS 7, RECV())
 WAITMS(250)
 i := 0
 REPEAT 7
 PINWRITE(0 ADDPINS 7,!RECV())
 WAITMS(250)
PRI GetPattern() : Pattern
 if i > 7
 i := 0
 RETURN DECOD(i++ & 7)

Page 179of 484

17.0) PASM Propeller Assembly Language
(Need more information some supposition)

Typical PASM program consists of Spin code to boot propeller and DAT section consisting of assembly

code to be loaded into a Cog. The Propeller II allows also Inline assembly language not available with

Propeller I. Cog 0 is launched with the spin byte interpreter.

Each Cog has PC (Program Counter) that is incremented with a Common System Clock
PC points to the next instruction to be Executed.

Each Cog Has a Instruction Result Register or Flag Register with two bits zero Z and carry C flags
Result or Flag Register can be thought as to why cogs are Risc processors (reduced instruction set
computer)

17.0.0_Example_PASM_Template(used for testing PASM commands)

17.0.0.1_Example_WRD_PASM_COG_DAT_Launch_Template
The following program template launches Cog 1 to run “codePASM”:

{{17.0.0.1_Example_WRD_PASM_COG_DAT_Launch_Template}}
CON
 _clkfreq = 200_000_000 'Debug must be enabled clock must be greater than 10MHZ for Debug
VAR
 Byte cogRunning 'cog ID started is returned or -1 if not started
PUB main()
 cogRunning := COGINIT(COGEXEC_NEW,@codePASM,$FFF_FFFF)
 debug(udec(cogRunning))
 repeat 'keep cog 0 running
 'Start next available cog which is 1 load cog 1 memory with @codePASM at Cog Memory $10
 'PTRA register will be loaded with $FFF_FFFF
DAT ORG 0 'COGINIT(COGEXEC_NEW,@codePASM,PTRAvalue)
'Normally start at $000 but you don't have too
codePASM
 MOV DIRA, #$FF 'Set the direction of the first 8 pins to Output
 GETCT cogCounterValue 'Get global system counter value
 ADDCT1 cogCounterValue,PTRA 'set CT1 event to trigger on CT = countvalue + PTRA
_Loop WAITCT1
 ADDCT1 cogCounterValue,PTRA
 XOR OUTA, #1
 NOP
 debug(ubin(OUTA)) 'send status to Debug Window
 JMP #_Loop 'don't forget #imediate setting or register is loaded
cogCounterValue Long 0 'counter value CT storage

Both data and PASM may be intermixed in the DAT section . The “COGINIT”command loads 496
consecutive long values starting from the aspecified address “ORG 0” The PASM starts to run from the
specified address.

Page 180of 484

Note:
1)(TBD) The :_Loop instruction symbol name is forgotten by the compiler after compiling the JMP
#:_Loop thus allowing _Loop to be reused in subsequent assembly code symbol labeling. (Needs
Verification)
2) PTRA register can contain an address allowing a reference for acquiring other variables in the HUB in
the above example a value is passed.
3) ORG 0 directive causes compiled code to be loaded starting at 0 and initiating PC to start from 0 this
could be changed for example to ORG 10 thus the first registers 0-9 long in length would be available for
program data storage.
4) # stands for immediate if not included the instruction is register reference and loads from register not
value.

17.0.0.2_Example_WRD_Inline_PASM
{{
17.0.0.2_Example_WRD_PASM_COG_DAT_Launch_Template
}}
CON
 _clkfreq = 200_000_000 ''Debug must be enabled clock must be greater than 10MHZ for Debug
PUB main()
 PTRA := $FFF_FFFF 'spin assignment instruction
 ORG
codePASM
 MOV DIRA, #$FF 'Set the direction of the first 8 pins to Output
 GETCT cogCounterValue 'Get global system counter value
 ADDCT1 cogCounterValue,PTRA 'set CT1 event to trigger on CT == countvalue + PTRA
._Loop WAITCT1 'wait till CT == cogCounterValue
 ADDCT1 cogCounterValue,PTRA
 XOR OUTA, #1
 NOP
 debug(ubin(OUTA)) 'send status to Debug Window
 JMP #._Loop 'JMP to Loop note the dot . if included name reference is forgotten by
compiler
cogCounterValue Long 0 'counter value CT storage

 END

Page 181of 484

17.0.1) Assembly Language Syntax
Each assembly instruction has common syntax elements consisting of an optional label, optional

condition, the instruction and optional effects:

<Label> <Condition> Instruction <Effects>

 Label- is an optional statement. Label canbe global (starting with and underscore “_” or letter)

or can be local (starting with a colon “:”) Local labels must be separated from other same named

local labels by at least one global label. Label is used by instructions like JMP,CALL and COGINIT

to designate the target destination.

 Condition-is an optional execution condition (IF_C,IF_Z etc) that causes and instruction to be

executed or not. There are 32 possible condition checks.

 Instruction-is a Propeller Assembly Instruction (MOV,ADD,COGINIT etc) and it’s operands. There

are 409 Instructions with upto 2 operands per instruction.

 Effects- is an optional list of one to three execution effects (WZ,WC,WR and NR). They cause the

Instruction to modify the Z flag,C flag and write or not write the instruction result value to the

destination register.

#S-Immediate value to be used S-register contains value to be use S represent the source operand
#D-Immediate value to be used D-register is the result to be written D represents the destination
operand
* Z = (result == 0).
** If #S and cogex, PC += signed(S). If #S and hubex, PC += signed(S*4). If S, PC = register S. (needs
clarification)

The Instruction are listed with out Labels or Conditionas an example ROR:

<Label> <Condition> ROR D,#S {WC,WZ,WCZ}
Rotate Right D = [31:0] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0].

 Condition Instruction Effects(Flags) Destination Source_________
31 30 29 28 | 27 26 25 24 23 22 21 | 20 19 18 | 17 16 15 14 13 12 11 10 09 | 08 07 06 05 04 03 02 01 00
E E E E 0 0 0 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S
4 bit = 15 7 bit = 127 3 bit =7 9 bit = 511 max address 9 bit = 511 max address

.

Page 182of 484

Key Description

EEEE Conditional test (see "Instruction Prefix" list at bottom of the instruction set spreadsheet)

C 0: Do not update the "C" register

1: Update the "C" register. In the instruction syntax, this is denoted by "WC" or "WCZ".

Z 0: Do not update the "Z" register

1: Update the "Z" register. In the instruction syntax, this is denoted by "WZ" or "WCZ".

I 0: Source field is a register address

1: Source field is a literal value. In the instruction syntax, this is denoted by the "#" character.

L 0: Destination field is a register address

1: Destination field is a literal value. In the instruction syntax, this is denoted by the "#"

character.

DDDDDDDD

D

Destination field

SSSSSSSSS Source field

N,NN,NNN Index number. This is only used for instructions with a third index argument.

cccc conditional test used to update C (%0000=clear, %1111=set, all others per EEEE)

zzzz conditional test used to update Z (%0000=clear, %1111=set, all others per EEEE)

NOTE: Some instruction not using WC or WZ can use CZI field for different meanings such as:
 CallPA #D #S  CZI = 1LI = 111 for #D #S (L=D I=S)

Page 183of 484

17.0.1.1_Example_WRD_PASM_Instruction_Syntax
This program can be run with _RET_ and debug(ubin(S1_ROR)) commented out , and can be run with

uncommented to return condition code. When uncommented the _RET_ ROR Pr0,Pr1 executes and

closes the cog but debug window will return the Instruction code with condition code EEEE.

Note:
ROR rotate right shifts bit B0 back to B31. SHR shift right loses B0
Debug can be used to grab the Encoded instruction to determine condition expression
S[4:0] contains number of bits to shift maximum is 31 for 32 bit long word
Note:
'S1_ROR _RET_ ROR Pr0,Pr1 'Execute <inst> always and return if no branch. If not branching pop
stack this line and debug(ubin(S1_ROR) are commented out

Note:
S1_ROR _RET_ ROR Pr0,Pr1 'Execute <inst> always and return if no branch. If not branching pop
stack this line and debug(ubin(S1_ROR) is allowed to be compiled.

Page 184of 484

PASM Syntax Encoded Instruction 32 Bit

S0_ROR ROR Pr0,Pr1 11110000_00000011_10110001_11011001

S1_ROR _RET_ ROR Pr0,Pr1 00000000_00000011_10110001_11011001

S2_ROR IF_Z ROR Pr0,Pr1 10100000_00000011_10110001_11011001

S3_ROR IF_C ROR Pr0,Pr1 11000000_00000011_10110001_11011001

S4_ROR IF_NC_AND_NZ ROR Pr0,Pr1 00010000_00000011_10110001_11011001

S5_ROR IF_NZ_AND_NC ROR Pro,Pr1 00010000_00000011_10110001_11011001

S6_ROR ROR Pr0,Pr1 WC 11110000_00010011_10110001_11011001

S7_ROR ROR Pr0,Pr1 WZ 11110000_00001011_10110001_11011001

S8_ROR IF_C ROR Pr0,#Shift WCZ 11000000_00011111_10110001_11011001

 CZI

Symbol Condition Mnemonic Condition Instruction Effects Destination Source

S0_ROR ROR Pr0,Pr1 1111 0000000 000 111011000 111011001

S1_ROR _RET ROR Pr0,Pr1 0000 0000000 000 111011000 111011001

S2_ROR IF_Z ROR Pr0,Pr1 1010 0000000 000 111011000 111011001

S3_ROR IF_C ROR Pr0,Pr1 1100 0000000 000 111011000 111011001

S4_ROR IF_NC_AND_NZ ROR Pr0,Pr1 0001 0000000 000 111011000 111011001

S5_ROR IF_NZ_AND_NC ROR Pr0,Pr1 0001 0000000 000 111011000 111011001

S6_ROR
ROR Pr0,Pr1

WC 1111 0000000 100 111011000 111011001

S7_ROR
ROR Pr0,Pr1

WZ 1111 0000000 010 111011000 111011001

S8_ROR IF_C
ROR Pr0,#Shift

WCZ 1100 0000000 111 111011000 111011001

Page 185of 484

17.0.0.3_Example_WRD_ALT_R_D_S
ALTR D,{#}S
Alter result register address (normally D field) of next instruction to (D + S) & $1FF.
D += sign-extended S[17:9].

ALTR D,{#}S

Alter result register address (normally D field) of next instruction to (D +

S) & $1FF. D += sign-extended S[17:9].

ALTR D

Alter result register address (normally D field) of next instruction to

D[8:0].

ALTD D,{#}S

Alter D field of next instruction to (D + S) & $1FF. D += sign-extended

S[17:9].

ALTD D Alter D field of next instruction to D[8:0].

ALTS D,{#}S

Alter S field of next instruction to (D + S) & $1FF. D += sign-extended

S[17:9].

ALTS D Alter S field of next instruction to D[8:0].

ALTB D,{#}S

Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-

extended S[17:9].

ALTR Alter R Field result register address (normally D field) of next instruction to (D + S) & $1FF.
D += sign-extended S[17:9]. D= IndexD[8:0] + sign-Extended [17:9]
ALTD Alter D field of next instruction to (D + S) & $1FF.
D += sign-extended S[17:9]. D= IndexD[8:0] + sign-Extended [17:9]
ALTS Alter S field of next instruction to (D + S) & $1FF.
D += sign-extended S[17:9]. D= IndexD[8:0] + sign-Extended [17:9]

RDSS= Offset S[17.9] + BaseAddressS[8:0]

D = IndexD[8:0] + sign-Extended [17:9]

Page 186of 484

ALTR D,{#}S
Alter result register address (normally D field) of next instruction to (D + S) & $1FF. D += sign-extended
S[17:9].

17.0.0.3_Example_WRD_ALTR D,R,{#}S_116}}

ALTR D,{#}S
Alter result register address (normally D field) of next instruction to (D + S) & $1FF.
D += sign-extended S[17:9].

By Means of an example we want the result of XOR X,Y but you don't want to destroy register X.
By using the ALTR instruction you can avoid a bunch of move statements.
Also some registers cannot be written too. Using the ALTR instruction you can use the assembly
instructions without destroying either register and writing the instruction operation to an alternate
register.

ResultAddress= BaseAdressS[8:0] + OffseD[8:0] + IndexD[8:0]
S= Offset S[17.9] + BaseAddressS[8:0]
D = IndexD[8:0] + sign-Extended [17:9]

XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *

Example
Write the result of XOR Ax,Bx to 'xorResult' not affecting Ax or Bx use Offset and Index

Page 187of 484

17.1) NOP No operation
NOP instruction does not effect any flags but requires 2 cycles can be used for timming or a filler when

programming.

17.1.1_Example_WRD_NOP_001
{{17.1_Example_WRD_NOP_001}}
{{
NOP instruction does not effect any flags
requires 2 cycles can be used for timming or a filler when programming.
}}
CON

17.2) ROR Rotate Right and ROL Rotate Left
ROL D,{#}S {WC/WZ/WCZ} Rotate left D. Note: B31 will rotate back to B0
D = [63:32] of ({D[31:0], D[31:0]} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. *

ROR D,{#}S {WC/WZ/WCZ} Rotate right. Note: bit B0 will rotate back to B31
D = [32:63] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *

Interpertating the above command the destination register D = [32:63] It's an ordered bitwise
assignment from D on leftside of "of", as a 64-bit word, to D on rightside leftside of "of", as a 32-bit
word, with S specifying the alignmentshift. This is analogy of functional description. In reality, the
variability of S means the logic gates needed to achieve that, in what's called a "barrel-shifter", is a
pretty large structure.
Imagine you have taken the register to be shifted and placed a copy of that beside it so now you have 64

bits, with the top half the same as the bottom half. You then use the S register value to shift the whole

thing right, and you then take the top half, which gives the same effect as a circular shift of 32 bits.

It should be noted that S can hold 0, which results in no shift, but can still set the flags which would put

D[0] into the C flag for Rotate Right.

While a barrel shifter is fairly large compared to a simple shifter, it gives a speed advantage that scales

with register size (a 31 bit shift takes the same time as a single bit shift, giving a x31 speed up)

ROR rotate right operand and ROL rotate left operand operate in the same manner shifting right or

shifting left. The following description is for ROL rotate left.

Starting with 17.2.2_Example_WRD_ROL_0000001.

valPr0 long %10101010_10101010_10101010_10101010 'cog 1 Dest
valPr1 long %00000000_00000000_00000000_00000001 'cog 1 Src
 D is register Dest, the hardware latches two copies of it to give 64 bits =

10101010_It then shifts bits left by the value in S the 64 bits =

 01010101_01010101_01010101_01010101__01010101_01010101_01010101_0101010x

The result is then taken as bits 63 to 32 of this (bolded above) giving D = 01

Page 188of 484

For a double shift this example value is awkward as it appears to make no change. To illustrate it better

the following shows a variety of bit shifts with different a starting value

Dest = DEADBEEF = 11011110_10101101_10111110_11101111

64 bits in the shifter (preshift) is

11011110_10101101_10111110_11101111__11011110_10101101_10111110_11101111

A single shift gives

10111101_01011011_01111101_11011111__10111101_01011011_01111101_1101111x

A double shift gives

01111010_10110110_11111011_10111111__01111010_10110110_11111011_101111xx

A 20 bit shift gives

11101110_11111101_11101010_11011011__11101110_1111xxxx_xxxxxxxx_xxxxxxxx

A 31 bit shift gives 11101111_01010110_11011111_01110111__1xxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx

Please note that the bits at the right hand end are x (don't care) values, because it is not known what

the chip sets these to, and it doesn't matter because they never leave the shifter. In fact, bits 31:0 out of

the shifter may not be implemented in the silicon to save gates, power, and heat.

All of these shifts take the same amount of time to occur, as they are all performed in parallel with only

the correct one being passed to the result register.

17.2.1_Example_WRD_R0R_002
ROR D,{#}S {WC/WZ/WCZ} Rotate right. Note: bit B0 will rotate back to B31
D = [31:0] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *
ROR will shift bits to the right and B0 gets shifted to B31 note that leading 0’s is not shown by debug

17.2.2_Example_WRD_ROL_003
ROL D,{#}S {WC/WZ/WCZ} Rotate left.
D = [63:32] (Not sure ?) of ({D[31:0], D[31:0]} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. *
ROL will shift bits to the Left and B31 gets shifted to B0 note that leading 0 is not shown by debug

17.3) SHR Shift Right and SHL Shift Left
SHR D,{#}S{WC\WZ\WCZ} Shift Right
D = [31:0] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *

SHL D,{#}S{WC\WZ\WCZ} Shift Left
Si31:0] > Analogy of 32 bit shift register with 0 being shifted in depending if SHR/SHL

Pr0
01010101_01010101_01010101_01010101
SHR Pr0,#1 WC
00101010_10101010_10101010_10101010 C = 1

Pr0
01010101_01010101_01010101_01010101
SHR Pr0,#2 WC
00010101_01010101_01010101_01010101 C = 0

Page 189of 484

Pr0
01010101_01010101_01010101_01010101
SHL Pr0,#1 WC
C =0 10101010_10101010_10101010_10101010

Pr0
01010101_01010101_01010101_01010101
SHL Pr0,#2 WC
C = 1 01010101_01010101_01010101_01010100

17.3.1_Example_WRD_SHR_004
SHR D,{#}S{WC\WZ\WCZ} Shift Right
D = [32:63] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *
SHR will shift bits to the right 0 fills Bits shifted}}

17.3.2_Example_WRD_SHL_005
SHL D,{#}S{WC\WZ\WCZ} Shift Left
D = [32:63] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *
SHR will shift bits to the Left 0 fills Bits shifted}}

17.4) RCR Rotate Carrry Right and RCL Rotate Carry Left
RCR D,{#}S {WC/WZ/WCZ} Rotate Carry Right.
. D = [31:0] of ({{32{C}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *

RCL D,{#}S {WC/WZ/WCZ} Rotate Carry Left
D = [63:32] of ({D[31:0], {32{C}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. *

RR performs a rotate right of D destination field ,bit times as {#}S using the C flags original value each of

th MSB’s affected. If WC effect is applied C will be changed to match B0 of D destination original value.

D has bits specified by {#}S of C rotated right into D. R performs a rotate Left of D destination field ,bit

times as {#}S using the C flags original value each of th LSB’s affected. If WC effect is applied C will be

changed to match B31 of D destination original value. D has bits specified by {#}S of C rotated right into

D.

17.4.1_Example_WRD_RCR_006
RCR D,{#}S {WC/WZ/WCZ} Rotate Carry Right.
''D = [31:0] of ({32{C}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *

17.4.2_Example_WRD_RCL_007
RCL D,{#}S {WC/WZ/WCZ} Rotate Carry Left
'D = [63:32] of ({D[31:0], {32{C}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. *

Page 190of 484

17.5) SAR Shift Arithmetic Right and Shift Arithmetic Left
Shift Arithmetic Right can thought as dividing or Shift Arithmetic Left Multiplying the value.
 It maintains the sign value.

17.5.1) SAR Shigt Aritmetic Right
SAR D,{#}S {WC/WZ/WCZ}
 D = [31:0] of ({{32{D[31]}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. *
Shift Arithmetic Right is a division of a signed binary number divided by 2
the sign bit remains unchanged

Positve Number
00000000_00000000_00000000_00001101 Before Right Shift = 13

Positive Number Shifted Right 0 Loaded Into MSB to Maintain Sign
00000000_00000000_00000000_00000110 After Shift Right = 6 Result is 13/2 =6 divide by 2

Negative Number
11111111_11111111_11111111_00011000 Before Shift Right = -232
00000000_00000000_00000000_11100111 2’s complement
00000000_00000000_00000000_00000001
00000000_00000000_00000000_ 11101000 = 232

Negative Number Shifted 1 Loaded Into MSB to Maintain Sign
11111111_11111111_11111111_10001100 = After Shift Right = -116 result is -232/2
00000000_00000000_00000000_01110011 2’S complement
00000000_00000000_00000000_00000001
00000000_00000000_00000000_01110100 = 116

17.5.1_Example_WRD_SAR_008

SAR D,{#}S {WC/WZ/WCZ}

Shift arithmetic right. D = [31:0] of ({{32{D[31]}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0,

else D[0]. *

Page 191of 484

17.5.2) Shift Aritmentic Left
SAL D,{#}S {WC/WZ/WCZ}
Shift arithmetic left. D = [63:32] of ({D[31:0], {32{D[0]}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0,
else D[31]. *
Shift Arithmetic Left is a multiplication of a signed binary number by 2
The sign bit remains unchanged
--
Positve Number
00000000_00000000_00000000_00001101 Before Right Left = 13

Positive Number Shifted Left 0 Loaded into LSB
00000000_00000000_00000000_00011010 After Left Shift = 26 Multiply by 2
--
Negative Number
11111111_11111111_11111111_00011000 Before Shift Left = -232
00000000_00000000_00000000_11100111 2’s complement
00000000_00000000_00000000_00000001
00000000_00000000_00000000_ 11101000 = 232

Negative Number Shifted Left 0 Loaded into LSB
11111111_11111111_11111110_00110000 = After Shift Left = -464 result is 2 x -232
00000000_00000000_00000001_11001111 2’s complement
00000000_00000000_00000000_00000001
00000000_00000000_00000001_11010000 = 464

17.5.2_Example_WRD_SAL_009

SAL D,{#}S {WC/WZ/WCZ}
Shift arithmetic left. D = [63:32] of ({D[31:0], {32{D[0]}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0,
else D[31]. *

Page 192of 484

17.6)ADD Addition

ADD D,{#}S

{WC/WZ/WCZ} Add S into D. D = D + S. C = carry of (D + S). *

ADDX D,{#}S

{WC/WZ/WCZ} Add (S + C) into D, extended. D = D + S + C. C = carry of (D + S + C). Z = Z AND (result == 0).

ADDS D,{#}S

{WC/WZ/WCZ} Add S into D, signed. D = D + S. C = correct sign of (D + S). *

ADDSX D,{#}S

{WC/WZ/WCZ}

Add (S + C) into D, signed and extended. D = D + S + C. C = correct sign of (D + S + C). Z = Z AND

(result == 0).

17.6.1_Example_WRD_ADD_010
ADD D,{#}S {WC/WZ/WCZ}
Add S into D. D = D + S. C = carry of (D + S). *
Unsigned Addition

17.6.2_Example_WRD_ADDX_011
ADDX D,{#}S {WC/WZ/WCZ}
Add (S + C) into D, extended. D = D + S + C. C = carry of (D + S + C). Z = Z AND (result == 0).

17.6.3_Example_WRD_ADDS_012
ADDS D,{#}S {WC/WZ/WCZ}
Add S into D, signed. D = D + S.
C = correct sign of (D + S). * Signed Addition

17.6.4_Example_WRD_ADDSX_013
ADDSX D,{#}S {WC/WZ/WCZ}
Add (S + C) into D, signed and extended.
 D = D + S + C. C = correct sign of (D + S + C). Z = Z AND (result == 0).

Page 193of 484

17.7) SUB Subtraction

SUB D,{#}S {WC/WZ/WCZ} Subtract S from D. D = D - S. C = borrow of (D - S). *

SUBX D,{#}S {WC/WZ/WCZ} Subtract (S + C) from D, extended. D = D - (S + C).
C = borrow of (D - (S + C)). Z = Z AND (result == 0).

SUBS D,{#}S {WC/WZ/WCZ} Subtract S from D, signed. D = D - S. C = correct sign of (D - S). *

SUBSX D,{#}S {WC/WZ/WCZ} Subtract (S + C) from D, signed and extended. D = D - (S + C).
C = correct sign of (D - (S + C)). Z = Z AND (result == 0).

17.7.1_Example_WRD_SUB_014
SUB D,{#}S {WC/WZ/WCZ}
Subtract S from D. D = D - S. C = borrow of (D - S). *
Unsigned Subtraction

17.7.2_Example_WRD_SUBX_015
SUBX D,{#}S {WC/WZ/WCZ}
Subtract (S + C) from D, extended.
D = D - (S + C). C = borrow of (D - (S + C)). Z = Z AND (result == 0).

17.7.3_Example_WRD_SUBS_016
SUBS D,{#}S {WC/WZ/WCZ}
Subtract S from D, signed.
D = D - S. C = correct sign of (D - S).*
Signed subtraction

17.7.4_Example_WRD_SUBSX_017
''SUBSX D,{#}S {WC/WZ/WCZ}
''Subtract (S + C) from D, signed and extended.
''D = D - (S + C). C = correct sign of (D - (S + C)). Z = Z AND (result == 0).

Page 194of 484

17.7.5_Example_WRD_SUBR_018
SUBR D,{#}S {WC/WZ/WCZ}
Subtract D from S (reverse). D = S - D.
C = borrow of (S - D).

Page 195of 484

17.8) CMP Compare

CMP D,{#}S

{WC/WZ/WCZ} Compare D to S. C = borrow of (D - S). Z = (D == S).

CMPX D,{#}S

{WC/WZ/WCZ} Compare D to (S + C), extended. C = borrow of (D - (S + C)). Z = Z AND (D == S + C).

CMPS D,{#}S

{WC/WZ/WCZ} Compare D to S, signed. C = correct sign of (D - S). Z = (D == S).

CMPSX D,{#}S

{WC/WZ/WCZ}

Compare D to (S + C), signed and extended. C = correct sign of (D - (S + C)). Z = Z AND

(D == S + C).

CMPR D,{#}S

{WC/WZ/WCZ} Compare S to D (reverse). C = borrow of (S - D). Z = (D == S).

CMPM D,{#}S

{WC/WZ/WCZ} Compare D to S, get MSB of difference into C. C = MSB of (D - S). Z = (D == S).

Compare D register and S register with C/Z conditions entry flags and set flags accordingly.

17.8.1_Example_WRD_CMP_019
CMP D,{#}S {WC/WZ/WCZ}
Compare D to S. C = borrow of (D - S). Z = (D == S).

17.8.2_Example_WRD_CMPX_020
CMPX D,{#}S {WC/WZ/WCZ}
Compare D to (S + C), extended. C = borrow of (D - (S + C)). Z = Z AND (D == S + C).

17.8.3_Example_WRD_CMPS_021
CMPS D,{#}S {WC/WZ/WCZ}
Compare D to S, signed.C = correct sign of (D - S). Z = (D == S)=1 if equal.

17.8.4_Example_WRD_CMPSX_022
''CMPSX D,{#}S {WC/WZ/WCZ}
''Compare D to (S + C), signed and extended. C = correct sign of (D - (S + C)). Z = Z AND (D == S + C).

17.8.5_Example_WRD_CMPR_023
''CMPR D,{#}S {WC/WZ/WCZ}
''Compare S to D (reverse).C = borrow of (S - D). Z = (D == S).

Page 196of 484

17.8.6_Example_WRD_CMPM_024
CMPM D,{#}S {WC/WZ/WCZ}
Compare D to S, get MSB of difference into C.C = MSB of (D - S).
Z = (D == S).

17.8.7_Example_WRD_CMPSUB_025
CMPSUB D,{#}S {WC/WZ/WCZ}
Compare and subtract S from D if D >= S.
If D => S then D = D - S and C = 1, else D same and C = 0. *

Page 197of 484

17.9 F Force FGE\FLE\FGES\FLES

FGE D,{#}S {WC/WZ/WCZ} Force D >= S. If D < S then D = S and C = 1, else D same and C = 0. *

FLE D,{#}S {WC/WZ/WCZ} Force D <= S. If D > S then D = S and C = 1, else D same and C = 0. *

FGES D,{#}S {WC/WZ/WCZ} Force D >= S, signed. If D < S then D = S and C = 1, else D same and C = 0. *

FLES D,{#}S {WC/WZ/WCZ} Force D <= S, signed. If D > S then D = S and C = 1, else D same and C = 0. *

17.9.1_Example_WRD_FGE_026
FGE D,{#}S {WC/WZ/WCZ}
Force D >= S. If D < S then D = S and C = 1,
else D same and C = 0. *

17.9.2_Example_WRD_FLE_027
FLE D,{#}S {WC/WZ/WCZ} Less than or Equal
Force D <= S. If D > S then D = S and C = 1,
else D same and C = 0. *

17.9.3_Example_WRD_FGES_028
FGES D,{#}S {WC/WZ/WCZ}
Force D >= S, signed. If D < S then D = S and C = 1,
else D same and C = 0. *

17.9.4_Example_WRD_FLES_029
FLES D,{#}S {WC/WZ/WCZ}
Force D <= S, signed. If D > S then D = S and C = 1,
else D same and C = 0. *

Page 198of 484

17.10) SUM ADD/SUB Based on C/Z

SUMC D,{#}S

{WC/WZ/WCZ} Sum +/-S into D by C. If C = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

SUMNC D,{#}S

{WC/WZ/WCZ} Sum +/-S into D by !C. If C = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

SUMZ D,{#}S

{WC/WZ/WCZ} Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

SUMNZ D,{#}S

{WC/WZ/WCZ} Sum +/-S into D by !Z. If Z = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

17.10.1_Example_WRD_SUMC_030
SUMC D,{#}S {WC/WZ/WCZ}
Sum +/-S into D by C. If C = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

17.10.2_Example_WRD_SUMNC_031
SUMNC D,{#}S {WC/WZ/WCZ}
Sum +/-S into D by !C. If C = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

17.10.3_Example_WRD_SUMZ_032
SUMZ D,{#}S {WC/WZ/WCZ}
Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

{{17.10.3_Example_WRD_SUMZ_032}}

''SUMZ D,{#}S {WC/WZ/WCZ}
''Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

17.10..4_Example_WRD_SUMNZ_033
SUMNZ D,{#}S {WC/WZ/WCZ}
Sum +/-S into D by !Z. If Z = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). *

Page 199of 484

17.11) TEST Register Bit Set Flags

TESTB D,{#}S WC/WZ Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].

TESTBN D,{#}S WC/WZ Test bit S[4:0] of !D, write to C/Z. C/Z = !D[S[4:0]].

TESTB D,{#}S

ANDC/ANDZ Test bit S[4:0] of D, AND into C/Z. C/Z = C/Z AND D[S[4:0]].

TESTBN D,{#}S

ANDC/ANDZ Test bit S[4:0] of !D, AND into C/Z. C/Z = C/Z AND !D[S[4:0]].

TESTB D,{#}S ORC/ORZ Test bit S[4:0] of D, OR into C/Z. C/Z = C/Z OR D[S[4:0]].

TESTBN D,{#}S ORC/ORZ Test bit S[4:0] of !D, OR into C/Z. C/Z = C/Z OR !D[S[4:0]].

TESTB D,{#}S

XORC/XORZ Test bit S[4:0] of D, XOR into C/Z. C/Z = C/Z XOR D[S[4:0]].

TESTBN D,{#}S

XORC/XORZ Test bit S[4:0] of !D, XOR into C/Z. C/Z = C/Z XOR !D[S[4:0]].

Test with conditions status of D register bits as requested by S register if set place result in C/Z.

17.11.1_Example_WRD_TESTB_034
TESTB D,{#}S WC/WZ
Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].

17.11.2_Example_WRD_TESTBN_035
TESTBN D,{#}S WC/WZ
Test bit S[4:0] of !D, write to C/Z. C/Z = !D[S[4:0]].

17.11.3_Example_WRD_TESTB_ANDC/ANDZ_036
TESTB D,{#}S ANDC/ANDZ
Test bit S[4:0] of D, AND into C/Z. C/Z = C/Z AND D[S[4:0]].

17.11.4_Example_WRD_TESTBN_ANDC/ANDZ_037
TESTBN D,{#}S ANDC/ANDZ
Test bit S[4:0] of !D, AND into C/Z. C/Z = C/Z AND !D[S[4:0]].

17.11.5_Example_WRD_TESTB_ORC_ORZ_038
TESTB D,{#}S ORC/ORZ
Test bit S[4:0] of D, OR into C/Z. C/Z = C/Z OR D[S[4:0]].

Page 200of 484

17.11.6_Example_WRD_TESTBN_ORC_ORZ_039
TESTBN D,{#}S ORC/ORZ
Test bit S[4:0] of !D, OR into C/Z. C/Z = C/Z OR !D[S[4:0]].

17.11.7_Example_WRD_TESTB_XORC_XORZ_040
TESTB D,{#}S XORC/XORZ
Test bit S[4:0] of D, XOR into C/Z. C/Z = C/Z XOR D[S[4:0]].

17.11.8_Example_WRD_TESTBN_XORC_XORZ_041
TESTBN D,{#}S XORC/XORZ
Test bit S[4:0] of !D, XOR into C/Z. C/Z = C/Z XOR !D[S[4:0]].

Page 201of 484

17.12) BIT Set Bits

BITL D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = 0. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original

D[S[4:0]].

BITH D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = 1. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original

D[S[4:0]].

BITC D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original

D[S[4:0]].

BITNC D,{#}S

{WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = !C. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z =

original D[S[4:0]].

BITZ D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = Z. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original

D[S[4:0]].

BITNZ D,{#}S

{WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = !Z. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z =

original D[S[4:0]].

BITRND D,{#}S

{WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = RNDs. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z =

original D[S[4:0]].

BITNOT D,{#}S

{WCZ}

Toggle bits D[S[9:5]+S[4:0]:S[4:0]]. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z =

original D[S[4:0]].

17.12.1_Example_WRD_BITL_042
BITL D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = 0. Other bits unaffected. Prior SETQ overrides S[9:5].
 C,Z = original D[S[4:0]].
This instruction can be used to set a bit to 0 or a group of bits to 0
D = 11111111_11111111_11111111_11111111
To set B0 =0 BitL D,#1
To set B31 =0 BITL D,#31

D[BH:BL] = D[S[9:5] + S[4:0] : S[4:0]] = 0

S=%00000000_00000000_000000_B9B8B7B6B5_B4B3B2B1B0

Where BH is high bit to be zero and BL the low bit to be zero of the group of zero bits

Example D[23:16] =0 Let D[31:0] =$FFFF_FFFFF

We want the following Pattern:

D[31:0] = 11111111_00000000_11111111_11111111 BH = 23 BL =16

then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7 Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16 S= S

S = %00000000_00000000_000000_00111_10000

BITL D,#240

Page 202of 484

17.12.2_Example_WRD_BITH_043
BITH D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = 1. Other bits unaffected. Prior SETQ overrides S[9:5].
C,Z = original D[S[4:0]].
This instruction can be used to set a bit to 1 or a group of bits to 1
D = %00000000_00000000_00000000_00000000
To set B0 =1 BitH D,#1
To set B31 =1 BITH D,#31

D[BH:BL] = D[S[9:5] + S[4:0] : S[4:0]] = 1

 S=%00000000_00000000_000000_B9B8B7B6B5_B4B3B2B1B0

Where BH is high bit to be one and BL the low bit to be onezero of the group of one bits

Example D[23:16] =0 Let D[31:0] =$ 0000_0000

We want the following Pattern:

D[31:0] = 00000000_11111111_00000000_00000000 BH = 23 BL =16

then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7 Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16

S=%00000000_00000000_00000000_111_10000 = 240

BITH D,#240

17.12.3_Example_WRD_BITC_044
BITC D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original
D[S[4:0]].
This instruction can be used to set a bit to C carry or a group of bits to C carry
D = 11111111_11111111_11111111_11111111
To set B0 =C BitC D,#1
To set B31 =C BITC D,#31

D[BH:BL] = D[S[9:5] + S[4:0] : S[4:0]] = 0

S=%00000000_00000000_000000_B9B8B7B6B5_B4B3B2B1B0

Where BH is high bit to be zero and BL the low bit to be zero of the group of zero bits

Example D[23:16] =0 Let D[31:0] =$FFFF_FFFFF

We want the following Pattern:

D[31:0] = 11111111_CCCCCCCC_11111111_11111111 BH = 23 BL =16

then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7 Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16

S=%00000000_00000000_00000000_111_10000 = 240

BITC D,#240

17.12.4_Example_WRD_BITNC_045
BITNC D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = !C. Other bits unaffected. Prior SETQ overrides S[9:5]. C,Z = original
D[S[4:0]].
This instruction can be used to set a bit to !C carry or a group of bits to !C carry

Page 203of 484

17.12.5_Examp1le_WRD_BITZ_046
BITZ D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = Z. Other bits unaffected. Prior SETQ overrides S[9:5].
C,Z = original D[S[4:0]].
This instruction can be used to set a bit to Z flag or a group of bits to Z flag

Example D[23:16] =0 Let D[31:0] =$FFFF_FFFFF
We want the following Pattern:
D[31:0] = 11111111_ZZZZZZZZ_11111111_11111111 BH = 23 BL =16
then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7
Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16 S=%00000000_00000000_000000_00111_10000 = 240
BITC D,#240

17.12.6_Examp1le_WRD_BITNZ_047
BITNZ D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = !Z. Other bits unaffected.
Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]].
Example D[23:16] =0 Let D[31:0] =$FFFF_FFFFF
We want the following Pattern:
D[31:0] = 11111111_zzzzzzzz_11111111_11111111 BH = 23 BL =16 let !Z = z
then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7
Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16 S=%00000000_00000000_000000_00111_10000 = 240
BITC D,#240

17.12.7_Example_WRD_BITRND_048
BITRND D,{#}S {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = RNDs. Other bits unaffected.
 Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]].
Value Returned is Randomized

Example D[23:16] =0 Let D[31:0] =$FFFF_FFFFF
We want the following Pattern:
D[31:0] = 11111111_RRANDOMM_11111111_11111111 BH = 23 BL =16
then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7
Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16 S=%00000000_00000000_000000_00111_10000 = 240
BITC D,#240

Page 204of 484

17.12.8_Example_WRD_BITNOT_049
BITNOT D,{#}S {WCZ}
Toggle bits D[S[9:5]+S[4:0]:S[4:0]]. Other bits unaffected. Prior SETQ overrides S[9:5].
C,Z = original D[S[4:0]].

Example D[23:16] =0 Let D[31:0] =$FF_%10101010_$FFFF
We want the following Pattern:
D[31:0] = 11111111_01010101_11111111_11111111 BH = 23 BL =16
then S[9:5] + S[4:0] = 23 S[9:5] = 23 - S[4:0] = 23-16 =7
Then S[31:10] = 0 S[9:5] =7 S[4:0] = 16 S=%00000000_00000000_000000_00111_10000 = 240
BITC D,#240

Page 205of 484

17.13) AND Boolean AND

AND D,{#}S

{WC/WZ/WCZ} AND S into D. D = D & S. C = parity of result. *

ANDN D,{#}S

{WC/WZ/WCZ} AND !S into D. D = D & !S. C = parity of result. *

17.13.1_Example_WRD_AND_050
AND D,{#}S {WC/WZ/WCZ}
AND S into D. D = D & S. C = parity of result. *
Parity even if Dest has even number of 1 bits C = 0
Parity odd if Dest odd number bits C = 1
D__S__ D_
0 0 | 0 AND Truth Table
0 1 | 0
1 0 | 0
1 1 | 1
Symbol for AND = “&”

17.13.2 Example_WRD_ANDN_051
ANDN D,{#}S {WC/WZ/WCZ}
AND !S into D. D = D & !S. C = parity of result. *
Parity even if Dest has even number of 1 bits C = 0
Parity odd if Dest odd number bits C = 1
D_ S__!S |_ D_
0 0 1 | 0 ANDN Truth Table
0 1 1 | 0
1 0 1 | 1
1 1 0 | 0

Page 206of 484

17.14) OR Boolean OR XOR

OR D,{#}S

{WC/WZ/WCZ} OR S into D. D = D | S. C = parity of result. *

XOR D,{#}S

{WC/WZ/WCZ} XOR S into D. D = D ^ S. C = parity of result. *

D___S__ D__ D___S__ D__
0 0 | 0 OR Truth Table 0 0 | 0 XOR Truth Table
0 1 | 0 0 1 | 1
1 0 | 0 1 0 | 1
1 1 | 1 1 1 | 0

Symbol for OR = “|” Symbol for XOR = “^”

17.14.1_Example_WRD_OR_052
OR D,{#}S {WC/WZ/WCZ}
OR S into D. D = D | S. C = parity of result. *
Parity even if Dest has even number of 1 bits C = 0
Parity odd if Dest odd number bits C = 1

17.14.2_Example_WRD_XOR_053
XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *
Parity even if Dest has even number of 1 bits C = 0
Parity odd if Dest odd number bits C = 1
D_____S__ D___
0 0 | 0 XOR Truth Table Symbol for exlusive or XOR = "^"
0 1 | 1
1 0 | 1
1 1 | 0

Page 207of 484

17.15) MUX Mask Destination Register

MUXC D,{#}S

{WC/WZ/WCZ} Mux C into each D bit that is '1' in S. D = (!S & D) | (S & {32{ C}}). C = parity of result. *

MUXNC D,{#}S

{WC/WZ/WCZ}

Mux !C into each D bit that is '1' in S. D = (!S & D) | (S & {32{!C}}). C = parity of result.

*

MUXZ D,{#}S

{WC/WZ/WCZ} Mux Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{ Z}}). C = parity of result. *

MUXNZ D,{#}S

{WC/WZ/WCZ}

Mux !Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{!Z}}). C = parity of result.

*

17.15.1_Example_WRD_MUXC_054
MUXC D,{#}S {WC/WZ/WCZ}
Mux C into each D bit that is '1' in S. D = (!S & D) | (S & {32{ C}}). C = parity of result. *
WC -Parity even if Dest has even number of 1 bits C == 0 Parity odd if Dest odd number bits C == 1
WZ-IF Destination result == 0 then Z =1 else Z = 0

17.15.2_Example_WRD_MUXNC_055
MUXNC D,{#}S {WC/WZ/WCZ}
Mux !C into each D bit that is '1' in S. D = (!S & D) | (S & {32{!C}}). C = parity of result. *
WC -Parity even if Dest has even number of 1 bits C == 1 Parity odd if Dest odd number bits C == 0
WZ-IF Destination result == 0 then Z =1 else Z = 0

17.15.2-Example_MUXNC_055
MUXNC D,{#}S {WC/WZ/WCZ}
Mux !C into each D bit that is '1' in S. D = (!S & D) | (S & {32{!C}}). C = parity of result. *
WC -Parity even if Dest has even number of 1 bits C == 0 Parity odd if Dest odd number bits C == 1
WZ-IF Destination result == 0 then Z =1 else Z = 0

17.15.3_Example_WRD_MUXZ_056
MUXZ D,{#}S {WC/WZ/WCZ}
Mux Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{ Z}}). C = parity of result. *
WC -Parity even if Dest has even number of 1 bits C == 0 Parity odd if Dest odd number bits C == 1
WZ-IF Destination result == 0 then Z =1 else Z = 0

Page 208of 484

17.15.4_Example_WRD_MUXNZ_057
MUXNZ D,{#}S {WC/WZ/WCZ}
Mux !Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{!Z}}). C = parity of result. *
''D = (!S & D) | (S & {32{!Z}}). C = parity of result. *
''WC -Parity even if Dest has even number of 1 bits C == 0
'' Parity odd if Dest odd number bits C == 1
''WZ-IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

17.16) MOV Move From Source to Destination Register

MOV D,{#}S

{WC/WZ/WCZ} Move S into D. D = S. C = S[31]. *

17.16.1_Example_WRD_MOV_058
MOV D,{#}S {WC/WZ/WCZ}
Move S into D. D = S. C = S[31]. *

17.17) NOT Negate Destination Register

NOT D,{#}S

{WC/WZ/WCZ} Get !S into D. D = !S. C = !S[31]. *

NOT D {WC/WZ/WCZ} Get !D into D. D = !D. C = !D[31]. *

17.17.1_Example_WRD_NOTDS_059
NOT D,{#}S {WC/WZ/WCZ}
Get !S into D. D = !S. C = !S[31]. *
''WC- C = !S[31]
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

17.17.2_Example_WRD_NOTD_060
NOT D {WC/WZ/WCZ}
Get !D into D. D = !D. C = !D[31]. *
''WC- C = !D[31]
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

Page 209of 484

17.18) ABS Absolute Value

ABS D,{#}S

{WC/WZ/WCZ} Get absolute value of S into D. D = ABS(S). C = S[31]. *

ABS D {WC/WZ/WCZ} Get absolute value of D into D. D = ABS(D). C = D[31]. *

17.18.1_Example_WRD_ABSDS_061
ABS D,{#}S {WC/WZ/WCZ}
Get absolute value of S into D. D = ABS(S). C = S[31]. *
''WC- C = S[31]
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

17.18.2_Example_WRD_ABSD_062
ABS D {WC/WZ/WCZ}
Get absolute value of D into D. D = ABS(D). C = D[31]. *
''WC- C = S[31]
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

Page 210of 484

17.19) NEG Negate Negative

NEG D,{#}S

{WC/WZ/WCZ} Negate S into D. D = -S. C = MSB of result. *

NEG D {WC/WZ/WCZ} Negate D. D = -D. C = MSB of result. *

NEGC D,{#}S

{WC/WZ/WCZ} Negate S by C into D. If C = 1 then D = -S, else D = S. C = MSB of result. *

NEGC D {WC/WZ/WCZ} Negate D by C. If C = 1 then D = -D, else D = D. C = MSB of result. *

NEGNC D,{#}S

{WC/WZ/WCZ} Negate S by !C into D. If C = 0 then D = -S, else D = S. C = MSB of result. *

NEGNC D

{WC/WZ/WCZ} Negate D by !C. If C = 0 then D = -D, else D = D. C = MSB of result. *

NEGZ D,{#}S

{WC/WZ/WCZ} Negate S by Z into D. If Z = 1 then D = -S, else D = S. C = MSB of result. *

NEGZ D {WC/WZ/WCZ} Negate D by Z. If Z = 1 then D = -D, else D = D. C = MSB of result. *

NEGNZ D,{#}S

{WC/WZ/WCZ} Negate S by !Z into D. If Z = 0 then D = -S, else D = S. C = MSB of result. *

NEGNZ D

{WC/WZ/WCZ} Negate D by !Z. If Z = 0 then D = -D, else D = D. C = MSB of result. *

17.19.1_Example_WRD_NEGDS_063
NEG D,{#}S {WC/WZ/WCZ}
Negate S into D. D = -S. C = MSB of result. *
WC- C = MSB
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.19.2_Example_WRD_NEGD_064
NEG D {WC/WZ/WCZ}
Negate D. D = -D. C = MSB of result. *
WC- C = MSB
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

Page 211of 484

17.19.3_Example_WRD_NEGCDS_065
NEGC D,{#}S {WC/WZ/WCZ}
Negate S by C into D. If C = 1 then D = -S, else D = S. C = MSB of result. *
''WC- C = MSB
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

17.19.4_Example_WRD_NEGCD_066
NEGC D {WC/WZ/WCZ}
Negate D by C. If C = 1 then D = -D, else D = D. C = MSB of result. *
WC- C = MSB
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.19.5_Example_WRD_NEGNCDS_067
NEGNC D,{#}S {WC/WZ/WCZ}
Negate S by !C into D. If C = 0 then D = -S, else D = S. C = MSB of result. *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.19.6_Example_WRD_NEGNCD_068
NEGNC D {WC/WZ/WCZ}
Negate D by !C. If C = 0 then D = -D, else D = D. C = MSB of result. *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.19.7_Example_WRD_NEGZDS_069
NEGZ D,{#}S {WC/WZ/WCZ}
Negate S by Z into D. If Z = 1 then D = -S, else D = S. C = MSB of result. *
''WC- C = MSB
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

17.19.8_Example_WRD_NEGZD_070
NEGZ D {WC/WZ/WCZ}
Negate D by Z. If Z = 1 then D = -D, else D = D. C = MSB of result. *
''WC- C = MSB
''WZ- IF Destination result == 0 then Z = 1
'' IF Destination result != 0 then Z = 0

Page 212of 484

17.19.9_Example_WRD_NEGNZDS_071
NEGNZ D,{#}S {WC/WZ/WCZ}
Negate S by !Z into D. If Z = 0 then D = -S, else D = S. C = MSB of result. *
WC- C = MSB
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.19.10_Example_WRD_NEGNZ_072
NEGNZ D {WC/WZ/WCZ}
Negate D by !Z. If Z = 0 then D = -D, else D = D. C = MSB of result. *
WC- C = MSB
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

Page 213of 484

17.20) INCMOD/DECMOD Increment Modulus

73

INCMOD D,{#}S

{WC/WZ/WCZ}

Increment with modulus. If D = S then D = 0 and C = 1, else D = D + 1 and C

= 0. *

74

DECMOD D,{#}S

{WC/WZ/WCZ}

Decrement with modulus. If D = 0 then D = S and C = 1, else D = D - 1 and C

= 0. *

S can be thought as the modulus. See section E.3 Modular Arithmetic. As an example modulus 12 used
for time clock count goes from 0-12 when count at 12 reset 0 to allow increment . IF D = 0 wanting to go
back in time by decrementing D reset 12 to decrement to 11.

17.20.1_Example_WRD_INCMOD_073
INCMOD D,{#}S {WC/WZ/WCZ}
Increment with modulus. If D = S then D = 0 and C = 1, else D = D + 1 and C = 0. *
If D = S then D = 0 and C = 1, else D = D + 1 and C = 0. *
WC- IF D = 0 then C = 1 else C =0
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.20.2_Example_WRD_DECMOD_074
DECMOD D,{#}S {WC/WZ/WCZ}
Decrement with modulus. If D = 0 then D = S and C = 1, else D = D - 1 and C = 0. *
If D = 0 then D = S and C = 1, else D = D - 1 and C = 0. *
WC- IF D = S then C = 1 else C =0
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

Page 214of 484

17.21 Zeror/Sign Extend

ZEROX D,{#}S

{WC/WZ/WCZ} Zero-extend D above bit S[4:0]. C = MSB of result. *

SIGNX D,{#}S

{WC/WZ/WCZ} Sign-extend D from bit S[4:0]. C = MSB of result. *

L[31:0] = B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0
S[4:0] = upto this value bits will remain the same
ZEROX = 0 will fill in all bits beyond S[4:0] value
SIGNX = sign value 1 will be filled in all bits beyond S[4:0] value

17.21.1_Example_WRD_ZEROX_075
ZEROX D,{#}S {WC/WZ/WCZ}
Zero-extend D above bit S[4:0]. C = MSB of result. *

ZEROX = 0 will fill in all bits beyond S[4:0] value
WC- C = MSB of result.
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

17.21.2_Example_WRD_SIGNX_076
SIGNX D,{#}S {WC/WZ/WCZ}
Sign-extend D from bit S[4:0]. C = MSB of result. *

SIGNX = sign value 1 will be filled in all bits beyond S[4:0] value

WC- C = MSB of result.
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

Page 215of 484

17.22) ENCOD Get top Bit Position

ENCOD D,{#}S {WC/WZ/WCZ}

Get bit position of top-most '1' in S into D. D = position of top '1' in S (0..31). C =

(S != 0). *

ENCOD D {WC/WZ/WCZ}

Get bit position of top-most '1' in D into D. D = position of top '1' in S (0..31). C =

(S != 0). *

17.22.1_Example_WRD_ENCODDS_077
ENCOD D,{#}S {WC/WZ/WCZ}
Get bit position of top-most '1' in S into D. D = position of top '1' in S (0..31). C = (S != 0). *
D = position of top '1' in S (0..31). C = (S != 0). *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

17.22.1_Example_WRD_ENCODD_078
ENCOD D {WC/WZ/WCZ}
Get bit position of top-most '1' in D into D. D = position of top '1' in S (0..31). C = (S != 0). *
D = position of top '1' in S (0..31). C = (S != 0). *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

Page 216of 484

17.23)Ones Count number of 1’s in S Put value in D

ONES D,{#}S {WC/WZ/WCZ}

Get number of '1's in S into D. D = number of '1's in S (0..32). C = LSB of

result. *

ONES D {WC/WZ/WCZ}

Get number of '1's in D into D. D = number of '1's in S (0..32). C = LSB of

result. *

17.23.1_Example_WRD_ONESDS_079
ONES D,{#}S {WC/WZ/WCZ}
Get number of '1's in S into D. D = number of '1's in S (0..32). C = LSB of result. *
Number of ones in S are counted and this value is put in D
D = number of '1's in S (0..32). C = LSB of result. *
C = LSB of result. *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

17.23.2_Example_WRD_ONESD_080
ONES D {WC/WZ/WCZ}
Get number of '1's in D into D. D = number of '1's in S (0..32). C = LSB of result. *
WC- C = LSB of result. *
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0
B31B30B29B28B27B26B25B24_ B23B22B21B20B19B18B17B16_ B15B14B13B12B11B10B9B8_B7B6B5B4B3B2B1B0

Page 217of 484

17.24)TEST set carry base on test D&S (no register changes)

TEST D,{#}S {WC/WZ/WCZ} Test D with S. C = parity of (D & S). Z = ((D & S) == 0).

TEST D {WC/WZ/WCZ} Test D. C = parity of D. Z = (D == 0).

TESTN D,{#}S {WC/WZ/WCZ} Test D with !S. C = parity of (D & !S). Z = ((D & !S) == 0).

17.24.1_Example_WRD_TESTDS_081
TEST D,{#}S {WC/WZ/WCZ}
Test D with S. C = parity of (D & S). Z = ((D & S) == 0).
WC- C = parity of (D & S) odd parity = 1 even parity =0
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.24.2_Example_WRD_TESTD_082
TEST D {WC/WZ/WCZ}
Test D. C = parity of D. Z = (D == 0).
WC- C = parity of (D) odd parity = 1 even parity =0
WZ- IF Destination result == 0 then Z = 1
IF Destination result != 0 then Z = 0

17.24.3_Example_WRD_TESTND_83
TESTN D,{#}S {WC/WZ/WCZ}
Test D with !S. C = parity of (D & !S). Z = ((D & !S) == 0).
WC- C = parity of (D) odd parity = 1 even parity =0
WZ- Z = ((D & !S) == 0)

Page 218of 484

17.25) SETNIB Set Nibble

SETNIB D,{#}S,#N Set S[3:0] into nibble N in D, keeping rest of D same.

SETNIB {#}S Set S[3:0] into nibble established by prior ALTSN instruction.

S[31:0] = N7N6N5N4N3N2N1N0 N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N5 = n13n12n11n10 N0 = n03n02n01n00

The idea is that D/ can serve as a register base address and D can be used as an index.

ALTSN (offset + N field),BaseAddress
Next Instruction :
D Field = (D[11:3} + S)&1FF N Field = D[2:0]

ALTSN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0].
D += sign-extended S[17:9].

1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in SETNIB D,{#}S,#N

17.25.1_Example_WRD_SETNIBDS_084
SETNIB D,{#}S,#N
Set S[3:0] into nibble N in D, keeping rest of D same.
The nibble Number N is a fixed value and cannot be indexed
S[31:0] = N7N6_N5N4_N3N2_N1N0
N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

Page 219of 484

17.25.2_Example_WRD_ALTSN D_SETNIB {#}S_085
SETNIB {#}S
Set S[3:0] into nibble established by prior ALTSN instruction.
This allows the Indexing of the nibble Number N

ALTSN D
Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0].

S[31:0] = N7N6_N5N4_N3N2_N1N0
N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

PR0=$1D8 PR1=$1D9 PR2=$1DA PR3=$1DB PR4=$1DC PR5=$1DD PR6=$1DE PR7=$1DF

Example
Set up the SETNIB {#}S Instruction to write to register PR0 nibble N7-N0

Solution D[11:3] = PR0 = $1D8 = 472 = %111011000 D[2:0] = $7 = 7 =%111
 Dest = %00000000_00000000_0000_111011000_111
 = %00000000_00000000_00001110_11000111
 = $EC7
 = 3783
 ALTSN Dest

17.25.3_Example_WRD_ALTSN D,{#},#N_SETNIB D,{#}S#N_084
SETNIB D,{#}S,#N
Set S[3:0] into nibble N in D, keeping rest of D same.
The nibble Number N is a fixed value and cannot be indexed

1) D is set by ALTSN D,{#}S where D is an indexed possible register to be written too.
2) S[3:0] is the nibble value to be written. It is not from ALTSN D,{#}S
3) N is nibble to be written set by ALTSN D,{#}S

ALTSN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0].
D += sign-extended S[17:9].

1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in SETNIB D,{#}S,#N

Page 220of 484

17.26)GETNIB Getnibble from register

GETNIB D,{#}S,#N Get nibble N of S into D. D = {28'b0, S.NIBBLE[N]).

GETNIB D Get nibble established by prior ALTGN instruction into D.

S[31:0] = N7N6N5N4N3N2N1N0

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N5 = n13n12n11n10 N0 = n03n02n01n00

GETNIB D,{#}S,#N

Get nibble N of S into D. D = D= {28'b0, S[N4+3:N4]}

1) N is nibble number 0-7 in S that is to be moved to D N0
2) 28’b0 stands for 28 bits of type 0 the {,} stands for concatenate (join)
3) S.NIBBLE[N] Is the nibble poition with right to left level of signifigance .(B3B2B1B0)

Note: D = D= {28'b0, S[N4+3:N4]} this is Verilog notation see section E.4

GETNIB D
Get nibble established by prior ALTGN instruction into D.

ALTGN D,{#}S (104)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].

1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in GETNIB D,{#}S,#N

ALTGN D (105)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0].

Page 221of 484

17.26.1_EXAMPLE_WRD_GETNIB D,{#}S,#N_086

Get nibble N of S into D. D = D= {28'b0, S[N4+3:N4]}

GETNIB D,{#}S,#N
Get nibble N of S into D. D = {28'b0, S[N*4+3:N*4]}
1) N nibble of N7N6N5N4N3N2N1N0
2) S register with nibbles required
3) D is target register of the nibble
N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00
Example
Get Nibble N7 in register Src and move to Dest register

17.26.2_EXAMPLE_GETNIB D_ 087
GETNIB D
 Get nibble established by prior ALTGN instruction into D.
ALTGN D,{#}S
Alter subsequent GETNIB/ROLNIB instruction.
Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D += sign-extended S[17:9].
1) S is the addressBase D[11:3]
2) S Field = (D[11:3] + S) & $1FF, D[11:3] is the offset index from addressBase
3) N Field = D[2:0]

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

Example
Get Nibble N7 in register Src and move to Dest register N0

17.26.3_Example_WRD_GETNIB D_087
GETNIB D
 Get nibble established by prior ALTGN instruction into D.
ALTGN D
Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0].
1) D[11:3] is the addressBase
2) N Field = D[2:0]

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

Example
Get Nibble N7 in register Src and move to Dest register N0
{{17.26.3_Example_WRD_GETNIB D_087}}
GETNIB D
 Get nibble established by prior ALTGN instruction into D.
 1) D is target register of the nibble

Page 222of 484

17.27) ROLNIB Rotate Nibble

ROLNIB D,{#}S,#N Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]).

ROLNIB D Rotate-left nibble established by prior ALTGN instruction into D.

S[31:0] = N7N6N5N4N3N2N1N0

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N5 = n13n12n11n10 N0 = n03n02n01n00

ROLNIB D,{#}S,#N
Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]).

1) N is nibble number 7 in S that is to be moved to D to N0
2) 28’b0 stands for 28 bits of type 0 the {,} stands for concatenate (join)
3) S.NIBBLE[N] Is the nibble poition with right to left level of signifigance .(B3B2B1B0)

Note: D = D= {28'b0, S[N4+3:N4]} this is Verilog notation see section E.4

ROLNIB D
Rotate-left nibble established by prior ALTGN instruction into D.

ALTGN D,{#}S (104)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].

1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in GETNIB D,{#}S,#N

ALTGN D (105)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0].

Page 223of 484

17.27.1_Example_WRD_ROLNIBDSN_088
ROLNIB D,{#}S,#N
Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]).

S contains the nibble values the N7 nibble is placed into D nibble N0.
N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

Example
Get Nibble N7 in register Src and move to Dest register

17.27.2_Example_WRD_ROLNIBD_089
ROLNIB D (089)
Rotate-left nibble established by prior ALTGN instruction into D.
1) D is the register that will contain nibble pointed from ALTGN statement

ALTGN D,{#}S (104)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].
1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in GETNIB D,{#}S,#N
Note:
S with an offset can point to different words holding nibbles and the N field can point different nibbles in
the different words. The Nibble is always in the ROLNIB D register.

17.27.3_Example_WRD_ROLNIBDSN_ ALTGNDS_088
ROLNIB D,{#}S,#N
Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]).

ALTGN D,{#}S (104)
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].

1) D field = (D[11:3] + S) & $1FF register to have SETNIB D,{#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in GETNIB D,{#}S,#N
N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N1 = n13n12n11n10 N0 = n03n02n01n00

Note:
S with an offset can point to different words holding nibbles and the N field can point different nibbles in
the different words. The Nibble is always in the ROLNIB D register.

17.28) SETBYTE Set Byte N into Register

Page 224of 484

SETBYTE D,{#}S,#N Set S[7:0] into byte N in D, keeping rest of D same.

SETBYTE {#}S Set S[7:0] into byte established by prior ALTSB instruction.

Byte Addressing
D[31:0] = D3D2D1D0

Bit Addressing
D[31:0]
=d31d30d29d28d27d26d25d24_d23d22d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
Byte Bit Addressing
S[31:0] = S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_ S07S06S05S04S03S02S01S00

Next D Field D[10:2] = d10d09d08d07d06d05d04d03d02 9 bit address range $000-$1FF (0 – 511)
Word Field D[1:0] = d01d00 2 bit address range 0-3

17.28.1_Example_WRD_SETBYTE D,{#}S,#N_090
SETBYTE D,{#}S,#N
Set S[7:0] into byte N in D, keeping rest of D same.
Byte Addressing
D[31:0] = D3D2D1D0
= d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
Set S[7:0] = %10101010 and move this byte into B2 in D

Page 225of 484

17.28.2_Example_WRD_SETBYTE {#}S_091
SETBYTE {#}S
Set S[7:0] into byte established by prior ALTSB instruction.

ALTSB D
Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0].

D[31:0] = D3D2D1D0

= d31 d30 d29d28d27d26d2 5d24_d23d2 2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00
Next D Field D[10:2] = d10d09d08d07d06d05d04d03d02 9 bit address range $000-$1FF (0 – 511)
Word Field D[1:0] = d01d00 2 bit address range 0-3
Example
Set S[7:0] = %10101010 and move this byte into D2 in D

17.28.3_Example_WRD_SETBYTE D,{#}S,#N_ALTSB D,{#}S_090
SETBYTE D,{#}S,#N
Set S[7:0] into byte N in D, keeping rest of D same.

ALTSB D,{#}S
Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0]. D += sign-
extended S[17:9].
Byte Addressing
D[31:0] = D3D2D1D0
=
d31d30d29d28d27d26d25d24_d23d22d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d0
5d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
Set S[7:0] = %10101010 and move this byte into B2 in D
To test example modify Dest_Offset and Byte_Offset

Page 226of 484

17.29) GETBYTE Get Byte N of S into D

GETBYTE D,{#}S,#N Get byte N of S into D. D = {24'b0, S.BYTE[N]).

GETBYTE D Get byte established by prior ALTGB instruction into D.

17.29.1_Example_WRD_GETBYTE D,{#}S,#N_092
GETBYTE D,{#}S,#N
Get byte N of S into D. D = {24'b0, S.BYTE[N]).
Byte Addressing
D[31:0] = D3D2D1D0
= d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
Load S = 1000_0000___1000_0001___1000_0010___

17.29.2_Example_WRD_ALTGB_GETBYTE D_093
GETBYTE D
Get byte established by prior ALTGB instruction into D.
ALTGB D
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field = D[1:0].

D[31:0] = D3D2D1D0
 = d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11_d10d09d08d07d06d05d04d03d02_d01d00

Next D Field D[10:2] = d10d09d08d07d06d05d04d03d02 9 bit address range $000-$1FF (0 - 511)
Word Field D[1:0] = d01d00 2 bit address range 0-3

Example
Set S[7:0] = %10101010 and move this byte into D2 in D

Page 227of 484

17.29.3_Example_WRD_ALTGB D,S_GETBYTE D,{#}S,#N
GETBYTE D,{#}S,#N
Get byte N of S into D. D = {24'b0, S.BYTE[N]).

ALTGB D,{#}S
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0]. D +=
sign-extended S[17:9].
Byte Addressing
D[31:0] = D3D2D1D0
= d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
BaseAddress = D_GETBYTE0 Offset = 0-3 S Field = BaseAddress + Offset
ByteNum = N = 0,1,2,3 Byte to be taken from long (BaseAdress + Offset)

17.30) ROLBYTE Rotate Left Byte N of S Into D

ROLBYTE D,{#}S,#N Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]).

ROLBYTE D Rotate-left byte established by prior ALTGB instruction into D.

17.30.1_Example_WRD_ROLBYTE D,{#}S,#N_094
ROLBYTE D,{#}S,#N
Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]).
Byte Addressing
D[31:0] = D3D2D1D0
= d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
SElect Byte in selByteLong and rotate left into valLong do this for all 4 byte 0-3

Page 228of 484

17.30.2_Example_WRD_ALTGB D_ROLBYTE D_095
ROLBYTE D
Rotate-left byte established by prior ALTGB instruction into D.

ALTGB D
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field = D[1:0].

Note: Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]).

17.30.3_Example_WRD_ALTGB D,{#}S_ROLBYTE D,{#}S,#N_094
ROLBYTE D,{#}S,#N
Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]).

ALTGB D,{#}S
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0]. D +=
sign-extended S[17:9].

Byte Addressing
D[31:0] = D3D2D1D0
= d31d30d29d28d27d26d25d24_d23d2
2d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d05d04d03d02d01d00

Byte Addressing
S[31:0] = S3S2S1S0
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
Select Byte from Src_Register and Shift to D_ROLBYTE reverse order of Src_Register is the result

Page 229of 484

17.31) SETWORD Set S[15:0] into Word N in D

SETWORD D,{#}S,#N Set S[15:0] into word N in D, keeping rest of D same.

SETWORD {#}S Set S[15:0] into word established by prior ALTSW instruction.

SETWORD D,{#}S,#N (096)
Set S[15:0] into word N in D, keeping rest of D same.

SETWORD {#}S (097)
Set S[15:0] into word established by prior ALTSW instruction.

ALTSW D,{#}S (110)
Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N field = D[0]. D += sign-
extended S[17:9].

ALTSW D (111)
Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

17.31.1_Example_WRD_SETWORD D,{#}S,#N_096
SETWORD D,{#}S,#N
Set S[15:0] into word N in D, keeping rest of D same.

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
D_SETWORD is to have selWord written to word 0 an word 1

Page 230of 484

17.31.2_Example_WRD_SETWORD {#}S_097
SETWORD {#}S (097)
Set S[15:0] into word established by prior ALTSW instruction.

ALTSW D (111)
Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
D_SETWORD is to have selWord written to word 0 an word 1

17.31.3_Example_WRD_ALTSW D,{#}S_SETWORD D,{S},#N
SETWORD D,{#}S,#N (096)
Set S[15:0] into word N in D, keeping rest of D same.

ALTSW D,{#}S (110)
Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N field = D[0]. D += sign-
extended S[17:9].

W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
Write 'valWord' too W0 of 'Src_Register0' then write 'valWord too W1 of 'Src_Register1'

Page 231of 484

17.32) GETWORD Get Word N of S into D

GETWORD D,{#}S,#N Get word N of S into D. D = {16'b0, S.WORD[N]).

GETWORD D Get word established by prior ALTGW instruction into D.

GETWORD D,{#}S,#N (098)
Get word N of S into D. D = {16'b0, S.WORD[N]).

GETWORD D (099)
Get word established by prior ALTGW instruction into D.

ALTGW D,{#},S (112)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D
+= sign-extended S[17:9].

ALTGW D (113)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

17.32.1_Example_WRD_GETWORD D,{#}S,#N _098
GETWORD D,{#}S,#N (098)
Get word N of S into D. D = {16'b0, S.WORD[N]).
Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
write W0 of 'selLong' to 'D_GETWORD' then write W1 to 'D_GETWORD'

Page 232of 484

17.32.2_Example_WRD_ALTGW D_GETWORD D_099
GETWORD D (099)
Get word established by prior ALTGW instruction into D.

ALTGW D (113)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
Write 'selWord' W0 too 'D_GETWORD' then write W1 to 'D_GETWORD' note upper bits cleared in
'D_GETWORD'

17.32.3_Example_WRD_ ALTGW D,{#},S_ GETWORD D,{#}S,#N _098
GETWORD D,{#}S,#N (098)
Get word N of S into D. D = {16'b0, S.WORD[N]).

ALTGW D,{#},S (112)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D
+= sign-extended S[17:9].

W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100
Example
Write W0 of 'Src_Register0' too 'D_GETWORD' then write W1 of 'Src_Register1'too 'D_GETWORD'

Page 233of 484

17.33) ROLWORD Rotate Left Word N of S Into D

ROLWORD D,{#}S,#N Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]).

ROLWORD D Rotate-left word established by prior ALTGW instruction into D.

ROLWORD D,{#}S,#N (100)
Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]).

ROLWORD D (101)
Rotate-left word established by prior ALTGW instruction into D.

ALTGW D,{#},S (112)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D
+= sign-extended S[17:9].

ALTGW D (113)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

17.33.1_Example_WRD_ROLWORD D,{#}S_100
ROLWORD D,{#}S,#N (100)
Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]).
Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
'selLong' rotates N 0,1,2,3, of 'S_ROLWORD' into 'D_ROLWORD' keep the same byte order

Page 234of 484

17.33.2_Example_WRD_ALTGW D_ROLWORD D_101
ROLWORD D (101)
Rotate-left word established by prior ALTGW instruction into D.

{{17.33.2_Example_WRD_ALTGW D_ROLWORD {#}S_101}}
{{
ROLWORD D (101)
Rotate-left word established by prior ALTGW instruction into D.

ALTGW D (113)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0].

Word Addressing
W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
Rotate left Word W0 from 'Src_Long0' to 'D_ROLWORD'
then Rotate left Word W1 from Src_Long1 to 'D_ROLWORD'

17.33.3_Example_WRD_ ALTGW D,{#},S_ ROLWORD D,{#}S,#N_100
ROLWORD D,{#}S,#N (100)
Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]).

ALTGW D,{#},S (112)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D
+= sign-extended S[17:9].

W[31:0] = W1W0 =
w31w30w29w28w27w26w25w24_w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_
w7w6w5w4w3w2w1w0
 W0 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
 W1 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100
Example
ROTATE left W0 of 'Src_Register0' too 'D_ROLWORD' then ROTATE left W1 of 'Src_Register1'too
'D_ROLWORD'

Page 235of 484

17.34) ALTSN Alter Susequent SETNIB Instruction

ALTSN D,{#}S

Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N

field = D[2:0]. D += sign-extended S[17:9].

ALTSN D Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0].

See 17.25) SETNIB Set Nibble for examples

The idea is that S/# can serve as a register base address and D can be used as an index.

ALTSN (offset + N field),BaseAddress
Next Instruction :
D Field = (D[10:2} + S)&1FF N Field = D[1:0]

ALTGN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0].
D += sign-extended S[17:9].

1) D field = (D[10:2] + S) & $1FF register to have SETBYTE {#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] byte to write too in SETBYTE D,{#}S,#N

17.34.1_Example_WRD_ALTSN D,{#}S_102
ALTSN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0]. D += sign-
extended S[17:9].

17.34.2.103_Example_WRD_ALTSN D_103
ALTSN D
Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0].

Page 236of 484

17.35) ALTGN Alter Subsequent GETNIB/ROLNIB Instruction

ALTGN D,{#}S

Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF,

N field = D[2:0]. D += sign-extended S[17:9].

ALTGN D

Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field =

D[2:0].

See 17.26) GETNIB Getnibble from register
See 17.27) ROLNIB Rotate Nibble

The idea is that S/# can serve as a register base address and D can be used as an index.

ALTGN (offset + N field),BaseAddress
Next Instruction :
S Field = (D[11:3} + S)&1FF N Field = D[2:0]

ALTGN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0].
D += sign-extended S[17:9].

1) S Field = (D[11:3] + S) & $1FF register to have SETNIB {#}S,#N point too
2) S is the BaseAddress and D[11:3] is the offset from the Base
3) N field = D[2:0] nibble to write too in SETNIB D,{#}S,#N

17.35.1_Example_WRD_ALTGN D,{#}S_104
ALTGN D,{#}S
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].

17.35.2_Example_WRD_ALTGN D_105
ALTGN D
Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0].

Page 237of 484

17.36) ALTSB Alter Subsequent SETBYTE Instruction

106 ALTSB D,{#}S

Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0].

D += sign-extended S[17:9].

107 ALTSB D Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0].

See 17.28) SETBYTE Set Byte N into Register

The idea is that S/# can serve as a register base address and D can be used as an index.

ALTSB (offset + N field),BaseAddress
Next Instruction :
D Field = (D[10:2} + S)&1FF N Field = D[1:0]

ALTGN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0].
D += sign-extended S[17:9].

1) D field = (D[10:2] + S) & $1FF register to have SETBYTE D,#N point too
2) S is the BaseAddress and D[10:2] is the offset from the Base
3) N field = D[1:0] byte to write too in SETBYTE D,{#}S,#N

17.36.1_Example_WRD_ALTSB D,{#}S_106
ALTSB D,{#}S
Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0]. D += sign-
extended S[17:9].

17.36.2_Example_WRD_ALTSB D_107
ALTSB D
Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0].

Page 238of 484

17.37) ALTGB Alter Subsequent GETBYTE/ROLBYTE

ALTGB D,{#}S

Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) &

$1FF, N field = D[1:0]. D += sign-extended S[17:9].

ALTGB D

Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field =

D[1:0].

See 17.29) GETBYTE Get Byte N of S into D
See 17.30) ROLBYTE Rotate Left Byte N of S Into D

The idea is that S/# can serve as a register base address and D can be used as an index.

ALTGB (offset + N field),BaseAddress
Next Instruction :
S Field = (D[10:2} + S)&1FF N Field = D[1:0]

ALTGB D,{#}S
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0].
D += sign-extended S[17:9].

1) S field = (D[10:2] + S) & $1FF register to have GETBYTE/ROLBYTE D,{#}S,#N point too
2) S is the BaseAddress and D[10:2] is the offset from the Base
3) N field = D[1:0] byte to write too in SETBYTE D,{#}S,#N

17.37.1_Example_WRD_ALTGB D,{#}S_108
ALTGB D,{#}S
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0]. D +=
sign-extended S[17:9].

17.37.2_Example_WRD_ALTGB_109
ALTGB D
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field = D[1:0].

Page 239of 484

17.38) ALTSW Alter Subsequent SETWORD

ALTSW D,{#}S

Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N

field = D[0]. D += sign-extended S[17:9].

ALTSW D Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0].

See 17.31) SETWORD Set S[15:0] into Word N in D
The idea is that S/# can serve as a register base address and D can be used as an index.

ALTSW (offset + N field),BaseAddress
Next Instruction :
D Field = (D[10:2} + S)&1FF N Field = D[1:0]

ALTGN D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0].
D += sign-extended S[17:9].

1) D field = (D[10:2] + S) & $1FF register to have SETBYTE D,{#}S,#N point too
2) S is the BaseAddress and D[10:2] is the offset from the Base
3) N field = D[1:0] byte to write too in SETBYTE D,{#}S,#N

17.38.1_Example_WRD_ALTSW D,{#}S_110
ALTSW D,{#}S
Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N field = D[0]. D += sign-
extended S[17:9].

17.38.2_Example_WRD_ALTSW D_111
ALTSW D
Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0].

Page 240of 484

17.39 ALTGW Alter Subsequent GETWORD

ALTGW D,{#}S

Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) &

$1FF), N field = D[0]. D += sign-extended S[17:9].

ALTGW D

Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field

= D[0].

See 17.32) GETWORD Get Word N of S into D

ALTGW (offset + N field),BaseAddress
Next Instruction :
S Field = (D[9:1} + S)&1FF N Field = D[0]

ALTGW D,{#}S
Alter subsequent GETWORD instruction. Next S field = (D[9:1] + S) & $1FF, N field = D[0].
D += sign-extended S[17:9].

1) S field = (D[9:1] + S) & $1FF register to have GETWORD {#}S,#N point too
2) S is the BaseAddress and D[9:1] is the offset from the Base
3) N field = D[0] byte to write too in GETWORD {#}S,#N

17.39.1_Example_WRD ALTGW D,{#}S_112
ALTGW D,{#},S (112)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D
+= sign-extended S[17:9].

17.39.1_Example_WRD ALTGW D_113
ALTGW D (113)
Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0].

Page 241of 484

17.40) ALTR D Alter result Register D of next insturction

ALTR D,{#}S

Alter result register address (normally D field) of next instruction to (D + S) & $1FF. D += sign-

extended S[17:9].

ALTR D Alter result register address (normally D field) of next instruction to D[8:0].

RDSaddress= BaseAdressS[8:0] + OffsetS[17:9] + IndexD[8:0]

S= Offset S[17.9] + BaseAddressS[8:0]

D = IndexD[8:0] + sign-Extended [17:9]

Hardware Registers
DIRA $1FA Output enables for P31..P0
DIRB $1FB Output enables for P63..P32
OUTA $1FC Output states for P31..P0
OUTB $1FD Output states for P63..P32
INA $1FE Input states from P31..P0
INB $1FF Input states from P63..P32

XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *

For some reason (quite a reach for XOR INA,INB) we want the result of XOR X,Y but you don’t want to
destroy register X. By using the ALTR instruction you can avoid a bunch of move statements. Also some
registers cannot be written too. Using the ALTR instruction you can use the instructions without
destroying either register. Typicaly in PASM the D register is where the instruction result is stored.

ALTR index,#table 'set next write to table+index
XOR INA,INB 'write INA^INB to register[table+index]

ALTR D,{#}S
AlternateRegister = (D + S) & $1FF
D = Offset(Index)
S = BaseAddress(Table

XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *

Page 242of 484

17.40.1_Example_WRD_ALTR D,{#}S_114
ALTR D,{#}S
Alter result register address (normally D field) of next instruction to (D + S) & $1FF. D += sign-extended
S[17:9].

By Means of an example we want the result of XOR X,Y but you don't want to destroy register X.
By using the ALTR instruction you can avoid a bunch of move statements.
Also some registers cannot be written too. Using the ALTR instruction you can use the assembly
instructions without destroying either register and writing the instruction operation to an alternate
register.

ALTR index,#table 'set next write to table+index
XOR INA,INB 'write INA^INB to register[table+index]

Raddress= BaseAdressS[8:0] + OffsetS[17:9] + IndexD[8:0]
S= Offset S[17.9] + BaseAddressS[8:0]
D = IndexD[8:0] + sign-Extended [17:9]
XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *
Example
Write the result of XOR Ax,Bx to 'xorResult' not affecting Ax or Bx

Page 243of 484

17.40.2_Example_WRD_ALTR D_115
ALTR D
Alter result register address (normally D field) of next instruction to D[8:0].
By Means of an example we want the result of XOR X,Y but you don't want to destroy register X.
By using the ALTR instruction you can avoid a bunch of move statements.
Also some registers cannot be written too. Using the ALTR instruction you can use the assembly
instructions without destroying either register and writing the instruction operation to an alternate
register.

XOR D,{#}S {WC/WZ/WCZ}
XOR S into D. D = D ^ S. C = parity of result. *

Example
Write the result of XOR Ax,Bx to 'xorResult' not affecting Ax or Bx

Page 244of 484

17.41) ALTD D Alter D Field of next Instruction

ALTD D,{#}S

Alter D field of next instruction to (D + S) & $1FF. D += sign-extended

S[17:9].

ALTD D Alter D field of next instruction to D[8:0].

RDSaddress= BaseAdressS[8:0] + OffseS[17:9] + IndexD[8:0]

S= Offset S[17.9] + BaseAddressS[8:0]

D = IndexD[8:0] + sign-Extended [17:9]

17.41.1_Example_WRD_ALTD D,{#}S_116
ALTD D,{#}S
Alter D field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9].

MOV D,{#}S {WC/WZ/WCZ}
Move S into D. D = S. C = S[31]. *

The idea is that S/# can serve as a register base address and D can be used as an index.
ALTS Offset,BaseAddress

Next Instruction :
S Field = (D + S) & 1FF
D[31:0] = D3D2D1D0
D[31:0] =
d31d30d29d28d27d26d25d24d23d22d21d20d19d18d17d16d15d14d13d12d11d10d09d08d07d06d05d
04d03d02d01d00
S[31:0] = S3S2S1S0
S[31:0] =
s31s30s29s28s27s26s25s24s23s22s21s20s19s18s17s16s15s14s13s12s11s10s09s08s07s06s05s04s03s02s
01s00

D Field = (D + S) & $1FF =00000000_00000000_0000000_d08d07d06d05d04d03d02d01d00 typical 9
bit address
Example
Self Modifying Code Alter D Field allows 'Pointer' to be indexed through a table

Page 245of 484

17.41.2_Example_WRD_ALTD D_117
ALTD D
Alter D field of next instruction to D[8:0].

MOV D,{#}S {WC/WZ/WCZ} (058) EEEE 0110000 CZI DDDDDDDDD SSSSSSSSS
Move S into D. D = S. C = S[31]. *

D Field = D & $1FF =00000000_00000000_0000000_d08d07d06d05d04d03d02d01d00 typical 9 bit
address
Example

D[31:0] = D3D2D1D0
D[31:0]
=d31d30d29d28d27d26d25d24_d23d22d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d
05d04d03d02d01d00
S[31:0] = S3S2S1S0
S[31:0] = S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Example
'D_ALTD' Destination Register write value 'S_MOV' too 'valTable0'

Page 246of 484

17.42) ALTS Alter S field of next Instruction

ALTS D,{#}S

Alter S field of next instruction to (D + S) & $1FF. D += sign-extended

S[17:9].

ALTS D Alter S field of next instruction to D[8:0].

RDSaddress= BaseAdressS[8:0] + OffsetD[17:9] + IndexD[8:0]

S= Offset S[17.9] + BaseAddressS[8:0]

D = IndexD[8:0] + sign-Extended [17:9]

Byte Addressing
D[31:0] = D3D2D1D0

S[31:0] = S3S2S1S0

Bit Addressing
D[31:0] =d31d30d29d28d27d26d25d24d23d22d21d20d19d18d17d1d15d14d13d12d11d10d09d08d07d06d05d04d03d02d01d00
S[31:0] = S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_ S07S06S05S04S03S02S01S00

The idea is that S/# can serve as a register base address and D can be used as an index.

ALTS Offset,BaseAddress
Next Instruction :
S Field = (D + S) & 1FF

ALTS D,{#}S
Alter subsequent instruction. Next S field = (D + S) & $1FF
D += sign-extended S[17:9].

ALTS D
Alter S field of next instruction to D[8:0]. Next S Field = D[8:0]

Page 247of 484

17.42.1_Example_WRD_ALTS D,{#}S_118
ALTS D,{#}S
Alter S field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9].

MOV D,{#}S {WC/WZ/WCZ}
Move S into D. D = S. C = S[31]. *

The idea is that S/# can serve as a register base address and D can be used as an index.
ALTS Offset,BaseAddress
Next Instruction :
S Field = (D + S) & 1FF

D[31:0] = D3D2D1D0
D[31:0]
=d31d30d29d28d27d26d25d24_d23d22d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d
05d04d03d02d01d00
S[31:0] = S3S2S1S0
S[31:0] = S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

S Field = (D + S) & $1FF =00000000_00000000_0000000_d08d07d06d05d04d03d02d01d00 typical 9 bit
address
Example
Self Modifying Code Alter S Field allows 'S_Pointer + Index' to be indexed through a table

17.42.2_Example_WRD_ALTS D_119
ALTS D
Alter S field of next instruction to D[8:0].
MOV D,{#}S {WC/WZ/WCZ} (058) EEEE 0110000 CZI DDDDDDDDD SSSSSSSSS
Move S into D. D = S. C = S[31]. *

S Field = D & $1FF =00000000_00000000_0000000_d08d07d06d05d04d03d02d01d00 typical 9 bit
address
Example

D[31:0] = D3D2D1D0
D[31:0]
=d31d30d29d28d27d26d25d24_d23d22d21d20d19d18d17d16_d15d14d13d12d11d10d09d08_d07d06d
05d04d03d02d01d00
S[31:0] = S3S2S1S0
S[31:0] = S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_
S07S06S05S04S03S02S01S00

Page 248of 484

17.43) ALTB D Alter D field of next instruction usually associated with Bits

ALTB D,{#}S

Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended

S[17:9].

ALTB D Alter D field of next instruction to D[13:5].

For accessing bit fields that span multiple registers, there is the ALTB instruction which sums D[13:5]
and S/#[8:0] values to compute an address which is substituted into the next instruction's D field. It can
be used with and without S/#:

ALTB bitindex,#base 'set next D field to base+bitindex[13:5]
BITC 0,bitindex 'write C to bit[bitindex[4:0]]

ALTB bitindex 'set next D field to bitindex[13:5]
TESTB 0,bitindex WC 'read bit[bitindex[4:0]] into C

TESTB D,{#}S WC/WZ (034)
Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].

BITC D,{#}S {WCZ} (044)
Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits unaffected. Prior SETQ overrides S[9:5].
C,Z = original D[S[4:0]].
This instruction can be used to set a bit to C carry or a group of bits to C carry

17.43.1_Example_WRD_ALTB D,{#}S_120
ALTB D,{#}S
Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended S[17:9].

ALTB D,{#}S (120)
Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended S[17:9].

S = OffsetBitIndexS[17.9] | BaseAddressS[8:0]
D = IndexWordD[13:5] | BitIndexD[4:0]

Next Instruction D Field = (D[13:5] +S[17:9] + S) & $1FF
Note: S[17:9] is a bit offset in addition to the BitIndex

TESTB D,{#}S WC/WZ (034)
Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].
Example
Use ALTB BaseAddress with Index and Offset to test bit

Page 249of 484

17.43.2_Example_WRD_ALTB D_121
ALTB D
Alter D field of next instruction to D[13:5].

TESTB D,{#}S WC/WZ (034)
Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].
Example
Use ALTB BaseAddress
Defined in valBit0 bit postition B9 S[4:0= %1001} = 9
Check by changing word valBit0 B9 from 1 to zero

Page 250of 484

17.44) ALTI Substitute next instructions I/R/D/S Fields

ALTI D,{#}S

Substitute next instruction's I/R/D/S fields with fields from D, per S. Modify D

per S.

ALTI D Execute D in place of next instruction. D stays same.

I = Instruction Field [27:21]
R = Result Field [27:19]
D = Destination Field [17:9]
S = Source Field [8:0]

 Condition Instruction Effects(Flags) Destination Source_________
31 30 29 28 | 27 26 25 24 23 22 21 | 20 19 18 | 17 16 15 14 13 12 11 10 09 | 08 07 06 05 04 03 02 01 00
E E E E 0 0 0 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S
4 bit = 15 7 bit = 127 3 bit =7 9 bit = 511 max address 9 bit = 511 max address

First, ALTI For more complex S field, D field, and result register substitutions, there is the ALTI
instruction. ALTI actually does a few different things can be used to individually increment or decrement
three different nine-bit fields within a register.

Second, ALTI can substitute each of those fields (before incrementing or decrementing) into the next
instruction's S field, D field, or result register address, in the same way ALTS, ALTD, and ALTR do. Lastly,
ALTI can substitute D[31..18] into the next instruction's upper bits [31..18] to enable full instruction
substitution with a register's contents.

ALTI D,S/# 'modify D and/or next instruction's fields according to S/#

S/# = %rrr_ddd_sss_RRR_DDD_SSS

%rrr Result register field D[27..19] increment/decrement masking
%ddd D register field D[17..9] increment/decrement masking
%sss S register field D[8..0] increment/decrement masking

%rrr/%ddd/%sss:
000 = 9 bits increment/decrement (default, full span)
001 = 8 LSBs increment/decrement (256-register looped buffer)
010 = 7 LSBs increment/decrement (128-register looped buffer)
011 = 6 LSBs increment/decrement (64-register looped buffer)
100 = 5 LSBs increment/decrement (32-register looped buffer)
101 = 4 LSBs increment/decrement (16-register looped buffer)
110 = 3 LSBs increment/decrement (8-register looped buffer)
111 = 2 LSBs increment/decrement (4-register looped buffer)

Page 251of 484

%RRR result register / instruction modification:
000 = D[27..19] stays same, no result register substitution
001 = D[27..19] stays same, but result register writing is canceled
010 = D[27..19] decrements per %rrr, no result register substitution
011 = D[27..19] increments per %rrr, no result register substitution
100 = D[27..19] sets next instruction's result register, stays same
101 = D[31..18] substitutes into next instruction's [31..18] (execute D)
110 = D[27..19] sets next instruction's result register, decrements per %rrr
111 = D[27..19] sets next instruction's result register, increments per %rrr

%DDD D field modification:
x0x = D[17..9] stays same
x10 = D[17..9] decrements per %ddd
x11 = D[17..9] increments per %ddd
0xx = no D field substitution
1xx = D[17..9] substitutes into next instruction's D field [17..9]

%SSS S field modification:
x0x = D[8..0] stays same
x10 = D[8..0] decrements per %sss
x11 = D[8..0] increments per %sss
0xx = no S field substitution
1xx = D[8..0] substitutes into next instruction's S field [8..0]
Here are some examples of ALTI usage:

'set next D and S fields, increment ptrs[17:9] and ptrs[8:0]
ALTI ptrs,#%111_111
ADD 0,0 'add registers

ALTI inst,#%101_100_100 'execute inst (same as 'ALTI inst')
NOP 'NOP becomes inst

Note: Not going to do examples at this time modifying Instructions not of high priority for learning
existing instructions. If someone wants to submit an example please do so.

17.44.1_Example_WRD_ALTI D,{#}S_122
ALTI D,{#}S
Substitute next instruction's I/R/D/S fields with fields from D, per S. Modify D per S.

17.44.2_Exampl_WRD_ALTI D_123
ALTI D
Execute D in place of next instruction. D stays same.

Page 252of 484

17.45) SETR SETD SETS Set Instruction Field of Register

SETR D,{#}S Set R field of D to S[8:0]. D = {D[31:28], S[8:0], D[18:0]}.

SETD D,{#}S Set D field of D to S[8:0]. D = {D[31:18], S[8:0], D[8:0]}.

SETS D,{#}S Set S field of D to S[8:0]. D = {D[31:9], S[8:0]}.

I = Instruction Field [27:21]
R = Result Field [27:19]
D = Destination Field [17:9]
S = Source Field [8:0]

 Condition Instruction Effects(Flags) Destination Source_________
31 30 29 28 | 27 26 25 24 23 22 21 | 20 19 18 | 17 16 15 14 13 12 11 10 09 | 08 07 06 05 04 03 02 01 00
E E E E 0 0 0 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S
4 bit = 15 7 bit = 127 3 bit =7 9 bit = 511 max address 9 bit = 511 max address

Ea IF_Z MOV PRO,PR1 WZMOV D,{#}S {WC/WZ/WCZ} EEEE 0110000 CZI DDDDDDDDD SSSSSSSSS

IF_Z EEEE = 1010
MOV Instruction = 0110000
C Effects C = 0 (no WC)
Z Effects Z = 1 (WZ)
I Effects I =0 (# not present0
PR0 DDDDDDDDD = $1D8 = %111011000
PR1 SSSSSSSSSS = $1D9 =%111011001

 Condition Instruction Effects(Flags) Destination Source_________
31 30 29 28 | 27 26 25 24 23 22 21 | 20 19 18 | 17 16 15 14 13 12 11 10 09 | 08 07 06 05 04 03 02 01 00
1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1
4 bit = 15 7 bit = 127 3 bit =7 9 bit = 511 max address 9 bit = 511 max address

The SETS/SETD/SETR instructions allow you to write the S field, D field and instruction field of a register
without affecting other bits. They copy the lower 9 bits of S/# into their respective 9-bit field within D.
These instructions are useful for establishing the fields that will be used by ALTI:

SETS D,S/# 'set D[8:0] to S/#[8:0]

SETD D,S/# 'set D[17:9] to S/#[8:0]

SETR D,S/# 'set D[27:19] to S/#[8:0]

S/# = operate on bit field contained in S[31:0] or #value bit field #[31:0]

Page 253of 484

SETS/SETD/SETR can also be used in self-modifying cog-register code. After modifying a cog register, It is
necessary to elapse two instructions before executing the modified register, due to pipelining:

SETR inst,op 'set reg[27:19] to op[8:0]

NOP 'first spacer instruction, could be anything

NOP 'second spacer instruction, could be anything

inst MOV x,y 'operate on x using y, MOV can become

AND/OR/XOR/etc.

 Not going to do examples at this time modifying Instructions not of high priority for learning existing

instructions. If someone wants to submit an example please do so.

Page 254of 484

17.45.1_Example_WRD_Get_MOV_Instruction_Code

This program can be used to get the actual instruction code value.

Example: Get “IF_Z MOV PRO,PR1 WZ “ binary instruction code.

Page 255of 484

17.46) DECOD value 0-31 into Long with Coresponding bit set High

DECOD D,{#}S Decode S[4:0] into D. D = 1 << S[4:0].

DECOD D Decode D[4:0] into D. D = 1 << D[4:0].

DECOD PASM instruction performs the same way as Bitwise Decode spin operator
|< (Pin ≔ |< PinNum Bitwise Decode decodes a value (0-31) into a 32 bit long value with a single bit set
high corresponding to the bit position of the original value

17.46.1_Example_WRD_DECOD D,{S}#_127
DECOD D,{#}S
Decode S[4:0] into D. D = 1 << S[4:0].

17.46.2_Example_WRD_DECOD D_128
DECOD D
Decode D[4:0] into D. D = 1 << D[4:0].

Page 256of 484

17.47)BMASKD Get LSB Justifie bit mask

BMASK D,{#}S

Get LSB-justified bit mask of size (S[4:0] + 1) into D. D = ($0000_0002 <<

S[4:0]) - 1.

BMASK D

Get LSB-justified bit mask of size (D[4:0] + 1) into D. D = ($0000_0002 <<

D[4:0]) - 1.

17.47.1_Example_WRD_BMASK D,{#}S_129
BMASK D,{#}S
Get LSB-justified bit mask of size (S[4:0] + 1) into D. D = ($0000_0002 << S[4:0]) - 1.

Example
Get Mask from 0-31 and then Mask out TestMask value

17.47.2_Example_WRD_BMASK D_130
BMASK D
Get LSB-justified bit mask of size (D[4:0] + 1) into D. D = ($0000_0002 << D[4:0]) - 1.

Example
Get Mask from 0-31 and then Mask out TestMask value

Page 257of 484

17.48) CRCBIT Cyclic Reduncy Check of Byte

CRCBIT D,{#}S

Iterate CRC value in D using C and polynomial in S. If (C XOR D[0]) then D = (D >> 1)

XOR S, else D = (D >> 1).

CRCNIB D,{#}S

Iterate CRC value in D using Q[31:28] and polynomial in S. Like CRCBIT x 4. Q = Q

<< 4. Use 'REP #n,#1'+SETQ+CRCNIB+CRCNIB+CRCNIB...

Note: See “Appendix E.2) CRC8 Cycle Redundancy Check”

17.48.1_Example_WRD_CRCBIT D,{#}S_131
CRCBIT D,{#}S
Iterate CRC value in D using C and polynomial in S. If (C XOR D[0])
then D = (D >> 1) XOR S, else D = (D >> 1).

17.48.2_Example_WRD_CRCNIB D,{#}S_132
CRCNIB D,{#}S
Iterate CRC value in D using Q[31:28] and polynomial in S.
Like CRCBIT x 4. Q = Q << 4. Use 'REP #n,#1'+SETQ+CRCNIB+CRCNIB+CRCNIB...

17.48.3_Example_WRD_CRCBIT_Function
This is included with Progam examples it is a means to emulate what CRCBIT performs.
Testing crcbit instruction Chris Gadd source

 crcbit crc,POLY performs the operations:

 testb crc,#0 wz
 shr crc,#1
 if_c_ne_z xor crc,POLY

17.48.4_Example_WRD_CRCBIT D,{#}S_131
CRCBIT D,{#}S
Iterate CRC value in D using C and polynomial in S. If (C XOR D[0])
then D = (D >> 1) XOR S, else D = (D >> 1).

Example
send n bytes to have string CRC genetated code . n is set for one for one byte testing ,modify n for
multiple bytes

Page 258of 484

17.49) MUXNITS/MUXNIB D,{#}S Set bit in D from S

133 MUXNITS D,{#}S

For each non-zero bit pair in S, copy that bit pair into the corresponding D bits, else leave

that D bit pair the same.

134 MUXNIBS D,{#}S

For each non-zero nibble in S, copy that nibble into the corresponding D nibble, else leave

that D nibble the same.

17.49.1_Example_WRD_MUXNITS D,{#}S _133
MUXNITS D,{#}S
For each non-zero bit pair in S, copy that bit pair into the corresponding D bits, else leave that D bit pair
the same.
Example
"Copy bit pattern ins S to D"

17.49.2_Example_WRD_MUXNIBS D,{#}S_134
MUXNIBS D,{#}S
For each non-zero nibble in S, copy that nibble into the corresponding D nibble, else leave that D nibble
the same.
Example
"Copy bit pattern ins S to D"

17.50) MUXQ D,{#}S

MUXQ D,{#}S

Used after SETQ. For each '1' bit in Q, copy the corresponding bit in S into D. D = (D & !Q) | (S

& Q).

17.50.1_Example_WRD_MUXQ D,{#}S_135
MUXQ D,{#}S
Used after SETQ. For each '1' bit in Q, copy the corresponding bit in S into D. D = (D & !Q) | (S & Q).

SETQ {#}D
Set Q to D. Use before RDLONG/WRLONG/WMLONG to set block transfer.
Also used before MUXQ/COGINIT/QDIV/QFRAC/QROTATE/WAITxxx.

Example
"Copy bit pattern in S to D masked by Q"

Page 259of 484

17.51) MOVBYT D,{#}S move bytes within a register

MOVBYTS D,{#}S

Move bytes within D, per S. D = {D.BYTE[S[7:6]], D.BYTE[S[5:4]], D.BYTE[S[3:2]],

D.BYTE[S[1:0]]}.

Byte Addressing
DB[3:0]
=D3D2D1D0

Byte Bit Addressing
DBB[37:00]
=d37d36d35d34d33d32d31d30_d27d26d25d24d23d22d21d20_d17d16d15d14d13d12d11d10_d07d06d05d04d03d02d01d00
 D3 = S(7:6)=0-3 D2 = S(5:4)=0-3 D1 = S(3:2)=0-3 D0 = S(1:0)=0-3

17.51_Example_WRD_MOVBYTS D,{#}S_136
MOVBYTS D,{#}S
Move bytes within D, per S. D = {D.BYTE[S[7:6]], D.BYTE[S[5:4]], D.BYTE[S[3:2]], D.BYTE[S[1:0]]}.
Example
Reverse bytes in a register
MOVBYTS D_MOVBYT,S_MOVBYT 'S(7:6)=0 S(5:4)=1 S(3:2)=2 S(1:0)=3

Page 260of 484

17.52)MUL D,{#}S Multiply D x S

MUL D,{#}S {WZ} D = unsigned (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

MULS D,{#}S {WZ} D = signed (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

17.52.1_Example_WRD_MUL D,{#}S {WZ}_137
MUL D,{#}S {WZ}
D = unsigned (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

Example
Multiply two unsigned numbers

17.52.2_Example_WRD_MULS D,{#}S {WZ}_138
MULS D,{#}S {WZ}
D = signed (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

Example
Multiply two signed numbers

Page 261of 484

17.53) SCA D,{#}S Multiply and shift result

SCA D,{#}S {WZ} Next instruction's S value = unsigned (D[15:0] * S[15:0]) >> 16. *

SCAS D,{#}S {WZ}

Next instruction's S value = signed (D[15:0] * S[15:0]) >> 14. In this scheme,

$4000 = 1.0 and $C000 = -1.0. *

17.53.1_Example_WRD_SCA D,{#}S {WZ}_139
SCA D,{#}S {WZ}
Next instruction's S value = unsigned (D[15:0] * S[15:0]) >> 16. *

Example
Multiply two unsigned numbers

17.53.2_Example_WRD_ SCAS D,{#}S {WZ}_140
SCAS D,{#}S {WZ}
Next instruction's S value = signed (D[15:0] * S[15:0]) >> 14. In this scheme, $4000 = 1.0 and $C000 = -
1.0. *

Page 262of 484

17.54)ADDPIX D,{#}S for setting pix intensity

ADDPIX D,{#}S Add bytes of S into bytes of D, with $FF saturation.

17.54.1_Example-WRD_ADDPIX D,{#}S_141
ADDPIX D,{#}S
Add bytes of S into bytes of D, with $FF saturation.

Example
add D3+S3 ,D2+S2,D1+S1,D0+S0 max value in DX = FF

Page 263of 484

17.55) MULPIX D,{#}S Multipy Bytes Dx*Sx_142 (info from AJL/ARIBA)

MULPIX D,{#}S Multiply bytes of S into bytes of D, where $FF = 1.0 and $00 = 0.0.

DB[3:0] =D3D2D1D0 SB[3:0] = S3S2S1S0

D3 = D3*S3/255 D2 = D2*S2/255 D1 = D1*S1/255 D0 = D0*S0/255

From the instruction description, with $FF = 1.0 and $00 = 0.0 then with D of $0080FFFF and S of

$008080FF I would expect a result of something like $004080FF.

That’s:

$00 x $00 = 0.0 x 0.0 = 0.0 = $00

$80 x $80 = 0.5 x 0.5 = 0.25 = $40

$80 x $FF = 0,5 x 1.0 = 0.5 = $80

$FF x $FF = 1.0 x 1.0 = 1.0 = $FF

 17.55.1_Example_WRD_MULPIX D,{#}S_142
MULPIX D,{#}S
Multiply bytes of S into bytes of D, where $FF = 1.0 and $00 = 0.0.

Page 264of 484

17.56) BLNPIX D,{#}S_143 Alph-blend bytes of S into bytes of D Using SETPIV

BLNPIX D,{#}S Alpha-blend bytes of S into bytes of D, using SETPIV value.

BLNPIX D,{#}S (142)
Alpha-blend bytes of S into bytes of D, using SETPIV value.
Note: Personel Knowledge not capable of describing or using

17.57) MIXPIX D,{#}S_144 Mix bytes of S into bytes fod using SETPIX anc SETPIV

MIXPIX D,{#}S Mix bytes of S into bytes of D, using SETPIX and SETPIV values.

MIXPIX D,{#}S (144)
Mix bytes of S into bytes of D, using SETPIX and SETPIV values.
Note: Personel Knowledge not capable of describing or using

Page 265of 484

17.58)ADDCT1\ADDCT2\ADDCT3 D,{#}S_145\146\147 Counter Passed event

ADDCT1 D,{#}S Set CT1 event to trigger on CT = D + S. Adds S into D.

ADDCT2 D,{#}S Set CT2 event to trigger on CT = D + S. Adds S into D.

ADDCT3 D,{#}S Set CT3 event to trigger on CT = D + S. Adds S into D.

Typical CTxUsage
GETCT cog1CountValue 'the counter value is now in in cog1CountValue
ADDCT1 cog1CountValue,cog1WaitTime 'add counter tick for delay set event CT1
 'the cog1CountValue + cog1WaitTime = CT1 result is placed in the CT1 event register
WAITCT1 'wait for cog1 program counter to pass CT1
cog1WaitTime long 150_000_000
cog1CountValue long 200_000_000

Wait for CTx event flag to be passed
WAITCT1 Wait for the CT-passed-CT1 event flag
WAITCT2 Wait for the CT-passed-CT2 event flag
WAITCT3 Wait for the CT-passed-CT3 event flag

POLLCT1/WAITCT1 event flag
Cleared on ADDCT1.
Set whenever CT passes the result of the ADDCT1 (MSB of CT minus CT1 is 0).
Also cleared on POLLCT1/WAITCT1/JCT1/JNCT1.

POLLCT2/WAITCT2 event flag
Cleared on ADDCT2.
Set whenever CT passes the result of the ADDCT2 (MSB of CT minus CT2 is 0).
Also cleared on POLLCT2/WAITCT2/JCT2/JNCT2.

POLLCT3/WAITCT3 event flag
Cleared on ADDCT3.
Set whenever CT passes the result of the ADDCT3 (MSB of CT minus CT3 is 0).
Also cleared on POLLCT3/WAITCT3/JCT3/JNCT3.

Page 266of 484

17.58.1_Example_ADDCTX_WAITCTX
Demonstrate wait for counter event CT1,CT2,CT3 Using GETCT\ADDCTxWAITCTx
Each cog has separate CTx events

17.58.2_Example_WRD_ADDCTx_POLLCTx
Demonstrate polling (check and continue) counter event CT1,CT2,CT3 Using GETCT\ADDCTxWAITCTx
Each cog has separate CTx events

Page 267of 484

17.59) WMLONG Write Non $00 bytes in D to HubAddress

WMLONG D,{#}S/P

Write only non-$00 bytes in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes

cog/LUT block transfer.

WMLONG D,{#}S/P
Write only non-$00 bytes in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block
transfer.

Page 268of 484

17.60)149 RD Read Pin,LUT(LookUpTable)Byte,Word,Long(149..154)

RQPIN D,{#}S {WC}

Read smart pin S[5:0] result "Z" into D, don't acknowledge smart pin ("Q" in

RQPIN means "quiet"). C = modal result.

RDPIN D,{#}S {WC} Read smart pin S[5:0] result "Z" into D, acknowledge smart pin. C = modal result.

RDLUT D,{#}S/P

{WC/WZ/WCZ} Read data from LUT address {#}S/PTRx into D. C = MSB of data. *

RDBYTE D,{#}S/P

{WC/WZ/WCZ} Read zero-extended byte from hub address {#}S/PTRx into D. C = MSB of byte. *

RDWORD D,{#}S/P

{WC/WZ/WCZ}

Read zero-extended word from hub address {#}S/PTRx into D. C = MSB of word.

*

RDLONG D,{#}S/P

{WC/WZ/WCZ}

Read long from hub address {#}S/PTRx into D. C = MSB of long. * Prior

SETQ/SETQ2 invokes cog/LUT block transfer.

17.60.1_Example_WRD_RQPIN_149
RQPIN D,{#}S {WC}
Read smart pin S[5:0] result "Z" into D, don't acknowledge smart pin ("Q" in RQPIN means "quiet"). C =
modal result.

17.60.2_Example_WRD_RDPIN_150
RDPIN D,{#}S {WC}
Read smart pin S[5:0] result "Z" into D, acknowledge smart pin. C = modal result.

17.60.3_Example_WRD_RDLUT_151
RDLUT D,{#}S/P {WC/WZ/WCZ}
Read data from LUT address {#}S/PTRx into D. C = MSB of data. *

17.60.4_Example_WRD_RDBYTE_152
RDBYTE D,{#}S/P {WC/WZ/WCZ}
Read zero-extended byte from hub address {#}S/PTRx into D. C = MSB of byte. *

17.65.5_Example_WRD_RDWORD_153
RDWORD D,{#}S/P {WC/WZ/WCZ}
Read zero-extended word from hub address {#}S/PTRx into D. C = MSB of word. *

17.66.6_Example_WRD_RDLONG_154
RDLONG D,{#}S/P {WC/WZ/WCZ}
Read long from hub address {#}S/PTRx into D. C = MSB of long. * Prior SETQ/SETQ2 invokes cog/LUT
block transfer.

Page 269of 484

17.61) POPA\POPB Read long from HUB Adress pointe to by PTRA\PTRB

POPA D {WC/WZ/WCZ} Read long from hub address --PTRA into D. C = MSB of long. *

POPB D {WC/WZ/WCZ} Read long from hub address --PTRB into D. C = MSB of long. *

17.61.1) POPA D {WC/WZ/WCZ} Read long hub address --PTRA into D. C = MSB of long. * (156)

17.61.2) POPB D *{WC/WZ/WCZ} Read long hub address --PTRB into D. C = MSB of long. (157)

Page 270of 484

17.62) CALLD D,{#}S Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30].

CALLD D,{#}S

{WC/WZ/WCZ} Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30].

CALLD D,{#}S {WC/WZ/WCZ} (158
Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30].

17.63) RESI0\1\2\3 Resume from Interupt

RESI3 Resume from INT3. (CALLD $1F0,$1F1 WCZ)

RESI2 Resume from INT2. (CALLD $1F2,$1F3 WCZ)

RESI1 Resume from INT1. (CALLD $1F4,$1F5 WCZ)

RESI0 Resume from INT0. (CALLD $1FE,$1FF WCZ)

17.63.1) RESI3 Resume from INT3. (CALLD $1F0,$1F1 WCZ) (158)

17.63.2) RES12 Resume from INT2. (CALLD $1F2,$1F3 WCZ) (159)

17.63.3) RESI1 Resume from INT1. (CALLD $1F4,$1F5 WCZ) (160)

17.63.4) RESI0 Resume from INT0. (CALLD $1FE,$1FF WCZ) (161)

17.64) RETI0\1\2\3 Return from Interupt (162..165)

RETI3 Return from INT3. (CALLD $1FF,$1F1 WCZ)

RETI2 Return from INT2. (CALLD $1FF,$1F3 WCZ)

RETI1 Return from INT1. (CALLD $1FF,$1F5 WCZ)

RETI0 Return from INT0. (CALLD $1FF,$1FF WCZ)

17.64.1) RETI3 Return from INT3. (CALLD $1FF,$1F1 WCZ) (162)

17.64.2) RETI2 Return from INT2. (CALLD $1FF,$1F3 WCZ) (163)

17.64.3) RETI1 Return from INT1. (CALLD $1FF,$1F5 WCZ) (164)

17.64.4) RETI0 Return from INT0. (CALLD $1FF,$1FF WCZ) (165)

Page 271of 484

17.65)CALLPA\PB Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA.

CALLPA {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA.

CALLPB {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PB.

17.65.1) CALLPA {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA.

(166)

17.65.2) CALLPB {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PB.

(167)

17.66) Decrement and Jump (168..171)

DJZ D,{#}S Decrement D and jump to S** if result is zero.

DJNZ D,{#}S Decrement D and jump to S** if result is not zero.

DJF D,{#}S Decrement D and jump to S** if result is $FFFF_FFFF.

DJNF D,{#}S Decrement D and jump to S** if result is not $FFFF_FFFF.

DJZ D,{#}S Decrement D and jump to S** if result is zero. (168)

DJNZ D,{#}S Decrement D and jump to S** if result is not zero. (169)

DJF D,{#}S Decrement D and jump to S** if result is $FFFF_FFFF. (170)

DJNF D,{#}S Decrement D and jump to S** if result is not $FFFF_FFFF. (171)

17.67) Increment and Jump (172..173)

IJZ D,{#}S Increment D and jump to S** if result is zero.

IJNZ D,{#}S Increment D and jump to S** if result is not zero.

17.67.1) IJZ D,{#}S Increment D and jump to S** if result is zero. (172)

17.67.2) JNZ D,{#}S Increment D and jump to S** if result is not zero. (173)

Page 272of 484

17.68) Test D and Jump (173..179)

TJZ D,{#}S Test D and jump to S** if D is zero.

TJNZ D,{#}S Test D and jump to S** if D is not zero.

TJF D,{#}S Test D and jump to S** if D is full (D = $FFFF_FFFF).

TJNF D,{#}S Test D and jump to S** if D is not full (D != $FFFF_FFFF).

TJS D,{#}S Test D and jump to S** if D is signed (D[31] = 1).

TJNS D,{#}S Test D and jump to S** if D is not signed (D[31] = 0).

TJV D,{#}S

Test D and jump to S** if D overflowed (D[31] != C, C = 'correct sign' from last

addition/subtraction).

17.68.1) TJZ D,{#}S Test D and jump to S** if D is zero. (174)

17.68.2) TJNZ D,{#}S Test D and jump to S** if D is not zero. (175)

17.68.3) TJF D,{#}S Test D and jump to S** if D is full (D = $FFFF_FFFF). (176)

17.68.4) TJNF D,{#}S Test D and jump to S** if D is not full (D != $FFFF_FFFF). (177)

17.68.5) TJS D,{#}S Test D and jump to S** if D is signed (D[31] = 1). (178)

17.68.6) TJNS D,{#}S Test D and jump to S** if D is not signed (D[31] = 0). (179)

17.68.7) TJV D,{#}S Test D and jump to S** if D overflowed (D[31] != C, (180)
C = 'correct sign' from last (addition/subtraction).

Page 273of 484

17.69) Jump to event flag is set (181..212)

JINT {#}S Jump to S** if INT event flag is set.

JINT {#}S Jump to S** if INT event flag is set.

JCT1 {#}S Jump to S** if CT1 event flag is set.

JCT2 {#}S Jump to S** if CT2 event flag is set.

JCT3 {#}S Jump to S** if CT3 event flag is set.

JSE1 {#}S Jump to S** if SE1 event flag is set.

JSE2 {#}S Jump to S** if SE2 event flag is set.

JSE3 {#}S Jump to S** if SE3 event flag is set.

JSE4 {#}S Jump to S** if SE4 event flag is set.

JPAT {#}S Jump to S** if PAT event flag is set.

JFBW {#}S Jump to S** if FBW event flag is set.

JXMT {#}S Jump to S** if XMT event flag is set.

JXFI {#}S Jump to S** if XFI event flag is set.

JXRO {#}S Jump to S** if XRO event flag is set.

JXRL {#}S Jump to S** if XRL event flag is set.

JATN {#}S Jump to S** if ATN event flag is set.

JQMT {#}S Jump to S** if QMT event flag is set.

JNINT {#}S Jump to S** if INT event flag is clear.

JNCT1 {#}S Jump to S** if CT1 event flag is clear.

JNCT2 {#}S Jump to S** if CT2 event flag is clear.

JNCT3 {#}S Jump to S** if CT3 event flag is clear.

JNSE1 {#}S Jump to S** if SE1 event flag is clear.

JNSE2 {#}S Jump to S** if SE2 event flag is clear.

Page 274of 484

JNSE3 {#}S Jump to S** if SE3 event flag is clear.

JNSE4 {#}S Jump to S** if SE4 event flag is clear.

JNPAT {#}S Jump to S** if PAT event flag is clear.

JNFBW {#}S Jump to S** if FBW event flag is clear.

JNXMT {#}S Jump to S** if XMT event flag is clear.

JNXFI {#}S Jump to S** if XFI event flag is clear.

JNXRO {#}S Jump to S** if XRO event flag is clear.

JNXRL {#}S Jump to S** if XRL event flag is clear.

JNATN {#}S Jump to S** if ATN event flag is clear.

JNQMT {#}S Jump to S** if QMT event flag is clear.

Page 275of 484

17.70) Empty Instruction (213..214)

17.71) SETPAT {#}D,{#}S Set Pin Pattern for PAT (pattern) event (215)

SETPAT {#}D,{#}S

Set pin pattern for PAT event. C selects INA/INB, Z selects =/!=, D provides mask

value, S provides match value.

Page 276of 484

17.72) AKIN\WRPIN\WXPIN\WYPI Smart Pin Commands (216..219)

AKPIN {#}S Acknowledge smart pins S[10:6]+S[5:0]..S[5:0]. Wraps within A/B pins.
prior SETQ overrides S[10:6].

WRPIN {#}D,{#}S Set mode of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins.
Wraps within A/B pins. Prior SETQ overrides S[10:6].

WXPIN {#}D,{#}S

Set "X" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B

pins. Prior SETQ overrides S[10:6].

WYPIN {#}D,{#}S

Set "Y" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B

pins. Prior SETQ overrides S[10:6].

S is just for specifying which pins are written. D is mode being written.

WRPIN PinField and Pin Definition = S[10:6]+S[5:0]..S[5:0]

Pinfield = 11 bits = %LLLLL_PPPPPP = S[10:6] + S[5:0]

S[5:0] = BASE_PIN = 6 bits = PPPPPP = 0..63

S[10:6] = ADDPINS = 5 bits = LLLLL = 0..31

Definition of Pin

Pin = 5 bits = %PPPPPP = S[5:0] = 0..63

D is mode being written.

D = %AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0
A = PINA input selector
B = PINB input selector
F = PINA and PINB input logic/filtering (after PINA and PINB input selectors)
M = pin mode
T = pin DIR/OUT control (default = %00)
S = smart mode

17.72.1AKPIN {#}S Acknoledge Smart Pins (216)
Acknowledge smart pins S[10:6]+S[5:0]..S[5:0]. Wraps within A/B pins. Prior SETQ overrides S[10:6].

17.72.2) WRPIN {#}D,{#}S Set mode of smart pins (217)
WRPIN {#}D,{#}S (217)
Set mode of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior
SETQ overrides S[10:6].

17.72.3) WXPIN {#}D,{#}S Set “X” mode specific Parameter (218)
WXPIN {#}D,{#} S Set "X" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within
A/B pins. Prior SETQ overrides S[10:6].

17.72.4) WYPIN {#}D,{#}S Set “Y” mode specific Parameter (219)
Set "Y" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior
SETQ overrides S[10:6].

Page 277of 484

Page 278of 484

17.73)WRLU\WRBYTE\WRWORD\WRLONG Write to Destination (220..223)

WRLUT {#}D,{#}S/P Write D to LUT address {#}S/PTRx.

WRBYTE {#}D,{#}S/P Write byte in D[7:0] to hub address {#}S/PTRx.

WRWORD {#}D,{#}S/P Write word in D[15:0] to hub address {#}S/PTRx.

WRLONG {#}D,{#}S/P

Write long in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block

transfer.

Page 279of 484

17.74) XZERO\XCONT New Stramer Command (224..225)

XZERO {#}D,{#}S

Buffer new streamer command to be issued on final NCO rollover of current command,

zeroing phase.

XCONT {#}D,{#}S

Buffer new streamer command to be issued on final NCO rollover of current command,

continuing phase.

17.75) RDFAST\WRFAST Fast HUB Read\Write (226..227)

RDFAST {#}D,{#}S

Begin new fast hub read via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0

= max), S[19:0] = block start address.

WRFAST {#}D,{#}S

Begin new fast hub write via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0

= max), S[19:0] = block start address.

17.76) FBLOCK {#}D,{#}S Set next block for when block wraps (228)

FBLOCK {#}D,{#}S

Set next block for when block wraps. D[13:0] = block size in 64-byte units (0 =

max), S[19:0] = block start address.

17.77) XINIT\XSTOP\XZERO\XCONT Streamer Commands (229..232)

XINIT {#}D,{#}S Issue streamer command immediately, zeroing phase.

XSTOP Stop streamer immediately.

XZERO {#}D,{#}S Buffer new streamer command to be issued on final
NCO rollover of current command, zeroing phase.

XCONT {#}D,{#}S Buffer new streamer command to be issued on final
NCO rollover of current command, continuing phase.

Page 280of 484

17.78) REP {#}D,{#}S Repeat Instruction S Times (233)

REP {#}D,{#}S

Execute next D[8:0] instructions S times. If S = 0, repeat instructions infinitely. If

D[8:0] = 0, nothing repeats.

_Symbol REP @Done,S
 First Pasm Instruction to be repeated
 .
 .
 .
 Last Pasm Instruction to be repeated
_Done PASM instruction to be run after REp

The REP instruction needs (the number of ins to repeat)-1 so the calculation is done by the

compiler and the result is stored in the rep instruction generated.

Since instruction counting and adjusting is tedious, the @ syntax was to look a bit alike the P1

syntax, consider the pair of labels:

xxx and

xxx _ret

which also create a instruction when you write CALL xxx and the compiler writes a JMPRET

instruction for you.

So you can use rep without any label, but it is more tedious.(Note: Not sure how this is done

guessing that you can manipulate the count inside D register of REP D,S)

rstart rep #rend-#rstart-1,S_REP

 ...

 ...

rend ...

That it is @ again its just another character to distinguish the operation REP.

The @ ins and the friends @@ and @@@ are usually a Spin-syntax but often used in DAT

sections thus also valid for assembler. So in the case of REP the @ has a complete different

meaning. @ instructs the compiler to See how many instructions follow the REP instruction to

the symbol pointed to with @Symbol.

REP puts a hold on interrupts, and debug is highest level IRQ in the prop2 . So debug won't respond until

the REP is completed. The REP instruction is built this way to prevent unexpected branching.

Debug will possibly create a bug because a branch instruction cancels the REP for good. Branching out of

a REP is legal, but you need to account for it terminating the REP.

Page 281of 484

17.78.1_Example_WRD_REP {#}D,{#}S_233
REP {#}D,{#}S
Execute next D[8:0] instructions S times. If S = 0, repeat instructions infinitely. If D[8:0] = 0, nothing
repeats.

_Start REP @Symbol,S
 First Pasm Instruction to be repeated
 .
 .
 Last PASM Instruction to be repeated
_Symbol PASM instruction to be run after REP

@Symbolsyntax instructs the compiler to See how many instructions follow the REP
instruction to the symbol pointed to with @Symbol this value is then stored in D register.

Example
Demonstrate REP using ADD Instruction and @Symbol Compiler directive

Page 282of 484

17.79) COGINIT {#}D,{#}S {WC} Start Cog (234)

COGINIT {#}D,{#}S {WC}

Start cog selected by D. S[19:0] sets hub startup address and PTRB of cog. Prior SETQ

sets PTRA of cog.

Note: This is detailed in “12.0) Cog Overview – CogInit\CogStop”

Page 283of 484

17.80) QMUL\QDIV\QFRAC\QSORT\QROTATE\QVECTOR Cordic Commands(235..240)

QMUL {#}D,{#}S

Begin CORDIC unsigned multiplication of D * S. GETQX/GETQY retrieves lower/upper

product.

QDIV {#}D,{#}S

Begin CORDIC unsigned division of {SETQ value or 32'b0, D} / S. GETQX/GETQY

retrieves quotient/remainder.

QFRAC {#}D,{#}S

Begin CORDIC unsigned division of {D, SETQ value or 32'b0} / S. GETQX/GETQY

retrieves quotient/remainder.

QSQRT {#}D,{#}S Begin CORDIC square root of {S, D}. GETQX retrieves root.

QROTATE {#}D,{#}S

Begin CORDIC rotation of point (D, SETQ value or 32'b0) by angle S. GETQX/GETQY

retrieves X/Y.

QVECTOR {#}D,{#}S Begin CORDIC vectoring of point (D, S). GETQX/GETQY retrieves length/angle.

Page 284of 484

17.81)HUBSET {#}D Set Hub configuration (241)

HUBSET {#}D Set hub configuration to D.

Note: For Details see “Appendix I Hub Operation”

file://///dnas/Family_Personal/WRD/Documents/Training%20Documents/I%23_Appendix_

Page 285of 484

17.82) COGID {#}D {WC} Get Cog ID (0..15) (242..247)

COGID {#}D {WC}

If D is register and no WC, get cog ID (0 to 15) into D. If WC, check status of cog D[3:0], C = 1 if

on.

COGSTOP {#}D Stop cog D[3:0].

LOCKNEW D {WC} Request a LOCK. D will be written with the LOCK number (0 to 15). C = 1 if no LOCK available.

LOCKRET {#}D Return LOCK D[3:0] for reallocation.

LOCKTRY {#}D {WC}

Try to get LOCK D[3:0]. C = 1 if got LOCK. LOCKREL releases LOCK. LOCK is also released if

owner cog stops or restarts.

LOCKREL {#}D {WC}

Release LOCK D[3:0]. If D is a register and WC, get current/last cog id of LOCK owner into D

and LOCK status into C.

Page 286of 484

17.83) QLOG\QEXP Cordic Conversion (248..249)

QLOG {#}D

Begin CORDIC number-to-logarithm conversion of D. GETQX retrieves log

{5'whole_exponent, 27'fractional_exponent}.

QEXP {#}D Begin CORDIC logarithm-to-number conversion of D. GETQX retrieves number.

Page 287of 484

17.84) RFBYTE\RFWOD|RFLONG\RFVAR\RFVARS\WFBYTE\WFWORD\WFLONG(250..257)

RFBYTE D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended byte from FIFO into D. C = MSB of byte. *

RFWORD D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended word from FIFO into D. C = MSB of word. *

RFLONG D {WC/WZ/WCZ} Used after RDFAST. Read long from FIFO into D. C = MSB of long. *

RFVAR D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended 1..4-byte value from FIFO into D. C = 0. *

RFVARS D {WC/WZ/WCZ}

Used after RDFAST. Read sign-extended 1..4-byte value from FIFO into D. C = MSB of value.

*

WFBYTE {#}D Used after WRFAST. Write byte in D[7:0] into FIFO.

WFWORD {#}D Used after WRFAST. Write word in D[15:0] into FIFO.

WFLONG {#}D Used after WRFAST. Write long in D[31:0] into FIFO.

Page 288of 484

17.85) GETQX\GETQY\GETCT\GETRND D\GETRND Get Result Value (258..262)

GETQX D {WC/WZ/WCZ} Retrieve CORDIC result X into D. Waits, in case result not ready. C = X[31]. *

GETQY D {WC/WZ/WCZ} Retrieve CORDIC result Y into D. Waits, in case result not ready. C = Y[31]. *

GETCT D {WC}

Get CT[31:0] or CT[63:32] if WC into D. GETCT WC + GETCT gets full CT. CT=0 on

reset, CT++ on every clock. C = same.

GETRND D {WC/WZ/WCZ}

Get RND into D/C/Z. RND is the PRNG that updates on every clock. D = RND[31:0],

C = RND[31], Z = RND[30], unique per cog.

GETRND WC/WZ/WCZ Get RND into C/Z. C = RND[31], Z = RND[30], unique per cog.

Page 289of 484

17.86) SETDACS\SETXFRQ Set DAC Set Streamer NCO frequency(263..264)

SETDACS {#}D DAC3 = D[31:24], DAC2 = D[23:16], DAC1 = D[15:8], DAC0 = D[7:0].

SETXFRQ {#}D Set streamer NCO frequency to D.

17.87)GETXACC D Get the streamer’s Goertzel X accumulator (265)

GETXACC D

Get the streamer's Goertzel X accumulator into D and the Y accumulator into the next

instruction's S, clear accumulators.

17.88) WAITX {#}D {WC/WZ/WCZ} Wait Clock Cycles (266)

WAITX {#}D {WC/WZ/WCZ}

Wait 2 + D clocks if no WC/WZ/WCZ. If WC/WZ/WCZ, wait 2 + (D & RND) clocks.

C/Z = 0.

Page 290of 484

17.89) SETSE1\SETSE2\SETSE3\SETSE4 Set SEx Event Configuration (266..269)

SETSE1 {#}D Set SE1 event configuration to D[8:0].

SETSE2 {#}D Set SE2 event configuration to D[8:0].

SETSE3 {#}D Set SE3 event configuration to D[8:0].

SETSE4 {#}D Set SE4 event configuration to D[8:0].

Page 291of 484

17.90) POLLx Poll Event x Flag (271..286)

POLLINT {WC/WZ/WCZ} Get INT event flag into C/Z, then clear it.

POLLCT1 {WC/WZ/WCZ} Get CT1 event flag into C/Z, then clear it.

POLLCT2 {WC/WZ/WCZ} Get CT2 event flag into C/Z, then clear it.

POLLCT3 {WC/WZ/WCZ} Get CT3 event flag into C/Z, then clear it.

POLLSE1 {WC/WZ/WCZ} Get SE1 event flag into C/Z, then clear it.

POLLSE2 {WC/WZ/WCZ} Get SE2 event flag into C/Z, then clear it.

POLLSE3 {WC/WZ/WCZ} Get SE3 event flag into C/Z, then clear it.

POLLSE4 {WC/WZ/WCZ} Get SE4 event flag into C/Z, then clear it.

POLLPAT {WC/WZ/WCZ} Get PAT event flag into C/Z, then clear it.

POLLFBW {WC/WZ/WCZ} Get FBW event flag into C/Z, then clear it.

POLLXMT {WC/WZ/WCZ} Get XMT event flag into C/Z, then clear it.

POLLXFI {WC/WZ/WCZ} Get XFI event flag into C/Z, then clear it.

POLLXRO {WC/WZ/WCZ} Get XRO event flag into C/Z, then clear it.

POLLXRL {WC/WZ/WCZ} Get XRL event flag into C/Z, then clear it.

POLLATN {WC/WZ/WCZ} Get ATN event flag into C/Z, then clear it.

POLLQMT {WC/WZ/WCZ} Get QMT event flag into C/Z, then clear it.

Page 292of 484

17.90.1) POLLINT {WC/WZ/WCZ} Get INT event flag into C/Z, then clear it.

17.90.2) POLLCT1/WAITCT1 Get CT1 event flag into C/Z, then clear it.event flag
Cleared on ADDCT1.
Set whenever CT passes the result of the ADDCT1 (MSB of CT minus CT1 is 0).
Also cleared on POLLCT1/WAITCT1/JCT1/JNCT1.

17.90.3) POLLCT2/WAITCT2 Get CT2 event flag into C/Z, then clear it.
Cleared on ADDCT2.
Set whenever CT passes the result of the ADDCT2 (MSB of CT minus CT2 is 0).
Also cleared on POLLCT2/WAITCT2/JCT2/JNCT2.

17.90.4) POLLCT3/WAITCT3 Get CT3 event flag into C/Z, then clear it.
Cleared on ADDCT3.
Set whenever CT passes the result of the ADDCT3 (MSB of CT minus CT3 is 0).
Also cleared on POLLCT3/WAITCT3/JCT3/JNCT3.

Note: For Detailed discussion see 17.58) ADDCT1\ADDCT2\ADDCT3

Page 293of 484

17.91) WAITx Wait until x event flag is set (287..301)

WAITINT {WC/WZ/WCZ}

Wait for INT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITCT1 {WC/WZ/WCZ}

Wait for CT1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITCT2 {WC/WZ/WCZ}

Wait for CT2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITCT3 {WC/WZ/WCZ}

Wait for CT3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITSE1 {WC/WZ/WCZ}

Wait for SE1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITSE2 {WC/WZ/WCZ}

Wait for SE2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITSE3 {WC/WZ/WCZ}

Wait for SE3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITSE4 {WC/WZ/WCZ}

Wait for SE4 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITPAT {WC/WZ/WCZ}

Wait for PAT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITFBW

{WC/WZ/WCZ}

Wait for FBW event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITXMT

{WC/WZ/WCZ}

Wait for XMT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITXFI {WC/WZ/WCZ}

Wait for XFI event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITXRO

{WC/WZ/WCZ}

Wait for XRO event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITXRL {WC/WZ/WCZ}

Wait for XRL event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

WAITATN

{WC/WZ/WCZ}

Wait for ATN event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z =

timeout.

Page 294of 484

17.91.1) WAITINT {WC/WZ/WCZ} event INT flag (287)
Wait for INT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout.

17.91.2) POLLCT1/WAITCT1 event CT1 flag (288)
Wait for CT1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout.
Cleared on ADDCT1.
Set whenever CT passes the result of the ADDCT1 (MSB of CT minus CT1 is 0).
Also cleared on POLLCT1/WAITCT1/JCT1/JNCT1.
Note: For Detailed discussion see 17.58) ADDCT1\ADDCT2\ADDCT3

17.91.3) POLLCT2/WAITCT2 event CT2 flag (289)
Wait for CT2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout.
Cleared on ADDCT2.
Set whenever CT passes the result of the ADDCT2 (MSB of CT minus CT2 is 0).
Also cleared on POLLCT2/WAITCT2/JCT2/JNCT2.
Note: For Detailed discussion see 17.58) ADDCT1\ADDCT2\ADDCT3

17.91.4) POLLCT3/WAITCT3 event CT3 flag (290)
Wait for CT3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout.
Cleared on ADDCT3.
Set whenever CT passes the result of the ADDCT3 (MSB of CT minus CT3 is 0).
Also cleared on POLLCT3/WAITCT3/JCT3/JNCT3.
Note: For Detailed discussion see 17.58) ADDCT1\ADDCT2\ADDCT3

Page 295of 484

17.92) Interupt Instructions (302..312)

302 ALLOWI Allow interrupts (default).

303 STALLI Stall Interrupts.

304 TRGINT1 Trigger INT1, regardless of STALLI mode.

305 TRGINT2 Trigger INT2, regardless of STALLI mode.

306 TRGINT3 Trigger INT3, regardless of STALLI mode.

307 NIXINT1 Cancel INT1.

308 NIXINT2 Cancel INT2.

309 NIXINT3 Cancel INT3.

310 SETINT1 {#}D Set INT1 source to D[3:0].

311 SETINT2 {#}D Set INT2 source to D[3:0].

312 SETINT3 {#}D Set INT3 source to D[3:0].

Page 296of 484

17.93) SETQ SetQ register prior to Instruction (313..314)

SETQ {#}D

Set Q to D. Use before RDLONG/WRLONG/WMLONG to set block transfer. Also used before

MUXQ/COGINIT/QDIV/QFRAC/QROTATE/WAITxxx.

SETQ2 {#}D Set Q to D. Use before RDLONG/WRLONG/WMLONG to set LUT block transfer.

17.93) SETQ CONSIDERATIONS (313..314))
Q is a hidden special purpose register inside the cog's processor core (ALU). The Program Counter (PC) is

another one of these. Q also must have a couple of associated flags to tell subsequent instructions that

Q has just been refreshed. At least two flags are needed for RDLONG/WRLONG to know if they should

burst read/write to cogRAM or lutRAM. SETQ sets first flag and SETQ2 sets the second flag.

● TeluXORO32 executes - Q is set to the XORO32 result.

● RDLUT executes - Q is set to the data read from the lookup RAM.

● GETXACC executes - Q is set to the Goertzel sine accumulator value.

● CRCNIB executes - Q gets shifted left by four bits.

● COGINIT/QDIV/QFRAC/QROTATE executes without a preceding SETQ instruction - Q is

set to zero.

Note: Following is what is guestimate for SETQ

SETQ/SETQ2 shields the next instruction from interruption to prevent an interrupt service routine.

A-SETQ works differently to the ALTx instructions. SETQ fills the Q register and sets a flag as future

notification. ALTx instructions modify the already fetched next instruction inside the pipeline.

B- will have logic to detect the notification flag and change its data source for S[9:5] to Q[??:??]. Best

guess is Q[4:0].

Page 297of 484

17.94)PUSH\POP\JMP Stack Instructions (315..317)

PUSH {#}D Push D onto stack.

POP D {WC/WZ/WCZ} Pop stack (K). D = K. C = K[31]. *

JMP D {WC/WZ/WCZ} Jump to D. C = D[31], Z = D[30], PC = D[19:0].

17.95) CALL\RET Call subroutine using stack (318..319)

CALL D {WC/WZ/WCZ}

Call to D by pushing {C, Z, 10'b0, PC[19:0]} onto stack. C = D[31], Z = D[30], PC =

D[19:0].

RET {WC/WZ/WCZ} Return by popping stack (K). C = K[31], Z = K[30], PC = K[19:0].

17.96) CALLA\RETA Call using PTRA (320..321)

CALLA D {WC/WZ/WCZ}

Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. C = D[31], Z = D[30],

PC = D[19:0].

RETA {WC/WZ/WCZ} Return by reading hub long (L) at --PTRA. C = L[31], Z = L[30], PC = L[19:0].

RET <inst> <ops>

Execute <inst> always and return if no branch. If <inst> is not branching then

return by popping stack[19:0] into PC.

17.97) CALLB\RETB Call using PTRB (322..323)

CALLB D {WC/WZ/WCZ}

Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. C = D[31], Z = D[30],

PC = D[19:0].

RETB {WC/WZ/WCZ} Return by reading hub long (L) at --PTRB. C = L[31], Z = L[30], PC = L[19:0].

RET <inst> <ops>

Execute <inst> always and return if no branch. If <inst> is not branching then

return by popping stack[19:0] into PC.

Page 298of 484

17.98) JMPREL Jump ahea\back by D instructions (324)

JMPREL {#}D

Jump ahead/back by D instructions. For cogex, PC += D[19:0]. For hubex, PC +=

D[17:0] << 2.

17.99) SKIP\SKIPF Skip Instructions (325..326)

SKIP {#}D

Skip instructions per D. Subsequent instructions 0..31 get cancelled for each '1' bit in

D[0]..D[31].

SKIPF {#}D

Skip cog/LUT instructions fast per D. Like SKIP, but instead of cancelling instructions,

the PC leaps over them.

17.100) EXECF Jump to D[9:0] in cog/LUT and set SKIPF pattern to D[31:10] (327)

EXECF {#}D Jump to D[9:0] in cog/LUT and set SKIPF pattern to D[31:10]. PC = {10'b0, D[9:0]}.

17.101) GERPTR D Get current FIFO hub pointer into D. (328)

GETPTR D Get current FIFO hub pointer into D.

17.102) GETBRK Get breakpoint/cog status into D according to WC/WZ/WCZ. (329)

GETBRK D

WC/WZ/WCZ

Get breakpoint/cog status into D according to WC/WZ/WCZ. See documentation for

details.

17.103) COGBRK If in debug ISR, trigger asynchronous breakpoint in cog (330)

COGBRK {#}D

If in debug ISR, trigger asynchronous breakpoint in cog D[3:0]. Cog D[3:0] must have

asynchronous breakpoint enabled.

17.104) BRK If in debug ISR (331)

BRK {#}D

If in debug ISR, set next break condition to D. Else, set BRK code to D[7:0] and

unconditionally trigger BRK interrupt, if enabled.

17.105)SETLUTS If D[0] = 1 then enable LUT sharing (332)

SETLUTS {#}D

If D[0] = 1 then enable LUT sharing, where LUT writes within the adjacent odd/even

companion cog are copied to this cog's LUT.

Page 299of 484

17.106)SETCYx Set the colorspace converter (332..338)

SETCY {#}D Set the colorspace converter "CY" parameter to D[31:0].

SETCI {#}D Set the colorspace converter "CI" parameter to D[31:0].

SETCQ {#}D Set the colorspace converter "CQ" parameter to D[31:0].

SETCFRQ {#}D Set the colorspace converter "CFRQ" parameter to D[31:0].

SETCMOD {#}D Set the colorspace converter "CMOD" parameter to D[8:0].

SETPIV {#}D Set BLNPIX/MIXPIX blend factor to D[7:0].

SETPIX {#}D Set MIXPIX mode to D[5:0].

Page 300of 484

17.107) COGATN Strobe "attention" of all cogs whose corresponding bits are high (340)

COGATN {#}D Strobe "attention" of all cogs whose corresponding bits are high in D[15:0].

Page 301of 484

17.108) TESTP Test IN of pin (341..348)

TESTP {#}D WC/WZ Test IN bit of pin D[5:0], write to C/Z. C/Z = IN[D[5:0]].

TESTPN {#}D WC/WZ Test !IN bit of pin D[5:0], write to C/Z. C/Z = !IN[D[5:0]].

TESTP {#}D ANDC/ANDZ Test IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND IN[D[5:0]].

TESTPN {#}D ANDC/ANDZ Test !IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND !IN[D[5:0]].

TESTP {#}D ORC/ORZ Test IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR IN[D[5:0]].

TESTPN {#}D ORC/ORZ Test !IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR !IN[D[5:0]].

TESTP {#}D XORC/XORZ Test IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR IN[D[5:0]].

TESTPN {#}D XORC/XORZ Test !IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR !IN[D[5:0]].

Page 302of 484

17.109) DIR Direction Pin bits Instruction (349..357)

DIRL {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRH {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRC {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRNC {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRZ {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRNZ {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRRND {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

DIRNOT {#}D {WCZ}

Toggle DIR bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

Page 303of 484

17.110) OUTx Instruction (358..364)

OUTL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

OUTRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

OUTNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within OUTA/OUTB. Prior SETQ

overrides D[10:6]. C,Z = OUT bit.

Page 304of 484

17.111) FLTx Out Bits of pins (365..372)

FLTL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

FLTNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

Page 305of 484

17.112) DRVx OUT bits of pins(373..380)

DRVL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 1. Wraps within OUTA/OUTB.

Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

DRVNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

Page 306of 484

17.113) SPLIT\MERGE\SPLITW\SEUSSF\SEUSSR\RGBSQZ\RGBEXP (381..389)

SPLITB D

Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8], D[4],

D[0]}.

MERGEB D Merge bits of bytes in D. D = {D[31], D[23], D[15], D[7], ...D[24], D[16], D[8], D[0]}.

SPLITW D

Split odd/even bits of D into words. D = {D[31], D[29], D[27], D[25], ...D[6], D[4], D[2],

D[0]}.

MERGEW D Merge bits of words in D. D = {D[31], D[15], D[30], D[14], ...D[17], D[1], D[16], D[0]}.

SEUSSF D

Relocate and periodically invert bits within D. Returns to original value on 32nd

iteration. Forward pattern.

SEUSSR D

Relocate and periodically invert bits within D. Returns to original value on 32nd

iteration. Reverse pattern.

RGBSQZ D

Squeeze 8:8:8 RGB value in D[31:8] into 5:6:5 value in D[15:0]. D = {15'b0, D[31:27],

D[23:18], D[15:11]}.

RGBEXP D

Expand 5:6:5 RGB value in D[15:0] into 8:8:8 value in D[31:8]. D = {D[15:11,15:13],

D[10:5,10:9], D[4:0,4:2], 8'b0}.

SPLITB D

Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8], D[4],

D[0]}.

Page 307of 484

17.114) 390 REV D Reverse D Bits (390)

REV D Reverse D bits. D = D[0:31].

17.114.1_Example_WRD_REV D_390
REV D Reverse D Bits. D = D[0:31]

17.115) RCZR\RCZL Rotate C,Z right through D. (391..392)

RCZR D {WC/WZ/WCZ} Rotate C,Z right through D. D = {C, Z, D[31:2]}. C = D[1], Z = D[0].

RCZL D {WC/WZ/WCZ} Rotate C,Z left through D. D = {D[29:0], C, Z}. C = D[31], Z = D[30].

Page 308of 484

17.116) WRC\WRNC\WRZ\WRNZ Write 0 or 1 according C\Z to D (393..396)

WRC D Write 0 or 1 to D, according to C. D = {31'b0, C).

WRNC D Write 0 or 1 to D, according to !C. D = {31'b0, !C).

WRZ D Write 0 or 1 to D, according to Z. D = {31'b0, Z).

WRNZ D Write 0 or 1 to D, according to !Z. D = {31'b0, !Z).

Page 309of 484

17.117) MODCZ\MODC\MODZ Modify C and Z according to cccc\zzzz (397..399)

MODCZ c,z {WC/WZ/WCZ} Modify C and Z according to cccc and zzzz. C = cccc[{C,Z}], Z = zzzz[{C,Z}].

MODC c {WC} Modify C according to cccc. C = cccc[{C,Z}].

MODZ z {WZ} Modify Z according to zzzz. Z = zzzz[{C,Z}].

17.117) MODCZ Modify C or Z Flag

MODCZ c,z {WC/WZ/WCZ} Math and Logic EEEE 1101011 CZ1 0cccczzzz 001101111

MODC c {WC} Math and Logic EEEE 1101011 C01 0cccc0000 001101111

MODZ z {WZ} Math and Logic EEEE 1101011 0Z1 00000zzzz 001101111

MODCZ c,z {WC/WZ/WCZ} Modify C and Z according to cccc and zzzz. C = cccc[{C,Z}], Z = zzzz[{C,Z}].
MODC c {WC} Modify C according to cccc. C = cccc[{C,Z}].
MODZ z {WZ} Modify Z according to zzzz. Z = zzzz[{C,Z}].

Operand MODCZ/MODC/MODZ
cccc and zzzz are the 4 bits that the constants define. They will be put into the D and S field.
MODCZ/MODC/MODZ is a "D-only" instruction, where D[7:4] = cccc and D[3:0] = zzzz.
S field is fixed and part of the opcode. D_xxxxxxxx_xxxxxxxx_xxxxxxxx_CCCCC_ZZZZZ
Note: x indicates uknown

The block diagram is always the same for MODCZ/MODC/MODZ. You can replace D[3..0] by zzzz and

D[7..4] by cccc, to match the bit names in the instruction encoding. You can see this LUTs as a 1bit wide

ROM with 2 address inputs = 4 bits total. This address inputs are connected to the current state of C and

Z. Depending on the state of C and Z one of 4 bits in the ROM is read and defines the new state of the C

or Z flag, if the WC and/or WZ effect is set.

The instruction is very universal, but therefore also a bit complex. Like in the LUTs of an FPGA, you

define in a truth table the resulting bit for any combination of C and Z.

Say you want to set Z to the state of C, then the truth table looks like that:

C Z	zzzz
 0 0 | 0

Page 310of 484

 0 1 | 0
 1 0 | 1
 1 1 | 1
 '-> %1100 = zzzz

when C is 1 the result is 1, if C is 0 the result is 0
so you can write the MODx instruction like that: MODZ %1100 WZ 'sets Z to C
but it is easier to understand with the constant: MODZ _C WZ 'the same with the named constant
MODCZ lets you affect the C and the Z flag in one instruction, you can for example swap the two flags:

 MODCZ _Z, _C WCZ 'swap c and Z
 | |

 v v

 C Z

From the instruction encoding, that all 3 instructions are the same. Unused bits are just set to zero for

MODC and MODZ. You can also affect only C or Z with MODCZ, but then the assembly syntax requires a

dummy argument for the not used flag.

Page 311of 484

M.1) MODCZ constants From the instructions_v32.txt:

_CLR = %0000
_NC_AND_NZ = %0001
_NZ_AND_NC = %0001
_GT = %0001
_NC_AND_Z = %0010
_Z_AND_NC = %0010
_NC = %0011
_GE = %0011
_C_AND_NZ = %0100
_NZ_AND_C = %0100
_NZ = %0101
_NE = %0101
_C_NE_Z = %0110
_Z_NE_C = %0110
_NC_OR_NZ = %0111
_NZ_OR_NC = %0111
_C_AND_Z = %1000
_Z_AND_C = %1000
_C_EQ_Z = %1001
_Z_EQ_C = %1001
_Z = %1010
_E = %1010
_NC_OR_Z = %1011
_Z_OR_NC = %1011
_C = %1100
_LT = %1100
_C_OR_NZ = %1101
_NZ_OR_C = %1101
_C_OR_Z = %1110
_Z_OR_C = %1110
_LE = %1110
_SET = %1111

Examples:
MODCZ _CLR, _Z_OR_C WCZ 'C = 0, Z |= C
MODCZ _NZ,0 WC 'C = !Z
MODCZ 0,_SET WZ 'Z = 1
MODC _NZ_AND_C WC 'C = !Z & C
MODZ _Z_NE_C WZ 'Z = Z ^ C

Page 312of 484

17.117.1_Example_WRD_MODCZ_Operand
cccc and zzzz are the 4 bits that the constants define. They will be put into the D and S field.
MODCZ/MODC/MODZ is a "D-only" instruction, where D[7:4] = cccc and D[3:0] = zzzz.
S field is fixed and part of the opcode. D_xxxxxxxx_xxxxxxxx_xxxxxxxx_CCCCC_ZZZZZ
Note: x indicates uknown MODCZ useful for setting FLag Bits CZ

Page 313of 484

17.118) SETSP\GETSCP Set four channel Scope (400..401)

SETSCP {#}D Set four-channel oscilloscope enable to D[6] and set input pin base to D[5:2].

GETSCP D Get four-channel oscilloscope samples into D. D = {ch3[7:0],ch2[7:0],ch1[7:0],ch0[7:0]}.

Page 314of 484

17.119) JMP\CALL\CALLA\CALLB\CALLD Jump or Call (402..406)

JMP #{\}A Jump to A. If R = 1 then PC += A, else PC = A. "\" forces R = 0.

CALL #{\}A Call to A by pushing {C, Z, 10'b0, PC[19:0]} onto stack.
If R = 1 then PC += A, else PC = A. "\" forces R = 0.

CALLA #{\}A Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. If R = 1 then
PC += A, else PC = A. "\" forces R = 0.

CALLB #{\}A

Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. If R = 1 then PC += A, else PC = A.

"\" forces R = 0.

CALLD

PA/PB/PTRA/PTRB,#{\}A Call to A by writing {C, Z, 10'b0, PC[19:0]} to PA/PB/PTRA/PTRB (per W).
If R = 1 then PC += A, else PC = A. "\" forces R = 0.

Page 315of 484

17.120) LOC PA/PB/PTRA/PTRB,#{\}A (407)

LOC PA/PB/PTRA/PTRB,#{\}A Get {12'b0, address[19:0]} into PA/PB/PTRA/PTRB (per W).
 If R = 1, address = PC + A, else address = A. "\" forces R = 0.

Page 316of 484

17.121. AUGS\AUGD #N (408..409)

AUGS #n

Queue #n to be used as upper 23 bits for next #S occurrence, so that the next 9-bit #S will be

augmented to 32 bits.

AUGD #n

Queue #n to be used as upper 23 bits for next #D occurrence, so that the next 9-bit #D will be

augmented to 32 bits.

AUGS #n
Queue #n to be used as upper 23 bits for next #S occurrence, so that the next 9-bit #S will be augmented
to 32 bits.

AUGD #n
Queue #n to be used as upper 23 bits for next #D occurrence, so that the next 9-bit #D will be
augmented to 32 bits.

For purpose of this discussion the “Queue” will be termed 32 bit register with AUGSx for AUGS
instruction and AUGDx for AUGD instruction.

Rules for Inplementing AUGS\AUGD:

 ALTx/SCA/XORO32 instructions have to be hard prefixed. They can only operate on the very next

instruction.

 AUGx normally affects the next instruction but will automatically extend over other AUGx and ALTx.

 SETQ normally affects the next instruction but will automatically extend over other AUGx and ALTx.

 Interrupts are postponed during a SETQ or AUGx or ALTx ... any instruction prefixing. Notably also for

the duration of a REP loop and all WAITx instructions.

AUGS\AUGD has a Propeller IDE special directive ## which can be used to augment PASM instruction
destination and source fields to expand the 9 bit (0-511) to 32 bit field.

Example
Wrpin ##P_LOW_15K,btn (WRPIN D/#,S/#) contains the spin compiler directive ## which results in the
generation of code using the AUGD instruction to be used to expand the 9 bit D field to 32 bits. AUGD is
selected because ## appears in the D field.

WRPIN ##P_LOW_15K,btn
Expands to:
AUGD #(P_LOW_15K≫9) ‘shift 9 bits leaving 23 upper bits
WRPIN #(P_LOW_15K & $1FF),btn ‘mask off upper bits leaving 9 lower bits

The Desination field D is modified to create a 32 bit value adding the AUGD 23 bits with the WRPIN 9 bits and
In the example (WRPIN) would be a 32 pin mode that is being written to the Pin(or Pins) defined by “btn”.

Page 317of 484

Appendix “A” Programming Style Convention

A.1) Default Program Template
The default program template is stored in the “Propeller Tool” under Edit→ preferences. One file
Template preference can be used for each of the two propelle types. In particular the propeller ii
template used for these examples is store in:

c:\users\wrd\documents\Propeller Tool\templates\WRD_P2_Template_Debug.spin2”

{{WRD_P2_Template_Debug}}
''Debug must be enabled in propeller tool
{===}
CON {Processor Timing}
 _clkfreq = 200_000_000 'processor clock speed
CON
 {Processor I/O Hardware}
 Rx1 = 63 { I } ' programming / debug
 Tx1 = 62 { O }
 FsCs = 61 { O } ' flash storage
 FsClk = 60 { O }
 FsMosi = 59 { O }
 FsMiso = 58 { I }
 SdClk = 61 { O } ' usd card storage
 SdCs = 60 { O }
 SdMosi = 59 { O }
 SdMiso = 58 { I }
 Sda1 = 57 { IO } ' i2c (optional)
 Scl1 = 56 { IO }
 #0, Cog0,Cog1,Cog2,Cog3,Cog4,Cog5,Cog6,Cog7 'CogNum
 #0, P0, P1, P2, P3, P4, P5, P6, P7, P8 ,P9, P10,P11,P12,P13,P14,P15 'PinNum
 #16, P16,P17,P18,P19,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P30,P31 'PinNum
 #32, P32,P33,P34,P35,P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P46,P47 'PinNum
 #48, P48,P49,P50,P51,P52,P53,P54,P55 'PinNum

VAR {Processor Variables}
 'CogNumStatus ≔ COGCHK(CogNum)
 ' Running Check if cog CogNum is running, returns -1 if running or 0 if not
 byte Cog0Status,Cog1Status,Cog2Status,Cog3Status,Cog4Status,Cog5Status,Cog6Status,Cog7Status
 {Program Test Variables}
 long TestVar01,TestVar02,TestVar03
OBJ {Processor Objects}
 'mon "VideoDriver"
 'term "KeyboardDriver"
 'mouse "MouseDriver"
 'mem "MemoryStorageDriver"
DAT {Processor Data}
strSalute byte "Hello World",0 'debug notice application running
PUB bootEntry():result01,result02 | x,y 'method run after boot spin interperter loads
 debug(zstr(@strSalute)) 'debug used sen string
 mainApp() 'turn control over mainApp() method

Page 318of 484

{==}
CON {Application Constants} 'user defined constants
VAR {Application Variables} 'user defined variables
OBJ {Application Objects} 'user defined objects
DAT {Application Data} 'user defined data
PUB mainApp() 'user Spin Program
 repeat 'keep cog 0 running
DAT {Application PASM} 'user PASM Program

Appendix “B” DEBUG INTERRUPT

In addition to the three visible interrupts, there is a fourth "hidden" interrupt that has priority over all

the others. It is the debug interrupt, and it is inaccessible to normal cog programs.

Debug interrupts are enabled on a per-cog basis via HUBSET. Each debug-enabled cog will generate a

debug interrupt on (re)start from each COGINIT exercised upon it. Within that initial debug ISR and

within each subsequent debug ISR, multiple trigger conditions may be set for the next debug interrupt. If

no trigger conditions are set before the debug ISR ends, no more debug interrupts will occur until the

cog is restarted from another COGINIT.

The last 16KB of hub RAM, which is also mapped to $FC000..$FFFFF, gets partially used as a buffer area

for saving and restoring cog registers during debug ISR's. The initial debug ISR routines are also stored in

this upper RAM. Once initialized with debug ISR code, this upper hub RAM can be write-protected, in

which case it is mapped only to $FC000..$FFFFF and it is only writable from within debug ISR's.

Each cog has an execute-only ROM in cog registers $1F8..$1FF which contains special debug-ISR-entry

and -exit routines. These tiny routines perform seamless register-load and register-restore operations

for your debugger program, which must be realized entirely within debug ISR's.

Execute-only ROM in cog registers $1F8..$1FF

(%cccc = !CogNumber)

Debug ISR Entry - IJMP0 is initialized to $1F8 on cog start

$1F8 - SETQ #$0F 'save registers $000..$00F

$1F9 - WRLONG 0,* '* = %1111_1111_1ccc_c000_0000

$1FA - SETQ #$0F 'load program into $000..$00F

$1FB - RDLONG 0,* '* = %1111_1111_1ccc_c100_0000

Page 319of 484

$1FC - JMP #0 'jump to loaded program

Debug ISR Exit - Jump here to exit your debug ISR

$1FD - SETQ #$0F 'restore registers $000..$00F

$1FE - RDLONG 0,* '* = %1111_1111_1ccc_c000_0000

$1FF - RETI0 'CALLD IRET0,IRET0 WCZ

During a debug ISR, INA and INB, normally read-only input-pin registers, become readable/writable RAM

registers named IJMP0 and IRET0, and are used by the debug interrupt as jump and return addresses.

On COGINIT, IJMP0 is initialized to $1F8 which is the debug-ISR-entry routine's address.

When a debug interrupt occurs with IJMP0 pointing to $1F8, the following sequence happens:

Cog registers $000 to $00F are saved to hub RAM starting at ($FF800 + !CogNumber << 7), or

%1111_1111_1ccc_c000_0000, where %cccc = !CogNumber.

Cog registers $000 to $00F are loaded from hub RAM starting at ($FF840 + !CogNumber << 7), or

%1111_1111_1ccc_c100_0000, where %cccc = !CogNumber.

A "JMP #$000" executes to run the 16-instruction debugger program that was just loaded into registers

$000 to $00F.

Your 16-instruction debugger program will likely want to determine if this debug interrupt was due to a

COGINIT, in which case the debugger will probably want to note that a new program is now running in

this cog. Depending on what the debugger must do next, it is likely that it will need to save more

registers to the upper hub RAM and then load in more code from the upper hub RAM to facilitate more

complex operations than the initial 16-instruction ISR can achieve. The ISR may then need to perform

some communication between itself and a host system which may be serving as the debugger's user

interface. It may be necessary to employ a LOCK to time-share P2-to-host communication channels

among cogs, likely on P63 (serial Rx) and P62 (serial Tx). This scenario is somewhat hypothetical, but

illustrates the design intent behind the debug interrupt mechanism.

When your debug ISR is complete, you can do a 'JMP #$1FD' to execute the debug-ISR-exit routine

which does the following:

Original cog registers $000 to $00F are restored from hub RAM starting at ($FF800 + !CogNumber << 7),

or %1111_1111_1ccc_c000_0000, where %cccc = !CogNumber.

A "RETI0" executes to return to the interrupted cog program.

Here is a table of the hub RAM locations used by each cog for register save/restore and ISR images

during the debug interrupt when the register ROM routines are used for ISR entry and exit:

Page 320of 484

Cog Save/Restore in Hub RAM

for Registers $000..$00F

ISR image in Hub RAM

for Registers $000..$00F

7 $FFC00..$FFC3F $FFC40..$FFC7F

6 $FFC80..$FFCBF $FFCC0..$FFCFF

5 $FFD00..$FFD3F $FFD40..$FFD7F

4 $FFD80..$FFDBF $FFDC0..$FFDFF

3 $FFE00..$FFE3F $FFE40..$FFE7F

2 $FFE80..$FFEBF $FFEC0..$FFEFF

1 $FFF00..$FFF3F $FFF40..$FFF7F

0 $FFF80..$FFFBF $FFFC0..$FFFFF

Though the first debug interrupt upon cog (re)start will always use the debug-ISR-entry routine at $1F8,

you may redirect IJMP0 during any debug ISR to point elsewhere for use by subsequent debug

interrupts. This would mean that you would lose the initial register-saving function provided by the

small ROM starting at $1F8, so you would have to use some cog registers for debugger-state storage

that don't interfere with the cog program that is being debugged. If no register saving/restoring or host

communications are required, your debug ISR may execute very quickly.

What terminates a debug interrupt is not only RETI0 (CALLD INB,INB WCZ), but any D-register variant

(CALLD anyreg,INB WCZ). For example RESI0 (CALLD INA,INB WCZ) may be used to resume next time

from where this debug ISR left off, but this would imply that you are not using the debug-ISR-entry and -

exit routines in the cog-register ROM and have, instead, permanently located debugger code into some

cog registers, so that your debugger program is already present at the start of the debug interrupt.

This debug interrupt scheme was designed to operate stealthily, without any cooperation from the cog

program being debugged. All control has been placed within the debug ISR. This isolation from normal

programming is intended to prevent, or at least discourage, programmers from making any aspect of

the debug interrupt system part of their application, thereby rendering the debug interrupt

compromised as a standard debugging mechanism. Also, by executing the ISR strictly in cog register

space, this scheme does not interfere with the hub FIFO state, which would be impossible to reconstruct

if disturbed by hub execution within the debug ISR.

Page 321of 484

Below are the instructions which are used in the debugging mechanism:

BRK D/#

During normal program execution, the BRK instruction is used to generate a debug interrupt with an 8-

bit code which can be read within the debug ISR. The BRK instruction interrupt must be enabled from

within a prior debug ISR for this to work. Regardless of the execution condition, the BRK instruction will

trigger a debug interrupt, if enabled. The execution condition only gates the writing of the 8-bit code:

 D/# = %BBBBBBBB: 8-bit BRK code

During a debug ISR, the BRK instruction operates differently and is used to establish the next debug

interrupt condition(s). It is also used to select INA/INB, instead of the IJMP0/IRET0 registers exposed

during the ISR, so that the pins' inputs states may be read:

 D/# = %aaaaaaaaaaaaaaaaeeee_LKJIHGFEDCBA

 %aaaaaaaaaaaaaaaaeeee: 20-bit breakpoint address or 4-bit event code (%eeee)
 %L: 1 = map INA/INB normally, 0 = map IJMP0/IRET0 at INA/INB (default during ISR) *
 %K: 1 = enable interrupt on breakpoint address match
 %J: 1 = enable interrupt on event %eeee
 %I: 1 = enable interrupt on asynchronous breakpoint (via COGBRK on another cog)
 %H: 1 = enable interrupt on INT3 ISR entry
 %G: 1 = enable interrupt on INT2 ISR entry
 %F: 1 = enable interrupt on INT1 ISR entry
 %E: 1 = enable interrupt on BRK instruction
 %D: 1 = enable interrupt on INT3 ISR code (single step)
 %C: 1 = enable interrupt on INT2 ISR code (single step)
 %B: 1 = enable interrupt on INT1 ISR code (single step)
 %A: 1 = enable interrupt on non-ISR code (single step)

 * If set to 1 by the debug ISR, %L must be reset to 0 before exiting the debug ISR, so
 that the RETI0 instruction is able to see IJMP0 and IRET0.

On debug ISR entry, bits A to L, are cleared to '0'. If a subsequent debug interrupt is desired, a BRK

instruction must be executed before exiting the debug ISR, in order to establish the next breakpoint

condition(s).

COGBRK D/#

The COGBRK instruction can trigger an asynchronous breakpoint in another cog. For this to work, the

cog executing the COGBRK instruction must be in its own debug ISR and the other cog must have its

asynchronous breakpoint interrupt enabled:

 D/# = %CCCC: the cog in which to trigger an asynchronous breakpoint

Page 322of 484

GETBRK D WCZ

During normal program execution, GETBRK with WCZ returns various data about the cog's internal

status:

 C = 1 if STALLI mode or 0 if ALLOWI mode (established by STALLI/ALLOWI)
 Z = 1 if cog started in hubexec or 0 if cog started in cogexec

 D[31:23] = 0
 D[22] = 1 if colorspace converter is active
 D[21] = 1 if streamer is active
 D[20] = 1 if WRFAST mode or 0 if RDFAST mode
 D[19:16] = INT3 selector, established by SETINT3
 D[15:12] = INT2 selector, established by SETINT2
 D[11:08] = INT1 selector, established by SETINT1
 D[07:06] = INT3 state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
 D[05:04] = INT2 state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
 D[03:02] = INT1 state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
 D[01] = 1 if STALLI mode or 0 if ALLOWI mode (established by STALLI/ALLOWI)
 D[00] = 1 if cog started in hubexec or 0 if cog started in cogexec
During a debug ISR, GETBRK with WCZ returns additional data that is useful to a debugger:
 C = 1 if debug interrupt was from a COGINIT, indicating that the cog was (re)started
 D[31:24] = 8-bit break code from the last 'BRK #/D' during normal execution
 D[23] = 1 if debug interrupt was from a COGINIT, indicating that the cog was (re)started

GETBRK D WC

GETBRK with WC always returns the following:

 C = LSB of SKIP/SKIPF/EXECF/XBYTE pattern
 D[31:28] = 4-bit CALL depth since SKIP/SKIPF/EXECF/XBYTE (skipping suspended if not %0000)
 D[27] = 1 if SKIP mode or 0 if SKIPF/EXECF/XBYTE mode
 D[26] = 1 if LUT sharing enabled (established by SETLUTS)
 D[25] = 1 if top of stack = $001FF, indicating XBYTE will execute on next _RET_/RET
 D[24:16] = 9-bit XBYTE mode, established by '_RET_ SETQ/SETQ2' when top of stack = $001FF
 D[15:00] = 16 event-trap flags

GETBRK D WZ

GETBRK with WZ always returns the following:

 Z = 1 if no SKIP/SKIPF/EXECF/XBYTE pattern queued (D = 0) or 1 if pattern queued (D <> 0)
 D = 32-bit SKIP/SKIPF/EXECF/XBYTE pattern, used LSB-first to skip instructions in main code

Page 323of 484

Appendix “C” EVENTS

EVENTS are actions that Cogs individually monitor and track there are 16 different background events
for each running Cog:

 An interrupt occurred
 CT passed CT1 (CT is the 32-bit free-running global counter)
 CT passed CT2
 CT passed CT3
 Selectable event 1 occurred
 Selectable event 2 occurred
 Selectable event 3 occurred
 Selectable event 4 occurred
 A pattern match or mismatch occurred on either INA or INB
 Hub FIFO block-wrap occurred - a new start address and block count were loaded
 Streamer command buffer is empty - it's ready to accept a new command
 Streamer finished - it ran out of commands, now idle
 Streamer NCO rollover occurred
 Streamer read lookup RAM location $1FF
 Attention was requested by another cog or other cogs
 GETQX/GETQY executed without any CORDIC results available

Events are tracked and can be polled, waited for, and used as interrupt sources.
Before explaining the details, consider the event-related instructions.

Page 324of 484

C.1) Polled Events
First are the POLLxxx instructions which simultaneously return their event-occurred flag into C and clear
their event-occurred flag (unless it's being set again by the event sensor):

 Interrupt source (0=off):
POLLINT Poll the interrupt-occurred event flag -
POLLCT1 Poll the CT-passed-CT1 event flag 1
POLLCT2 Poll the CT-passed-CT2 event flag 2
POLLCT3 Poll the CT-passed-CT3 event flag 3
POLLSE1 Poll the selectable-event-1 event flag 4
POLLSE2 Poll the selectable-event-2 event flag 5
POLLSE3 Poll the selectable-event-3 event flag 6
POLLSE4 Poll the selectable-event-4 event flag 7
POLLPAT Poll the pin-pattern-detected event flag 8
POLLFBW Poll the hub-FIFO-interface-block-wrap event flag 9
POLLXMT Poll the streamer-empty event flag 10
POLLXFI Poll the streamer-finished event flag 11
POLLXRO Poll the streamer-NCO-rollover event flag 12
POLLXRL Poll the streamer-lookup-RAM-$1FF-read event flag 13
POLLATN poll the attention-requested event flag 14
POLLQMT Poll the CORDIC-read-but-no-results event flag 15

Page 325of 484

C.2) WAITxx Instructions
Next are the WAITxxx instructions, which will wait for their event-occurred flag to be set (in case it's not,
already) and then clear their event-occurred flag (unless it's being set again by the event sensor), before
resuming.

By doing a SETQ right before one of these instructions, you can supply a future CT target value which will
be used to end the wait prematurely, in case the event-occurred flag never went high before the CT
target was reached. When using SETQ with 'WAITxxx WC', C will be set if the timeout occurred before
the event; otherwise, C will be cleared.

WAITINT Wait for an interrupt to occur, stalls the cog to save power
WAITCT1 Wait for the CT-passed-CT1 event flag
WAITCT2 Wait for the CT-passed-CT2 event flag
WAITCT3 Wait for the CT-passed-CT3 event flag
WAITSE1 Wait for the selectable-event-1 event flag
WAITSE2 Wait for the selectable-event-2 event flag
WAITSE3 Wait for the selectable-event-3 event flag
WAITSE4 Wait for the selectable-event-4 event flag
WAITPAT Wait for the pin-pattern-detected event flag
WAITFBW Wait for the hub-FIFO-interface-block-wrap event flag
WAITXMT Wait for the streamer-empty event flag
WAITXFI Wait for the streamer-finished event flag
WAITXRO Wait for the streamer-NCO-rollover event flag
WAITXRL Wait for the streamer-lookup-RAM-$1FF-read event flag
WAITATN Wait for the attention-requested event flag

There's no 'WAITQMT' because the event could not happen while waiting.

Page 326of 484

C.3) Selectable Events
Each cog can track up to four selectable pin, LUT, or hub lock events. This is accomplished by using the
SETSEn instruction, where "n" is 1, 2, 3, or 4. In order for user code to detect the occurrence of the
selected event, the following options are available:

The matched WAITSEn instruction will block until the event occurs

 The matched POLLSEn instruction will check for the event without blocking
 The matches JSEn and JNSEn branch instructions will branch according to the polled event state
 As an interrupt (see INTERRUPTS)

Each selected event is set or cleared according to the following rules:

 SEn is set whenever the configured event occurs.
 SEn is cleared on matched POLLSEn / WAITSEn / JSEn / JNSEn.
 SEn is cleared when matched 'SETSEn D/#' is called.

SETSEn D/# accepts the following configuration values:

%000_00_00AA = this cog reads LUT address %1111111AA
%000_00_01AA = this cog writes LUT address %1111111AA
%000_00_10AA = odd/even companion cog reads LUT address %1111111AA
%000_00_11AA = odd/even companion cog writes LUT address %1111111AA

%000_01_LLLL = hub lock %LLLL rises
%000_10_LLLL = hub lock %LLLL falls
%000_11_LLLL = hub lock %LLLL changes

%001_PPPPPP = INA/INB bit of pin %PPPPPP rises
%010_PPPPPP = INA/INB bit of pin %PPPPPP falls
%011_PPPPPP = INA/INB bit of pin %PPPPPP changes

%10x_PPPPPP = INA/INB bit of pin %PPPPPP is low
%11x_PPPPPP = INA/INB bit of pin %PPPPPP is high

https://docs.google.com/document/d/1gn6oaT5Ib7CytvlZHacmrSbVBJsD9t_-kmvjd7nUR6o/edit#heading=h.f2qxhqn5w4ox

Page 327of 484

C.3) Interupt Jump Instructions

Last are the 'Jxxx/JNxxx S/#' instructions, which each jump to S/# if their event-occurred flag is

set (Jxxx) or clear (JNxxx). Whether or not a branch occurs, the event-occurred flag will be

cleared, unless it's being set again by the event sensor.

JINT/JNINT Jump to S/# if the interrupt-occurred event flag is set/clear
JCT1/JNCT1 Jump to S/# if the CT-passed-CT1 event flag is set/clear
JCT2/JNCT2 Jump to S/# if the CT-passed-CT2 event flag is set/clear
JCT3/JNCT3 Jump to S/# if the CT-passed-CT3 event flag is set/clear
JSE1/JNSE1 Jump to S/# if the selectable-event-1 event flag is set/clear
JSE2/JNSE2 Jump to S/# if the selectable-event-2 event flag is set/clear
JSE3/JNSE3 Jump to S/# if the selectable-event-3 event flag is set/clear
JSE4/JNSE4 Jump to S/# if the selectable-event-4 event flag is set/clear
JPAT/JNPAT Jump to S/# if the pin-pattern-detected event flag is set/clear
JFBW/JNFBW Jump to S/# if the hub-FIFO-interface-block-wrap event flag is set/clear
JXMT/JNXMT Jump to S/# if the streamer-empty event flag is set/clear
JXFI/JNXFI Jump to S/# if the streamer-finished event flag is set/clear
JXRO/JNXRO Jump to S/# if the streamer-NCO-rollover event flag is set/clear
JXRL/JNXRL Jump to S/# if the streamer-lookup-RAM-$1FF-read event flag is set/clear
JATN/JNATN Jump to S/# if the attention-requested event flag is set/clear
JQMT/JNQMT Jump to S/# if the CORDIC-read-but-no-results event flag is set/clear

Page 328of 484

C.4) Details on Polled/Wait/Interupt Instructions

Polled Events

Here are detailed descriptions of each event flag. Understand that the 'set' events can also be used as

interrupt sources (except in the case of the first flag which is set when an interrupt occurs):

POLLINT/WAITINT event flag
Cleared on cog start.
Set whenever interrupt 1, 2, or 3 occurs (debug interrupts are ignored).
Also cleared on POLLINT/WAITINT/JINT/JNINT.

POLLCT1/WAITCT1 event flag
Cleared on ADDCT1.
Set whenever CT passes the result of the ADDCT1 (MSB of CT minus CT1 is 0).
Also cleared on POLLCT1/WAITCT1/JCT1/JNCT1.

POLLCT2/WAITCT2 event flag
Cleared on ADDCT2.
Set whenever CT passes the result of the ADDCT2 (MSB of CT minus CT2 is 0).
Also cleared on POLLCT2/WAITCT2/JCT2/JNCT2.

POLLCT3/WAITCT3 event flag
Cleared on ADDCT3.
Set whenever CT passes the result of the ADDCT3 (MSB of CT minus CT3 is 0).
Also cleared on POLLCT3/WAITCT3/JCT3/JNCT3.

POLLPAT/WAITPAT event flag
Cleared on SETPAT
Set whenever (INA & D) != S after 'SETPAT D/#,S/#' with C=0 and Z=0.
Set whenever (INA & D) == S after 'SETPAT D/#,S/#' with C=0 and Z=1.
Set whenever (INB & D) != S after 'SETPAT D/#,S/#' with C=1 and Z=0.
Set whenever (INB & D) == S after 'SETPAT D/#,S/#' with C=1 and Z=1.
Also cleared on POLLPAT/WAITPAT/JPAT/JNPAT.

POLLFBW/WAITFBW event flag
Cleared on RDFAST/WRFAST/FBLOCK.
Set whenever the hub RAM FIFO interface exhausts its block count and reloads its 'block count' and
'start address'.
Also cleared on POLLFBW/WAITFBW/JFBW/JNFBW.

POLLXMT/WAITXMT event flag
Cleared on XINIT/XZERO/XCONT.
Set whenever the streamer is ready for a new command.
Also cleared on POLLXMT/WAITXMT/JXMT/JNXMT.

Page 329of 484

POLLXFI/WAITXFI event flag
Cleared on XINIT/XZERO/XCONT.
Set whenever the streamer runs out of commands.
Also cleared on POLLXFI/WAITXFI/JXFI/JNXFI.
POLLXRO/WAITXRO event flag
Cleared on XINIT/XZERO/XCONT.
Set whenever the the streamer NCO rolls over.
Also cleared on POLLXRO/WAITXRO/JXRO/JNXRO.

POLLXRL/WAIXTRL event flag
Cleared on cog start.
Set whenever location $1FF of the lookup RAM is read by the streamer.
Also cleared on POLLXRL/WAITXRL/JXRL/JNXRL.

POLLATN/WAITATN event flag
Cleared on cog start.
Set whenever any cogs request attention.
Also cleared on POLLATN/WAITATN/JATN/JNATN.

POLLQMT event flag
Cleared on cog start.
Set whenever GETQX/GETQY executes without any CORDIC results available or in progress.
Also cleared on POLLQMT/WAITQMT/JQMT/JNQMT.

Page 330of 484

WAITxx Instructions

'ADDCT1 D,S/#' must be used to establish a CT target. This is done by first using 'GETCT D' to get the
current CT value into a register, and then using ADDCT1 to add into that register, thereby making a
future CT target, which, when passed, will trigger the CT-passed-CT1 event and set the related event
flag.

 GETCT x 'get initial CT
 ADDCT1 x,#500 'make initial CT1 target

 .loop WAITCT1 'wait for CT to pass CT1 target
 ADDCT1 x,#500 'update CT1 target
 DRVNOT #0 'toggle P0
 JMP #.loop 'loop to the WAITCT1

It doesn't matter what register is used to keep track of the CT1 target. Whenever ADDCT1 executes, S/#
is added into D, and the result gets copied into a dedicated CT1 target register that is compared to CT on
every clock. When the CT1 target passes CT, the event flag is set. ADDCT1 clears the CT-passed-CT1
event flag to help with initialization and cycling.

Page 331of 484

Selectable Events

Each cog can track up to four selectable pin, LUT, or hub lock events. This is accomplished by using the

SETSEn instruction, where "n" is 1, 2, 3, or 4. In order for user code to detect the occurrence of the

selected event, the following options are available:

● The matched WAITSEn instruction will block until the event occurs

● The matched POLLSEn instruction will check for the event without blocking

● The matches JSEn and JNSEn branch instructions will branch according to the polled event state

● As an interrupt (see INTERRUPTS)

Each selected event is set or cleared according to the following rules:

● SEn is set whenever the configured event occurs.

● SEn is cleared on matched POLLSEn / WAITSEn / JSEn / JNSEn.

● SEn is cleared when matched 'SETSEn D/#' is called.

SETSEn D/# accepts the following configuration values:

%000_00_00AA = this cog reads LUT address %1111111AA
%000_00_01AA = this cog writes LUT address %1111111AA
%000_00_10AA = odd/even companion cog reads LUT address %1111111AA
%000_00_11AA = odd/even companion cog writes LUT address %1111111AA

%000_01_LLLL = hub lock %LLLL rises
%000_10_LLLL = hub lock %LLLL falls
%000_11_LLLL = hub lock %LLLL changes

%001_PPPPPP = INA/INB bit of pin %PPPPPP rises
%010_PPPPPP = INA/INB bit of pin %PPPPPP falls
%011_PPPPPP = INA/INB bit of pin %PPPPPP changes

%10x_PPPPPP = INA/INB bit of pin %PPPPPP is low
%11x_PPPPPP = INA/INB bit of pin %PPPPPP is high

Page 332of 484

Interrupts

Each cog has three interrupts: INT1, INT2, and INT3.

INT1 has the highest priority and can interrupt INT2 and INT3.
INT2 has the middle priority and can interrupt INT3.
INT3 has the lowest priority and can only interrupt non-interrupt code.

The STALLI instruction can be used to hold off INT1, INT2 and INT3 interrupt branches indefinitely, while
the ALLOWI instruction allows those interrupt branches to occur. Critical blocks of code can, therefore,
be protected from interruption by beginning with STALLI and ending with ALLOWI.

There are 16 interrupt event sources, selected by a 4-bit pattern:

 0 <off>, default on cog start for INT1/INT2/INT3 event sources
 1 CT-passed-CT1, established by ADDCT1
 2 CT-passed-CT2, established by ADDCT2
 3 CT-passed-CT3, established by ADDCT3
 4 SE1 event occurred, established by SETSE1
 5 SE2 event occurred, established by SETSE2
 6 SE3 event occurred, established by SETSE3
 7 SE4 event occurred, established by SETSE4
 8 Pin pattern match or mismatch occurred, established by SETPAT
 9 Hub RAM FIFO interface wrapped and reloaded, established by
RDFAST/WRFAST/FBLOCK
 10 Streamer is ready for another command, established by XINIT/XZERO/ZCONT
 11 Streamer ran out of commands, established by XINIT/XZERO/ZCONT
 12 Streamer NCO rolled over, established by XINIT/XZERO/XCONT
 13 Streamer read location $1FF of lookup RAM
 14 Attention requested by other cog(s)
 15 GETQX/GETQY executed without any CORDIC results available or in progress

To set up an interrupt, you need to first point its IJMP register to your interrupt service routine (ISR).
When the interrupt occurs, it will jump to where the IJMP register points and simultaneously store the
C/Z flags and return address into the adjacent IRET register:

$1F0 RAM / IJMP3 interrupt call address for INT3
$1F1 RAM / IRET3 interrupt return address for INT3
$1F2 RAM / IJMP2 interrupt call address for INT2
$1F3 RAM / IRET2 interrupt return address for INT2
$1F4 RAM / IJMP1 interrupt call address for INT1
$1F5 RAM / IRET1 interrupt return address for INT1

Page 333of 484

When your ISR is done, it can do a RETIx instruction to return to the interrupted code. The RETIx
instructions are actually CALLD instructions:

RETI1 = CALLD INB,IRET1 WCZ
RETI2 = CALLD INB,IRET2 WCZ
RETI3 = CALLD INB,IRET3 WCZ

The CALLD with D = <any register>, S = IRETx, and WCZ, signals the cog that the interrupt is complete.

This causes the cog to clear its internal interrupt-busy flag for that interrupt, so that another interrupt

can occur. INB (read-only) is used as D for RETIx instructions to effectively make the CALLD into a JMP

back to the interrupted code.

Instead of using RETIx, though, you could use RESIx to have your ISR resume at the next instruction
when the next interrupt occurs:

RESI1 = CALLD IJMP1,IRET1 WCZ
RESI2 = CALLD IJMP2,IRET2 WCZ
RESI3 = CALLD IJMP3,IRET3 WCZ

Once you've got the IJMPx register configured to point to your ISR, you can enable the interrupt. This is
done using the SETINTx instruction:

SETINT1 D/# Set INT1 event to 0..15 (see table above)
SETINT2 D/# Set INT2 event to 0..15 (see table above)
SETINT3 D/# Set INT3 event to 0..15 (see table above)

Interrupts may be forced in software by the TRGINTx instructions:

TRGINT1 Trigger INT1
TRGINT2 Trigger INT2
TRGINT3 Trigger INT3

Interrupts that have been triggered and are waiting to branch may be nixed in software by the NIXINTx

instructions. These instructions are only useful in main code after STALLI executes or in an ISR which

needs to stop a lower-level interrupt from executing after the current ISR exits:

NIXINT1 Nix INT1
NIXINT2 Nix INT2
NIXINT3 Nix INT3

Page 334of 484

Interrupts can be stalled or allowed using the following instructions:

ALLOWI Allow waiting and future interrupt branches to occur indefinitely (default mode on cog start)
STALLI Stall interrupt branches indefinitely until ALLOWI executes

When an interrupt event occurs, certain conditions must be met during execution before the interrupt

branch can happen:

ALTxx / CRCNIB / SCA / SCAS / GETXACC / SETQ / SETQ2 / XORO32 / XBYTE must not be executing

AUGS must not be executing or waiting for a S/# instruction

AUGD must not be executing or waiting for a D/# instruction

REP must not be executing or active

STALLI must not be executing or active

The cog must not be stalled in any WAITx instruction

Once these conditions are all met, any pending interrupt is allowed to branch, with priority given to

INT1, then INT2, and then INT3.

Interrupt branches are realized, internally, by inserting a 'CALLD IRETx,IJMPx WCZ' into the instruction

pipeline while holding the program counter at its current value, so that the interrupt later returns to the

proper address.

Interrupts loop through these three states:

1) Waiting for interrupt event

2) Waiting for interrupt branch

3) Executing interrupt service routine

During states 2 and 3, any intervening interrupt events at the same priority level are ignored. When

state 1 is returned to, a new interrupt event will be waited for.

Page 335of 484

The status of interrupts and events can be read into a register via the 'GETINT D' instruction. D will have

the following fields:

%SSSS_SSSS_KICC_BBAA_TTTT_TTTT_TTTT_TTTT

 %SSSSSSSS are pending SKIP[7:0] bits

 %K indicates SKIP[31:8] is non-zero

 %I indicates STALLI is in effect

 %CC, %BB, %AA are the interrupt states for INT3, INT2, INT1, respectively:

 %0x = waiting for interrupt event
 %10 = waiting for interrupt branch
 %11 = executing interrupt service routine

 %TTTT_TTTT_TTTT_TTTT are the event trap flags, listed from top to bottom:

 bit 15 = GETQX/GETQY executed without prior CORDIC command
 bit 14 = attention requested by cog(s)
 bit 13 = streamer read location $1FF of lookup RAM
 bit 12 = streamer NCO rolled over
 bit 11 = streamer finished, now idle
 bit 10 = streamer ready to accept new command
 bit 9 = hub RAM FIFO interface loaded block count and start address
 bit 8 = pin pattern match occurred
 bit 7 = SE4 event occurred
 bit 6 = SE3 event occurred
 bit 5 = SE2 event occurred
 bit 4 = SE1 event occurred
 bit 3 = CT-passed-CT1
 bit 2 = CT-passed-CT2
 bit 1 = CT-passed-CT3
 bit 0 = INT1, INT2, or INT3 occurred

Page 336of 484

Example: Using INT1 as a CT1 interrupt

 org

start mov ijmp1,#isr1 'set int1 vector

 setint1 #1 'set int1 for ct-passed-ct1 event

 getct ct1 'set initial ct1 target
 addct1 ct1,#50

 'main program, gets interrupted
loop drvnot #0 'toggle p0
 jmp #loop 'loop

 'int1 isr, runs once every 50 clocks
isr1 drvnot #1 'toggle p1
 addct1 ct1,#50 'update ct1 target
 reti1 'return to main program

ct1 res 'reserve long for ct1

Page 337of 484

Debug Interrupt

In addition to the three visible interrupts, there is a fourth "hidden" interrupt that has priority over all the others. It is the

debug interrupt, and it is inaccessible to normal cog programs.

Debug interrupts are enabled on a per-cog basis via HUBSET. Each debug-enabled cog will generate a

debug interrupt on (re)start from each COGINIT exercised upon it. Within that initial debug ISR and

within each subsequent debug ISR, multiple trigger conditions may be set for the next debug interrupt. If

no trigger conditions are set before the debug ISR ends, no more debug interrupts will occur until the

cog is restarted from another COGINIT.

The last 16KB of hub RAM, which is also mapped to $FC000..$FFFFF, gets partially used as a buffer area

for saving and restoring cog registers during debug ISR's. The initial debug ISR routines are also stored in

this upper RAM. Once initialized with debug ISR code, this upper hub RAM can be write-protected, in

which case it is mapped only to $FC000..$FFFFF and it is only writable from within debug ISR's.

Each cog has an execute-only ROM in cog registers $1F8..$1FF which contains special debug-ISR-entry

and -exit routines. These tiny routines perform seamless register-load and register-restore operations

for your debugger program, which must be realized entirely within debug ISR's.

Execute-only ROM in cog registers $1F8..$1FF

(%cccc = !CogNumber)

Debug ISR Entry - IJMP0 is initialized to $1F8 on cog start

$1F8 - SETQ #$0F 'save registers

$000..$00F

$1F9 - WRLONG 0,* '* =

%1111_1111_1ccc_c000_0000

$1FA - SETQ #$0F 'load program into

$000..$00F

$1FB - RDLONG 0,* '* =

%1111_1111_1ccc_c100_0000

$1FC - JMP #0 'jump to loaded program

Page 338of 484

Debug ISR Exit - Jump here to exit your debug ISR

$1FD - SETQ #$0F 'restore registers

$000..$00F

$1FE - RDLONG 0,* '* =

%1111_1111_1ccc_c000_0000

$1FF - RETI0 'CALLD IRET0,IRET0 WCZ

During a debug ISR, INA and INB, normally read-only input-pin registers, become readable/writable RAM

registers named IJMP0 and IRET0, and are used by the debug interrupt as jump and return addresses.

On COGINIT, IJMP0 is initialized to $1F8 which is the debug-ISR-entry routine's address.

When a debug interrupt occurs with IJMP0 pointing to $1F8, the following sequence happens:

- Cog registers $000 to $00F are saved to hub RAM starting at ($FF800 + !CogNumber <<

7), or %1111_1111_1ccc_c000_0000, where %cccc = !CogNumber.

- Cog registers $000 to $00F are loaded from hub RAM starting at ($FF840 + !CogNumber

<< 7), or %1111_1111_1ccc_c100_0000, where %cccc = !CogNumber.

- A "JMP #$000" executes to run the 16-instruction debugger program that was just

loaded into registers $000 to $00F.

Your 16-instruction debugger program will likely want to determine if this debug interrupt was due to a

COGINIT, in which case the debugger will probably want to note that a new program is now running in

this cog. Depending on what the debugger must do next, it is likely that it will need to save more

registers to the upper hub RAM and then load in more code from the upper hub RAM to facilitate more

complex operations than the initial 16-instruction ISR can achieve. The ISR may then need to perform

some communication between itself and a host system which may be serving as the debugger's user

interface. It may be necessary to employ a LOCK to time-share P2-to-host communication channels

among cogs, likely on P63 (serial Rx) and P62 (serial Tx). This scenario is somewhat hypothetical, but

illustrates the design intent behind the debug interrupt mechanism.

When your debug ISR is complete, you can do a 'JMP #$1FD' to execute the debug-ISR-exit routine

which does the following:

Page 339of 484

- Original cog registers $000 to $00F are restored from hub RAM starting at ($FF800 +

!CogNumber << 7), or %1111_1111_1ccc_c000_0000, where %cccc = !CogNumber.

- A "RETI0" executes to return to the interrupted cog program.

Here is a table of the hub RAM locations used by each cog for register save/restore and ISR images

during the debug interrupt when the register ROM routines are used for ISR entry and exit:

Cog Save/Restore in Hub RAM

for Registers $000..$00F

ISR image in Hub RAM

for Registers $000..$00F

7 $FFC00..$FFC3F $FFC40..$FFC7F

6 $FFC80..$FFCBF $FFCC0..$FFCFF

5 $FFD00..$FFD3F $FFD40..$FFD7F

4 $FFD80..$FFDBF $FFDC0..$FFDFF

3 $FFE00..$FFE3F $FFE40..$FFE7F

2 $FFE80..$FFEBF $FFEC0..$FFEFF

1 $FFF00..$FFF3F $FFF40..$FFF7F

0 $FFF80..$FFFBF $FFFC0..$FFFFF

Though the first debug interrupt upon cog (re)start will always use the debug-ISR-entry routine at $1F8,

you may redirect IJMP0 during any debug ISR to point elsewhere for use by subsequent debug

interrupts. This would mean that you would lose the initial register-saving function provided by the

small ROM starting at $1F8, so you would have to use some cog registers for debugger-state storage

that don't interfere with the cog program that is being debugged. If no register saving/restoring or host

Page 340of 484

communications are required, your debug ISR may execute very quickly.

What terminates a debug interrupt is not only RETI0 (CALLD INB,INB WCZ), but any D-register variant

(CALLD anyreg,INB WCZ). For example RESI0 (CALLD INA,INB WCZ) may be used to resume next time

from where this debug ISR left off, but this would imply that you are not using the debug-ISR-entry and -

exit routines in the cog-register ROM and have, instead, permanently located debugger code into some

cog registers, so that your debugger program is already present at the start of the debug interrupt.

This debug interrupt scheme was designed to operate stealthily, without any cooperation from the cog

program being debugged. All control has been placed within the debug ISR. This isolation from normal

programming is intended to prevent, or at least discourage, programmers from making any aspect of

the debug interrupt system part of their application, thereby rendering the debug interrupt

compromised as a standard debugging mechanism. Also, by executing the ISR strictly in cog register

space, this scheme does not interfere with the hub FIFO state, which would be impossible to reconstruct

if disturbed by hub execution within the debug ISR.

Below are the instructions which are used in the debugging mechanism:

BRK D/#

During normal program execution, the BRK instruction is used to generate a debug interrupt with an 8-

bit code which can be read within the debug ISR. The BRK instruction interrupt must be enabled from

within a prior debug ISR for this to work. Regardless of the execution condition, the BRK instruction will

trigger a debug interrupt, if enabled. The execution condition only gates the writing of the 8-bit code:

 D/# = %BBBBBBBB: 8-bit BRK code

During a debug ISR, the BRK instruction operates differently and is used to establish the next debug interrupt

condition(s). It is also used to select INA/INB, instead of the IJMP0/IRET0 registers exposed during the

ISR, so that the pins' inputs states may be read:

 D/# = %aaaaaaaaaaaaaaaaeeee_LKJIHGFEDCBA

Page 341of 484

 %aaaaaaaaaaaaaaaaeeee: 20-bit breakpoint address or 4-bit event code

(%eeee)

 %L: 1 = map INA/INB normally, 0 = map IJMP0/IRET0 at INA/INB

(default during ISR) *

 %K: 1 = enable interrupt on breakpoint address match

 %J: 1 = enable interrupt on event %eeee

 %I: 1 = enable interrupt on asynchronous breakpoint (via COGBRK on

another cog)

 %H: 1 = enable interrupt on INT3 ISR entry

 %G: 1 = enable interrupt on INT2 ISR entry

 %F: 1 = enable interrupt on INT1 ISR entry

 %E: 1 = enable interrupt on BRK instruction

 %D: 1 = enable interrupt on INT3 ISR code (single step)

 %C: 1 = enable interrupt on INT2 ISR code (single step)

 %B: 1 = enable interrupt on INT1 ISR code (single step)

 %A: 1 = enable interrupt on non-ISR code (single step)

 * If set to 1 by the debug ISR, %L must be reset to 0 before

exiting the debug ISR, so

 that the RETI0 instruction is able to see IJMP0 and IRET0.

On debug ISR entry, bits A to L, are cleared to '0'. If a subsequent debug interrupt is desired, a BRK

instruction must be executed before exiting the debug ISR, in order to establish the next breakpoint

condition(s).

COGBRK D/#

The COGBRK instruction can trigger an asynchronous breakpoint in another cog. For this to work, the

cog executing the COGBRK instruction must be in its own debug ISR and the other cog must have its

asynchronous breakpoint interrupt enabled:

Page 342of 484

 D/# = %CCCC: the cog in which to trigger an asynchronous breakpoint

GETBRK D WCZ

During normal program execution, GETBRK with WCZ returns various data about the cog's internal

status:

 C = 1 if STALLI mode or 0 if ALLOWI mode (established by

STALLI/ALLOWI)

 Z = 1 if cog started in hubexec or 0 if cog started in cogexec

 D[31:23] = 0

 D[22] = 1 if colorspace converter is active

 D[21] = 1 if streamer is active

 D[20] = 1 if WRFAST mode or 0 if RDFAST mode

 D[19:16] = INT3 selector, established by SETINT3

 D[15:12] = INT2 selector, established by SETINT2

 D[11:08] = INT1 selector, established by SETINT1

 D[07:06] = INT3 state: %0x = idle, %10 = interrupt pending, %11 =

ISR executing

 D[05:04] = INT2 state: %0x = idle, %10 = interrupt pending, %11 =

ISR executing

 D[03:02] = INT1 state: %0x = idle, %10 = interrupt pending, %11 =

ISR executing

 D[01] = 1 if STALLI mode or 0 if ALLOWI mode (established by

STALLI/ALLOWI)

 D[00] = 1 if cog started in hubexec or 0 if cog started in cogexec

During a debug ISR, GETBRK with WCZ returns additional data that is useful to a debugger:

Page 343of 484

 C = 1 if debug interrupt was from a COGINIT, indicating that the cog

was (re)started

 D[31:24] = 8-bit break code from the last 'BRK #/D' during normal

execution

 D[23] = 1 if debug interrupt was from a COGINIT, indicating that the

cog was (re)started

GETBRK D WC

GETBRK with WC always returns the following:

 C = LSB of SKIP/SKIPF/EXECF/XBYTE pattern

 D[31:28] = 4-bit CALL depth since SKIP/SKIPF/EXECF/XBYTE (skipping

suspended if not %0000)

 D[27] = 1 if SKIP mode or 0 if SKIPF/EXECF/XBYTE mode

 D[26] = 1 if LUT sharing enabled (established by SETLUTS)

 D[25] = 1 if top of stack = $001FF, indicating XBYTE will execute on

next _RET_/RET

 D[24:16] = 9-bit XBYTE mode, established by '_RET_ SETQ/SETQ2' when

top of stack = $001FF

 D[15:00] = 16 event-trap flags

GETBRK D WZ

GETBRK with WZ always returns the following:

 Z = 1 if no SKIP/SKIPF/EXECF/XBYTE pattern queued (D = 0) or 1 if

pattern queued (D <> 0)

Page 344of 484

 D = 32-bit SKIP/SKIPF/EXECF/XBYTE pattern, used LSB-first to skip

instructions in main code

Page 345of 484

POLLXRO/WAITXRO event flag
Cleared on XINIT/XZERO/XCONT.
Set whenever the the streamer NCO rolls over.
Also cleared on POLLXRO/WAITXRO/JXRO/JNXRO.

POLLXRL/WAIXTRL event flag
Cleared on cog start.
Set whenever location $1FF of the lookup RAM is read by the streamer.
Also cleared on POLLXRL/WAITXRL/JXRL/JNXRL.

POLLATN/WAITATN event flag
Cleared on cog start.
Set whenever any cogs request attention.
Also cleared on POLLATN/WAITATN/JATN/JNATN.

POLLQMT event flag
Cleared on cog start.
Set whenever GETQX/GETQY executes without any CORDIC results available or in progress.
Also cleared on POLLQMT/WAITQMT/JQMT/JNQMT.

Example: ADDCT1/WAITCT1

'ADDCT1 D,S/#' must be used to establish a CT target. This is done by first using 'GETCT D' to get the
current CT value into a register, and then using ADDCT1 to add into that register, thereby making a
future CT target, which, when passed, will trigger the CT-passed-CT1 event and set the related event
flag.

 GETCT x 'get initial CT
 ADDCT1 x,#500 'make initial CT1 target

 .loop WAITCT1 'wait for CT to pass CT1 target
 ADDCT1 x,#500 'update CT1 target
 DRVNOT #0 'toggle P0
 JMP #.loop 'loop to the WAITCT1

It doesn't matter what register is used to keep track of the CT1 target. Whenever ADDCT1 executes, S/#
is added into D, and the result gets copied into a dedicated CT1 target register that is compared to CT on
every clock. When the CT1 target passes CT, the event flag is set. ADDCT1 clears the CT-passed-CT1
event flag to help with initialization and cycling.

Note: the .loop operator is cleared after compiling instruction and loop can be re-used for writing jump
code. Remember to include #(immediate) directive

Page 346of 484

Appendix “D” P2 Edge

D.1) Edge Specifications
Features

● Compact module with Propeller 2 P2X8C4M64P multicore microcontroller

● 6-layer, low noise, system-on-board module

● Integrated thermal planes for low temperature rise characteristics at high speed operation ● Double-

sided 80 way 0.05” (1.27mm) edge connector

● Orientation / module locking hole

● Two mounting holes connected to the module ground planes

● 20 MHz crystal ● Adjustable operating frequency; recommended maximum 180 MHz clock

● Overclocking possible beyond 300 MHz

● 16 MB SPI Flash memory

● 64 Smart I/O pins brought out to the Edge Connector

● Buffered LEDs on I/O pins P56 and P57, visible from both sides of the module PCB

● Onboard LED feature enable/disable switch

● Onboard 1.8 V 2-Amp switching regulator with short-circuit, over-current fault and brownout

detection protection for the P2 core (VDD)

● Onboard low-noise LDO 3.3 V regulators for the P2 smart-pins (VIO), with short-circuit and over-

current fault protection

● Dual power inputs via the edge connector or optional header pads on the back of the module, with

reverse polarity protection

● Compatible with the Parallax Prop-Plug #32201 for system programming Key Specifications ● Voltage

input requirements: 5 VDC; absolute maximum 5.5 VDC

Page 347of 484

 Input Current requirements:

● Recommended minimum 100 mA

● Typical experimentation 500–1000 mA

● Maximum according to customer application

● Voltage input protection: reverse voltage

● Propeller 2 chip: P2X8C4M64P (8 cogs, 512 KB shared hub RAM, 64 smart pins)

● Non-volatile Memory: 16 MB (128 Mb) SPI Flash

● Crystal: 20 MHz SMT

● Smart I/O pins: 64 accessible, 56 fully free, grouped in 8 sets of 8 I/Os

● Smart I/O pin logic voltage: 3.3 V

● Internal VDD Power Supply: 1.8 V up to 2 A, 1 MHz nominal switching frequency

● VIO Power Supplies: 3.3V up to 300 mA per 8 I/O pins

● Edge Connector: Double sided 80 way 0.05” (1.27mm) pitch edge slot

● Programming: Serial up to 2 MBaud

● Operating temperature: -40 to +185 °F (-40 to +85 °C)

● PCB Dimensions: 1.45 in x 2.04 in (37mm x 52mm)

Page 348of 484

 Appendix “E” Miscelanous Variable Type Definition

E.0) Byte/Word/Long Declaration
Propeller has only 3 types of varaibles Byte\Word\Long.

Propeller/Spin endianness is very simple:

The Propeller is a little-endian processor. The less significants bytes of a word or long are

stored in the lower memory locations. VARiables and DATa are stored little-endian once

compiled. However, since we (i.e. humans who are used to LTR languages) are used to writing

numbers in big-endian order, the Spin compiler, for convenience, lets us write "byte

$76543210" when we want "byte $10, $32, $54, $76".

The variables are arranged long, word, byte at compile time. There aren't empty bytes between

each byte variable. Individual bytes are addressable in hub RAM. Cog RAM is addressable only

by longs.

Page 349of 484

E.0.1) Byte Declaration 8 bits
Syntax 1 Var (variable declaration)
VAR
 byte Temp ‘Temp is a byte variable
 byte Str[25] ‘Str is a byte array Str[0]-Str[24]
Syntax 2 Dat (data declaration)
DAT
 MyData byte 41,” A”, $2A
 MyString byte “Hello”, 0 ‘zero terminated string
Hub Memory DAT Block Access
Pub GetData|Temp
 Temp ≔ MyData ‘reads first byte of MyData
 <more code>
Pub GetData |Index,Temp
 Index ≔ 0
 Repeat
 Temp ≔ MyString[Index++]
 <more code>
 While temp > 0 ‘check after loop
Syntax 3 Byte Hub Memory DAT Block Access
Pub GetData|Temp
Temp ≔Byte[@MyData]
 <more code>
Pub GetData|Index,Temp
 Index ≔ 0
 Repeat
 Temp ≔ Byte[@MyString][Index++]
 <more code>
 While temp > 0

Page 350of 484

 E.0.1.1_Example_WRD_Byte_Access from Memory

{{E.0.1.1_Example_WRD_Byte_Access from Memory}}
{{
Temp := Byte[@MyString][Index++]
Temp := MyData

Example
Demonstrate Byte data access
}}
CON
 _clkfreq = 200_000_000 ''Debug must be enabled clock must be greater than 10MHZ for Debug
P0 =0 , P1 = 1 , P2 = 2
VAR
 byte Temp 'Temp is a byte variable
 byte Str[25] 'Str is a byte array Str[0]-Str[24]
PUB main()
 debug("--------------------------------------")
 debug("Example")
 debug("Demonstrate Byte data access")
 debug("--------------------------------------")
 GetData1()
 GetData2()
 GetData3()
 GetData4()
 Repeat
Pub GetData1()|Temp1
 Temp1 := MyData 'reads first byte of MyData
 debug("MyData ",udec_byte(Temp1))
Pub GetData2() |Index2,Temp2
 Index2 := 0
 Repeat
 Temp2 := MyString[Index2++]
 debug("MyString ",udec_byte(Temp2))
 While Temp2 > 0 'check after loop entry
Pub GetData3()|Index3,Temp3
 Index3 :=0
 Repeat
 Temp3 :=Byte[@MyData][Index3++]
 debug("MyData ",udec_byte(Temp3))
 while Temp3 > 0 'check after loop entry
Pub GetData4()|Index4,Temp4
 Index4 := 0
 Repeat
 Temp4 := Byte[@MyString][Index4++]
 debug("MyString ",udec_byte(Temp4))
 While Temp4 > 0 'check after loop entry

Page 351of 484

DAT
 MyData byte 41,"A","B","C", $2A,0
 MyString byte "Hello", 0 'zero terminated string

Page 352of 484

E.0.2) Word Declaration 16 bits
Syntax 1 Var (variable declaration)
VAR
 word var01 ‘var01 Temp is a word variable
 word List[25] ‘List is a word array Str[0]-Str[24]
Syntax 2 Dat (data declaration)
DAT
 MyList word $FFFF, 41,” A”, $2A

Page 353of 484

E.0.3) Long Declaration 32 bits
Syntax 1 Var (variable declaration)
VAR
 Long Temp ‘ Temp is a Long variable
 Long List[25] ‘List is a long array
Syntax 2 Dat (data declaration)
DAT
 MyData Long 640_000, $BB50 ‘Long-aligned/sized data
 MyList Byte Long $FF995544 , Long 1_000 ‘ Byte-aligned/long sized
Syntax 3 PUB/PRI
Pub method| Index, var01 ‘declares local method variable of type Long

E.0.3.1_Example_WRD_Long_Aligned_Memory

Page 354of 484

E.0.4) Address Convention
B[7:0] = B7B6B5B4B3B2B1B0
W[15:0] = B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0
L[31:0] = B31B30B29B28B27B26B25B24 B23B22B21B20B19B18B17B16 B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0

Byte Addressing
DB[3:0]
=D3D2D1D0

Bit Addressing
D[31:0]
= d31d30d29d28d27d26d25d24d23d22d21d20d19d18d17d16d15d14d13d12d11d10d09d08d07d06d05d04d03d02d01d00

Byte Bit Addressing
DBB[37:00]
=d37d36d35d34d33d32d31d30_d27d26d25d24d23d22d21d20_d17d16d15d14d13d12d11d10_d07d06d05d04d03d02d01d00
Nibble Addressing
DN[7:0] = D7D6D5D4D3D2D1D0

D7 = d73d72d71d70 D6 = d63d62d61d60 D5 = d53d52d51d50 D4 = s43s42s41s40
D3 = d33d32d31d30 D2 = d23d22d21d20 D5 = d13d12d11d10 D0 = d03d02d01d00

Byte Addressing
SB[3:0]
= S3S2S1S0
Bit Addressing
S[31:0]
= s31s30s29s28s27s26s25s24s23s22s21s20s19s18s17s16s15s14s13s12s11s10s09s08s07s06s05s04s03s02s01s00
Byte Bit Addressing
SBB[31:0]
= S37S36S35S34S33S32S31S30_ S27S26S25S24S23S22S21S20_ S17S16S15S14S13S12S11S10_ S07S06S05S04S03S02S01S00

Nibble Addressing
SN[7:0] = S7S6S5S4S3S2S1S0

S7 = s73s72s71s70 S6 = s63s62s61s60 S5 = s53s52s51s50 S4 = s43s42s41s40
S3 = s33s32s31s30 S2 = s23s22s21s20 S5 = s13s12s11s10 S0 = s03s02s01s00

Page 355of 484

B[31:0]
 = B31B30B29B28B27B26B25B24B23B22B21B20B19B18B17B16B15B14B13B12B11B10 B9B8B7B6B5 B4B3B2B1B0

S[31:0]
= s31s30s29s28s27s26s25s24s23s22s21s20s19s18s17s16s15s14s13s12s11s10s09s08s07s06s05s04s03s02s01s00
D[31:0]
= d31d30d29d28d27d26d25d24d23d22d21d20d19d18d17d16d15d14d13d12d11d10d09d08d07d06d05d04d03d02d01d00

N[7:0] = N7N6N5N4N3N2N1N0

N7 = n73n72n71n70 N6 = n63n62n61n60 N5 = n53n52n51n50 N4 = n43n42n41n40
N3 = n33n32n31n30 N2 = n23n22n21n20 N5 = n13n12n11n10 N0 = n03n02n01n00
SN[7:0] = S7S6S5S4S3S2S1S0

S7 = s73s72s71s70 S6 = s63s62s61s60 S5 = s53s52s51s50 S4 = s43s42s41s40
S3 = s33s32s31s30 S2 = s23s22s21s20 S5 = s13s12s11s10 S0 = s03s02s01s00
DN[7:0] = D7D6D5D4D3D2D1D0

D7 = d73d72d71d70 D6 = d63d62d61d60 D5 = d53d52d51d50 D4 = s43s42s41s40
D3 = d33d32d31d30 D2 = d23d22d21d20 D5 = d13d12d11d10 D0 = d03d02d01d00

W[31:0] = W1W0
= w31w30w29w28w27w26w25w24w23w22w21w20w19w18w17w16_w15w14w13w12w11w10w9w8_w7w6w5w4w3w2w1w0

W1 = w015w014w013w012w01w010w009w008w007w006w005w004w003w002w001w000
W2 = w115w114w113w112w11w110w109w108w107w106w105w104w103w102w101w100

Example
D[BH:BL] = D[S[9:5] + S[4:0] : S[4:0]] = 0 Defines a range of bits
S[9:5] = %10001 = 17 S[4:0]=%00001 = 1
D[BH:BL] = D[%1001 + %00001 : %00001 = D[17 + 1: 1] = D[18:1] = 0

D[BH:BL] = D[S[9:5] + S[4:0] : S[4:0]] = 0 Defines a range of bits

S[31:0] = S[31:10] + S[9:5] + S[4:0] Defines Special function range

Page 356of 484

E.1) Number Types Signed,Unsigned,Float, Modular
Unsigned 32 bit number has a range from 0 ---- 4_294_967_295
Signed 32 bit number has a range from -2_147_483_648 ---- 2_147_483_647
Note: When possible integer operations should be used they are faster and simpler Float values can be

scaled up: 5.6/7.8 = 56/78

E.1.1_Example_WRD_Signed_Unsigned_Numbers
{{E.1_Example_WRD_Signed_Unsigned_Numbers}}
''unsigned,signed
CON
 _clkfreq = 200_000_000 ''Debug must be enabled clock must be greater than 10MHZ for Debug
VAR
Byte cogRunning 'cog ID started is returned or -1 if not started
PUB main()
 cogRunning := COGINIT(COGEXEC_NEW,@NumTypes,0)
 debug(udec(cogRunning))
 debug(ubin(UnSignedMax),uhex(UnSignedMax),udec(UnSignedMax))
 debug(ubin(UnSignedMin),uhex(UnsignedMin),udec(UnSignedMin))
 debug(sbin(SignedMax),shex(SignedMax),sdec(SignedMax))
 debug(sbin(SignedMin),shex(SignedMin),sdec(SignedMin))
 repeat
DAT
 ORG 0
NumTypes
_Loop NOP
 JMP #_Loop
UnSignedMax long $FFFF_FFFF
UnSignedMIN long 0

SignedMax long %01111111_11111111_11111111_11111111
SignedMin long %10000000_00000000_00000000_00000000

UnSignedBinMax long %11111111_11111111_11111111_11111111
UnSignedBinMin long %00000000_00000000_00000000_00000000
UnSignedHexMax long $FFFF_FFFF
UnSignedHexMin long $0000_0000
UnSignedDecMax long 4_294_967_295
UnSignedDecMin long 0

SignedBinMax long %01111111_11111111_11111111_11111111
SignedBinMin long %10000000_00000000_00000000_00000000
SignedHexMax long $7FF_FFFF
SignedHexMin long -$800_0000
SignedDecMax long 2_147_483_647
SignedDecMin long -2_147_483_648

Page 357of 484

E.1.2) Floating Point Numbers

Float Base 10 12.120 = 1 X 101 + 2 X 100 + 1 X 10-1 + 2 X 10-2

Float Base 2 101.101 = 1 X 22 + 0 X 21 + 1 X 20 + 1 X 2-1 + 0 X 2-2 + 1 X 2-3

Convert Base 2 Float 101.101 to Base 10 Float
(101.101)2
(101)2 = 4 + 0 + 1 = 5

 (.101)2 = 1X1/21 + 0X1/22 + 1X1/23
 (.101)2 = 1 X .5 + 0 X .25 + 1 X .125 = (.625)10

(101.101)2 = (5.625)10

Convert Base 10 Float 5.625 to Base 2 Float
5.625
(5)10 = (4 + 0 + 1)10 = 1 X 22 + 0 X 21 + 1 X 20 = (101)2

.625 X 2 = 1.25 1

.25 X 2 = .5 0

.5 X 2 = 1.0 1
(.625)10 = (.101)2

(5.625)10 = (101.101)2

Page 358of 484

E.1.3) Modular Arithmetic

An Introduction to Modular Math
When we divide two integers we will have an equation that looks like the following:

A is the dividend
B is the divisor
Q is the quotient
R is the remainder

Sometimes, we are only interested in what the remainder is when we divide A by B.
For these cases there is an operator called the modulo operator (abbreviated as mod).
Using the same A, B, Q, and R as above, we would have: A mod B = R
We would say this as A modulo B is equal to R. Where B is referred to as the modulus.

Fo

 13

Page 359of 484

E.3.1) Time as Modular Arithmetic

Clock Arithmetic or a Circle as a Number Line One way to turn a circle into a number line is to divide it

into twelve equal parts. In this case, one step is usually called one hour.

The hour hand moves from 0 to 1, from 1 to 2, ... from 11 to 12 just as it would have on the straight

number line. However, 12 equals 0 on this circle, so there it goes 2 Notice that 0 coincides with 12, and

as the hour hand moves to the right, 1 coincides with 13, 2 with 14, and so on. The hour hand rotates

clockwise which corresponds with numbers increasing when moving to the right on a number line.

However, 12 is equivalent to 0 on this circle, which can be written as follows:

 12 ≡ 0 (mod 12)

This can be read as 12 is congruent to 0 modulo 12. The usual ”=” sign is reserved for the straight

number line; we use ” ≡ ” on the circle instead. The symbol “mod 12” tells us that the circle is divided

into 12 equal parts, so that 12 coincides with 0, 13 with 1, etc. In the new notation we have:

 12 ≡ 0 (mod 12), 13 ≡ 1 (mod 12), ... 23 ≡ 11 (mod 12)

The 24-Hour Clock There are 24 hours in a day, so one more standard way to turn a circle into a number

line is to divide it into 24 equal parts. The US military uses the 24 hour clock. Since 60 is not a multiple of

24, we can’t use the same marks on the face of a 24 hour clock for minutes and hours (look at the

minute marks on the face of the 24 hour clock).

Page 360of 484

Modular Arithmetic

In addition to clock analogy, one can view modular arithmetic as arithmetic of remainders. For example,
in mod 12 arithmetic, all the multiples of 12 (i.e., all the numbers that give remainder 0 when divided by
12) are equivalent to 0. In the modular arithmetic notation, this can be written as:

 12 x n ≡ 0 (mod 12) for any whole number n.

Similarly, all numbers that give remainder 1 when divided by 12 are equivalent to 1. In other words:

 12 x n + 1 ≡ 1 (mod 12) for any whole number n.

Recall that any whole number a can be uniquely written in the form:

 a = 12 X n + r

where r is one of the numbers 0, 1, ..., 11. Notice that r is the remainder of the division of a by 12.
Therefore, a ≡ r (mod 12). For example:

50 = 5 x 12 + 10, which implies 50 ≡ 10 (mod 12),
 40 = 3 x 12 + 4, which means 40 ≡ 4 (mod 12).

Page 361of 484

E3.2) Addition /Subtraction property of modular arithmetic:

(A + B) mod C = (A mod C + B mod C) mod C
(A - B) mod C = (A mod C - B mod C) mod C

Exa

Let A=Le (

L

R LH

1)

 3

L RH

1)

4)

R L

Page 362of 484

E3.3) Multiplication property of modular arithmetic:

(A Ex Le A Le (m A * B m) LH = RH = t LH (m LH (m LH 2 m LH 4RH A m * B m)

RH 4 * 7) RH 4) RH 4 RH 4L

Page 363of 484

E.1.4) Binary Operations
E.2.3) CRC8 Dallas/Maxim Algorithum

Binary Multiplication

 101 5 111001 + 1 = 26 26 mod 5 = 1
 X101 x5
 101 25
 0000
 10100
 11001 = 25
Binary Division
 __ 101________
 101 |11010
 101
 10
 00
 100
 101
 1 Remainder
26 mod 5 = 1

Modulo 2 Division XOR

Modulo-2 division is performed similarly to “normal” arithmetic division. The only difference is that we

use modulo-2 subtraction (XOR)) instead of arithmetic subtraction for calculating the remainders in

each step. The quotient is not of interest.

 __111________
 101 |11010
 101
 111
 101
 100
 101
 26 mod 5 = 1 1 Remainder

Page 364of 484

E.2) CRC8 Cycle Redundancy Check

CRC stands for Cyclic Redundancy Check. It is an error-detecting code used to determine if a block of
data has been corrupted. The idea is given a block of N bits, let’s compute a checksum of a sort to see if
the N bits were damaged in some way, for instance by transit over a network. The extra data we
transmit with this checksum is the “Redundancy” part of CRC, and the second C just means this is a
“Check” to see if the data are corrupted (as opposed to an ECC code, which both detects and corrects
errors).

Simple Parity is another method for error checking for example the number of 1 ‘s and zero’s are even
or odd parity for examp 10101010 to be even parity a 1 would be required to append 10101010_1 to
obtain 4 one bits for even parity if s 0 odd parity used a 0 bit would be added. If two bits are switched or
lost the error checking will not detect it. Only single bit errors can be detected .

Ce is another methof for error detection. Thck Unfortunately sometimes a CRC value is termed a
CheckSum.CRC , treats the message as a big number, we choose a special number to divide the message
by (referred to as the “CRC generation polynomial” divisor in the literature), and the remainder of the
division is the CRC. Intuitively, it should be obvious that we can detect more than single bit errors with
this scheme. Additionally, I think it is obvious that some divisors are better than others at detecting
errors. Most implementation do not use division in the normal sense but use Module 2 arithmetic which
eliminates the need for the borrowing operation. Modulus 2 arithmetic is XOR exclusive OR operation.
For CRC calculations, no normal subtraction is used, but all calculations are done modulo 2. In that
situation you ignore carry bits and in effect the subtraction will be equal to an exclusive or operation.
This looks strange, the resulting remainder has a different value, but from an algebraic point of view the
functionality is equal. A discussion of this would need university level knowledge of algebraic field
theory.

The CRC is a predetermined number of bits to be used for the error detection. 8,16,32 or 64 bits are

commonly used. This set of notes will concentrate on C 1 Wire usage errors. The number of bits in the

error code is n and with CRC8 Dallas/Maxim n = 8.

Wyusrator polynomial? Farca.Su v h Binary Numbers can be represented as a
Polynomial:

BinaryNumber = B[7:0] = B7X7 + B6X6

 + B5X5 + B4X4
 + B3 X3 + B2X2 + B1 X1 + B0X0

 = B727 + B626
 + B525 + B424

 + B3 23 + B222 + B1 21 + B020

B020 = B0*1
B1 21 = B1 *2
B222 = B2*4
B3 23 = B3*8
B424 = B4*16
B525 = B5*32

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Page 365of 484

B626 = B6*64
B727 = B7*128

G(X) = B[8:0] = G8X8 + G7X7 + G6X6

 + G5X5 + G4X4
 + G3 X3 + G2X2 + G1 X1 + G0X0

G(2) = x8 + x5 + x4 + x0 = 28 + 25 + 24 + 20 = G7G6G5G4G3G2G1G0 = 100110001

CRC8Maxim Divisor = %1_0011_0001 = 13116 = 30510

Polynomial Generator bits 0-8 (9 actual bits B8B7B6B5B4B3B2B1B0)
CRC8Dallas\Maxim = X8 +X5+X4+X0
 X8 +X5+X4+X0 = 1*X8+0*X7+0*X6+1*X5+1*X4+0*X3+0*X2+0*X1+1*X0
 = %1_0011_0001 this is the CRC8 9 bit divisor(Coefficeints)
Note: Polynomial is a shift left multiplier of base 2 = %10

Page 366of 484

Endianness
The endianness is the order of bytes with which data words are stored. We distinguish the following to
types:

Little-endian: The least significant byte is stored at the smallest memory address. In terms of data
transmission, the least significant byte is transmitted first.
Big-endian: The most significant byte is stored at the smallest memory address. In terms of data
transmission, the most significant byte is transmitted first.

Note: Parallax propeller is Little Endian processor LSBytes stored in lowest memory address to MSBytes

in increasing memory value.

The same conventions can be used in the ordering of the Polynomials . Typically Big Endian convention is

mostly used for CRC calculations but little Endian convention can be used.

End_1X8+2+1+:8B7B6B5B4B3B2B1B0

Big Endian
G(X) = B8X8

 + B7X7 + B6X6
 + B5X5 + B4X4 + B3X3 + B2X2

 + B1X1
 + B0X0

100000111 - B[8:0] = 100000111

Little Endian
G(X) = B0X8

 + B1X7 + B2X6
 + B3X5 + B4X4 + B5X3 + B6X2

 + B7X1
 + B8X0

100000111 - B[8:0] = 111000001

Endian Example_2

X8 + X5 + X4 + 1 B[8:0] = B8B7B6B5B4B3B2B1B0

Big Endian
G(X) = B8X8

 + B7X7 + B6X6
 + B5X5 + B4X4 + B3X3 + B2X2

 + B1X1
 + B0X0

100110001 - B[8:0] = 100110001

Little Endian
G(X) = B0X8

 + B1X7 + B2X6
 + B3X5 + B4X4 + B5X3 + B6X2

 + B7X1
 + B8X0

100110001 - B[8:0] = 100011001

Note: That most polynomial specifications either drop the MSB or LSB, since they are always 1.
CRC8Dallas/Maxim = $8C = %10001100 or %100011001 adding 1 to LSB

https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit

Page 367of 484

The most commonly used generation polynomials are as follows:

Most Hobbyist usage of CRC values use an 8 bit CRC value and for the remainder of this discussion
CRC-8Maxim will be used. The manufacturer “MAXIM Integrated” now part of Analog devices originally
used this for their 1 wire devices which has the CRC8Maxim registers built into their devices.

Page 368of 484

E.2.0) CRC Transmission Process
1) Create DataStream = Data + Checksum(CRC)
Divisor is CRC8Dallas\Maxim = X8 +X5+X4+X0 = 30510 = 13116 = 1001100012

Data to be Transferred Let $7778797A = DATA the bytes to be transferred
Dividend = DataStream + 8 zeroes (k = number bits in Divisor = n+1 = 9bits)
 ADD “n” zero’s (CRC8 is “8+1 = n+1”) so add 8 zero’s to stream to be transferred:
Dividend $7778797A00 = 111_0111_0111_1000_0111_1001_0111_1010_0000_0000
Calculate the CRC (See CRC8 Dalla/Maxim Algorithum)
CRC = 10210 = 0x6616 = 1001100012 from CRC calculator n = number bits in CRC = 8
Data Stream = $7778797A66

2) Transmit Data From Sender to Receiver Device
Both Transmitter and receiver must be aware of “Generation Polynomial” in this case
CRC8Dallas\Maxim = X8 +X5+X4+X0 = 30510 = 13116 = 1001100012

3) Receive data and create a receiving end CRC of Data Stream
When Checking CRC from the receiving end the , the generated CRC is appended to the Data since CRC is
a linear function with a property that CRC(xꚚyꚚz)=CRC(x)ꚚCRC(y)ꚚCRC(z).
DataStream XOR CRC = 0 in above example 0x66 Ꚛ 0x66 = 0. Doing a CRC on the DataStream if data is
good will have a CRC of 0.

https://en.wikipedia.org/wiki/Linear_function

Page 369of 484

E.2.1) Maxim 1-Wire CRC
The error detection scheme most effective at locating errors in a serial-data stream with a minimal
amount of hardware is the CRC. The operation and properties of the CRC function used in Maxim
products is presented without going into the mathematical details of proving the statements and
descriptions. The mathematical concepts behind the properties of the CRC are described in detail in the
references. The CRC can be most easily understood by considering the function as it would actually be
built in hardware, usually represented as a shift register arrangement with feedback as shown in Figure
2. Alternatively, the CRC is sometimes referred to as a polynomial expression in a dummy variable X,
with binary coefficients for each of the terms. The coefficients correspond directly to the feedback paths
shown in the shift register implementation. The number of stages in the shift register for the hardware
description, or the highest order coefficient present in the polynomial expression, indicate the
magnitude of the CRC value that is computed. CRC codes that are commonly used in digital data
communications include the CRC-16 and the CRC-CCITT, each of which computes a 16-bit CRC value. The
Maxim 1-Wire CRC magnitude is 8 bits, which is used for checking the 64-bit ROM code written into each
1-Wire product. This ROM code consists of an 8-bit family code written into the least significant byte, a
unique 48-bit serial number written into the next 6 bytes, and a CRC value that is computed based on
the preceding 56 bits of ROM and then written into the most significant byte. The location of the
feedback paths represented by the exclusive-OR gates in Figure 2, or the presence of coefficients in the
polynomial expression, determine the properties of the CRC and the ability of the algorithm to locate
certain types of errors in the data. For the 1-Wire CRC, the types of errors that are detectable are:

1. Any odd number of errors anywhere within the 64-bit number.

2. All double-bit errors anywhere within the 64-bit number.

3. Any cluster of errors that can be contained within an 8-bit "window" (1-8 bits incorrect).

4. Most larger clusters of errors.

The input data is exclusive-OR'ed with the output of the eighth stage of the shift register in Figure 2. The
shift register can be considered mathematically as a dividing circuit. The input data is the dividend, and
the shift register with feedback acts as a divisor. The resulting quotient is discarded, and the remainder
is the CRC value for that particular stream of input data, which resides in the shift register after the last
data bit has been shifted in. From the shift register implementation it is obvious that the final result
(CRC value) is dependent, in a very complex way, on the past history of the bits presented. Therefore, it
would take an extremely rare combination of errors to escape detection by this method.

Figure 2. Maxim 1-Wire 8-bit CRC.

Page 370of 484

E.2.1) Modul 2 Binary Division Vs Traditional Division

The basic idea of CRC algorithm is to treat the transmitted data as a very long number of

digits.Divide this number by another number.The resulting remainder is appended to the original

data as check data.Also take the data from the above example:

6, 23, 4 can be seen as a binary number: 0000011000010111 00000010

If 9 is chosen by dividing, the binary representation is: 1001

Then the division operation can be expressed as:

As you can see, the last remaining number is 1.If we use this remainder as a checksum, the data

transferred is: 6, 23, 4, 1.

Page 371of 484

The CRC algorithm is a bit similar to this process, but it does not use the usual division in the

example above.In the CRC algorithm, binary data streams are used as coefficients of the

polynomial, followed by the multiplication and division of the polynomial.Let's give an example.

For example, we have two binary numbers: 1101 and 1011.

1101 is associated with the following polynomial: 1x3+1x2+0x1+1x0=x3+x2+x0

1011 is associated with the following polynomial: 1x3+0x2+1x1+1x0=x3+x1+x0

Multiplication of two polynomials: (x3+x2+x0) (x3+x1+x0)=x6+x5+x4+x3+x3+x2+x1+x0

When the result is obtained, the modulo 2 operation is used to merge the same items.That is,

multiplication and division use normal polynomial multiplication and division, while addition

and subtraction use modulo 2 operations.The so-called modulo 2 operation is to divide the result

by 2 and take the remainder.For example, 3 mod 2 = 1.Therefore, the resulting polynomial above

is: x6+x5+x4+x3+x2+x1+x0, corresponding to the binary number: 111111

Addition and subtraction with modulo 2 is actually an operation, which is what we usually call

XOR:

As mentioned above, half-day polynomials, in fact, even without introducing the concept of

polynomial multiplication and division, can explain the particularity of these operations.Only

polynomials are mentioned in almost all the literature explaining the CRC algorithm, so a few

basic concepts are simply written here.However, it is very tedious to always use this polynomial

representation, and the following instructions will try to use a more concise way of writing.

The division operation is similar to the multiplication concept given above, or the addition and

subtraction are replaced by XOR.Here is an example:

The data to be transferred is: 1101011011

The divisor is set to 10011

Page 372of 484

Before calculating, four 0:11010110000 are added to the back of the original data, so the reason

for adding 0 is explained later.

From this example, it can be seen that after the addition and subtraction of module 2, the

problem of borrowing does not need to be considered, so division becomes simpler.The final

remainder is the CRC checkword.In order to perform the CRC operation, that is, this special

division operation, a dividend must be specified. In the CRC algorithm, this divider has a special

name called "Generate Polynomial".Selection of the resulting polynomial is a very difficult

problem. If not, the probability of detecting errors will be much lower.Fortunately, this problem

has been studied by experts for a long time. For those of us users, we just need to use the ready-

made results.

Page 373of 484

E.2.2) CRC8Maxim x^8+x^5+x^4 + 1 Lookup Table

CRC linear f w CRC(xꚚyꚚz)=CRC(x)ꚚCRC(y)ꚚCRC(z)

Page 374of 484

E.2.3) CRC8 Dallas/Maxim Algorithum

Binary Multiplication

 101 5 111001 + 1 = 26 26 mod 5 = 1
 X101 x5
 101 25
 0000
 10100
 11001 = 25
Binary Division
 __ 101________
 101 |11010
 101
 10
 00
 100
 101
 1 Remainder
26 mod 5 = 1

Modulo 2 Division XOR

Modulo-2 division is performed similarly to “normal” arithmetic division. The only difference is that we

use modulo-2 subtraction (XOR)) instead of arithmetic subtraction for calculating the remainders in

each step. The quotient is not of interest.

 __111________
 101 |11010
 101
 111
 101
 100
 101
 26 mod 5 = 1 1 Remainder

Page 375of 484

E.2.4) Types of CRCs
There are different types of CRCs. They are categorized by the degree of the polynomial they use. As the
first exponent of a polynomial of degree n is always present by definition (otherwise it would have a
lower degree), its binary representation always begins with a 1.

In other words, the first bit of a binary polynomial representation doesn’t carry any information about

the polynomial when we agree on a fixed degree.

For that reason, the first bit of a binary polynomial representation is always dropped when computing a

CRC in software. So the bit size of the resulting binary is always n for a polynomial of degree n.

It is apparent there is a myriad of CRC implementations and the sending and receiving devices must be
using the sam methodology. It is because of this non standardations complexity (obfuscation) rules.

 Example:

Polynomial Binary Representation Binary (1st bit dropped) Bit Size

x4 + x2 + x + 1 10111 0111 4

x4 + x3 + x2 + 1 11101 1101 4

x8 + x4 + x2 + 1 100010101 00010101 8

CRCs types are named by their bit size. Here are the most common ones:
CRC-8
CRC-16
CRC-32
CRC-64
CRC-1 (parity bit) is a special case

Generally, we can refer to a CRC as CRC-n, where n is the number of CRC bits and the number of bits of

the polynomial’s binary representation with a dropped first bit. Obviously, different CRCs are possible

for the same n as multiple polynomials exist for the same degree.

Page 376of 484

E.2.4.1) Error Detection

How do we choose a suitable CRC and a respective polynomial? There are three things we need to
consider:
Random Error Detection Accuracy
Burst Error Detection Accuracy
The Redundancy Factor

E.2.4.2) Random Error Detection Accuracy
Random errors are errors that can occur randomly in any data. For example, a single bit is flipped when
transmitting data or a few bits are lost during the transmission.
Depending on the bit size of the CRC we use, we can detect most of these random errors. However, for a
CRC-n, 1/2n of these errors cannot be detected. The following table shows the percentage of the
possible random errors that remain undetected for each CRC type:

CRC Type Undetected Errors % Undetected

CRC-8 1/28 0.39

CRC-16 1/216 0.0015

CRC-32 1/232 0.00000002

CRC-64 1/264 5.4 x 10-20

Page 377of 484

E.2.4.3) Burst Error Detection Accuracy

Errors in data transmission are oftentimes not random but produced over a consecutive sequence of
bits. Such errors are called burst errors. They are the most common errors in data communication.
It’s one of the CRC’s strongest properties to detecting burst errors reliably.

A CRC-n can detect single burst errors with a maximum length of n bits. However, this depends a lot on
the polynomial used for computing the CRC. Some polynomials are able to detect multiple bursts of
errors in the transmitted data.

CRC Type Burst Error Detection

CRC-8 at least a single burst of <= 8 bits

CRC-16 at least a single burst of <= 16 bits

CRC-32 at least a single burst of <= 32 bits

CRC-64 at least a single burst of <= 64 bits

E.2.4.4) The Redundancy Factor

Using a CRC for error detection comes at the cost of extra (non-meaningful) data. When we use a CRC-
32 (4 bytes), we need to transmit two more bytes of “unnecessary” data as compared to a CRC-16. CRCs
with a lower bit size are obviously cheaper with respect to storage space.

Based on these three factors, we can decide which CRC type to choose for our application. However, the
polynomial you choose for your CRC also affects the efficiency and quality of your error detection. But
that’s a topic for itself and we won’t cover it in this article. Fortunately, there are a couple of standard
polynomials used for a particular CRC type and in most cases it makes sense to just use one of these.

Page 378of 484

E.2.5) CRC8Dallas\Maxim Algorithum (Rayman thanks for info)

1) Divisor is 10011001 n = 9 bit divisor (CRC bits = n-1)

2) Data bits are to be revesed ordered and add n-1 zeroes (8)

3) Perform Modul 2 division

4) Reverse order of remainder is th CRC8Dallas\Maxim

E.2.5.1_Example 1 $C2

Data = $C2 = %11000010 ReverseC2 = > %01000011 = $43 Divisor = 100110001

 100110001 |0100001100000000
 100110001
 111101000
 100110001
 110110010
 100110001
 100000110
 100110001
 01101110 => 0111011 reverse order 8 bit

 CRCMaxim($C2) =%01110110 = $76 = 118

Page 379of 484

E.2.5.2_Example $BC

Data = $BC = %10111100 ReverseBC = > 00111101 = $3E Divisor = 100110001

 100110001 |0011110100000000
 100110001
 110110010
 100110001
 100000110
 100110001
 110111000
 100110001
 10001001 => 10010001 reverse order 8 bit

CRCMaxim($BC) =%10010001 = $91 = 145

Page 380of 484

E.2.5.3 Example 2 $C2BC

CRC8Maxim(Byte1) = CRC8Maxim(C2) = $76

Byte2Data = $BC

CRC8Maxim(C2) Ꚛ Data(BC) = $76 Ꚛ $BC = 01110110
 10111100
 11001010 =$CA

Data = $CA = %11001010 ReverseC2 = > %01010011 = $53 Divisor = 100110001

 100110001 |0101001100000000
 100110001
 111110100
 100110001
 110001010
 100110001
 101110110
 100110001
 100011100
 100110001
 000101101 => 10101000 reverse order 8 bit

CRCMaxim($CA) = %10101000 = $B4 = 180
CRCMaxim($C2BC) = %10101000 = $B4 = 180

Page 381of 484

E.2.5.4 Example 4 $7778797A

a) CRC($7778) = CRC(CRC($77) Ꚛ $78)

CRC($77) Ꚛ $78 = $7B Ꚛ $78 = 01111011
 01111000
 00000011 =$03
CRC($7778) = CRC($03) = $E2 =226

b) CRC($777879) = CRC(CRC($7778) Ꚛ $79)

CRC($7778) Ꚛ $79 = $E2 Ꚛ $79 = 11100010
 01111001
 10011011 =$9B
CRC($777879) = CRC($9B) = $31 = 49

c) CRC($7778797A) = CRC(CRC($777879) Ꚛ $7A)

CRC($777879) Ꚛ $7A = $31 Ꚛ $7A = 00110001
 01111010
 01001011 =$4B
CRC($7778797A) = CRC($4B) = $66 = 102

Page 382of 484

E.2.6) Example CRC Calculator (source Chris Gadd)
{E.2.6.1_Example_CRC_Calculator}
{{
 CRC calculator
}}
CON
 _CLKFREQ = 20_000_000

VAR
 long ptr
DAT
 ' Family code CRC
 ' │ ┌─Serial number┐ │

ds1822_1 byte "22_B6_1B_3F_00_00_00_FE",$00
ds1822_2 byte "22_5A_0F_3F_00_00_00_C9",$00

test_data byte "77_78_79_7A",$00
PUB main() | poly, crc

 debug(" ")
 debug("The find_poly method is used to find the polynomial used to create a CRC")
 find_poly(@ds1822_2)
 crc := get_crc(@ds1822_2,$8C)
 debug(" ")
 debug("The get_crc method is used to verify a valid message: ")
 debug(uhex_byte(crc))

 debug(" ")
 debug("Test_data does not contain a valid CRC, and no eight-bit polynomial is able to match the
existing bytes")
 find_poly(@test_data)

 debug(" ")
 debug("A CRC can be found using the get_crc method")
 crc := get_crc(@test_data,$8C)
 debug(uhex_byte(crc))

 debug(" ")
 debug("Appending this value to test_data results in a valid message")
' find_poly(string("77_78_79_7A_66"))
 crc := get_crc(string("77_78_79_7A_66"),$8C)
 debug(uhex_byte(crc))

PUB find_poly(strPtr) : result | poly, crc, data '' Use this method when you have a complete message
with CRC, but don't know the polynomial

Page 383of 484

 poly := %1000_0000 ' Initialize the polynomial
 repeat until poly == %1111_1111 ' Repeat for all possible 8-bit polynomials
 if (crc := get_crc(strPtr,poly)) == 0 ' A valid polynomial will result in crc being 0
 debug(uhex_byte(poly))
 result++
 poly += 1

 if result == 0
 debug("None found")

PUB get_crc(strPtr,poly) : crc | data '' Use this method to find or verify a CRC
 ptr := strPtr
 repeat until (data := get_byte()) == -1 ' read all data bytes from string
 repeat 8 ' repeat for all bits in each byte
 if crc & 1 <> data & 1 ' if lsb of crc not equal to lsb of data
 crc >>= 1 ' shift crc right one
 crc ^= poly ' xor crc with polynomial
 else ' otherwise
 crc >>= 1 ' just shift crc without xor
 data >>= 1 ' put next bit of data into lsb (bytes are processed lsb 1st)

' debug(ubin_byte(crc)," ",ubin_byte(data))
' debug(" ")

PRI get_byte() : result | char ' Convert two ASCII characters into a byte, ignores
underscore, returns -1 if null-terminator detected
 repeat 2
 result <<= 4
 repeat until (char := byte[ptr++]) <> "_"
 if char == $00
 return -1
 case char
 "0".."9" : result |= char - "0"
 "A".."F" : result |= char - "A" + $0A
 "a".."f" : result |= char - "a" + $0A

Page 384of 484

E.2.7) Websites for CRC:
https://rndtool.info/CRC-step-by-step-calculator/ dividend/divisor steps

https://crccalc.com CRC Calculator different values

https://www.youtube.com/watch?v=izG7qT0EpBw provides overview of how CRC derived

https://quickbirdstudios.com/blog/validate-data-with-crc/ CRC8 polynomial generation droping bit

https://rndtool.info/CRC-step-by-step-calculator/
https://crccalc.com/
https://www.youtube.com/watch?v=izG7qT0EpBw
https://quickbirdstudios.com/blog/validate-data-with-crc/

Page 385of 484

Appendix “F” Hardware and Constants

F.1) Cog CPU
Each Cog CPU has a PC program Counter,

Each Cog CPU Has ALU Arithmetic Logic Unit

 ALU has a result register C Carry Flag or Z Zero Flag

Each Cog CPU Has a “Q” register with 2 associated flags that can be set with SetQ and SetQ2

 Q register has RDLONG\WRLONG to identify burts read/write to CogRam or LutRam

Each Cog CPU has AUGSx registers. For augmenting source field S (9 bit field +23 bits)

Each Cog CPU has AUGDx register. For augmenting destination D 9 bit field + 23 bits)

Note: It would be useful to have block diagram of the Cog CPU

Page 386of 484

F.2) Hardware Register

Variables

(all LONG)

Variable

Name

Address

or

Offset

Description Useful

in

Spin2

Useful

in

Spin2-

PASM

Useful

in

PASM-

Only

Hub

Locations

CLKMODE

CLKFREQ

$00040

$00044

Clock mode value

Clock frequency value

Yes

Yes

Yes

Yes

No

No

Hub VAR VARBASE +0 Object base pointer,

@VARBASE is VAR base, used

by method-pointer calls

Maybe No No

Cog
Registers

PR0
PR1
PR2
PR3
PR4
PR5
PR6
PR7

IJMP3
IRET3
IJMP2
IRET2
IJMP1
IRET1

PA
PB
PTRA
PTRB

DIRA
DIRB
OUTA
OUTB
INA
INB

$1D8
$1D9
$1DA
$1DB
$1DC
$1DD
$1DE
$1DF

$1F0
$1F1
$1F2
$1F3
$1F4
$1F5

$1F6
$1F7
$1F8
$1F9

$1FA
$1FB
$1FC
$1FD
$1FE
$1FF

Spin2 <-> PASM
communication

Interrupt JMP's and RET's

Pointer registers
Data pointer passed from
COGINIT
Code pointer passed from
COGINIT

Output enables for P31..P0
Output enables for P63..P32
Output states for P31..P0
Output states for P63..P32
Input states from P31..P0
Input states from P63..P32

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No

No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Page 387of 484

F.3) HUB Memory
Hub Memory is located in (and managed by) the Hub and is accessible to each cog, in a time-shared,

round-robin fashion. It consists of Hub RAM and Hub ROM.

Hub RAM is 512 KB, accessible as bytes, words, and longs. It holds your program, data, global variables,

and stack space, which collectively make up your Propeller Application. Hub RAM is also used to share

information between cogs or process larger blocks of data than will fit into Cog RAM.

The Hub ROM is 16 KB and holds read-only system resources such as the Boot Loader. It is loaded into

the last 16 KB of Hub RAM upon boot-up.

F.4) HUB Memory Spin2 Stack.

The Spin Interpreter implements a call stack to facilitate Spin method calling, parameter passing,

expression evaluation, and returning method results.

The Propeller Application (if Spin2-based) has an automatically allocated stack located in Hub RAM

immediately following the application's global variable memory. It expands and collapses as needed;

growing towards higher addresses and shrinking towards lower addresses.

Spin methods that are manually launched into other cogs store their stack starting at the StkAddr

address given by the COGSPIN command that launched them (usually inside a long array in variable

space). Their stacks expand and contract in the same manner as with the Propeller Application stack. In

both cases, the capacity of the stack (method nesting-depth, parameter list length, expression

complexity, and return result length) is limited only by the amount of free memory available (for the

application) or memory provided (by the developer).

F.5) DAT Blocks
DAT block symbols exist in Hub RAM, but if they are part of PASM2 code that is launched, they are also

in Cog RAM where they are manipulated independently.

The DAT block itself is stored in the application image in Hub RAM. Spin2-based references to DAT

symbols access the corresponding location and data in Hub RAM.

When a cog is launched with assembly code, any DAT symbols within 504 longs of the launch point are

copied into Register RAM. Unlike with Spin2 code, PASM2 code that references those symbols accesses

the corresponding Register RAM* locations (its local copy) instead of Hub RAM. In addition, those

symbolic references are addressed as longs of Register RAM memory, regardless of how the symbol was

actually declared.

Page 388of 484

* Or Lookup RAM, if the code launched into Register RAM manually loads PASM2+symbol code into, and

executes code from, Lookup RAM.

The DAT block's purpose is to hold fixed data and Propeller 2 Assembly code for the application. Symbols

may be included to reference this data and code.

DAT blocks are stored in the application image in Hub RAM. Just like with code in PUB and PRI blocks,

there is only one instance of each DAT block in the running application, regardless of how many

instances of the containing object there are. This means that Spin-based references to DAT symbols

each access the same corresponding location and data in Hub RAM, regardless of which instance of that

object is making the reference. This is handy to share memory between multiple instances of a Spin2

object.

When a cog is launched with assembly code, any DAT symbols within 504 longs of the launch point are

copied into Register RAM. Unlike with Spin2 code, PASM2 code that references those symbols accesses

the corresponding Register RAM* locations (its local copy) instead of Hub RAM. In addition, those

symbolic references are addressed as longs of Register RAM memory, regardless of how the symbol was

actually declared. In PASM2, no Hub RAM references can be made by simply using the declared symbolic

name; instead, the absolute address of that symbol must be passed from the Spin2 object and used

along with instructions like RDLONG and WRLONG.

There's nothing preventing the contents of DAT from being modified at runtime. This naturally leads to a

special use–; "special values" may be defined in a DAT block that are easily referenced by every Spin2

object instance (and every new launch of PASM2 code) and can be modified at runtime to instantly

change what each Spin2 instance (and future new PASM2 launched cogs) sees.

* Or Lookup RAM locations, if symbolic data were initially loaded in by the code running in Register

RAM.

Page 389of 484

F.6) Propeller Electrical Specifications
Absolute Maximum Electrical Ratings Stresses in excess of the absolute maximum ratings can cause

permanent damage to the device. These are absolute stress ratings only. Functional operation of the

device is not implied at these or any other conditions in excess of those given. Exposure to absolute

maximum ratings for extended periods can adversely affect device reliability.

F.7) Built In Numeric Constants

Symbol Value Symbol Name Details

$0000_0000 FALSE Same as 0

$FFFF_FFFF TRUE Same as -1

$8000_0000 NEGX Negative-extreme integer, -2_147_483_648 ($8000_0000)

$7FFF_FFFF POSX Positive-extreme integer, +2_147_483_647 ($7FFF_FFFF)

$4049_0FDB PI Single-precision floating-point value of Pi, 3.14159265

Page 390of 484

Appendix “G” Table of Operators
Operators

Below is a table of all the operators available for use in Spin2 methods. Compile-time expressions can

use the unary, binary, ternary and float operators.

Page 391of 484

Page 392of 484

Page 393of 484

Appendix “H” Table of Built In Methods

Page 394of 484

Page 395of 484

Page 396of 484

Appendix “I” Hub Operation

 I.1) Hub RAM
The globally-accessible Hub RAM can be read and written as bytes, words, and longs, in little-endian

format. Specifically, little-endian is when the least significant bytes are stored before the more

significant bytes, and big-endian is when the most significant bytes are stored before the less significant

bytes.Hub addresses are always byte-oriented.

 There are no special alignment rules for words and longs in Hub RAM. Cogs can read and write bytes,

words, and longs starting at any hub address, as well as execute PASM2 instructions (longs) from any

hub address starting at $400. The last 16 KB of Hub RAM is normally addressable at both its normal

address range, as well as at $FC000..$FFFFF. This provides a stable address space (regardless of future

Propeller 2 variations) for the 16 KB of internal ROM which gets cached into the last 16 KB of Hub RAM

on startup.

This upper 16 KB mapping is also used by the cog debugging scheme. The last 16 KB of RAM can be

hidden from its normal address range and made read-only at $FC000..$FFFFF. This is useful for making

the last 16 KB of RAM persistent, like ROM. It is also how debugging is realized, as the RAM mapped to

$FC000..$FFFFF can still be written to while executing code from within debug interrupt service

routines, permitting the otherwise-protected RAM to be used as debugger-application space and cog-

register swap buffers for debug interrupts.

 Cog-to-Hub RAM Interface Hub RAM consists of 32-bit-wide single-port RAMs with byte-level write

controls. This RAM is split into slices (one per cog) that are multiplexed among all cogs. On the Propeller

2 (P2X8C4M64P), each RAM slice holds every 8th long in the composite Hub RAM. Upon every clock

cycle, each cog can access the "next" RAM slice, allowing for continuous bidirectional streaming of

sequential Hub RAM longs.

The Hub RAM Interface diagram illustrates this process conceptually as the collective of RAM slices

rotates around, each facing a new cog every clock cycle. When a cog wants to read or write the Hub

RAM, it must wait up to #cogs-1 clocks to access the initial RAM slice of interest. Once that occurs,

subsequent locations (slices) can be accessed on every clock, thereafter, for continuous reading or

writing of 32-bit longs. Normally, if the cog chooses not to access the next available location upon the

next clock, it must once again wait up to 7 clocks to re-align with the desired slice.

However, each cog has an optional hub FIFO interface that smooths out data flow for less than 32-bits-

per-clock access. This hub FIFO interface can be set for hub-RAM-read or hub-RAM-write operation to

allow Hub RAM to be either sequentially read or sequentially written in any combination of bytes,

words, or longs, at any rate, up to one long per clock. Regardless of the transfer frequency or the word

size, the FIFO will ensure that the cog's reads or writes are all properly conducted from/to the

composite Hub RAM.

Page 397of 484

1.2) COG HUB Access

Cogs can access Hub RAM either via the sequential FIFO interface, or by waiting for RAM slices of

interest, while yielding to the FIFO. If the FIFO is not busy (which is soon the case if data is not being

read from or written to it) random accesses will have full opportunity to access the composite Hub RAM.

There are three ways the hub FIFO interface can be used, and it can only be used for one of these at a

time:

● Hub execution (when the PC is $00400..$FFFFF)

● Streamer usage (background transfers from Hub RAM → pins/DACs, or from pins/ADCs → Hub RAM)

● Software usage (fast sequential-reading or sequential-writing instructions)

For streamer or software usage, FIFO operation must be established by a RDFAST or WRFAST instruction

executed from Cog RAM (Register/Lookup, $00000..$003FF). After that, and while remaining in Cog

RAM, the streamer can be enabled to begin moving data in the background, or the two-clock

RFxxxx/WFxxxx instructions can be used to manually read and write sequential data.

The FIFO contains (#cogs+11) stages. When in read mode, the FIFO loads continuously whenever less

than (#cogs+7) stages are filled, after which point, up to 5 more longs may stream in, potentially filling

all stages. These metrics ensure that the FIFO never underflows, under all potential reading scenarios.

Page 398of 484

1.3) HUB RAM Slice

The hub is made of 8 contiguously-mapped blocks of 16K longs (4 bytes, 2 words, or 32 bits wide). Each
cog can access the next block on each clock, so that after 8 clocks the same block is again accessible. This
allows for an ever-ascending address sequence fo reading and writing longs on each clock, for each cog.
Addressing is arranged so that the lowest 2 bits of address can select a byte within a block's long, the
next higher 3 bits account for the block number, and the remaining upper 15 bits are fed to the address
bus of each block. This makes a total of 20 bits, which allows for 1MB of hub address space (assuming
32K-long blocks), although the current P2 only implements 512KB, hence the use of 16k-long blocks.

Here is the block sequence, in terms of hub address, that each cog can hop onto and off of for
contiguous long reading and writing:

%xxxx_xxxx_xxxx_xxx0_00xx
%xxxx_xxxx_xxxx_xxx0_01xx
%xxxx_xxxx_xxxx_xxx0_10xx
%xxxx_xxxx_xxxx_xxx0_11xx
%xxxx_xxxx_xxxx_xxx1_00xx
%xxxx_xxxx_xxxx_xxx1_01xx
%xxxx_xxxx_xxxx_xxx1_10xx
%xxxx_xxxx_xxxx_xxx1_11xx
<repeat>

On hub RAM implementations of less than the full 1MB, the last 16KB of hub RAM is normally
addressable at both its normal address range, as well as at $FC000..$FFFFF. This provides a stable
address space for the 16KB of internal ROM which gets cached into the last 16KB of hub RAM on
startup. This upper 16KB mapping is also used by the cog debugging scheme.

The last 16KB of RAM can be hidden from its normal address range and made read-only at
$FC000..$FFFFF. This is useful for making the last 16KB of RAM persistent, like ROM. It is also how
debugging is realized, as the RAM mapped to $FC000..$FFFFF can still be written to from within debug
interrupt service routines, permitting the otherwise-protected RAM to be used as debugger-application
space and cog-register swap buffers for debug interrupts.

Page 399of 484

THE "EGG BEATER" HUB RAM INTERFACE

Hub RAM is comprised of 32-bit-wide single-port RAMs with byte-level write controls. For each cog,
there is one of these RAMs, but it is multiplexed among all cogs. Let's call these separate RAMs "slices".
Each RAM slice holds every single/2nd/4th/8th/16th (depending on number of cogs) set of 4 bytes in the
composite hub RAM. At every clock, each cog can access the "next" RAM slice, allowing for
continuously-ascending bidirectional streaming of 32 bits per clock between the composite hub RAM
and each cog.

When a cog wants to read or write the hub RAM, it must wait up to #cogs-1 clocks to access the initial
RAM slice of interest. Once that occurs, subsequent slices can be accessed on every clock, thereafter, for
continuous reading or writing of 32-bit longs.

To smooth out data flow for less than 32-bits-per-clock between hub RAM and the cog, each cog has a
hub FIFO interface which can be set for hub-RAM-read or hub-RAM-write operation. This FIFO interface
allows hub RAM to be either sequentially read or sequentially written in any combination of bytes,
words, or longs, at any rate, up to one long per clock. No matter the transfer frequency or the word size,
the FIFO will ensure that the cog's reads or writes are all properly conducted from or to the composite
hub RAM.

Cogs can access hub RAM either via the sequential FIFO interface, or by waiting for RAM slices of
interest, while yielding to the FIFO. If the FIFO is not busy, which is soon the case if data is not being
read from or written to it, random accesses will have full opportunity to access the composite hub RAM.

There are three ways the hub FIFO interface can be used, and it can only be used for one of these, at a
time:

 Hub execution (when the PC is $00400..$FFFFF)
 Streamer usage (background transfers from hub RAM → pins/DACs, or from pins → hub RAM)
 Software usage (fast sequential-reading or sequential-writing instructions)

For hub execution, FIFO operation is established automatically upon a branch to $00400+. For as long as
the PC remains at $00400+, the FIFO will be used to feed instructions to the cog and it cannot be used
for anything else.

For streamer or software usage, FIFO operation must be established by a RDFAST or WRFAST instruction
executed from cog register RAM ($00000..$001FF) or cog lookup RAM ($00200..$003FF). After that, and
while remaining in cog register or cog lookup RAM, the streamer can be enabled to begin moving data in
the background, or the two-clock RFxxxx/WFxxxx instructions can be used to manually read and write
sequential data.

Page 400of 484

USING THE HUB RAM FIFO INTERFACE FOR FAST SEQUENTIAL ACCESS

To configure the hub FIFO interface for streamer or software usage, use the RDFAST and WRFAST
instructions. These instructions establish read or write operation, the hub start address, and the block
count. The block count determines how many 64-byte blocks will be read or written before wrapping to
the original start address and reloading the original block count. If you intend to use wrapping, your hub
start address must be long-aligned (address ends in %00), since there won't be an extra cycle in which to
read/write a portion of a long in an extra hub RAM slice. In cases where you don't want wrapping, just
use 0 for the block count, so that wrapping won't occur until the entire 1MB hub map is sequenced
through.

The FBLOCK instruction provides a way to set a new start address and a new 64-byte block count for
when the current blocks are fully read or written and the FIFO interface would have otherwise wrapped
back to the prior start address and reloaded the prior block count. FBLOCK can be executed after
RDFAST, WRFAST, or a FIFO block wrap event. Coordinating FBLOCK instructions with streamer-FIFO
activity enables dynamic and seamless streaming between hub RAM and pins/DACs.

Here are the RDFAST, WRFAST, and FBLOCK instructions:

EEEE 1100011 1LI DDDDDDDDD SSSSSSSSS RDFAST D/#,S/#
EEEE 1100100 0LI DDDDDDDDD SSSSSSSSS WRFAST D/#,S/#
EEEE 1100100 1LI DDDDDDDDD SSSSSSSSS FBLOCK D/#,S/#

For these instructions, the D/# operand provides the block count, while the S/# operand provides the
hub RAM start address:

 D/# %xxxx_xxxx_xxxx_xxxx_xx00_0000_0000_0000 = block count for limited r/w
 %xxxx_xxxx_xxxx_xxxx_xxBB_BBBB_BBBB_BBBB = block count for wrapping
 S/# %xxxx_xxxx_xxxx_AAAA_AAAA_AAAA_AAAA_AAAA = start address for limited r/w
 %xxxx_xxxx_xxxx_AAAA_AAAA_AAAA_AAAA_AA00 = start address for wrapping

RDFAST and WRFAST each have two modes of operation.

If D[31] = 0, RDFAST/WRFAST will wait for any previous WRFAST to finish and then reconfigure
the hub FIFO interface for reading or writing. In the case of RDFAST, it will additionally wait until
the FIFO has begun receiving hub data, so that it can start being used in the next instruction.
If D[31] = 1, RDFAST/WRFAST will not wait for FIFO reconfiguration, taking only two clocks. In
this case, your code must allow a sufficient number of clocks before any attempt is made to read
or write FIFO data.

FBLOCK doesn't need to wait for anything, so it always takes two clocks.

Page 401of 484

Once RDFAST has been used to configure the hub FIFO interface for reading, you can enable the
streamer for any hub-reading modes or use the following instructions to manually read sequential data
from the hub:

EEEE 1101011 CZ0 DDDDDDDDD 000010000 RFBYTE D {WC/WZ/WCZ}
EEEE 1101011 CZ0 DDDDDDDDD 000010001 RFWORD D {WC/WZ/WCZ}
EEEE 1101011 CZ0 DDDDDDDDD 000010010 RFLONG D {WC/WZ/WCZ}
EEEE 1101011 CZ0 DDDDDDDDD 000010011 RFVAR D {WC/WZ/WCZ}
EEEE 1101011 CZ0 DDDDDDDDD 000010100 RFVARS D {WC/WZ/WCZ}

These instructions all take 2 clocks and read bytes, words, longs, and variable-length data from the hub
into D, via the hub FIFO interface.

If WC is expressed, the MSB of the byte, word, long, or variable-length data will be written to C.

If WZ is expressed, Z will be set if the data read from the hub equaled zero, otherwise Z will be cleared.

RFVAR and RFVARS read 1..4 bytes of data, depending upon the MSB of the first byte, and then
subsequent bytes, waiting in the FIFO. While RFVAR returns zero-extended data, RFVARS returns sign-
extended data. This mechanism is intended to provide a fast and memory-efficient means for bytecode
interpreters to read numerical constants and offset addresses that were assembled at compile-time for
efficient reading during run-time.

This table shows the relationship between upcoming bytes in the FIFO and what RFVAR and RFVARS will
return:

FIFO
1st Byte

FIFO
2nd Byte

FIFO
3rd Byte

FIFO
4th Byte

RFVAR Returns
 RFVARS Returns

%0SAAAAAA - - - %00000000_00000000_00000000_0SAAAAAA
%SSSSSSSS_SSSSSSSS_SSSSSSSS_SSAAAAAA

%1AAAAAAA %0SBBBBBB - - %00000000_00000000_00SBBBBB_BAAAAAAA
%SSSSSSSS_SSSSSSSS_SSSBBBBB_BAAAAAAA

%1AAAAAAA %1BBBBBBB %0SCCCCCC - %00000000_000SCCCC_CCBBBBBB_BAAAAAAA
%SSSSSSSS_SSSSCCCC_CCBBBBBB_BAAAAAAA

%1AAAAAAA %1BBBBBBB %1CCCCCCC %SDDDDDDD %000SDDDD_DDDCCCCC_CCBBBBBB_BAAAAAAA
%SSSSDDDD_DDDCCCCC_CCBBBBBB_BAAAAAAA

Page 402of 484

Once WRFAST has been used to configure the hub FIFO interface for writing, you can enable the streamer for any
hub-writing modes or use the following instructions to manually write sequential data:

EEEE 1101011 00L DDDDDDDDD 000010101 WFBYTE D/#
EEEE 1101011 00L DDDDDDDDD 000010110 WFWORD D/#
EEEE 1101011 00L DDDDDDDDD 000010111 WFLONG D/#

These instructions all take 2 clocks and write byte, word, or long data in D into the hub via the hub FIFO
interface.

If a cog has been writing to the hub via WRFAST, and it wants to immediately COGSTOP itself, a 'WAITX
#20' should be executed first, in order to allow time for any lingering FIFO data to be written to the hub.

RANDOMLY ACCESSING HUB RAM

Here are the random-access hub RAM read instructions:

EEEE 1010110 CZI DDDDDDDDD SSSSSSSSS RDBYTE D,S/#/PTRx {WC/WZ/WCZ}
EEEE 1010111 CZI DDDDDDDDD SSSSSSSSS RDWORD D,S/#/PTRx {WC/WZ/WCZ}
EEEE 1011000 CZI DDDDDDDDD SSSSSSSSS RDLONG D,S/#/PTRx {WC/WZ/WCZ}

For these instructions, the D operand is the register which will receive the data read from the hub.

The S/#/PTRx operand supplies the hub address to read from.

If WC is expressed, the MSB of the byte, word, or long read from the hub will be written to C.

If WZ is expressed, Z will be set if the data read from the hub equaled zero, otherwise Z will be cleared.

Here are the random-access hub RAM write instructions:

EEEE 1100010 0LI DDDDDDDDD SSSSSSSSS WRBYTE D/#,S/#/PTRx
EEEE 1100010 1LI DDDDDDDDD SSSSSSSSS WRWORD D/#,S/#/PTRx
EEEE 1100011 0LI DDDDDDDDD SSSSSSSSS WRLONG D/#,S/#/PTRx
EEEE 1010011 11I DDDDDDDDD SSSSSSSSS WMLONG D,S/#/PTRx

For these instructions, the D/# operand supplies the data to be written to the hub.
The S/#/PTRx operand supplies the hub address to write to.

Page 403of 484

WMLONG writes longs, like WRLONG; however, it does not write any byte fields whose data are $00.
This is intended for things like sprite overlays, where $00 byte data represent transparent pixels.
In the case of the 'S/#/PTRx' operand used by RDBYTE, RDWORD, RDLONG, WRBYTE, WRWORD,
WRLONG, and WMLONG, there are five ways to express a hub address:

 $000..$1FF - register whose 20 LSBs will be used as the hub address
 #$00..$FF - 8-bit immediate hub address
 ##$00000..$FFFFF - 20-bit immediate hub address (invokes AUGS)
 PTRx {[index5]} - PTR expression with optional modifier and 5-bit scaled index (#$100..$1FF)
 PTRx {[##index20]} - PTR expression with 20bit unscaled index and optional modifier (invokes AUGS)
 (##$800000..$FFFFFF)

If AUGS is used to augment the #S value to 32 bits, the #S value will be interpreted differently:

 #%0AAAAAAAA - No AUGS, 8-bit immediate address
 #%1SUPNNNNN - No AUGS, PTRx expression with 5-bit scaled index
 ##%000000000000AAAAAAAAAAA_AAAAAAAAA - AUGS, 20-bit immediate address
 ##%000000001SUPNNNNNNNNNNN_NNNNNNNNN - AUGS, PTRx expression with 20-bit unscaled index

PTRx expressions without AUGS:
 INDEX = -16..+15 for simple offsets, 0..15 for ++'s, or 0..16 for --'s
 SCALE = 1 for RDBYTE/WRBYTE, 2 for RDWORD/WRWORD, 4 for RDLONG/WRLONG/WMLONG
 S = 0 for PTRA, 1 for PTRB
 U = 0 to keep PTRx same, 1 to update PTRx (PTRx += INDEX*SCALE)
 P = 0 to use PTRx + INDEX*SCALE, 1 to use PTRx (post-modify)
 NNNNN = INDEX
 nnnnn = -INDEX
 1SUPNNNNN PTR expression
 --
 100000000 PTRA 'use PTRA
 110000000 PTRB 'use PTRB
 101100001 PTRA++ 'use PTRA, PTRA += SCALE
 111100001 PTRB++ 'use PTRB, PTRB += SCALE
 101111111 PTRA-- 'use PTRA, PTRA -= SCALE
 111111111 PTRB-- 'use PTRB, PTRB -= SCALE
 101000001 ++PTRA 'use PTRA + SCALE, PTRA += SCALE
 111000001 ++PTRB 'use PTRB + SCALE, PTRB += SCALE
 101011111 --PTRA 'use PTRA - SCALE, PTRA -= SCALE
 111011111 --PTRB 'use PTRB - SCALE, PTRB -= SCALE
 1000NNNNN PTRA[INDEX] 'use PTRA + INDEX*SCALE
 1100NNNNN PTRB[INDEX] 'use PTRB + INDEX*SCALE
 1011NNNNN PTRA++[INDEX] 'use PTRA, PTRA += INDEX*SCALE
 1111NNNNN PTRB++[INDEX] 'use PTRB, PTRB += INDEX*SCALE
 1011nnnnn PTRA--[INDEX] 'use PTRA, PTRA -= INDEX*SCALE
 1111nnnnn PTRB--[INDEX] 'use PTRB, PTRB -= INDEX*SCALE
 1010NNNNN ++PTRA[INDEX] 'use PTRA + INDEX*SCALE, PTRA += INDEX*SCALE
 1110NNNNN ++PTRB[INDEX] 'use PTRB + INDEX*SCALE, PTRB += INDEX*SCALE
 1010nnnnn --PTRA[INDEX] 'use PTRA - INDEX*SCALE, PTRA -= INDEX*SCALE
 1110nnnnn --PTRB[INDEX] 'use PTRB - INDEX*SCALE, PTRB -= INDEX*SCALE

Page 404of 484

Examples:

Read byte at PTRA into D

 1111 1010110 001 DDDDDDDDD 100000000 RDBYTE D,PTRA

Write lower word in D to PTRB - 7*2

 1111 1100010 101 DDDDDDDDD 110011001 WRWORD D,PTRB[-7]

Write long value 10 at PTRB, PTRB += 1*4

 1111 1100011 011 000001010 111100001 WRLONG #10,PTRB++

Read word at PTRA into D, PTRA -= 1*2

 1111 1010111 001 DDDDDDDDD 101111111 RDWORD D,PTRA--

Write lower byte in D at PTRA - 1*1, PTRA -= 1*1

 1111 1100010 001 DDDDDDDDD 101011111 WRBYTE D,--PTRA

Read long at PTRB + 10*4 into D, PTRB += 10*4

 1111 1011000 001 DDDDDDDDD 111001010 RDLONG D,++PTRB[10]

Write lower byte in D to PTRA, PTRA += 15*1

 1111 1100010 001 DDDDDDDDD 101101111 WRBYTE D,PTRA++[15]

Page 405of 484

PTRx expressions with AUGS:

If "##" is used before the index value in a PTRx expression, the assembler will automatically insert an
AUGS instruction and assemble the 20-bit index instruction pair:

 RDBYTE D,++PTRB[##$12345]

...becomes...

 1111 1111000 000 000111000 010010001 AUGS #$00E12345
 1111 1010110 001 DDDDDDDDD 101000101 RDBYTE D,#$00E12345 & $1FF

FAST BLOCK MOVES

By preceding RDLONG with either SETQ or SETQ2, multiple hub RAM longs can be read into either cog
register RAM or cog lookup RAM. This transfer happens at the rate of one long per clock, assuming the
hub FIFO interface is not accessing the same hub RAM slice as RDLONG, on the same cycle. If
WC/WZ/WCZ are used with RDLONG, the flags will be set according to the last long read in the
sequence.

Use SETQ+RDLONG to read multiple hub longs into cog register RAM:
 SETQ #x 'x = number of longs, minus 1, to read
 RDLONG first_reg,S/#/PTRx 'read x+1 longs starting at first_reg
Use SETQ2+RDLONG to read multiple hub longs into cog lookup RAM:
 SETQ2 #x 'x = number of longs, minus 1, to read
 RDLONG first_lut,S/#/PTRx 'read x+1 longs starting at first_lut
Similarly, WRLONG and WMLONG can be preceded by either SETQ or SETQ2 to write either multiple
register RAM longs or lookup RAM longs into hub RAM.
Use SETQ+WRLONG to write multiple register RAM longs into hub RAM:
 SETQ #x 'x = number of longs, minus 1, to write
 WRLONG first_reg,S/#/PTRx 'write x+1 longs starting at first_reg
Use SETQ2+WRLONG to write multiple lookup RAM longs into hub RAM:
 SETQ2 #x 'x = number of longs, minus 1, to write
 WRLONG first_lut,S/#/PTRx 'write x+1 longs starting at first_lut
Note that the above two examples apply to WMLONG, as well.
Because these block moves yield to the hub FIFO interface, they can be used during hub execution.
Note that a PTRx expression will not be scaled by the block size in the RDLONG/WRLONG/WMLONG
instruction follows the SETQ/SETQ2 instruction, but will remain single-long scaled.

Page 406of 484

Appendix “J” System Clock
The system clock is the time base for all internal components and can be configured in several ways.

● Direct from internal slow clock (RCSLOW); a ~20 kHz oscillator is intended for low-power operation
● Direct from internal fast clock (RCFAST); a 20 MHz+ oscillator designed for minimum 20 MHz operation
● Direct from XI pin; driven externally via a clock oscillator or a crystal oscillator
● PLL-modified XI pin; driven externally via a clock oscillator or a crystal oscillator and the signal
internally modified by the PLL (phase-locked loop), usually to multiple to a much higher frequency

The system clock is configured by the running Propeller 2 application using the HUBSET instruction in

this format:

HUBSET ##%0000_000E_DDDD_DDMM_MMMM_MMMM_PPPP_CCSS 'set clock mode

The bit fields (E, D, M, P, C, and S) are described in the following tables.

Page 407of 484

WARNING: Incorrectly switching away from the PLL setting (%SS = %11) can cause a glitch which will

hang the clock circuit. In order to safely switch, always start by switching to an internal oscillator using

either HUBSET #$F0 (for RCFAST) or HUBSET #$F1 (for RCSLOW).

 PLL Example The PLL divides the XI pin frequency from 1 to 64, then multiplies the resulting frequency

from 1 to 1024 in the VCO. The VCO frequency can be used directly, or divided by 2, 4, 6, ...30, to get the

final PLL clock frequency which can be used as the system clock.

 The PLL's VCO is designed to run between 100 MHz and 200 MHz and should be kept within that range.

Let's say you have a 20 MHz crystal attached to XI and XO and you want to run the Prop2 at 148.5 MHz.

You could divide the crystal by 40 (%DDDDDD = 39) to get a 500 kHz reference, then multiply that by 297

(%MMMMMMMMMM = 296) in the VCO to get 148.5 MHz. You would set %PPPP to %1111 to use the

VCO output directly. The configuration value would be %1_100111_0100101000_1111_10_11. The last

two 2-bit fields select 15 pf crystal mode and the PLL. In order to realize this clock setting, though, it

must be done over a few steps:

Page 408of 484

The clock selector controlled by the %SS bits has a deglitching circuit which waits for a positive edge on

the old clock source before disengaging, holding its output high, and then waiting for a positive edge on

the new clock source before switching over to it. It is necessary to select mode %00 or %01 while waiting

for the crystal and/or PLL to settle into operation, before switching over to either.

Page 409of 484

Appendix “K” Locks (HUB Cog Memory Access)
Locks For application-defined cog coordination, the hub provides a pool of 16 semaphore bits, called

locks. Cogs may use locks, for example, to manage exclusive access of a resource or to represent an

exclusive state, shared among multiple cogs. What a lock represents is completely up to the application

using it; they are a means allowing one cog at a time the exclusive status of 'owner' of a particular lock

ID. In order to be useful, all participant cogs must agree on a lock's ID and what purpose it serves. The

LOCK instructions are:

LOCKNEW D {WC}

LOCKRET {#}D

LOCKTRY {#}D {WC}

LOCKREL {#}D {WC}

Lock Usage In order to use a lock, one cog must first allocate a lock with LOCKNEW and communicate

that lock's ID with other cooperative cogs. Cooperative cogs then use LOCKTRY and LOCKREL to

respectively take or release ownership of the state which that lock represents. If the lock is no longer

needed by the application, it may be returned to the unallocated lock pool by executing LOCKRET. A cog

may allocate more than one lock.

At any time, a cog may attempt to own a lock (ie: the state that lock represents) by using LOCKTRY. The

Hub grants or denies ownership in response, ensuring that, at most, one cog owns the lock at any time.

If a cog is granted ownership, it can perform the task defined for that lock and then use LOCKRET to

release ownership, allowing any other cog to attempt ownership. Only the cog that has taken ownership

of the lock can release it; however, a lock will also be implicitly released if the owner cog is stopped

(COGSTOP) or restarted (COGINIT).

Page 410of 484

Appendix “L” Cordic Solver(HUB contains “Co0rdinate RotationDigital

Computer”)
The Hub contains a 54-stage pipelined CORDIC solver (Coordinate Rotation Digital Computer) that can

compute the following functions for all cogs:

● 32 x 32 unsigned multiply with 64-bit product
● 64 / 32 unsigned divide with 32-bit quotient and 32-bit remainder
● Square root of 64-bit unsigned value with 32-bit result
● 32-bit signed (X, Y) rotation around (0, 0) by a 32-bit angle with 32-bit signed (X, Y) results
● 32-bit signed (X, Y) to 32-bit (length, angle) cartesian to polar operation
● 32-bit (length, angle) to 32-bit signed (X, Y) polar to cartesian operation
● 32-bit unsigned integer to 5:27-bit logarithm
● 5:27-bit logarithm to 32-bit unsigned integer

Each cog can issue one CORDIC instruction per its hub access window (which occurs once every eight

clocks) and retrieve the result 55 clocks later via the GETQX and GETQY instructions. For faster

throughput cogs can take advantage of the hub access window and CORDIC pipeline to issue a stream of

CORDIC instructions interleaved with retrieving corresponding results.

 Multiply Use the QMUL instruction to multiply two unsigned 32-bit numbers together and retrieve the

CORDIC results with the GETQX and GETQY instructions (for lower and upper long, respectively).

Divide Use the QDIV or QFRAC instruction (either with optional preceding SETQ instruction) to divide a

64-bit numerator by a 32-bit denominator, then retrieve the CORDIC results with the GETQX and GETQY

instructions (for quotient and remainder, respectively 18Square Root Use the QSQRT instruction on a

64-bit number and retrieve the square root CORDIC result with the GETQX instruction.

(X, Y) Rotation Use the SETQ instruction followed by the QROTATE instruction to rotate a 32-bit signed Y

and X point pair by an unsigned 32-bit angle and retrieve the CORDIC results with the GETQX and GETQY

instructions for X and Y, respectively.

(X, Y) to (length, angle) Use the QVECTOR instruction to convert a (X, Y) cartesian coordinate into

(length, angle) polar coordinate and retrieve the CORDIC results with the GETQX and GETQY instructions

(for length and angle, respectively).

 (length, angle) to (X, Y) Use the QROTATE instruction to convert a (length, angle) polar coordinate into

(X, Y) cartesian coordinate and retrieve the CORDIC results with the GETQX and GETQY instructions (for

X and Y, respectively).

 Logarithm Use the QLOG instruction on an unsigned 32-bit integer and retrieve the 5:27-bit logarithm

CORDIC result (5-bit exponent and 27-bit mantissa) with the GETQX instruction.

Exponent Use the QEXP instruction on a 5:27-bit logarithm and retrieve the unsigned 32-bit integer

CORDIC result with the GETQX instruction.

Page 411of 484

Multiply

Use the QMUL instruction to multiply two unsigned 32-bit numbers together and retrieve the CORDIC
result with the GETQX and GETQY instructions (for lower and upper long, respectively). QMUL will wait for
the hub access window and GETQX / GETQY will wait for the CORDIC results.

QMUL D/#,S/# - Multiply D by S

To get the results (these instructions wait for the CORDIC results):

 GETQX lower_long
 GETQY upper_long

Divide

Use the QDIV or QFRAC instruction (either with optional preceding SETQ instruction) to divide a 64-bit
numerator by a 32-bit denominator, then retrieve the CORDIC results with the GETQX and GETQY
instructions (for quotient and remainder, respectively). QDIV / QFRAC will wait for the hub access
window and GETQX / GETQY will wait for the CORDIC results.

 QDIV D/#,S,# - Divide {$00000000:D} by S
...or...
 SETQ Q/# - Set top part of numerator
 QDIV D/#,S,# - Divide {Q:D} by S
...or...
 QFRAC D/#,S,# - Divide {D:$00000000} by S
...or...
 SETQ Q/# - Set bottom part of numerator
 QFRAC D/#,S,# - Divide {D:Q} by S

...and to get the results:

 GETQX quotient
 GETQY remainder

Square Root

Use the QSQRT instruction on a 64-bit number and retrieve the square root CORDIC result with the
GETQX instruction. QSQRT will wait for the hub access window and GETQX will wait for the CORDIC
results.

QSQRT D/#,S,# - Compute square root of {S:D}
 GETQX root

Rotation

Use the SETQ instruction followed by the QROTATE instruction to rotate a 32-bit signed Y and X point
pair by an unsigned 32-bit angle and retrieve the CORDIC results with the GETQX and GETQY instructions
for X and Y, respectively. For the angle (in S), $00000000..$FFFFFFFF = 0..359.9999999
degrees. QROTATE will wait for the hub access window and GETQX / GETQY will wait for the CORDIC
results.

 SETQ Q/# - Set Y
 QROTATE D/#,S,# - Rotate (D,Q) by S
 GETQX X
 GETQY Y

Page 412of 484

Cartesian to Polar
Use the QVECTOR instruction to convert a (X, Y) cartesian coordinate into (length, angle) polar
coordinate and retrieve the CORDIC results with the GETQX and GETQY instructions (for length and
angle, respectively). QVECTOR will wait for the hub access window and GETQX / GETQY will wait for the
CORDIC results.

 QVECTOR D/#,S,# - (X=D,Y=S) cartesian into (length,angle) polar
 GETQX length
 GETQY angle

Polar to Cartesian

Use the QROTATE instruction to convert a (length, angle) polar coordinate into (X, Y) cartesian
coordinate and retrieve the CORDIC results with the GETQX and GETQY instructions (for X and Y,
respectively). For the angle (in S), $00000000..$FFFFFFFF = 0..359.9999999 degrees. QROTATE will
wait for the hub access window and GETQX / GETQY will wait for the CORDIC results.

 QROTATE D/#,S,# - Rotate (D,$00000000) by S
 GETQX X
 GETQY Y

Note this is just like an X,Y Rotation, but with Y set to 0 (by omitting the leading SETQ).

Integer to Logarithm

Use the QLOG instruction on an unsigned 32-bit integer and retrieve the 5:27-bit logarithm CORDIC result
(5-bit exponent and 27-bit mantissa) with the GETQX instruction. QLOG will wait for the hub access
window and GETQX will wait for the CORDIC results.

 QLOG D/# - Compute log base 2 of D
 GETQX logarithm

Logarithm to Integer
Use the QEXP instruction on a 5:27-bit logarithm and retrieve the unsigned 32-bit integer CORDIC result
with the GETQX instruction. QEXP will wait for the hub access window and GETQX will wait for the
CORDIC results.

 QEXP D/# - Compute 2 to the power of D
 GETQX integer

https://docs.google.com/document/d/1MzLdvV8c1CYtyF3HwI5PZyOBhlxJAD9MHPGZuCCLzCE/edit#heading=h.m9zo223xec2s

Page 413of 484

Appendix “M” Pixel Operations (DVI/HDMI)

M.0.1) DVI/HDMI

M.0.1.) DVI Digital Visual Interface is a video display interface developed by the Digital Display

Working Group (DDWG). The digital interface is used to connect a video source, such as a video

display controller, to a display device, such as a computer monitor. It was developed with the

intention of creating an industry standard for the transfer of digital video content.

This interface is designed to transmit uncompressed digital video and can be configured to support
multiple modes such as DVI-A (analog only), DVI-D (digital only) or DVI-I (digital and analog). Featuring
support for analog connections, the DVI specification is compatible with the VGA interface.[1] This
compatibility, along with other advantages, led to its widespread acceptance over competing digital
display standards Plug and Display (P&D) and Digital Flat Panel (DFP).[2] Although DVI is predominantly
associated with computers, it is sometimes used in other consumer electronics such as television
sets and DVD players.

M.0.2) HDMI High-Definition Multimedia Interface is a proprietary audio/video interface for

transmitting uncompressed video data and compressed or uncompressed digital audio data from

an HDMI-compliant source device, such as a display controller, to a compatible computer

monitor, video projector, digital television, or digital audio device.[4] HDMI is a digital replacement

for analog video standards.

HDMI implements the EIA/CEA-861 standards, which define video formats and waveforms, transport of
compressed and uncompressed LPCM audio, auxiliary data, and implementations of the VESA
EDID.[5][6]: p. III  CEA-861 signals carried by HDMI are electrically compatible with the CEA-861 signals used
by the Digital Visual Interface (DVI). No signal conversion is necessary, nor is there a loss of video quality
when a DVI-to-HDMI adapter is used.[6]: §C  The CEC (Consumer Electronics Control) capability allows
HDMI devices to control each other when necessary and allows the user to operate multiple devices
with one handheld remote control device.[6]: §6.3 

Several versions of HDMI have been developed and deployed since the initial release of the technology,
but all use the same cable and connector. Other than improved audio and video capacity, performance,
resolution and color spaces, newer versions have optional advanced features such as 3D, Ethernet data
connection, and CEC (Consumer Electronics Control) extensions.

Production of consumer HDMI products started in late 2003.[7] In Europe, either DVI-HDCP or HDMI is
included in the HD ready in-store labeling specification for TV sets for HDTV, formulated
by EICTA with SES Astra in 2005. HDMI began to appear on consumer HDTVs in 2004
and camcorders and digital still cameras in 2006.[8][9] As of January 6, 2015 (twelve years after the
release of the first HDMI specification), over 4 billion HDMI devices have been sold.[10]

"DVI is the accepted standard for transferring serially uncompressed data at high speeds between a PC

host and digital display such as an LCD monitor. DVI enables a video signal to be transferred from a PC

source to a digital display in its native digital form, simplifying the way PCs communicate with displays

and improving display image quality." — Digital Visual Interface and TMDS Extensions White Paper by

Silicon Image, Oct. 2004

https://en.wikipedia.org/wiki/Digital_Display_Working_Group
https://en.wikipedia.org/wiki/Digital_Display_Working_Group
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Video_display_controller
https://en.wikipedia.org/wiki/Video_display_controller
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Data_compression#Lossless
https://en.wikipedia.org/wiki/VGA
https://en.wikipedia.org/wiki/Digital_Visual_Interface#cite_note-2000_Press_Release-1
https://en.wikipedia.org/wiki/Plug_and_Display
https://en.wikipedia.org/wiki/VESA_Digital_Flat_Panel
https://en.wikipedia.org/wiki/Digital_Visual_Interface#cite_note-Competing_standards-2
https://en.wikipedia.org/wiki/Television_set
https://en.wikipedia.org/wiki/Television_set
https://en.wikipedia.org/wiki/DVD_player
https://en.wikipedia.org/wiki/Proprietary_hardware
https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Uncompressed_video
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/Display_controller
https://en.wikipedia.org/wiki/Visual_display_unit
https://en.wikipedia.org/wiki/Visual_display_unit
https://en.wikipedia.org/wiki/Video_projector
https://en.wikipedia.org/wiki/Digital_television
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/HDMI#cite_note-HDMIFAQ-4
https://en.wikipedia.org/wiki/Analog_video
https://en.wikipedia.org/wiki/CEA-861
https://en.wikipedia.org/wiki/Linear_pulse-code_modulation
https://en.wikipedia.org/wiki/Extended_display_identification_data
https://en.wikipedia.org/wiki/Extended_display_identification_data
https://en.wikipedia.org/wiki/HDMI#cite_note-5
https://en.wikipedia.org/wiki/HDMI#cite_note-HDMI1.3a-6
https://en.wikipedia.org/wiki/Digital_Visual_Interface
https://en.wikipedia.org/wiki/HDMI#cite_note-HDMI1.3a-6
https://en.wikipedia.org/wiki/Consumer_Electronics_Control
https://en.wikipedia.org/wiki/Remote_control
https://en.wikipedia.org/wiki/HDMI#cite_note-HDMI1.3a-6
https://en.wikipedia.org/wiki/3D_television
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/HDMI#cite_note-7
https://en.wikipedia.org/wiki/High-bandwidth_Digital_Content_Protection
https://en.wikipedia.org/wiki/HD_ready
https://en.wikipedia.org/wiki/European_Information,_Communications_and_Consumer_Electronics_Technology_Industry_Associations
https://en.wikipedia.org/wiki/SES_Astra
https://en.wikipedia.org/wiki/Consumer
https://en.wikipedia.org/wiki/HDTV
https://en.wikipedia.org/wiki/Camcorder
https://en.wikipedia.org/wiki/Digital_still_camera
https://en.wikipedia.org/wiki/HDMI#cite_note-8
https://en.wikipedia.org/wiki/HDMI#cite_note-9
https://en.wikipedia.org/wiki/HDMI#cite_note-HDMIwebsiteJanuary2013-10

Page 414of 484

M.0.3) TMDS stands for Transition Minimized Differential Signaling.
WHAT IS TMDS AND WHY IS IT IN MY HDMI?

One of the problems with transmitting digital signals over distances has always been the susceptibility of
those signals to noise, interference and signal loss. Digital transmissions are very low current, low
voltage signals, which make it easy for all these types of transmission gremlins to get in the midst of a
byte.

Remember, when we're talking about digital signal, we're talking about "ones" and "zeros." A one is
equal to 5 VDC (volts direct current) in most cases and a zero is equal to 0 VDC. Each one or zero is called
a "bit" and eight of them together are called a "byte" (it's possible to have longer bytes, but let's not
confuse the issue; most of them are eight bits).

One of the things that makes all digital systems work is the presence of a clock signal. This clock signal,
which is what is being referred to when your computer says it operates as 1.8 GHz (1.8 billion cycles per
second). This clock signal functions like the baton of the orchestra conductor, telling everyone when the
time is, or when they should play their notes.

The earliest attempt at getting rid of transmission gremlins, back in the stone age of computers, before
high-speed Internet access existed, was called parity checking. With parity checking, each 8-bit "byte"
had a parity bit added to the end of it. The number of "ones" in the byte was counted, and the "parity
bit" was made a one or a zero to make the whole byte have an even or odd number of ones (depending
upon whether they were using even
or odd parity).

If one of those transmission gremlins happened to get into a byte, it generally had to travel solo. The
odds of two of them managing to hop the train and get into the same byte was pretty darn slim. So, the
piece of hardware that was receiving the information would count the ones in the bytes received,
verifying that they were okay. If one came through wrong, such as an even number of ones in a byte
that was supposed to be odd parity, the receiving device would ask for that data to be sent again.

This system worked fine, as long as we were talking about a relatively low quantity of low speed
transmissions. However, the faster the transmissions have become and the greater amount of data that
is transmitted over those lines, the greater the need to insure that the data is accurate. When video
started being transmitted digitally, both the need and the difficulty of insuring the accuracy of that data
grew once again.

Transition Minimized Differential Signaling (TMDS) was developed by Silicon Image Inc. as a two-part
system to reduce the possibility of transmission gremlins in serial data, specifically video data sent by
serial connection. The system consists of two parts; a physical connectivity part and a software
algorithm that codes and decodes the information.

Page 415of 484

TMDS is the result of lots of very interesting theories being put together in the same place to accomplish
the same goal. Let me just briefly give you an idea of some of those theories:

 • It uses Differential Signaling - That means that the signal is sent over two separate lines, out of
phase with each other (the positive and negative reversed). When it gets to the other end, the signals
are merged back into one, eliminating any static gremlins, which won't have its corresponding out of
phase signal on the other line.

 • It travels over Twisted Pairs - Twisted pairs, rather than coaxial cables actually provide for lower
electrical interference. Any interference picked up at a point along the way (say from being too close to
an electrical power line) will only get onto one of the wires, allowing it to be eliminated by the
differential signaling I just mentioned.

 • Instead of having the signals compared to ground, as is done in most digital equipment, it
uses Low-Voltage Differential Signaling (LVDS). What that means is that the two signals are compared
to each other instead of to ground. By doing this, it really doesn't matter if some spurious noise or signal
gets onto one of the lines, making "ground" not really be ground; it's going to be compared to the other
anyway. The comparing circuitry is just going to look for differences between highs and lows.

 • The data being sent over the line should be DC balanced. This means that there should be as
many bits that are ones as there are zeroes. DC balancing reduces the "charge" (think battery) on the
line, which resists further changes from ones to zeroes.

 • At the same time that the data signal needs to be DC balanced, it also needs to be Transition
Minimized. This means that the number of transitions from one to zero is reduced, making the
likelihood of data loss by a transition being slow from the "ramp up" from zero to one.

To put all these theories to working together takes some very specific cable and connector design, along
with pretty fancy manipulation of the data by the algorithms that control the TMDS.

Let's Look at the Connectivity Requirements

When we're talking about digital video signals, we've got to realize that we're talking about massive
amounts of data being moved around. 1080p television resolution is actually 1,920 x 1080 pixels. That
means that the data for 2,073,600 individual pixels has to be transmitted for every screen shot. Since
television works at a rate of 30 "frames" (screen shots) per second, that makes for 62,208,000 pixels of
information that has to be transmitted every second. Oh, I almost forgot to mention, each pixel is more
than 1 byte of information.

Because of the massive amount of data included in these video signals, the three main color
components of video signals, red, green and blue, are broken out and sent separately. Each of these
signals is sent out over a shielded pair of twisted pair of wires, to lower the possibility of any
interference. So, between the clock signal and the three shielded pairs, that's 12 pins out of the 19 pin
HDMI connector.

Page 416of 484

What's the Algorithm Doing?

A computer algorithm is just a series of instructions for a computer to execute. It's not even a complete
computer program, but a piece of one. Any program on your computer, such as a word processing
program or a browser, is made up of thousands of algorithms, each of which is responsible for
performing one particular function. When you click a button on the toolbar, it tells the program which
algorithms to use to accomplish the function thatyou want.

The TMDS algorithm manipulates the data that is in the byte, with the goal of making it the most easily
transmitted and least likely to be damaged data possible. There are two stages of this process, each of
which the algorithm selects automatically. When transmitting data, TMDS adds two control bits (a one
or zero) to the data byte, making it a 10 bit byte. These two control bits tell the receiving piece of
equipment what manipulations were done to that particular byte, so that the algorithm can decode the
byte.

What the TMDS algorithm is attempting to accomplish with all this manipulation is to create a "perfect"
byte of information for transmission; or at least as close to perfect as possible. The theoretical ideal byte
would look like 11111111, followed by another byte that is 00000000. This creates data that is both
transition minimized and DC balanced.

The first stage of this process is the transition minimization. This is done by comparing the bits in the
byte to the first bit and determining if a logical XOR or logical XNOR operation would make the byte
have the least number of transitions.

 • Logical XOR = (exclusive or) one or the other, but not both is a one

 • Logical XNOR = (not exclusive or) putting it simply, it means both are one or zero; but is actually
the opposite of XOR, the "N" referring to 'not'

The second stage of this process is the DC balancing, which means that the entire byte may or may not
be inverted, to balance it with the byte before it.

Whether or not these two operations are accomplished is transmitted to the receiving piece of
equipment, or more accurately to the algorithm in that equipment by the two control bits that have
been added to the end of the byte.

Page 417of 484

All right, so what does all that complicated computer mumbo-jumbo mean to you? Really, all it means is
that TMDS is an incredibly complicated system, which works automatically in the background, to insure
that you get the crispest, clearest image, without any noise, snow, static lines or other transmission
gremlins showing up on your screen.

While I won't go as far as to say that there's no possible way that those transmission gremlins can get
into your signal and cause the occasional white or black pixel, where it should be blue; the chance of any
of those gremlins messing your football game, movie or favorite sitcom up are drastically minimized.

This doesn't mean that you can't have any problems whatsoever. You can still spend a fortune on the
latest LED backlit LCD or plasma TV, and Blue-Ray player and even buy gold-plated wires, but if you
don't have a good signal, you won't have a good image. A crummy antenna is still a crummy antenna. If
you're expecting a good image, make sure you have a good signal, whether from cable, satellite or
broadcast.

M.0.4) Video Type Comparison

Component video is a video signal that has been split into two or more component channels. In popular
use, it refers to a type of component analog video (CAV) information that is transmitted or stored as
three separate signals. Component video can be contrasted with composite video (NTSC, PAL or SECAM)
in which all the video information is combined into a single line-level signal that is used in analog
television. Like composite, component-video cables do not carry audio and are often paired with audio
cables.

When used without any other qualifications the term component video generally refers to analog YPbPr
component video with sync on luma.

Analog component video

Reproducing a video signal on a display device (for example, a Cathode ray tube) (CRT) is a

straightforward process complicated by the multitude of signal sources. DVD, VHS, computers and video

game consoles all store, process and transmit video signals using different methods, and often each will

provide more than one signal option. One way of maintaining signal clarity is by separating the

components of a video signal so that they do not interfere with each other. A signal separated in this

way is called "component video". S-Video, RGB and YPbPr signals comprise two or more separate

signals: hence, all are component-video signals. For most consumer-level applications, analog

component video is used. Digital component video is slowly becoming popular in both computer and

home-theatre applications. Component video is capable of carrying signals such as 480i, 480p, 576i,

576p. Many new high definition TVs support the use of component video up to their native resolution.

The various RGB (red, green, blue) analog component video standards (e.g., RGBS, RGBHV, RG&SB) use
no compression and impose no real limit on color depth or resolution, but require large bandwidth to
carry the signal and contain much redundant data since each channel typically includes the same black
and white image. Most modern computers offer this signal via the VGA port. Many televisions,

Page 418of 484

especially in Europe, utilize RGB via the SCART connector. All arcade games, excepting early vector and
black and white games, use RGB monitors.

Analog RGB is slowly falling out of favor as computers obtain better clarity using DisplayPort or Digital
Visual Interface (DVI) digital connections, while home theater moves towards High-Definition
Multimedia Interface (HDMI). Analog RGB has been largely ignored, despite its quality and suitability, as
it cannot easily be made to support digital rights management. RGB was never popular in North America
for consumer electronics as S-Video was considered sufficient for consumer use, although RGB was used
extensively in commercial, professional and high-end installations.

RGB requires an additional signal for synchronizing the video display. Several methods are used:

 composite sync, horizontal and vertical signals are mixed together on a separate wire
(the S in RGBS)

 separate sync, where the horizontal and vertical are each on their own wire
(the H and V in RGBHV)

 sync on green, where a composite sync signal is overlaid on the green wire (SoG or RGsB).

 sync on red or sync on blue, where a composite sync signal is overlaid on either the red or blue
wire

RGB is a color space describing the image in the percentage of red (R), green (G), and blue (B)., the
primary colors. Various standards define the 100% levels of these colors, although slightly different.

 YPbPr signals come from the red, green and blue colors of RGB. They are converted into two-color
difference signals called B-Y and R-Y and brightness for TV or video.

It is the analog counterpart of YCbCr, which is used in digital. Manufacturers usually call YPbPr
component video but know there are various types of component video. Some of them are in different
forms of RGB, the raw format. Unlike YCbCr that uses only a single cable, YPbPr uses three cables. These
separate cables are in reference to the three components of YPbPr after it’s converted from RGB.

The three components of YPbPr are Y, Pb, and Pr. They are:
Y
The Y component carries the luma, also known as brightness or luminance. It also carries the sync
information. In color television, Y represents intensity but that of the component colors’ composite.
Pb
The Pb component transmits the difference between blue and luma.
Pr
The Pr component transmits the difference between red and luma.
As for the green signal, there is no need since this signal can come from the red, blue, and luma
information.

Page 419of 484

M.0.5)TDMS Details
TMDS was developed by Silicon Image Inc., a member of the Digital Display Working Group, as a method

for transmitting high speed digital data. It incorporates a very unique and very clever algorithm that

reduces electromagnetic interference (EMI) and enables the clock recovery at prodigious distances, up

to 100ft at 1920x1200. It also enables high skew tolerance on cables that are really complex, and based

on their original design, should not be able to produce video images from one end to the other. It does

all of this with a very high level of confidence.

TMDS is a lot like RGBHV, and much like the analog world we live in today, in that ituses four channels:

Red, Green, Blue and Clock. So, if someone said to you, "I have four coaxial cables instead of five so since

I can't use RGBHV to connect my video source to my projector or my video source to my display, what

can I use?" Well, you would probably respond that they could use SRGB, where we composite the

horizontal and vertical sync and then multiplex them on a single cable. That is exactly what is happening

on TMDS. So now you can begin to see that we are not in a foreign land. This looks very familiar — Red,

Green, Blue and Clock — and it is a two stage process. This algorithm converts the input of an 8-bit video

word into a 10-bit video word. By doing that, it does something very counterintuitive; it makes the signal

smaller.

M.0.5.1) Transition Minimization

That is very unusual. Why would it do that? How does it do that? How did these computer guys get so

clever? TMDS signaling uses twisted pair, hence the term "differential" in TMDS. Twisted pair means we

are going to have common mode noise reduction, or interference rejection. This means we are going to

have a higher head room. It also operates at current modal logic, which tells us that we're talking about

something that is operating under 5 volts. In fact, the way that HDMI operates between the transmitter

and the receiver is to operate at a 5 volt handshake, while 3.3 volts is the current mode logic where the

actual data is transferred.

There are three twisted pairs for Red, Green and Blue, plus a fourth twisted pair for sync and, once
again, that unique 8-bit to 10-bit conversion capability. So, what does that mean? That is the transition
minimized part of Transition Minimized Differential Signaling. Here is what happens. Pretend the image
below is the image you see on your computer screen right now. You see a black screen image with white
letters on it. We know that each section of that screen is described by a digital word. Black, also known
in digital as zero (as defined by IRE ,Institure ofr Radio Engineers), is described byan 8-bit digital word
that is 00000000. As we get to the letter "W" in the word "What" in the headline, it changes to white.

The signal goes to 100 IRE, or full saturation, full white, where all three colors are at maximum output.
This is indicated by a digital word of 11111111. Every time you transition from a digital zero to a digital

Page 420of 484

one, or transition from one bit to the next, it is described by an electrical square wave. Square wave, as
you may remember from your engineering classes, is a fundamental sine wave plus all of the odd
harmonics, all of the very high frequencies. This means that when we have to make eight transitions we
have a tremendous amount of high frequency going through this cable. It becomes very difficult for us
to be able to encompass all of this bandwidth on any kind of a practical transmission.

So what our computer brethren did was to take a look at this and come up with a better solution. Most
of what happens in video happens in shades of gray, but even as we look at the other colors we realize
that those colors are described by shades of gray going through a red, green or blue filter, then
combining to actually make the color. All of these variations happen in the four middle bits. So the
computer guys said, "What if we take the four middle bits and where there are all ones we inverted them
and made them all zeroes and then added a one to the very end? That way we eliminate a lot of these
transitions, allowing us to carry less high frequency material." They then went one step further and
said, "What if the least significant bit and the most significant bit are ones, and how about we invert
those and make those zeroes and then add another bit to the end?" By going from eight bits to ten bits,
what they have actually done is minimize the transitions from zero to one so that the maximum amount
of transitions being applied is five rather than eight. This eliminates a lot of high frequency material that
needs to be processed and transmitted. So it is rather counterintuitive to go from eight bits to ten bits,
to go from a smaller word to a larger word, and then end up with a smaller amount of information. That
is the beauty of data truncation or algorithms. This algorithm uses a special ten bit sequence to minimize
the zero to one transitions. Hence, TRANSITION MINIMIZED DIFFERENTIAL (because it's going over a
twisted pair) Signaling. So now we understand TMDS and all of the benefits it provides, including
providing up to a D4k level of transmission.

D4K resolution refers to a horizontal display resolution of approximately 4,000 pixels.[1] Digital
television and digital cinematography commonly use several different 4K resolutions. In television and
consumer media, 3840 × 2160 (4K UHD) is the dominant 4K standard, whereas the movie
projection industry uses 4096 × 2160 (DCI 4K).

https://en.wikipedia.org/wiki/Display_resolution
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/4K_resolution#cite_note-1
https://en.wikipedia.org/wiki/Digital_television
https://en.wikipedia.org/wiki/Digital_television
https://en.wikipedia.org/wiki/Digital_cinematography
https://en.wikipedia.org/wiki/Ultra-high-definition_television
https://en.wikipedia.org/wiki/Digital_cinema
https://en.wikipedia.org/wiki/Digital_cinema
https://en.wikipedia.org/wiki/Digital_Cinema_Initiatives

Page 421of 484

M.0.5.2) Hardware Communication

Let us now take a look at how this hardware communication is played out. The block diagram you see
below could represent, for instance, the output of a Blu-ray DVD player and the input of an LCD panel in
your living room. It could also represent the output of a codec, a medical imaging device or other such
device with an HDMI output, and the HDMI input on something like a projector or LCD panel in a digital
signage installation.

What you see here should make you feel pretty good because it is very familiar. In the middle, you see

the following TMDS channels: 0 (Blue), 1(Green) and 2 (Red). This is the same Red, Green and Blue that

you have been used to seeing all along. The fourth pair is the TMDS Clock Channel; there is your sync. So

you see that we are really not in foreign territory here. These things are very familiar to those of us who

have been working with analog audio and video for a while. What you see in that fifth

connection, Digital Display Data Channel (DDC), also known as EDID - carries a tremendous amount of

information. This is where things start to get really interesting.

M.0.5.3) Extended Display Identification Data (EDID) is a metadata format for display devices to describe

their capabilities to a video source (e.g. graphics card or set-top box). The data format is defined by a

standard published by the Video Electronics Standards Association (VESA).

The EDID data structure includes manufacturer name and serial number, product
type, phosphor or filter type (as chromaticity data), timings supported by the display, display
size, luminance data and (for digital displays only) pixel mapping data.

You know that if you connect your computer up to a monitor using a VGA cable you have DDC channel
information there. That is what tells your computer to switch from 1280x800 to 1024x768 to present on
a particular projector. That process is highly automated.

https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Graphics_card
https://en.wikipedia.org/wiki/Set-top_box
https://en.wikipedia.org/wiki/Video_Electronics_Standards_Association
https://en.wikipedia.org/wiki/Phosphor
https://en.wikipedia.org/wiki/Filter_(optics)
https://en.wikipedia.org/wiki/Luminance
https://en.wikipedia.org/wiki/Pixel

Page 422of 484

In the digital world it is a little bit more sophisticated. In the digital environment we move from Display
Data Channel (DDC), which is a digital communications protocol between a display and a source that
allows these devices to understand at what resolution they can operate.

This moves us into something a little more sophisticated called the Extended Display Identification Data,
or EDID. EDID, now on version 1.3, is a 256-byte structure that provides a tremendous amount of
information such as: Monitor name, identification number, model number, serial number, display size,
aspect ratio, etc. etc.

The screenshot you see below is really kind of interesting. It might be a little bit small, but this shows
you that the DDC channel EDID information is not simply transmitting the resolution the device can
operate on. Rather, it is actually transmitting the serial number, the build date, the firmware date, the
manufacturing number, the manufacturing identification number, the maximum resolution, the color
depth, and a table of all the resolutions that the device can resolve. So there is a lot of information being
transmitted there which makes these monitors compatible with a number of digital devices. Here in lies
the very first problem that we experienced.

Back when HDMI first was released in the market, we already had DVI. However, what we really had was

a failure to properly write EDID information on all of these devices. In the early days manufacturers

actually had something called "plug fests". These were events where display manufacturers brought

their displays and source manufacturers brought their sources. They would get together and start

plugging these devices together and would take notes until they found where the incompatibilities

existed. What we discovered was that a lot of the incompatibilities had to do with the EDID information

being improperly coded resulting in the devices being unable to talk to one another. I'm very happy to

say that most of these issues now reside only in legacy equipment, so the only time you are really going

to experience any type of EDID information issues is if you are trying to incorporate devices that are four

to six years old into a contemporary installation. Most EDID issues have been resolved and, in fact

almost every digital device, whether it's an LCD panel, plasma panel, DLP panel or Blu-ray player, have

firmware that constantly updates the EDID information to make sure these devices are compatible with

all contemporary technologies.

Page 423of 484

Now, I would like to point out one other thing about the block diagram on the previous page. Although

you will notice there is Red, Green, Blue and Clock as well as DDC data, what we do not see there is a

pair for audio. In the digital world audio is embedded into the Red, Green and Blue digital video signal.

So, you cannot possibly have a cable that has HDMI on one end and DVI on the other with 3.5mm audio.

This is electronically combined and electronically separated at both ends, so it is part of the video signal.

Moreover, audio truly is encompassed within the TMDS environment. A lot of people do not realize that

even DVI-D is capable of supporting TCM digital audio in this video information. It was just never

implemented at the time, and it took HDMI to get us there.

Prior to the DDC, the VGA standard had reserved four pins in the analog VGA connector, known as ID0,
ID1, ID2 and ID3 (pins 11, 12, 4 and 15) for identification of monitor type. These ID pins, attached to
resistors to pull one or more of them to ground (GND), allowed for the definition of the monitor type,
with all open (n/c, not connected) meaning "no monitor".

In the most commonly documented scheme, the ID3 pin was unused and only the 3 remaining pins were
defined. The ID0 was pulled to GND by color monitors, while the monochrome monitors pulled ID1 to
GND. Finally, the ID2 pulled to GND signaled a monitor capable of 1024×768 resolution, such as IBM
8514. In this scheme, the input states of the ID pins would encode the monitor type as follows:[1][2][3]

ID2 (pin 4) ID0 (pin 11) ID1 (pin 12) monitor type

n/c n/c n/c no monitor connected

n/c n/c GND < 1024×768, monochrome

n/c GND n/c < 1024×768, color

GND GND n/c ≥ 1024×768, color

DDC changed the purpose of the ID pins to incorporate a serial link interface. However, during the

transition, the change was not backwards-compatible and video cards using the old scheme could have

problems if a DDC-capable monitor was connected.[5] The DDC signal can be sent to or from a video

graphics array (VGA) monitor with the I2C protocol using the master's serial clock and serial data pins.

https://en.wikipedia.org/wiki/VGA
https://en.wikipedia.org/wiki/VGA_connector
https://en.wikipedia.org/wiki/IBM_8514
https://en.wikipedia.org/wiki/IBM_8514
https://en.wikipedia.org/wiki/Display_Data_Channel#cite_note-1
https://en.wikipedia.org/wiki/Display_Data_Channel#cite_note-2
https://en.wikipedia.org/wiki/Display_Data_Channel#cite_note-3
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Display_Data_Channel#cite_note-5

Page 424of 484

Consumer Electronics Control (CEC) is an HDMI feature designed to allow the user to command and
control up to ten CEC-enabled devices connected through HDMI by using just one of their remote
controls (for example by controlling a television set, set-top box, PVR/DVR, and DVD player using only
the remote control of the TV). CEC also allows for individual CEC-enabled devices to command and
control each other without user intervention.

HDMI-CEC is a one-wire bidirectional serial bus that uses the industry-standard AV.link protocol to
perform remote control functions. CEC wiring is mandatory, although implementation of CEC in a
product is optional. It was defined in HDMI Specification 1.0 and updated in HDMI 1.2, HDMI 1.2a and
HDMI 1.3a (the last added timer and audio commands to the bus). USB to CEC Adapters exist that allow
a computer to control CEC-enabled devices.

HDCP stands for High-Bandwidth Digital Content Protection. It’s a coding scheme developed by Intel

used to protect audio and video signals traveling through DVI, HDMI, and DisplayPort from being copied

and illegally intercepted during a streaming session. It shields the transfer of digital content from a video

source like a computer or DVD player to a receiver like a monitor or TV screen. This technology was

officially approved by the Federal Communications Commission in 2004.

Page 425of 484

M.1) Digital Video Output (DVI/HDMI)
The streamer can serialize its internal 32 pin output data P[31:0] into 8-pin/10-bit digital video format,

where the 32-pin output becomes $000000xx with $xx being a reversible pattern of RED, GRN, BLU, and

CLK differential pairs.

The SETCMOD instruction is used to write bits 8:7 of the CMOD register to set digital video mode:

CMOD[8:7] Mode Pin +31:8 Pin +7 Pin +6 Pin +5 Pin +4 Pin +3 Pin +2 Pin +1 Pin +0

%0x Normal P[31:8] P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

%10 DVI fwd $000000 RED+ RED- GRN+ GRN- BLU+ BLU- CLK+ CLK-

%11 DVI rev $000000 CLK- CLK+ BLU- BLU+ GRN- GRN+ RED- RED+

Eight-bit red, green, and blue pixel data are encoded into 10-bit TMDS patterns for transmission, while

control data, such as horizontal and vertical syncs, are transmitted literally. P[1] in the internal pin

output data selects whether data will be TMDS-encoded or sent out literally:

P[31:0] RED+/- serial GRN+/- serial BLU+/- serial

%RRRRRRRR_GGGGGGGG_BBBBBBBB_xxxxxx0x %RRRRRRRR

gets encoded

%GGGGGGGG

gets encoded

%BBBBBBBB

gets encoded

%rrrrrrrrrr_gggggggggg_bbbbbbbbbb_1x %rrrrrrrrrr

is sent literally

%gggggggggg

is sent literally

%bbbbbbbbbb

is sent literally

Digital video output mode requires that the P2 clock frequency be 10x the pixel rate. For 640x480 digital

video, which has a pixel rate of 25MHz, the P2 chip must be clocked at 250MHz.

The NCO frequency must be set to 1/10 of the main clock using the value $0CCCCCCC+1, where the +1

forces initial NCO rollover on the 10th clock.

Page 426of 484

The following program displays a 16bpp image in 640x480 HDMI mode:

'**

'* VGA 640 x 480 x 16bpp 5:6:5 RGB - HDMI *

'**

CON hdmi_base = 16 'must be a multiple of 8

DAT org

'

'

' Setup

'

 hubset ##%1_000001_0000011000_1111_10_00 'config PLL, 20MHz/2*25*1 = 250MHz

 waitx ##20_000_000 / 200 'allow crystal+PLL 5ms to stabilize

 hubset ##%1_000001_0000011000_1111_10_11 'switch to PLL

 rdfast ##640*350*2/64,##$1000 'set rdfast to wrap on bitmap

 setxfrq ##$0CCCCCCC+1 'set streamer freq to 1/10th clk

 setcmod #$100 'enable HDMI mode

 drvl #7<<6 + hdmi_base 'enable HDMI pins

 wrpin ##%100100_00_00000_0,#7<<6 + hdmi_base 'set 1mA drive on HDMI pins

'

'

' Field loop

'

field mov hsync0,sync_000 'vsync off

 mov hsync1,sync_001

 callpa #90,#blank 'top blanks

 mov x,#350 'set visible lines

line call #hsync 'do horizontal sync

Page 427of 484

 xcont m_rf,#0 'do visible line

 djnz x,#line 'another line?

 callpa #83,#blank 'bottom blanks

 mov hsync0,sync_222 'vsync on

 mov hsync1,sync_223

 callpa #2,#blank 'vertical sync blanks

 jmp #field 'loop

'

'

' Subroutines

'

blank call #hsync 'blank lines

 xcont m_vi,hsync0

 ret djnz pa,#blank

hsync xcont m_bs,hsync0 'horizontal sync

 xzero m_sn,hsync1

 ret xcont m_bv,hsync0

'

'

' Initialized data

'

sync_000 long %1101010100_1101010100_1101010100_10 '

sync_001 long %1101010100_1101010100_0010101011_10 ' hsync

sync_222 long %0101010100_0101010100_0101010100_10 'vsync

sync_223 long %0101010100_0101010100_1010101011_10 'vsync + hsync

m_bs long $70810000 + hdmi_base<<17 + 16 'before sync

m_sn long $70810000 + hdmi_base<<17 + 96 'sync

m_bv long $70810000 + hdmi_base<<17 + 48 'before visible

m_vi long $70810000 + hdmi_base<<17 + 640 'visible

m_rf long $B0850000 + hdmi_base<<17 + 640 'visible rfword rgb16 (5:6:5)

Page 428of 484

'

'

' Uninitialized data

'

x res 1

hsync0 res 1

hsync1 res 1

'

'

' Bitmap

'

 orgh $1000 - 70 'justify pixels at $1000

 file "birds_16bpp.bmp" 'rayman's picture (640 x 350)

M.2) ColorSpace Converter

Each cog has a colorspace converter which can perform ongoing matrix transformations and modulation

of the cog's 8-bit DAC channels. The colorspace converter is intended primarily for baseband video

modulation, but it can also be used as a general-purpose RF modulator.

The colorspace converter is configured via the following instructions:

SETCY {#}D - Set colorspace converter CY parameter to D[31:0]
SETCI {#}D - Set colorspace converter CI parameter to D[31:0]
SETCQ {#}D - Set colorspace converter CQ parameter to D[31:0]
SETCFRQ {#}D - Set colorspace converter CFRQ parameter to D[31:0]
SETCMOD {#}D - Set colorspace converter CMOD parameter to D[6:0]

It is intended that DAC3/DAC2/DAC1 serve as R/G/B channels. On each clock, new matrix and

modulation calculations are performed through a pipeline. There is a group delay of five clocks from

DAC-channel inputs to outputs when the colorspace converter is in use.

Page 429of 484

For the following signed multiply-accumulate computations, CMOD[4] determines whether the

CY/CI/CQ terms will be sign-extended (CMOD[4] = 1) or zero-extended (CMOD[4] = 0). If zero-extended,

using 128 for a CY/CI/CQ term will result in no attenuation of the related DAC term:

Y[7:0]= (DAC3 * CY[31:24] + DAC2 * CY[23:16] + DAC1 * CY[15:8]) / 128
I[7:0]= (DAC3 * CI[31:24] + DAC2 * CI[23:16] + DAC1 * CI[15:8]) / 128
Q[7:0]= (DAC3 * CQ[31:24] + DAC2 * CQ[23:16] + DAC1 * CQ[15:8]) / 128

The modulator works by cumulatively subtracting CFRQ from PHS, in order to get a clockwise angle

rotation in the upper bits of PHS. PHS[31:24] is then used to rotate the coordinate pair (I, Q). The

rotated Q coordinate becomes IQ. Because a 5-stage CORDIC rotator is used to perform the rotation, IQ

gets scaled by 1.646. When using the modulator, this scaling will need to be taken into account when

computing your CI/CQ terms, in order to avoid IQ overflow:

PHS[31:0] = PHS[31:0] - CFRQ[31:0]
IQ[7:0] = Q of (I,Q) after being rotated by PHS and multiplied by 1.646

The formula for computing CFRQ for a desired modulation frequency is: (desired_frequency /

clock_frequency) * $1_0000_0000. For example, if you wanted 3.579545 MHz and your clock frequency

was 80 MHz, you would get (3.579545 / 80) * $1_0000_0000 = $0B74_5CFE, which you would set using

the SETCFRQ instruction.

Page 430of 484

The preliminary output terms are computed as follows:

FY[7:0] = CY[7:0] + (DAC0 & {8{CMOD[3]}}) + Y[7:0] (VGA R / HDTV Y)

FI[7:0] = CI[7:0] + (DAC0 & {8{CMOD[2]}}) + I[7:0] (VGA G / HDTV Pb)

FQ[7:0] = CQ[7:0] + (DAC0 & {8{CMOD[1]}}) + Q[7:0] (VGA B / HDTV Pr)

FS[7:0] = {8{DAC0[0] ^ CMOD[0]}} (VGA H-Sync)

FIQ[7:0] = CQ[7:0] + IQ[7:0] (Chroma)

FYS[7:0] = DAC0[1] ? 8'b0 (1x = Luma Sync)

 : DAC0[0] ? CI[7:0] (01 = Luma Blank/Burst)

 : CY[7:0] + Y[7:0] (00 = Luma Visible)

FYC[7:0] = FYS[7:0] + IQ[7:0] (Composite uma+Chroma)

The final output terms are selected by CMOD[6:5]:

CMOD[6:5] Mode DAC3 DAC2 DAC1 DAC0

00 <off> DAC3

(bypass)

DAC2

(bypass)

DAC1

(bypass)

DAC0

(bypass)

01 VGA (R-G-B) / HDTV (Y-Pb-Pr) FY

(R / Y)

FI

(G / Pb)

FQ

(B / Pr)

FS

(H-Sync)

10 NTSC/PAL Composite + S-Video FYC
(Composite)

FYC
(Composite)

FIQ

(Chroma)

FYS

(Luma)

11 NTSC/PAL Composite FYC
(Composite)

FYC
(Composite)

FYC
(Composite)

FYC
(Composite)

Page 431of 484

M.3) Pixel Operations
Each cog has a pixel mixer which can combine one pixel with another pixel in many different ways. A
pixel consists of four byte fields within a 32-bit cog register. Pixel operations occur between each pair of
D and S bytes, and they take seven clock cycles to complete
ADDPIX D,S/# 'add bytes with saturation

MULPIX D,S/# 'multiply bytes ($FF = 1.0)

BLNPIX D,S/# 'alpha-blend bytes according to SETPIV value

MIXPIX D,S/# 'mix bytes according to SETPIX/SETPIV value

There are two pixel mixer setup instructions:
SETPIV D/# 'set blend factor V[7:0] to D/#[7:0]
SETPIX D/# 'set MIXPIX mode M[5:0] to D/#[5:0]

When a pixel mixer instruction executes, a sum-of-products-with-saturation computation is performed
on each D and S byte pair:
D[31:24] = ((D[31:24] * DMIX + S[31:24] * SMIX + $FF) >> 8) max $FF
D[23:16] = ((D[23:16] * DMIX + S[23:16] * SMIX + $FF) >> 8) max $FF
D[15:08] = ((D[15:08] * DMIX + S[15:08] * SMIX + $FF) >> 8) max $FF
D[07:00] = ((D[07:00] * DMIX + S[07:00] * SMIX + $FF) >> 8) max $FF

Here are the DMIX and SMIX terms, according to each instruction:

 DMIX SMIX

ADDPIX $FF $FF

MULPIX S[byte] $00

BLNPIX !V V

MIXPIX M[5:3] = %000 → $00

M[5:3] = %001 → $FF

M[5:3] = %010 → V

M[5:3] = %011 → !V

M[5:3] = %100 → S[byte]

M[5:3] = %101 → !S[byte]

M[5:3] = %110 → D[byte]

M[5:3] = %111 → !D[byte]

M[2:0] = %000 → $00

M[2:0] = %001 → $FF

M[2:0] = %010 → V

M[2:0] = %011 → !V

M[2:0] = %100 → S[byte]

M[2:0] = %101 → !S[byte]

M[2:0] = %110 → D[byte]

M[2:0] = %111 → !D[byte]

Page 432of 484

Appendix “N” PIN Logic Diagrams

Page 433of 484

Page 434of 484

Page 435of 484

Page 436of 484

Page 437of 484

Page 438of 484

Appendix “0” PASM Instructions

Order

#S = immediate (I=1). S =

register.

#D = immediate (L=1). D =

register.

- Assembly Syntax -

 * Z =(result)=0

1 NOP

No operation.

2 ROR D,{#}S {WC/WZ/WCZ}

Rotate right. D = [31:0] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if

S[4:0] > 0, else D[0]. *

3 ROL D,{#}S {WC/WZ/WCZ}

Rotate left. D = [63:32] of ({D[31:0], D[31:0]} << S[4:0]). C = last bit shifted out if

S[4:0] > 0, else D[31]. *

4 SHR D,{#}S {WC/WZ/WCZ}

Shift right. D = [31:0] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if

S[4:0] > 0, else D[0]. *

5 SHL D,{#}S {WC/WZ/WCZ}

Shift left. D = [63:32] of ({D[31:0], 32'b0} << S[4:0]). C = last bit shifted out if

S[4:0] > 0, else D[31]. *

6 RCR D,{#}S {WC/WZ/WCZ}

Rotate carry right. D = [31:0] of ({{32{C}}, D[31:0]} >> S[4:0]). C = last bit shifted

out if S[4:0] > 0, else D[0]. *

7 RCL D,{#}S {WC/WZ/WCZ}

Rotate carry left. D = [63:32] of ({D[31:0], {32{C}}} << S[4:0]). C = last bit shifted

out if S[4:0] > 0, else D[31]. *

8 SAR D,{#}S {WC/WZ/WCZ}

Shift arithmetic right. D = [31:0] of ({{32{D[31]}}, D[31:0]} >> S[4:0]). C = last bit

shifted out if S[4:0] > 0, else D[0]. *

9 SAL D,{#}S {WC/WZ/WCZ}

Shift arithmetic left. D = [63:32] of ({D[31:0], {32{D[0]}}} << S[4:0]). C = last bit

shifted out if S[4:0] > 0, else D[31]. *

10 ADD D,{#}S {WC/WZ/WCZ} Add S into D. D = D + S. C = carry of (D + S). *

11 ADDX D,{#}S {WC/WZ/WCZ}

Add (S + C) into D, extended. D = D + S + C. C = carry of (D + S + C). Z = Z AND

(result == 0).

12 ADDS D,{#}S {WC/WZ/WCZ} Add S into D, signed. D = D + S. C = correct sign of (D + S). *

13 ADDSX D,{#}S {WC/WZ/WCZ}

Add (S + C) into D, signed and extended. D = D + S + C. C = correct sign of (D + S +

C). Z = Z AND (result == 0).

Page 439of 484

14 SUB D,{#}S {WC/WZ/WCZ} Subtract S from D. D = D - S. C = borrow of (D - S). *

15 SUBX D,{#}S {WC/WZ/WCZ}

Subtract (S + C) from D, extended. D = D - (S + C). C = borrow of (D - (S + C)). Z = Z

AND (result == 0).

16 SUBS D,{#}S {WC/WZ/WCZ} Subtract S from D, signed. D = D - S. C = correct sign of (D - S). *

17 SUBSX D,{#}S {WC/WZ/WCZ}

Subtract (S + C) from D, signed and extended. D = D - (S + C). C = correct sign of

(D - (S + C)). Z = Z AND (result == 0).

18 CMP D,{#}S {WC/WZ/WCZ} Compare D to S. C = borrow of (D - S). Z = (D == S).

19 CMPX D,{#}S {WC/WZ/WCZ}

Compare D to (S + C), extended. C = borrow of (D - (S + C)). Z = Z AND (D == S +

C).

20 CMPS D,{#}S {WC/WZ/WCZ} Compare D to S, signed. C = correct sign of (D - S). Z = (D == S).

21 CMPSX D,{#}S {WC/WZ/WCZ}

Compare D to (S + C), signed and extended. C = correct sign of (D - (S + C)). Z = Z

AND (D == S + C).

22 CMPR D,{#}S {WC/WZ/WCZ} Compare S to D (reverse). C = borrow of (S - D). Z = (D == S).

23 CMPM D,{#}S {WC/WZ/WCZ} Compare D to S, get MSB of difference into C. C = MSB of (D - S). Z = (D == S).

24 SUBR D,{#}S {WC/WZ/WCZ} Subtract D from S (reverse). D = S - D. C = borrow of (S - D). *

25

CMPSUB D,{#}S

{WC/WZ/WCZ}

Compare and subtract S from D if D >= S. If D => S then D = D - S and C = 1, else

D same and C = 0. *

26 FGE D,{#}S {WC/WZ/WCZ} Force D >= S. If D < S then D = S and C = 1, else D same and C = 0. *

27 FLE D,{#}S {WC/WZ/WCZ} Force D <= S. If D > S then D = S and C = 1, else D same and C = 0. *

28 FGES D,{#}S {WC/WZ/WCZ} Force D >= S, signed. If D < S then D = S and C = 1, else D same and C = 0. *

29 FLES D,{#}S {WC/WZ/WCZ} Force D <= S, signed. If D > S then D = S and C = 1, else D same and C = 0. *

30 SUMC D,{#}S {WC/WZ/WCZ}

Sum +/-S into D by C. If C = 1 then D = D - S, else D = D + S. C = correct sign of (D

+/- S). *

31 SUMNC D,{#}S {WC/WZ/WCZ}

Sum +/-S into D by !C. If C = 0 then D = D - S, else D = D + S. C = correct sign of (D

+/- S). *

32 SUMZ D,{#}S {WC/WZ/WCZ}

Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D

+/- S). *

Page 440of 484

33 SUMNZ D,{#}S {WC/WZ/WCZ}

Sum +/-S into D by !Z. If Z = 0 then D = D - S, else D = D + S. C = correct sign of (D

+/- S). *

34 TESTB D,{#}S WC/WZ Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]].

35 TESTBN D,{#}S WC/WZ Test bit S[4:0] of !D, write to C/Z. C/Z = !D[S[4:0]].

36 TESTB D,{#}S ANDC/ANDZ Test bit S[4:0] of D, AND into C/Z. C/Z = C/Z AND D[S[4:0]].

37 TESTBN D,{#}S ANDC/ANDZ Test bit S[4:0] of !D, AND into C/Z. C/Z = C/Z AND !D[S[4:0]].

38 TESTB D,{#}S ORC/ORZ Test bit S[4:0] of D, OR into C/Z. C/Z = C/Z OR D[S[4:0]].

39 TESTBN D,{#}S ORC/ORZ Test bit S[4:0] of !D, OR into C/Z. C/Z = C/Z OR !D[S[4:0]].

40 TESTB D,{#}S XORC/XORZ Test bit S[4:0] of D, XOR into C/Z. C/Z = C/Z XOR D[S[4:0]].

41 TESTBN D,{#}S XORC/XORZ Test bit S[4:0] of !D, XOR into C/Z. C/Z = C/Z XOR !D[S[4:0]].

42 BITL D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = 0. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

43 BITH D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = 1. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

44 BITC D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

45 BITNC D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = !C. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

46 BITZ D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = Z. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

47 BITNZ D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = !Z. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

48 BITRND D,{#}S {WCZ}

Bits D[S[9:5]+S[4:0]:S[4:0]] = RNDs. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

49 BITNOT D,{#}S {WCZ}

Toggle bits D[S[9:5]+S[4:0]:S[4:0]]. Other bits unaffected. Prior SETQ overrides

S[9:5]. C,Z = original D[S[4:0]].

50 AND D,{#}S {WC/WZ/WCZ} AND S into D. D = D & S. C = parity of result. *

51 ANDN D,{#}S {WC/WZ/WCZ} AND !S into D. D = D & !S. C = parity of result. *

Page 441of 484

52 OR D,{#}S {WC/WZ/WCZ} OR S into D. D = D | S. C = parity of result. *

53 XOR D,{#}S {WC/WZ/WCZ} XOR S into D. D = D ^ S. C = parity of result. *

54 MUXC D,{#}S {WC/WZ/WCZ}

Mux C into each D bit that is '1' in S. D = (!S & D) | (S & {32{ C}}). C = parity of

result. *

55 MUXNC D,{#}S {WC/WZ/WCZ}

Mux !C into each D bit that is '1' in S. D = (!S & D) | (S & {32{!C}}). C = parity of

result. *

56 MUXZ D,{#}S {WC/WZ/WCZ}

Mux Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{ Z}}). C = parity of

result. *

57 MUXNZ D,{#}S {WC/WZ/WCZ}

Mux !Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{!Z}}). C = parity of

result. *

58 MOV D,{#}S {WC/WZ/WCZ} Move S into D. D = S. C = S[31]. *

59 NOT D,{#}S {WC/WZ/WCZ} Get !S into D. D = !S. C = !S[31]. *

60 NOT D {WC/WZ/WCZ} Get !D into D. D = !D. C = !D[31]. *

61 ABS D,{#}S {WC/WZ/WCZ} Get absolute value of S into D. D = ABS(S). C = S[31]. *

62 ABS D {WC/WZ/WCZ} Get absolute value of D into D. D = ABS(D). C = D[31]. *

63 NEG D,{#}S {WC/WZ/WCZ} Negate S into D. D = -S. C = MSB of result. *

64 NEG D {WC/WZ/WCZ} Negate D. D = -D. C = MSB of result. *

65 NEGC D,{#}S {WC/WZ/WCZ} Negate S by C into D. If C = 1 then D = -S, else D = S. C = MSB of result. *

66 NEGC D {WC/WZ/WCZ} Negate D by C. If C = 1 then D = -D, else D = D. C = MSB of result. *

67 NEGNC D,{#}S {WC/WZ/WCZ} Negate S by !C into D. If C = 0 then D = -S, else D = S. C = MSB of result. *

68 NEGNC D {WC/WZ/WCZ} Negate D by !C. If C = 0 then D = -D, else D = D. C = MSB of result. *

69 NEGZ D,{#}S {WC/WZ/WCZ} Negate S by Z into D. If Z = 1 then D = -S, else D = S. C = MSB of result. *

70 NEGZ D {WC/WZ/WCZ} Negate D by Z. If Z = 1 then D = -D, else D = D. C = MSB of result. *

71 NEGNZ D,{#}S {WC/WZ/WCZ} Negate S by !Z into D. If Z = 0 then D = -S, else D = S. C = MSB of result. *

72 NEGNZ D {WC/WZ/WCZ} Negate D by !Z. If Z = 0 then D = -D, else D = D. C = MSB of result. *

73
INCMOD D,{#}S Increment with modules, If D = S Then D = 0 and C = 1

Page 442of 484

{WC/WZ/WCZ} else D = D + 1 and C = 0 *

74

DECMOD D,{#}S

{WC/WZ/WCZ}

Decrement with modulus. If D = 0 then D = S and C = 1, else D = D - 1 and C = 0.

*

75 ZEROX D,{#}S {WC/WZ/WCZ} Zero-extend D above bit S[4:0]. C = MSB of result. *

76 SIGNX D,{#}S {WC/WZ/WCZ} Sign-extend D from bit S[4:0]. C = MSB of result. *

77 ENCOD D,{#}S {WC/WZ/WCZ}

Get bit position of top-most '1' in S into D. D = position of top '1' in S (0..31). C =

(S != 0). *

78 ENCOD D {WC/WZ/WCZ}

Get bit position of top-most '1' in D into D. D = position of top '1' in S (0..31). C =

(S != 0). *

79 ONES D,{#}S {WC/WZ/WCZ} Get number of '1's in S into D. D = number of '1's in S (0..32). C = LSB of result. *

80 ONES D {WC/WZ/WCZ} Get number of '1's in D into D. D = number of '1's in S (0..32). C = LSB of result. *

81 TEST D,{#}S {WC/WZ/WCZ} Test D with S. C = parity of (D & S). Z = ((D & S) == 0).

82 TEST D {WC/WZ/WCZ} Test D. C = parity of D. Z = (D == 0).

83 TESTN D,{#}S {WC/WZ/WCZ} Test D with !S. C = parity of (D & !S). Z = ((D & !S) == 0).

84 SETNIB D,{#}S,#N Set S[3:0] into nibble N in D, keeping rest of D same.

85 SETNIB {#}S Set S[3:0] into nibble established by prior ALTSN instruction.

86 GETNIB D,{#}S,#N Get nibble N of S into D. D = {28'b0, S.NIBBLE[N]).

87 GETNIB D Get nibble established by prior ALTGN instruction into D.

88 ROLNIB D,{#}S,#N Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]).

89 ROLNIB D Rotate-left nibble established by prior ALTGN instruction into D.

90 SETBYTE D,{#}S,#N Set S[7:0] into byte N in D, keeping rest of D same.

91 SETBYTE {#}S Set S[7:0] into byte established by prior ALTSB instruction.

92 GETBYTE D,{#}S,#N Get byte N of S into D. D = {24'b0, S.BYTE[N]).

93 GETBYTE D Get byte established by prior ALTGB instruction into D.

94 ROLBYTE D,{#}S,#N Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]).

Page 443of 484

95 ROLBYTE D Rotate-left byte established by prior ALTGB instruction into D.

96 SETWORD D,{#}S,#N Set S[15:0] into word N in D, keeping rest of D same.

97 SETWORD {#}S Set S[15:0] into word established by prior ALTSW instruction.

98 GETWORD D,{#}S,#N Get word N of S into D. D = {16'b0, S.WORD[N]).

99 GETWORD D Get word established by prior ALTGW instruction into D.

100 ROLWORD D,{#}S,#N Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]).

101 ROLWORD D Rotate-left word established by prior ALTGW instruction into D.

102 ALTSN D,{#}S

Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field

= D[2:0]. D += sign-extended S[17:9].

103 ALTSN D Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0].

104 ALTGN D,{#}S

Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) &

$1FF, N field = D[2:0]. D += sign-extended S[17:9].

105 ALTGN D

Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field =

D[2:0].

106 ALTSB D,{#}S

Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field

= D[1:0]. D += sign-extended S[17:9].

107 ALTSB D Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0].

108 ALTGB D,{#}S

Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) &

$1FF, N field = D[1:0]. D += sign-extended S[17:9].

109 ALTGB D

Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field =

D[1:0].

110 ALTSW D,{#}S

Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N

field = D[0]. D += sign-extended S[17:9].

111 ALTSW D Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0].

112 ALTGW D,{#}S

Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) &

$1FF), N field = D[0]. D += sign-extended S[17:9].

113 ALTGW D

Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field

= D[0].

Page 444of 484

114 ALTR D,{#}S

Alter result register address (normally D field) of next instruction to (D + S) &

$1FF. D += sign-extended S[17:9].

115 ALTR D Alter result register address (normally D field) of next instruction to D[8:0].

116 ALTD D,{#}S Alter D field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9].

117 ALTD D Alter D field of next instruction to D[8:0].

118 ALTS D,{#}S Alter S field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9].

119 ALTS D Alter S field of next instruction to D[8:0].

120 ALTB D,{#}S

Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended

S[17:9].

121 ALTB D Alter D field of next instruction to D[13:5].

122 ALTI D,{#}S

Substitute next instruction's I/R/D/S fields with fields from D, per S. Modify D

per S.

123 ALTI D Execute D in place of next instruction. D stays same.

124 SETR D,{#}S Set R field of D to S[8:0]. D = {D[31:28], S[8:0], D[18:0]}.

125 SETD D,{#}S Set D field of D to S[8:0]. D = {D[31:18], S[8:0], D[8:0]}.

126 SETS D,{#}S Set S field of D to S[8:0]. D = {D[31:9], S[8:0]}.

127 DECOD D,{#}S Decode S[4:0] into D. D = 1 << S[4:0].

128 DECOD D Decode D[4:0] into D. D = 1 << D[4:0].

129 BMASK D,{#}S

Get LSB-justified bit mask of size (S[4:0] + 1) into D. D = ($0000_0002 << S[4:0]) -

1.

130 BMASK D

Get LSB-justified bit mask of size (D[4:0] + 1) into D. D = ($0000_0002 << D[4:0])

- 1.

131 CRCBIT D,{#}S

Iterate CRC value in D using C and polynomial in S. If (C XOR D[0]) then D = (D >>

1) XOR S, else D = (D >> 1).

132 CRCNIB D,{#}S

Iterate CRC value in D using Q[31:28] and polynomial in S. Like CRCBIT x 4. Q = Q

<< 4. Use 'REP #n,#1'+SETQ+CRCNIB+CRCNIB+CRCNIB...

133 MUXNITS D,{#}S

For each non-zero bit pair in S, copy that bit pair into the corresponding D bits,

else leave that D bit pair the same.

Page 445of 484

134 MUXNIBS D,{#}S

For each non-zero nibble in S, copy that nibble into the corresponding D nibble,

else leave that D nibble the same.

135 MUXQ D,{#}S

Used after SETQ. For each '1' bit in Q, copy the corresponding bit in S into D. D =

(D & !Q) | (S & Q).

136 MOVBYTS D,{#}S

Move bytes within D, per S. D = {D.BYTE[S[7:6]], D.BYTE[S[5:4]], D.BYTE[S[3:2]],

D.BYTE[S[1:0]]}.

137 MUL D,{#}S {WZ} D = unsigned (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

138 MULS D,{#}S {WZ} D = signed (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0).

139 SCA D,{#}S {WZ} Next instruction's S value = unsigned (D[15:0] * S[15:0]) >> 16. *

140 SCAS D,{#}S {WZ}

Next instruction's S value = signed (D[15:0] * S[15:0]) >> 14. In this scheme,

$4000 = 1.0 and $C000 = -1.0. *

141 ADDPIX D,{#}S Add bytes of S into bytes of D, with $FF saturation.

142 MULPIX D,{#}S Multiply bytes of S into bytes of D, where $FF = 1.0 and $00 = 0.0.

143 BLNPIX D,{#}S Alpha-blend bytes of S into bytes of D, using SETPIV value.

144 MIXPIX D,{#}S Mix bytes of S into bytes of D, using SETPIX and SETPIV values.

145 ADDCT1 D,{#}S Set CT1 event to trigger on CT = D + S. Adds S into D.

146 ADDCT2 D,{#}S Set CT2 event to trigger on CT = D + S. Adds S into D.

147 ADDCT3 D,{#}S Set CT3 event to trigger on CT = D + S. Adds S into D.

148 WMLONG D,{#}S/P

Write only non-$00 bytes in D[31:0] to hub address {#}S/PTRx. Prior

SETQ/SETQ2 invokes cog/LUT block transfer.

149 RQPIN D,{#}S {WC}

Read smart pin S[5:0] result "Z" into D, don't acknowledge smart pin ("Q" in

RQPIN means "quiet"). C = modal result.

150 RDPIN D,{#}S {WC}

Read smart pin S[5:0] result "Z" into D, acknowledge smart pin. C = modal

result.

151

RDLUT D,{#}S/P

{WC/WZ/WCZ} Read data from LUT address {#}S/PTRx into D. C = MSB of data. *

152

RDBYTE D,{#}S/P

{WC/WZ/WCZ} Read zero-extended byte from hub address {#}S/PTRx into D. C = MSB of byte. *

Page 446of 484

153

RDWORD D,{#}S/P

{WC/WZ/WCZ}

Read zero-extended word from hub address {#}S/PTRx into D. C = MSB of word.

*

154

RDLONG D,{#}S/P

{WC/WZ/WCZ}

Read long from hub address {#}S/PTRx into D. C = MSB of long. * Prior

SETQ/SETQ2 invokes cog/LUT block transfer.

155 POPA D {WC/WZ/WCZ} Read long from hub address --PTRA into D. C = MSB of long. *

156 POPB D {WC/WZ/WCZ} Read long from hub address --PTRB into D. C = MSB of long. *

157 CALLD D,{#}S {WC/WZ/WCZ} Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30].

158 RESI3 Resume from INT3. (CALLD $1F0,$1F1 WCZ)

159 RESI2 Resume from INT2. (CALLD $1F2,$1F3 WCZ)

160 RESI1 Resume from INT1. (CALLD $1F4,$1F5 WCZ)

161 RESI0 Resume from INT0. (CALLD $1FE,$1FF WCZ)

162 RETI3 Return from INT3. (CALLD $1FF,$1F1 WCZ)

163 RETI2 Return from INT2. (CALLD $1FF,$1F3 WCZ)

164 RETI1 Return from INT1. (CALLD $1FF,$1F5 WCZ)

165 RETI0 Return from INT0. (CALLD $1FF,$1FF WCZ)

166 CALLPA {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA.

167 CALLPB {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PB.

168 DJZ D,{#}S Decrement D and jump to S** if result is zero.

169 DJNZ D,{#}S Decrement D and jump to S** if result is not zero.

170 DJF D,{#}S Decrement D and jump to S** if result is $FFFF_FFFF.

171 DJNF D,{#}S Decrement D and jump to S** if result is not $FFFF_FFFF.

172 IJZ D,{#}S Increment D and jump to S** if result is zero.

173 IJNZ D,{#}S Increment D and jump to S** if result is not zero.

174 TJZ D,{#}S Test D and jump to S** if D is zero.

175 TJNZ D,{#}S Test D and jump to S** if D is not zero.

Page 447of 484

176 TJF D,{#}S Test D and jump to S** if D is full (D = $FFFF_FFFF).

177 TJNF D,{#}S Test D and jump to S** if D is not full (D != $FFFF_FFFF).

178 TJS D,{#}S Test D and jump to S** if D is signed (D[31] = 1).

179 TJNS D,{#}S Test D and jump to S** if D is not signed (D[31] = 0).

180 TJV D,{#}S

Test D and jump to S** if D overflowed (D[31] != C, C = 'correct sign' from last

addition/subtraction).

181 JINT {#}S Jump to S** if INT event flag is set.

182 JCT1 {#}S Jump to S** if CT1 event flag is set.

183 JCT2 {#}S Jump to S** if CT2 event flag is set.

184 JCT3 {#}S Jump to S** if CT3 event flag is set.

185 JSE1 {#}S Jump to S** if SE1 event flag is set.

186 JSE2 {#}S Jump to S** if SE2 event flag is set.

187 JSE3 {#}S Jump to S** if SE3 event flag is set.

188 JSE4 {#}S Jump to S** if SE4 event flag is set.

189 JPAT {#}S Jump to S** if PAT event flag is set.

190 JFBW {#}S Jump to S** if FBW event flag is set.

191 JXMT {#}S Jump to S** if XMT event flag is set.

192 JXFI {#}S Jump to S** if XFI event flag is set.

193 JXRO {#}S Jump to S** if XRO event flag is set.

194 JXRL {#}S Jump to S** if XRL event flag is set.

195 JATN {#}S Jump to S** if ATN event flag is set.

196 JQMT {#}S Jump to S** if QMT event flag is set.

197 JNINT {#}S Jump to S** if INT event flag is clear.

198 JNCT1 {#}S Jump to S** if CT1 event flag is clear.

Page 448of 484

199 JNCT2 {#}S Jump to S** if CT2 event flag is clear.

200 JNCT3 {#}S Jump to S** if CT3 event flag is clear.

201 JNSE1 {#}S Jump to S** if SE1 event flag is clear.

202 JNSE2 {#}S Jump to S** if SE2 event flag is clear.

203 JNSE3 {#}S Jump to S** if SE3 event flag is clear.

204 JNSE4 {#}S Jump to S** if SE4 event flag is clear.

205 JNPAT {#}S Jump to S** if PAT event flag is clear.

206 JNFBW {#}S Jump to S** if FBW event flag is clear.

207 JNXMT {#}S Jump to S** if XMT event flag is clear.

208 JNXFI {#}S Jump to S** if XFI event flag is clear.

209 JNXRO {#}S Jump to S** if XRO event flag is clear.

210 JNXRL {#}S Jump to S** if XRL event flag is clear.

211 JNATN {#}S Jump to S** if ATN event flag is clear.

212 JNQMT {#}S Jump to S** if QMT event flag is clear.

213 <empty> {#}D,{#}S <empty>

214 <empty> {#}D,{#}S <empty>

215 SETPAT {#}D,{#}S

Set pin pattern for PAT event. C selects INA/INB, Z selects =/!=, D provides mask

value, S provides match value.

216 AKPIN {#}S

Acknowledge smart pins S[10:6]+S[5:0]..S[5:0]. Wraps within A/B pins. Prior

SETQ overrides S[10:6].

217 WRPIN {#}D,{#}S

Set mode of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins.

Wraps within A/B pins. Prior SETQ overrides S[10:6].

218 WXPIN {#}D,{#}S

Set "X" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps

within A/B pins. Prior SETQ overrides S[10:6].

219 WYPIN {#}D,{#}S

Set "Y" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps

within A/B pins. Prior SETQ overrides S[10:6].

Page 449of 484

220 WRLUT {#}D,{#}S/P Write D to LUT address {#}S/PTRx.

221 WRBYTE {#}D,{#}S/P Write byte in D[7:0] to hub address {#}S/PTRx.

222 WRWORD {#}D,{#}S/P Write word in D[15:0] to hub address {#}S/PTRx.

223 WRLONG {#}D,{#}S/P

Write long in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes

cog/LUT block transfer.

224 PUSHA {#}D Write long in D[31:0] to hub address PTRA++.

225 PUSHB {#}D Write long in D[31:0] to hub address PTRB++.

226 RDFAST {#}D,{#}S

Begin new fast hub read via FIFO. D[31] = no wait, D[13:0] = block size in 64-

byte units (0 = max), S[19:0] = block start address.

227 WRFAST {#}D,{#}S

Begin new fast hub write via FIFO. D[31] = no wait, D[13:0] = block size in 64-

byte units (0 = max), S[19:0] = block start address.

228 FBLOCK {#}D,{#}S

Set next block for when block wraps. D[13:0] = block size in 64-byte units (0 =

max), S[19:0] = block start address.

229 XINIT {#}D,{#}S Issue streamer command immediately, zeroing phase.

230 XSTOP Stop streamer immediately.

231 XZERO {#}D,{#}S

Buffer new streamer command to be issued on final NCO rollover of current

command, zeroing phase.

232 XCONT {#}D,{#}S

Buffer new streamer command to be issued on final NCO rollover of current

command, continuing phase.

233 REP {#}D,{#}S

Execute next D[8:0] instructions S times. If S = 0, repeat instructions infinitely. If

D[8:0] = 0, nothing repeats.

234 COGINIT {#}D,{#}S {WC}

Start cog selected by D. S[19:0] sets hub startup address and PTRB of cog. Prior

SETQ sets PTRA of cog.

235 QMUL {#}D,{#}S

Begin CORDIC unsigned multiplication of D * S. GETQX/GETQY retrieves

lower/upper product.

236 QDIV {#}D,{#}S

Begin CORDIC unsigned division of {SETQ value or 32'b0, D} / S. GETQX/GETQY

retrieves quotient/remainder.

237 QFRAC {#}D,{#}S

Begin CORDIC unsigned division of {D, SETQ value or 32'b0} / S. GETQX/GETQY

retrieves quotient/remainder.

Page 450of 484

238 QSQRT {#}D,{#}S Begin CORDIC square root of {S, D}. GETQX retrieves root.

239 QROTATE {#}D,{#}S

Begin CORDIC rotation of point (D, SETQ value or 32'b0) by angle S.

GETQX/GETQY retrieves X/Y.

240 QVECTOR {#}D,{#}S Begin CORDIC vectoring of point (D, S). GETQX/GETQY retrieves length/angle.

241 HUBSET {#}D Set hub configuration to D.

242 COGID {#}D {WC}

If D is register and no WC, get cog ID (0 to 15) into D. If WC, check status of cog

D[3:0], C = 1 if on.

243 COGSTOP {#}D Stop cog D[3:0].

244 LOCKNEW D {WC}

Request a LOCK. D will be written with the LOCK number (0 to 15). C = 1 if no

LOCK available.

245 LOCKRET {#}D Return LOCK D[3:0] for reallocation.

246 LOCKTRY {#}D {WC}

Try to get LOCK D[3:0]. C = 1 if got LOCK. LOCKREL releases LOCK. LOCK is also

released if owner cog stops or restarts.

247 LOCKREL {#}D {WC}

Release LOCK D[3:0]. If D is a register and WC, get current/last cog id of LOCK

owner into D and LOCK status into C.

248 QLOG {#}D

Begin CORDIC number-to-logarithm conversion of D. GETQX retrieves log

{5'whole_exponent, 27'fractional_exponent}.

249 QEXP {#}D Begin CORDIC logarithm-to-number conversion of D. GETQX retrieves number.

250 RFBYTE D {WC/WZ/WCZ}

Used after RDFAST. Read zero-extended byte from FIFO into D. C = MSB of byte.

*

251 RFWORD D {WC/WZ/WCZ}

Used after RDFAST. Read zero-extended word from FIFO into D. C = MSB of

word. *

252 RFLONG D {WC/WZ/WCZ} Used after RDFAST. Read long from FIFO into D. C = MSB of long. *

253 RFVAR D {WC/WZ/WCZ}

Used after RDFAST. Read zero-extended 1..4-byte value from FIFO into D. C = 0.

*

254 RFVARS D {WC/WZ/WCZ}

Used after RDFAST. Read sign-extended 1..4-byte value from FIFO into D. C =

MSB of value. *

255 WFBYTE {#}D Used after WRFAST. Write byte in D[7:0] into FIFO.

Page 451of 484

256 WFWORD {#}D Used after WRFAST. Write word in D[15:0] into FIFO.

257 WFLONG {#}D Used after WRFAST. Write long in D[31:0] into FIFO.

258 GETQX D {WC/WZ/WCZ} Retrieve CORDIC result X into D. Waits, in case result not ready. C = X[31]. *

259 GETQY D {WC/WZ/WCZ} Retrieve CORDIC result Y into D. Waits, in case result not ready. C = Y[31]. *

260 GETCT D {WC}

Get CT[31:0] or CT[63:32] if WC into D. GETCT WC + GETCT gets full CT. CT=0 on

reset, CT++ on every clock. C = same.

261 GETRND D {WC/WZ/WCZ}

Get RND into D/C/Z. RND is the PRNG that updates on every clock. D =

RND[31:0], C = RND[31], Z = RND[30], unique per cog.

262 GETRND WC/WZ/WCZ Get RND into C/Z. C = RND[31], Z = RND[30], unique per cog.

263 SETDACS {#}D DAC3 = D[31:24], DAC2 = D[23:16], DAC1 = D[15:8], DAC0 = D[7:0].

264 SETXFRQ {#}D Set streamer NCO frequency to D.

265 GETXACC D

Get the streamer's Goertzel X accumulator into D and the Y accumulator into

the next instruction's S, clear accumulators.

266 WAITX {#}D {WC/WZ/WCZ}

Wait 2 + D clocks if no WC/WZ/WCZ. If WC/WZ/WCZ, wait 2 + (D & RND) clocks.

C/Z = 0.

267 SETSE1 {#}D Set SE1 event configuration to D[8:0].

268 SETSE2 {#}D Set SE2 event configuration to D[8:0].

269 SETSE3 {#}D Set SE3 event configuration to D[8:0].

270 SETSE4 {#}D Set SE4 event configuration to D[8:0].

271 POLLINT {WC/WZ/WCZ} Get INT event flag into C/Z, then clear it.

272 POLLCT1 {WC/WZ/WCZ} Get CT1 event flag into C/Z, then clear it.

273 POLLCT2 {WC/WZ/WCZ} Get CT2 event flag into C/Z, then clear it.

274 POLLCT3 {WC/WZ/WCZ} Get CT3 event flag into C/Z, then clear it.

275 POLLSE1 {WC/WZ/WCZ} Get SE1 event flag into C/Z, then clear it.

276 POLLSE2 {WC/WZ/WCZ} Get SE2 event flag into C/Z, then clear it.

277 POLLSE3 {WC/WZ/WCZ} Get SE3 event flag into C/Z, then clear it.

Page 452of 484

278 POLLSE4 {WC/WZ/WCZ} Get SE4 event flag into C/Z, then clear it.

279 POLLPAT {WC/WZ/WCZ} Get PAT event flag into C/Z, then clear it.

280 POLLFBW {WC/WZ/WCZ} Get FBW event flag into C/Z, then clear it.

281 POLLXMT {WC/WZ/WCZ} Get XMT event flag into C/Z, then clear it.

282 POLLXFI {WC/WZ/WCZ} Get XFI event flag into C/Z, then clear it.

283 POLLXRO {WC/WZ/WCZ} Get XRO event flag into C/Z, then clear it.

284 POLLXRL {WC/WZ/WCZ} Get XRL event flag into C/Z, then clear it.

285 POLLATN {WC/WZ/WCZ} Get ATN event flag into C/Z, then clear it.

286 POLLQMT {WC/WZ/WCZ} Get QMT event flag into C/Z, then clear it.

287 WAITINT {WC/WZ/WCZ}

Wait for INT event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

288 WAITCT1 {WC/WZ/WCZ}

Wait for CT1 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

289 WAITCT2 {WC/WZ/WCZ}

Wait for CT2 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

290 WAITCT3 {WC/WZ/WCZ}

Wait for CT3 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

291 WAITSE1 {WC/WZ/WCZ}

Wait for SE1 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

292 WAITSE2 {WC/WZ/WCZ}

Wait for SE2 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

293 WAITSE3 {WC/WZ/WCZ}

Wait for SE3 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

294 WAITSE4 {WC/WZ/WCZ}

Wait for SE4 event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

295 WAITPAT {WC/WZ/WCZ}

Wait for PAT event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

Page 453of 484

296 WAITFBW {WC/WZ/WCZ}

Wait for FBW event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

297 WAITXMT {WC/WZ/WCZ}

Wait for XMT event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

298 WAITXFI {WC/WZ/WCZ}

Wait for XFI event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

299 WAITXRO {WC/WZ/WCZ}

Wait for XRO event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

300 WAITXRL {WC/WZ/WCZ}

Wait for XRL event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

301 WAITATN {WC/WZ/WCZ}

Wait for ATN event flag, then clear it. Prior SETQ sets optional CT timeout value.

C/Z = timeout.

302 ALLOWI Allow interrupts (default).

303 STALLI Stall Interrupts.

304 TRGINT1 Trigger INT1, regardless of STALLI mode.

305 TRGINT2 Trigger INT2, regardless of STALLI mode.

306 TRGINT3 Trigger INT3, regardless of STALLI mode.

307 NIXINT1 Cancel INT1.

308 NIXINT2 Cancel INT2.

309 NIXINT3 Cancel INT3.

310 SETINT1 {#}D Set INT1 source to D[3:0].

311 SETINT2 {#}D Set INT2 source to D[3:0].

312 SETINT3 {#}D Set INT3 source to D[3:0].

313 SETQ {#}D

Set Q to D. Use before RDLONG/WRLONG/WMLONG to set block transfer. Also

used before MUXQ/COGINIT/QDIV/QFRAC/QROTATE/WAITxxx.

314 SETQ2 {#}D Set Q to D. Use before RDLONG/WRLONG/WMLONG to set LUT block transfer.

315 PUSH {#}D Push D onto stack.

Page 454of 484

316 POP D {WC/WZ/WCZ} Pop stack (K). D = K. C = K[31]. *

317 JMP D {WC/WZ/WCZ} Jump to D. C = D[31], Z = D[30], PC = D[19:0].

318 CALL D {WC/WZ/WCZ}

Call to D by pushing {C, Z, 10'b0, PC[19:0]} onto stack. C = D[31], Z = D[30], PC =

D[19:0].

319 RET {WC/WZ/WCZ} Return by popping stack (K). C = K[31], Z = K[30], PC = K[19:0].

320 CALLA D {WC/WZ/WCZ}

Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. C = D[31], Z =

D[30], PC = D[19:0].

321 RETA {WC/WZ/WCZ} Return by reading hub long (L) at --PTRA. C = L[31], Z = L[30], PC = L[19:0].

322 CALLB D {WC/WZ/WCZ}

Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. C = D[31], Z =

D[30], PC = D[19:0].

323 RETB {WC/WZ/WCZ} Return by reading hub long (L) at --PTRB. C = L[31], Z = L[30], PC = L[19:0].

324 JMPREL {#}D

Jump ahead/back by D instructions. For cogex, PC += D[19:0]. For hubex, PC +=

D[17:0] << 2.

325 SKIP {#}D

Skip instructions per D. Subsequent instructions 0..31 get cancelled for each '1'

bit in D[0]..D[31].

326 SKIPF {#}D

Skip cog/LUT instructions fast per D. Like SKIP, but instead of cancelling

instructions, the PC leaps over them.

327 EXECF {#}D

Jump to D[9:0] in cog/LUT and set SKIPF pattern to D[31:10]. PC = {10'b0,

D[9:0]}.

328 GETPTR D Get current FIFO hub pointer into D.

329 GETBRK D WC/WZ/WCZ

Get breakpoint/cog status into D according to WC/WZ/WCZ. See documentation

for details.

330 COGBRK {#}D

If in debug ISR, trigger asynchronous breakpoint in cog D[3:0]. Cog D[3:0] must

have asynchronous breakpoint enabled.

331 BRK {#}D

If in debug ISR, set next break condition to D. Else, set BRK code to D[7:0] and

unconditionally trigger BRK interrupt, if enabled.

332 SETLUTS {#}D

If D[0] = 1 then enable LUT sharing, where LUT writes within the adjacent

odd/even companion cog are copied to this cog's LUT.

333 SETCY {#}D Set the colorspace converter "CY" parameter to D[31:0].

Page 455of 484

334 SETCI {#}D Set the colorspace converter "CI" parameter to D[31:0].

335 SETCQ {#}D Set the colorspace converter "CQ" parameter to D[31:0].

336 SETCFRQ {#}D Set the colorspace converter "CFRQ" parameter to D[31:0].

337 SETCMOD {#}D Set the colorspace converter "CMOD" parameter to D[8:0].

338 SETPIV {#}D Set BLNPIX/MIXPIX blend factor to D[7:0].

339 SETPIX {#}D Set MIXPIX mode to D[5:0].

340 COGATN {#}D Strobe "attention" of all cogs whose corresponding bits are high in D[15:0].

341 TESTP {#}D WC/WZ Test IN bit of pin D[5:0], write to C/Z. C/Z = IN[D[5:0]].

342 TESTPN {#}D WC/WZ Test !IN bit of pin D[5:0], write to C/Z. C/Z = !IN[D[5:0]].

343 TESTP {#}D ANDC/ANDZ Test IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND IN[D[5:0]].

344 TESTPN {#}D ANDC/ANDZ Test !IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND !IN[D[5:0]].

345 TESTP {#}D ORC/ORZ Test IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR IN[D[5:0]].

346 TESTPN {#}D ORC/ORZ Test !IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR !IN[D[5:0]].

347 TESTP {#}D XORC/XORZ Test IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR IN[D[5:0]].

348 TESTPN {#}D XORC/XORZ Test !IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR !IN[D[5:0]].

349 DIRL {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

350 DIRH {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

351 DIRC {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

352 DIRNC {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

353 DIRZ {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

354 DIRNZ {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within DIRA/DIRB. Prior SETQ

overrides D[10:6]. C,Z = DIR bit.

Page 456of 484

355 DIRRND {#}D {WCZ}

DIR bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within DIRA/DIRB. Prior

SETQ overrides D[10:6]. C,Z = DIR bit.

356 DIRNOT {#}D {WCZ}

Toggle DIR bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within DIRA/DIRB. Prior

SETQ overrides D[10:6]. C,Z = DIR bit.

357 OUTL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

358 OUTH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

359 OUTC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

360 OUTNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

361 OUTZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

362 OUTNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

363 OUTRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

364 OUTNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within OUTA/OUTB. Prior

SETQ overrides D[10:6]. C,Z = OUT bit.

365 FLTL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

366 FLTH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

367 FLTC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

368 FLTNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

369 FLTZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

Page 457of 484

370 FLTNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

371 FLTRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

372 FLTNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 0. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

373 DRVL {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

374 DRVH {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

375 DRVC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

376 DRVNC {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

377 DRVZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

378 DRVNZ {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

379 DRVRND {#}D {WCZ}

OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

380 DRVNOT {#}D {WCZ}

Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 1. Wraps within

OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT bit.

381 SPLITB D

Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8],

D[4], D[0]}.

382 MERGEB D

Merge bits of bytes in D. D = {D[31], D[23], D[15], D[7], ...D[24], D[16], D[8],

D[0]}.

383 SPLITW D

Split odd/even bits of D into words. D = {D[31], D[29], D[27], D[25], ...D[6], D[4],

D[2], D[0]}.

384 MERGEW D

Merge bits of words in D. D = {D[31], D[15], D[30], D[14], ...D[17], D[1], D[16],

D[0]}.

Page 458of 484

385 SEUSSF D

Relocate and periodically invert bits within D. Returns to original value on 32nd

iteration. Forward pattern.

386 SEUSSR D

Relocate and periodically invert bits within D. Returns to original value on 32nd

iteration. Reverse pattern.

387 RGBSQZ D

Squeeze 8:8:8 RGB value in D[31:8] into 5:6:5 value in D[15:0]. D = {15'b0,

D[31:27], D[23:18], D[15:11]}.

388 RGBEXP D

Expand 5:6:5 RGB value in D[15:0] into 8:8:8 value in D[31:8]. D =

{D[15:11,15:13], D[10:5,10:9], D[4:0,4:2], 8'b0}.

389 SPLITB D

Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8],

D[4], D[0]}.

390 REV D Reverse D bits. D = D[0:31].

391 RCZR D {WC/WZ/WCZ} Rotate C,Z right through D. D = {C, Z, D[31:2]}. C = D[1], Z = D[0].

392 RCZL D {WC/WZ/WCZ} Rotate C,Z left through D. D = {D[29:0], C, Z}. C = D[31], Z = D[30].

393 WRC D Write 0 or 1 to D, according to C. D = {31'b0, C).

394 WRNC D Write 0 or 1 to D, according to !C. D = {31'b0, !C).

395 WRZ D Write 0 or 1 to D, according to Z. D = {31'b0, Z).

396 WRNZ D Write 0 or 1 to D, according to !Z. D = {31'b0, !Z).

397 MODCZ c,z {WC/WZ/WCZ} Modify C and Z according to cccc and zzzz. C = cccc[{C,Z}], Z = zzzz[{C,Z}].

398 MODC c {WC} Modify C according to cccc. C = cccc[{C,Z}].

399 MODZ z {WZ} Modify Z according to zzzz. Z = zzzz[{C,Z}].

400 SETSCP {#}D Set four-channel oscilloscope enable to D[6] and set input pin base to D[5:2].

401 GETSCP D

Get four-channel oscilloscope samples into D. D =

{ch3[7:0],ch2[7:0],ch1[7:0],ch0[7:0]}.

402 JMP #{\}A Jump to A. If R = 1 then PC += A, else PC = A. "\" forces R = 0.

403 CALL #{\}A

Call to A by pushing {C, Z, 10'b0, PC[19:0]} onto stack. If R = 1 then PC += A, else

PC = A. "\" forces R = 0.

404 CALLA #{\}A

Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. If R = 1 then PC

+= A, else PC = A. "\" forces R = 0.

Page 459of 484

405 CALLB #{\}A

Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. If R = 1 then PC

+= A, else PC = A. "\" forces R = 0.

406

CALLD

PA/PB/PTRA/PTRB,#{\}A

Call to A by writing {C, Z, 10'b0, PC[19:0]} to PA/PB/PTRA/PTRB (per W). If R = 1

then PC += A, else PC = A. "\" forces R = 0.

407 LOC PA/PB/PTRA/PTRB,#{\}A

Get {12'b0, address[19:0]} into PA/PB/PTRA/PTRB (per W). If R = 1, address = PC

+ A, else address = A. "\" forces R = 0.

408 AUGS #n

Queue #n to be used as upper 23 bits for next #S occurrence, so that the next 9-

bit #S will be augmented to 32 bits.

409 AUGD #n

Queue #n to be used as upper 23 bits for next #D occurrence, so that the next 9-

bit #D will be augmented to 32 bits.

410 _RET_ <inst> <ops>

Execute <inst> always and return if no branch. If <inst> is not branching then

return by popping stack[19:0] into PC.

411 IF_NC_AND_NZ <inst> <ops> Execute <inst> if C = 0 and Z = 0.

412 IF_NZ_AND_NC <inst> <ops> Execute <inst> if C = 0 and Z = 0.

413 IF_GT <inst> <ops>

Execute <inst> if C = 0 and Z = 0, or if 'greater than' after a

comparison/subtraction.

414 IF_A <inst> <ops> Execute <inst> if C = 0 and Z = 0, or if 'above' after a comparison/subtraction.

415 IF_00 <inst> <ops> Execute <inst> if C = 0 and Z = 0.

416 IF_NC_AND_Z <inst> <ops> Execute <inst> if C = 0 and Z = 1.

417 IF_Z_AND_NC <inst> <ops> Execute <inst> if C = 0 and Z = 1.

418 IF_01 <inst> <ops> Execute <inst> if C = 0 and Z = 1.

419 IF_NC <inst> <ops> Execute <inst> if C = 0.

420 IF_GE <inst> <ops>

Execute <inst> if C = 0, or if 'greater than or equal' after a

comparison/subtraction.

421 IF_AE <inst> <ops> Execute <inst> if C = 0, or if 'above or equal' after a comparison/subtraction.

422 IF_0X <inst> <ops> Execute <inst> if C = 0.

423 IF_C_AND_NZ <inst> <ops> Execute <inst> if C = 1 and Z = 0.

424 IF_NZ_AND_C <inst> <ops> Execute <inst> if C = 1 and Z = 0.

Page 460of 484

425 IF_10 <inst> <ops> Execute <inst> if C = 1 and Z = 0.

426 IF_NZ <inst> <ops> Execute <inst> if Z = 0.

427 IF_NE <inst> <ops> Execute <inst> if Z = 0, or if 'not equal' after a comparison/subtraction.

428 IF_X0 <inst> <ops> Execute <inst> if Z = 0.

429 IF_C_NE_Z <inst> <ops> Execute <inst> if C != Z.

430 IF_Z_NE_C <inst> <ops> Execute <inst> if C != Z.

431 IF_DIFF <inst> <ops> Execute <inst> if C != Z.

432 IF_NC_OR_NZ <inst> <ops> Execute <inst> if C = 0 or Z = 0.

433 IF_NZ_OR_NC <inst> <ops> Execute <inst> if C = 0 or Z = 0.

434 IF_NOT_11 <inst> <ops> Execute <inst> if C = 0 or Z = 0.

435 IF_C_AND_Z <inst> <ops> Execute <inst> if C = 1 and Z = 1.

436 IF_Z_AND_C <inst> <ops> Execute <inst> if C = 1 and Z = 1.

437 IF_11 <inst> <ops> Execute <inst> if C = 1 and Z = 1.

438 IF_C_EQ_Z <inst> <ops> Execute <inst> if C = Z.

439 IF_Z_EQ_C <inst> <ops> Execute <inst> if C = Z.

440 IF_SAME <inst> <ops> Execute <inst> if C = Z.

441 IF_Z <inst> <ops> Execute <inst> if Z = 1.

442 IF_E <inst> <ops> Execute <inst> if Z = 1, or if 'equal' after a comparison/subtraction.

443 IF_X1 <inst> <ops> Execute <inst> if Z = 1.

444 IF_NC_OR_Z <inst> <ops> Execute <inst> if C = 0 or Z = 1.

445 IF_Z_OR_NC <inst> <ops> Execute <inst> if C = 0 or Z = 1.

446 IF_NOT_10 <inst> <ops> Execute <inst> if C = 0 or Z = 1.

447 IF_C <inst> <ops> Execute <inst> if C = 1.

448 IF_LT <inst> <ops> Execute <inst> if C = 1, or if 'less than' after a comparison/subtraction.

Page 461of 484

449 IF_B <inst> <ops> Execute <inst> if C = 1, or if 'below' after a comparison/subtraction.

450 IF_1X <inst> <ops> Execute <inst> if C = 1.

451 IF_C_OR_NZ <inst> <ops> Execute <inst> if C = 1 or Z = 0.

452 IF_NZ_OR_C <inst> <ops> Execute <inst> if C = 1 or Z = 0.

453 IF_NOT_01 <inst> <ops> Execute <inst> if C = 1 or Z = 0.

454 IF_C_OR_Z <inst> <ops> Execute <inst> if C = 1 or Z = 1.

455 IF_Z_OR_C <inst> <ops> Execute <inst> if C = 1 or Z = 1.

456 IF_LE <inst> <ops>

Execute <inst> if C = 1 or Z = 1, or if 'less than or equal' after a

comparison/subtraction.

457 IF_BE <inst> <ops>

Execute <inst> if C = 1 or Z = 1, or if 'below or equal' after a

comparison/subtraction.

458 IF_NOT_00 <inst> <ops> Execute <inst> if C = 1 or Z = 1.

459 <inst> <ops>

Execute <inst> always. This is the default when no instruction prefix is

expressed.

460 _CLR C/Z = 0

461 _NC_AND_NZ C/Z = !C AND !Z

462 _NZ_AND_NC C/Z = !C AND !Z

463 _GT C/Z = !C AND !Z, or 'greater than' after a comparison/subtraction.

464 _NC_AND_Z C/Z = !C AND Z

465 _Z_AND_NC C/Z = !C AND Z

466 _NC C/Z = !C

467 _GE C/Z = !C, or 'greater than or equal' after a comparison/subtraction.

468 _C_AND_NZ C/Z = C AND !Z

469 _NZ_AND_C C/Z = C AND !Z

470 _NZ C/Z = !Z

Page 462of 484

471 _NE C/Z = !Z, or 'not equal' after a comparison/subtraction.

472 _C_NE_Z C/Z = C NOT_EQUAL_TO Z

473 _Z_NE_C C/Z = C NOT_EQUAL_TO Z

474 _NC_OR_NZ C/Z = !C OR !Z

475 _NZ_OR_NC C/Z = !C OR !Z

476 _C_AND_Z C/Z = C AND Z

477 _Z_AND_C C/Z = C AND Z

478 _C_EQ_Z C/Z = C EQUAL_TO Z

479 _Z_EQ_C C/Z = C EQUAL_TO Z

480 _Z C/Z = Z

481 _E C/Z = Z, or 'equal' after a comparison/subtraction.

482 _NC_OR_Z C/Z = !C OR Z

483 _Z_OR_NC C/Z = !C OR Z

484 _C C/Z = C

485 _LT C/Z = C, or 'less than' after a comparison/subtraction.

486 _C_OR_NZ C/Z = C OR !Z

487 _NZ_OR_C C/Z = C OR !Z

488 _C_OR_Z C/Z = C OR Z

489 _Z_OR_C C/Z = C OR Z

490 _LE C/Z = C OR Z, or 'less than or equal' after a comparison/subtraction.

491 _SET C/Z = 1

 C/Z = 1

Page 463of 484

Page 464of 484

Page 465of 484

Page 466of 484

Page 467of 484

Page 468of 484

Page 469of 484

Page 470of 484

Page 471of 484

Page 472of 484

Page 473of 484

Page 474of 484

Page 475of 484

Page 476of 484

Page 477of 484

Page 478of 484

Page 479of 484

Page 480of 484

Reference Material

Parallax Documentation
Propeller 2 Silicon Documentation 125 pages
Propeller 2 Hardware Manual 74 pages
Propeller 2 PASM Instructions spread sheet
Spin 2 Language Documentation(Draft) 47 pages
Propeller 2 Smart Pin Suplementary Documentation 54 pages
Spin 2 Send Command Short Tutorial(JonTitus) 2 pages
Parallax Propeller 2 (P2X*C4M64P) Data Sheet (Updated 2021\07\09) 51 pages
Propeller 2 Questions and Answere spread sheet
Propeller 2 Rev A Documentation (V32-09/2018) 81 pages
Rev A PASM Instructions spread sheet

Miscelanous Info (Doesn’t Fit anywhere)
1) When using Forum chat line plae ~~~ then code followed by~~~ this keeps code indentation

Page 481of 484

Index

A

ABSD, 397

ABSDS, 395

ADC Analog Digital, 54

ADD, 270

ADDPIX D,{#}S, 561

Address Convention, 689

ADDS, 273

ADDSX, 275

ADDX, 272

AKPIN {#}S, 585

ALLOWI, 610

ALTB D, 529

ALTB D,{#}S, 526

ALTD D, 518

ALTD D,{#}S, 516

ALTGB D, 505

ALTGB D,{#}S, 505

ALTGN D, 503

ALTGN D,{#}S, 503

ALTGW D, 509

ALTGW D,{#},S, 509

ALTI D, 533

ALTI D,{#}S, 533

ALTR D, 514

ALTR D,{#}S, 511

ALTS D, 523

ALTS D,{#}S, 521

ALTSB D, 504

ALTSB D,{#}S, 504

ALTSN D, 502

ALTSN D,{#}S, 502

ALTSW D, 508

ALTSW D,{#}S, 508

Analog Input Smart Pin, 54

Analog Out Smart Pin, 48

AnalogIn and AnalogOut, 60

AND, 371

ANDN, 373

B

BITC, 357

BITH, 354

BITL, 349

BITNC, 360

BITNOT, 369

BITNZ, 365

BITRND, 367

BITZ, 363

BMASK D, 542

BMASK D,{#}S, 540

Byte Declaration, 684

C

CALLD D,{#}S, 574

CALLPA, 577

CALLPB, 577

CMP, 287

CMPM, 301

CMPR, 299

CMPS, 293

CMPSUB, 303

CMPSX, 296

CMPX, 290

COG HUB Access, 732

COG Overview, 76

COGID {#}D {WC}, 598

COGINIT {#}D,{#}S {WC}, 595

COGSTOP {#}D, 598

CON Block, 158

Cordic Solver, 745

CRC8 Cycle Redundancy Check, 699

CRCBIT D,{#}S, 544

CRCNIB D,{#}S, 546

D

Dat Block, 212

Debug for Testing, 112

DECMOD, 422

DECOD D, 539

DECOD D,{#}S, 537

Digitial Pin Operation, 26

DIR Direction, 628

DJF D,{#}S, 578

DJNF D,{#}S, 578

DJNZ D,{#}S, 578

DJZ D, 578

E

ENCODD, 430

ENCODDS, 428

F

FBLOCK {#}D,{#}S, 590

Page 482of 484

FGE, 305

FGES, 311

FLE, 309

FLES, 313

G

GETBYTE D, 473

GETBYTE D,{#}S,#N, 471, 475

GETCT D {WC}, 601

GETNIB D, 452, 454

GETNIB D,{#}S,#N, 451

GETQX D {WC/WZ/WCZ}, 601

GETQY D {WC/WZ/WCZ}, 601

GETRND WC/WZ/WCZ, 601

GETRND D {WC/WZ/WCZ, 601

GETWORD D, 491

GETWORD D,{#}S,#N, 489, 493

GETXACC D, 603

H

Hub RAM, 731

HUB RAM Slice, 733

HUBSET {#}D, 597

I

IJNZ D,{#}S, 579

IJZ D,{#}S, 579

INCMOD, 420

Interupt Jump Instructions, 662

J

JATN {#}S, 581

JCT1 {#}S, 581

JCT2 {#}S, 581

JCT3 {#}S, 581

JFBW {#}S, 581

JINT {#}S, 581

JNATN {#}S, 582

JNCT1 {#}S, 581

JNCT2 {#}S, 581

JNCT3 {#}S, 582

JNFBW {#}S, 582

JNINT {#}S, 581

JNPAT {#}S, 582

JNQMT {#}S, 582

JNSE1 {#}S, 582

JNSE2 {#}S, 582

JNSE3 {#}S, 582

JNSE4 {#}S, 582

JNXFI {#}S, 582

JNXMT {#}S, 582

JNXRL {#}S, 582

JNXRO {#}S, 582

JPAT {#}S, 581

JQMT {#}S, 581

JSE1 {#}S, 581

JSE2 {#}S, 581

JSE3 {#}S, 581

JSE4 {#}S, 581

JXFI {#}S, 581

JXMT {#}S, 581

JXRL {#}S, 581

JXRO {#}S, 581

L

LOCKNEW D {WC}, 598

LOCKREL {#}D {WC}, 598

LOCKRET {#}D, 598

LOCKTRY {#}D {WC}, 598

Long Declaration, 688

M

Method Pointer, 227

MOVBYTS D,{#}S, 553

MUL D,{#}S {WZ}, 555

MULPIX D,{#}S, 562

MULS D,{#}S {WZ}, 557

MUXC, 379

MUXNC, 383

MUXNIBS D,{#}S, 550

MUXNITS D,{#}S, 548

MUXNZ, 387

MUXQ D,{#}S, 551

MUXZ, 385

N

NEGCD, 406

NEGCDS, 404

NEGD, 402

NEGDS, 399

NEGNCD, 410

NEGNCDS, 408

NEGNZ, 418

NEGNZDS, 416

NEGZD, 414

NEGZDS, 412

NIXINT1, 610

NIXINT2, 610

NIXINT3, 610

NOP No operation, 248

NOTD, 393

Page 483of 484

NOTDS, 391

O

OBJ Block, 162

Operators, 219

OR, 375

P

PASM Propeller Assembly, 237

POLLCT1/WAITCT1 event CT1, 609

POLLCT1/WAITCT1 Get CT1, 607

POLLCT2/WAITCT2 event CT2, 609

POLLCT2/WAITCT2 Get CT2, 607

POLLCT3/WAITCT3 event CT3, 609

POLLCT3/WAITCT3 Get CT3, 607

POLLINT {WC/WZ/WCZ}, 607

POPA D {WC/WZ/WCZ}, 573

POPB D {WC/WZ/WCZ}, 573

PRI Block, 211

Program Structure, 148

Propeller Tool, 148

PUB Block, 195

PWM Pulse Width Modulation, 45

Q

QDIV {#}D,{#}S, 596

QEXP {#}D, 599

QFRAC {#}D,{#}S, 596

QLOG {#}D, 599

QMUL {#}D,{#}S, 596

QROTATE {#}D,{#}S, 596

QSQRT {#}D,{#}S, 596

QVECTOR {#}D,{#}S, 596

R

RCL Rotate Carry Left, 260

RCR Rotate Carrry Right, 260

RDBYTE D,{#}S/P {WC/WZ/WCZ}, 571

RDFAST {#}D,{#}S, 589

RDLONG D,{#}S/P {WC/WZ/WCZ}, 571

RDLUT D,{#}S/P {WC/WZ/WCZ}, 571

RDPIN D,{#}S {WC}, 571

RDWORD D,{#}S/P {WC/WZ/WCZ}, 571

RECV, 235

REP {#}D,{#}S, 592

RESI0, 575

RESI1, 575

RESI2, 575

RESI3, 575

RETI0, 576

RETI1, 576

RETI2, 576

RETI3, 576

RFBYTE D {WC/WZ/WCZ}, 600

RFLONG D {WC/WZ/WCZ}, 600

RFVAR D {WC/WZ/WCZ}, 600

RFVARS D {WC/WZ/WCZ}, 600

RFWORD D {WC/WZ/WCZ, 600

ROL Rotate Left, 249

ROLBYTE D, 479

ROLBYTE D,{#}S,#N, 477, 479

ROLNIBD, 459

ROLNIBDSN, 457, 461

ROLWORD D, 498

ROLWORD D,{#}S,#N, 496, 500

ROR Rotate Right, 249

RQPIN D,{#}S {WC}, 571

S

SAR Shift Arithmetic Right, 264

SCA D,{#}S {WZ}, 558

SCAS D,{#}S {WZ}, 560

SEND, 231

SETBYTE {#}S, 467

SETBYTE D,{#}S,#N, 465, 469

SETD D,S/#, 534

SETDACS {#}, 602

SETINT1, 610

SETINT2, 610

SETINT3, 610

SETNIB, 446

SETNIB D,{#}S#N, 448

SETNIBDS, 444

SETPAT {#}D,{#}S, 584

SETQ {#}D, 611

SETQ2 {#}D, 611

SETR D,S/#, 534

SETS D,S/#, 534

SETSE1 {#}D, 605

SETSE2 {#}D, 605

SETSE3 {#}D, 605

SETSE4 {#}D, 605

SETWORD {#}S, 484

SETWORD D,{#}S,#N, 482

SETWORD D,{S},#N, 486

SETXFRQ {#}D, 602

Shift Arithmetic Left, 264

SHL Shift Left, 255

SHR Shift Right, 255

SIGNX, 426

Smart Pin Block Diagram, 3

SPIN I/O Digital Methods, 41

STALLI, 610

Page 484of 484

SUB, 277

SUBR, 285

SUBS, 281

SUBSX, 283

SUBX, 279

SUMC, 315

SUMNC, 318

SUMNZ, 322

SUMZ, 320

T

TESTB, 324

TESTB_ANDC/ANDZ, 331

TESTB_ORC_ORZ, 337

TESTB_XORC_XORZ, 343

TESTBN, 328

TESTBN_ANDC/ANDZ, 334

TESTBN_ORC_ORZ, 340

TESTBN_XORC_XORZ, 346

TESTD, 438

TESTDS, 436

TESTND, 440

TJF D,{#}S, 580

TJNF D,{#}S, 580

TJNS D,{#}S, 580

TJNZ D,{#}S, 580

TJS D,{#}S, 580

TJV D,{#}S, 580

TJZ D,{#}S, 580

TRGINT1, 610

TRGINT2, 610

TRGINT3, 610

V

VAR Block, 190

W

WAITINT {WC/WZ/WCZ}, 609

WAITX {#}D {WC/WZ/WCZ}, 604

WFBYTE {#}D, 600

WFLONG {#}D, 600

WFWORD {#}D, 600

Word Declaration, 687

WRBYTE {#}D,{#}S, 587

WRFAST {#}D,{#}S, 589

WRLONG {#}D,{#}S, 587

WRLUT {#}D,{#}S, 587

WRPIN {#}D,{#}S, 585

WRWORD {#}D,{#}S/, 587

WXPIN {#}D,{#}S, 585

WYPIN {#}D,{#}S, 585

X

XCONT {#}D,{#}S, 588, 591

XINIT {#}D,{#}S, 591

XOR, 377

XSTOP, 591

XZERO {#}D,{#}S, 588, 591

Z

ZEROX, 424

