
PropBasic 00.01.48

What is PropBasic ?

PropBasic is a BASIC compiler for the Parallax(c) Propeller microcontroller. It translates program code written in the
BASIC computer language into Propeller assembly language instructions.

The Propeller microcontroller consists of eight 32-bit processors called COGs. Each cog has it's own 512 longs of
memory. This cog ram must hold the PASM code that the cog is executing, and cog variables.

In a PropBasic program, the main code is run in one cog. And any TASKs define will be run in their own cog.

Inside the propeller is also 32K of ram that can be accessed by all cogs via the HUB. The HUB gives each cog access to
the hub ram in sequence. Any time one cog needs to exchange information with another cog, it needs to use hub ram.

In PropBasic hub ram variables are accessed using RDxxxx and WRxxx to read and write to hub ram. xxxx may be BYTE,
WORD or LONG.

It is important to keep straight the difference between COG memory and HUB memory. Variables declared with VAR exist
in the COG memory and are directly addressable from any command. Variables declared with HUB or DATA exist in the
HUB memory and are only accessible from specific commands. In other words you cannot perform math on HUB
variables unless you first read them into VAR (cog) variables.

To invoke the compiler, you need to run the compiler .exe file with the complete path to your file as the first parameter in
quotes.

For example:

 PropBasic “c:\myfiles\myprog.pbas”

There are several option switches that may be used after the filename.

Switches:
 /Q = Quiet (No screen output)
 /P = Pause on warning or error (used to debug compiler)
 /B = Brief output (does not show source code)
 /O = "Output_Directory" Specifies a diffrent directory for output files
 /V = Returns Version number as exit code (exit immediately)
 /NS = No Code (Does NOT include the BASIC code in the output file)
 /FB = FreeBASIC error reporting format, for FreeBASIC IDEs (PoseidonFB IDE ect)
 /VP = Compiling for ViewPort
 /D = Disable Warnings

For Example:

 PropBasic “c:\myfiles\myprog.pbas” /p

Page 1

PropBasic 00.01.48

Blink an LED

Usually to introduce any microcontroller language it is customary to show how to blink an LED. For this program we will
assume you are using the Propeller demo board with LEDs connected to pins P16 through P23.

DEVICE P8X32A

LED PIN 16 OUTPUT

PROGRAM Start

Start:
 TOGGLE LED
 PAUSE 1000
 GOTO Start

Let's go over each line. First we have:

DEVICE P8X32A

The device directive tells the compiler what controller we are using.

LED PIN 16 OUTPUT

LED is a pin definition. It is a handy way to reference a pin number without having to remember what pin number you
used though out the program. The OUTPUT modifier also tells the compiler that the pin is to be made an output at the
start of the program. Normally all pins are inputs at startup.

PROGRAM Start

The program directive tells the compiler where your program is supposed to start executing.

Start:

The is a program label (program labels MUST have a colon after them). Labels define locations within a program.

TOGGLE LED

The toggle command will change the state of a pin. If the pin is high, the toggle command will make it low. If the pin is low,
the toggle command will make it high.

PAUSE 1000

The pause command just waits for the specified number of milliseconds. So here we are waiting for 1000 milliseconds or
1 second.

GOTO Start

The goto command simple jumps to a new location in the program. Here we go back to the toggle command.

That's it. That is the whole program. If you run this program the LED will light for 1 seconds, then turn off for 1 second,
then repeat over and over.

Page 2

PropBasic 00.01.48

Propeller Memory:

In the propeller chip there are two types of RAM. There is COG RAM and HUB RAM.

COG RAM:
496 LONGs
Can only be accessed in LONG format (not WORD or BYTE)
Holds native program code (except for LMM code)
Cannot be read or written of other COGs.
Can perform operation on data directly.

HUB RAM:
32K Bytes
Must be copied to/from COG memory using special instructions.
Can be read or written as BYTE, WORD or LONG format
Holds LMM code until it is loaded into a COG and executed.
Is shared by all COGs.
Data must be read into COG RAM before any operation can be performed.

PropBASIC Variables:

Variables are allocated in COG RAM by using the VAR keyword. For example:

value VAR LONG

 The only type of VAR variable is a LONG. An array can be created by specifying the size

many VAR LONG (10)

VAR arrays are not recommended because they use valuable code space. And require self-modifying-code to access.

Variables are allocated in HUB RAM byte using HUB or DATA. For example:

name HUB STRING(30)
age HUB BYTE
Message DATA “Hello There.”, 0

Since “age” is a HUB variable, if we wanted to add 1 to it, we would have to read it into a VAR variable, add 1 to the VAR
variable, then write it back to the HUB variable.

RDBYTE age, value
value = value + 1
WRBYTE age, value

Strings and data labels are passed to subroutines as their HUB address.

Data labels may be used as a string parameter. Data is really just a string that is preset.

Pin variables are names assigned to the propeller I/O pins. For example if you had an LED connected to pin 16 you might
define

LED PIN 16 OUTPUT

The "output" modifier tell the compiler to make the pin an output when your code starts. Value options are "INPUT",
"OUTPUT", "HIGH" and "LOW".

Page 3

PropBasic 00.01.48
Pin variables may encompass multiple pins. If you have LEDs on pins 16 thru 23 (like the Propeller demo board) you
might define

LEDs PIN 23..16 OUTPUT

Notice how we specified the higher pin number first. This is because in binary the more significant digits are on the left. If
you define the pin variable with the lower pin number first, any values assigned to the pin variable will have their bit order
reversed (this may be exactly what you want).

Prefix a PIN variable name with a # to get the pin number.
Prefix a PIN variable name with a @ to get the pin mask.
temp = #LED ‘ Set temp to 16
temp = LED ‘ Set temp to the state of pin 16
temp = @LED ‘ Set temp to 1<<16

Strings may have the following embedded control characters:
 \r = Carriage Return (13)
 \n = Newline (10)
 \\ = Backslash (92)
 \" = Quote (34)
 \123 = Chr(123) [must be 3 digits \000 = Chr(0)]
 \x20 = Chr($20) [must be 2 hex digits]

VAR vs HUB (what are the differences ?):

VAR are stored in COG memory so they take up native code space. If you are using LMM for code, then there is plenty of
space for VARs.

HUB are stored in HUB memory, they are read/written using RDxxxx and WRxxxx commands.

Page 4

PropBasic 00.01.48

Native versus LMM programs:

PropBasic can generate two different type of code. Native or LMM.

Native code is generated by default. When a native code program is started the code is loaded into a COG's RAM and is
executed directly.

LMM code is generated by appending the word LMM to the PROGRAM command or the TASK command. When a LMM
program is started a small “execution” program is loaded into the COG RAM with a pointer to the LMM code. The LMM
code is read from HUB RAM one instruction at a time. That instruction is executed, then the next instruction is fetched and
executed and so on.

Native code has the advantage of being about 5 times faster than LMM code. But it is limited to 496 PASM instruction.

LMM code has the advantage of allowing large programs to be created. Although they run about 5 times slower.

LMM code is also larger for a given set of PropBasic commands. This is because some instructions need extra data. For
example a jump and call instruction use 2 LONGs instead of 1.

A single PropBasic program can have some TASKs that are native code and some that are LMM. It is fairly typical for the
main program to be LMM, and the TASKs to be native code. Since TASK code tends to be smaller and in some cases
needs to run fast (like video drivers).

When a CALL is used in LMM, the return address is stored on a stack that is maintained by the compiler. The stack
default to 16 nested calls. But the size can be changed using the STACK directive. The size of the stack may be from 4 to
255. If the STACK directive is used it should be directly after the device directives (DEVICE and FREQ). For example:

DEVICE P8X32A, XTAL1, PLL16X
FREQ 80_000_000
STACK 8

Page 5

PropBasic 00.01.48

Math Operators:

Unary Operators:
ABS Returns the absolute value value1 = ABS value2 9
LEN Returns the length of a string value1 = LEN string1 10
VAL Returns the value of a string value1 = VAL string1 11
GETADDR Returns the address of a hub variable value1 = GETADDR string1 12
SGN Returns the sign of value 1, 0, -1 value1 = SGN value2 13
~ Returns the NOT of value value1 = ~value2 14
- Returns the negative of value value1 = -value2 15

Binary Operators:
+ Addition value1 = value2 + value3 16
- Subtraction value1 = value2 – value3 17
* Multiplication value1 = value2 * value3 18
*/ Multiply, shift 16-bits value1 = value2 */ value3 19
** Multiply, shift 32-bits value1 = value2 ** value3 20
/ Division value1 = value2 / value3 21
// Remainder value1 = value2 // value3 22
& AND Bitwise AND value1 = value2 & value3 23

value1 = value2 AND value3
| OR Bitwise OR value1 = value2 | value3 24

value1 = value2 OR value3
^ XOR Bitwise XOR value1 = value2 ^ value3 25

value1 = value2 XOR value3
&~ ANDN Bitwise AND NOT value1 = value2 &~ value3 26

value1 = value2 ANDN value3
MIN Minimum of two values value1 = value2 MIN value3 27
MAX Maximum of two values value1 = value2 MAX value3 28
>> SHR Shift right value1 = value2 >> value3 29

value1 = value2 SHR value3
<< SHL Shift left value1 = value2 << value3 30

value1 = value2 SHL value3

String Operators:

LEFT Returns the left section of a string string1 = LEFT string2, count 31
RIGHT Returns the right section of a string string1 = RIGHT string2, count 32
MID Returns the middle of a string string1 = MID string2, start, count 33
STR Converts a value to a string string1 = STR value1,digits{,option}34
+ Concatenate two strings string1 = string2 + string3 35

* Note that operators are ONLY allowed in assignment operation.
 You may need to use temporary variables to hold calculation needed for other commands.

* To deference a string use the system array __STRING(var). Note there are two underscores.
Strings are passed to subroutines as the location of the string in HUB RAM. Using __STRING(__paramx) allows
subroutines to access the strings that were passed.

Page 6

PropBasic 00.01.48

 PropBasic Commands:

Command Description Page
\ Creates a single line of propeller assembly code. 36
' Anything after is a comment. 37
{ } Creates a multi-line comment. 38
_FREQ Long Constant that holds the initially assigned clock frequency. . . . 39
ASM...ENDASM Creates a block of propeller assembly code. 40
BRANCH Variable determines what label to jump to. 41
BREAK Sets a break-point when using a debugger. 42
CLKSET Gets the cog ID of the cog running this command. 43
COGID Gets the cog ID of the cog running this command. 44
COGINIT Initializes a cog with a task. The cog ID must be provided . . 43
COGSTART Starts a task in a new cog. The next available cog is used. . . . 44
COGSTOP Stops a cog. If no cogid is provided, the current cog is stopped. . . . 44
CON Creates a named constant, with a value or a string. 45
COUNTERA Setup hardware counter parameters. 46
COUNTERB Setup hardware counter parameters. 46
DATA Creates byte (8 bit) data values in HUB ram. 47
 WDATA Creates word (16 bit) data values in HUB ram.
 LDATA Creates long (32 bit) data values in HUB ram.
DEC Subtract 1 (or any value) from a variable. 48
DEVICE Sets device type and parameters. 49
DJNZ Decrease variable and jump to label if not zero. 50
DO...LOOP Creates a repeating program loop. 51
END Ends program execution. Puts cog in low-power mode. 52
EXIT Ends the current DO...LOOP or FOR...NEXT loop. 53
FILE Loads a binary data file. The contents are read like DATA. . . . 54
FOR Creates a loop. 55
 TO
 STEP
 NEXT
FREQ Sets device frequency after PLL multiplier. 56
FUNC Creates a named function. Returns 1 LONG value. 57
 ENDFUNC
GOSUB Jump to a subroutine. 58
GOTO Jump to a label. 59
HIGH Makes a pin an output and high. 60
HUB Creates HUB variables. 61
I2CREAD Reads a byte from the I2C bus. 62
I2CSPEED Sets the clock speed for I2C operations 62
I2CSTART Sends an I2C start condition. 62
I2CSTOP Sends an I2C stop condition. 62
I2CWRITE Writes a byte to the I2C bus. 62
IF Creates conditional code. 63
 OR|AND
 ELSE|ELSEIF
 ENDIF
INC Adds 1 (or any value) to a variable. 64
INCLUDE Includes propeller assembly code from a separate file. 65
INPUT Makes a pin an input. 66
LET Variable assignment (Optional). 67
LOAD Load PropBasic code from a separate file. 68
LOCKCLR Clears a lock ID. 69

Page 7

PropBasic 00.01.48
LOCKNEW Retrieves a new lock ID. 69
LOCKRET Returns a lock ID. 69
LOCKSET Sets a lock ID. 69
LOW Makes a pin an output and low. 70
NOP No operation. Does nothing. Uses 1 instruction. 71
ON 72
 GOTO|GOSUB Jump to label based on value of a variable.
OUTPUT Makes a pin an output. 73
OWREAD Reads a byte from the 1-wire bus. 74
OWRESET Sends a reset on the 1-wire bus. 74
OWWRITE Writes a byte to the 1-wire bus. 74
PAUSE Pauses for milliseconds. Can use fractional values. 75
PAUSEUS Pauses for microseconds. Can use fractional values. 75
PIN Creates a pin variable. #name = pin number, @name = pin mask. . . 76
PROGRAM Sets program start label. 77
PULSIN Measure incoming pulse width in microseconds. 78
PULSOUT Create a pulse of specified width. Duration is in microseconds. . . . 79
RANDOM Creates a random number from a seed variable. 80
RCTIME Measures time for pin to change state (in microseconds). . . . 81
RDBYTE Reads the value of a BYTE hub variable or DATA. 82
RDSBYTE Reads the value of a signed BYTE hub variable or DATA 82
RDLONG Reads the value of a LONG hub variable or LDATA. 82
RDWORD Reads the value of a WORD hub variable or WDATA. 82
RDSWORD Reads the value of a signed WORD hub variable or DATA. . . . 82
RETURN Return from a subroutine. 83
REVERSE Reverse pin direction (input / output). 84
SERIN Serial input. 85
SEROUT Serial output. 86
SHIFTIN SPI input. 87
SHIFTOUT SPI output. 88
SUB Creates a named subroutine with parameters. 89
 ENDSUB
TASK Creates code that runs in a separate cog. 90
 ENDTASK
TOGGLE Toggles pin state (high / low). 91
VAR Creates a variable. 92
WAITCNT Waits for the system counter to reach the target value. 93
WAITPEQ Waits for a pin (or set of pins) state to equal a mask value. . . . 94
WAITPNE Waits for a pin (or set of pins) state to NOT equal a mask value. . . . 94
WAITVID Waits for the video serializer to be able to accept new data. . . . 95
WATCH Updates variables when using a debugger 95
WRBYTE Writes a new value into a BYTE hub variable. 96
WRLONG Writes a new value into a LONG hub variable. 96
WRWORD Writes a new value into a WORD hub variable. 96
XIN Crystal frequency before PLL multiplier. 97

Page 8

PropBasic 00.01.48
ABS

Returns the absolute value.

value1 = ABS value2

Page 9

PropBasic 00.01.48
LEN

Returns the length of a string. The length of a string is the number of characters until a zero byte is found.
The zero byte is NOT counted as part of the length. The string parameter may be a HUB STRING or a data label.

value1 = LEN string1

Related commands: LEFT, RIGHT, MID

Page 10

PropBasic 00.01.48
VAL

Returns the value of a string.
If the string is a negative number, the minus sign MUST be the first character in the string.
The string may contain spaces. Spaces are evaluated as zero.
If the string contains any non-digit characters, the value will not be valid.

value1 = VAL string1

Related commands: STR

Page 11

PropBasic 00.01.48
GETADDR

Returns the address of a hub variable.

Var = GetAddr hubVar{(offset)}

sharedValues HUB LONG(8)

valueAdr VAR LONG
index VAR LONG
temp VAR LONG

valueAdr = GetAddr sharedValues(index)
RDLONG valueAdr, temp

Related commands: HUB, DATA, RDxxxx, WRxxxx

Page 12

PropBasic 00.01.48
SGN

Returns the sign of value 1, 0, -1.

value1 = SGN value2

Page 13

PropBasic 00.01.48
~

Returns the bitwise NOT of value. The ~ operator works on VAR variables as well as PIN variables.

value1 = ~value2

Page 14

PropBasic 00.01.48
-

Returns the negative of value.

value1 = -value2

Page 15

PropBasic 00.01.48
+

Addition

value1 = value2 + value3

Related commands: -

Page 16

PropBasic 00.01.48
-

Subtraction

value1 = value2 – value3

Related commands: +

Page 17

PropBasic 00.01.48
*

Multiplication.

Multiplication is performed with a 64 bit result. The lowest 32-bits of the result are assigned.

value1 = value2 * value3

Related commands: */, **

Page 18

PropBasic 00.01.48
*/

Multiply, shift 16-bits

Multiplication is performed with a 64 bit result. The middle 32-bits of the result are assigned.

The */ operator is useful when you want to multiply by a fractional value greater than 1.
For example if you wanted to multiply a value by 1.5, you would use result = value */ 98304.
98304 is 1.5 * 65536

value1 = value2 */ value3

Related commands: *, **

Page 19

PropBasic 00.01.48
**

Multiply, shift 32-bits

Multiplication is performed with a 64 bit result. The highest 32-bits of the result are assigned.

The ** operator is useful when you want to multiply by a fractional value less than 1.
For example if you wanted to multiply a value by 0.125, you would use result = value ** 536870912
536870912 is 0.125 * 65536 * 65536

value1 = value2 ** value3

Related commands: *, */

Page 20

PropBasic 00.01.48
/

Division

value1 = value2 / value3

* Note: immediately after a division operation the remainder is available in the __Remainder variable.

Related commands: //

Page 21

PropBasic 00.01.48
//

Remainder

value1 = value2 // value3

* Note: immediately after a division operation the remainder is available in the __Remainder variable.

Related commands: /

Page 22

PropBasic 00.01.48
& AND

Bitwise AND.

value1 = value2 & value3

value1 = value2 AND value3

Related commands: OR, XOR, ANDN

Page 23

PropBasic 00.01.48
| OR

Bitwise OR.

value1 = value2 | value3

value1 = value2 OR value3

Related commands: AND, XOR, ANDN

Page 24

PropBasic 00.01.48
^ XOR

Bitwise XOR.

value1 = value2 ^ value3

value1 = value2 XOR value3

Related commands: AND, OR, ANDN

Page 25

PropBasic 00.01.48
&~ ANDN

Bitwise AND NOT.

value1 = value2 &~ value3

value1 = value2 ANDN value3

Related commands: AND, OR, XOR

Page 26

PropBasic 00.01.48
MIN

Returns the maximum of two values. Yes that's right the MAXIMUM of the two values. It makes more sense
grammatically than it does mathematically. "result = value MIN 5" means that result will always be at least 5.

value1 = value2 MIN value3

Related commands: MAX

Page 27

PropBasic 00.01.48
MAX

Returns the minimum of two values. Yes that's right the MINIMUM of the two values. It makes more sense
grammatically than it does mathematically. "result = value MAX 100" means that result will always be less than or equal
to 100.

value1 = value2 MAX value3

Related commands: MIN

Page 28

PropBasic 00.01.48
>> SHR

Shift right. Each bit shifted right has the effect of dividing by 2.

value1 = value2 >> value3

value1 = value2 SHR value3

Related commands: << SHL

Page 29

PropBasic 00.01.48
<< SHL

Shift left. Each bit shifted left has the effect of multiplying by 2.

value1 = value2 << value3

value1 = value2 SHL value3

Related commands: >> SHR

Page 30

PropBasic 00.01.48
LEFT

Returns the left section of a string.

string1 = LEFT string2, count

Related commands: RIGHT, MID, LEN

Page 31

PropBasic 00.01.48
RIGHT

Returns the right section of a string.

string1 = RIGHT string2, count

Related commands: LEFT, MID, LEN

Page 32

PropBasic 00.01.48
MID

Returns the middle of a string. "count" characters are returned starting with character "start".

string1 = MID string2, start, count

Related commands: LEFT, RIGHT, LEN

Page 33

PropBasic 00.01.48
STR

Converts a value to a string. If a signed option is used, the first character will be a "-" or a space.
If the value is larger than the number of digits specified, the first character will be corrupt.
Options 0 thru 3 will append a zero byte after the digits to form a single string, options 4 thru 7 do not.
For signed options, the sign counts as a digit.
The maximum digits is 11 for signed options and 10 for unsigned options.

string1 = STR value1,digits{,option}

 Option:
 0 - Unsigned leading zeros, z-string
 1 - (default) Unsigned leading spaces, z-string
 2 - Signed leading zeros, z-string
 3 - Signed leading spaces, z-string
 4 - Unsigned leading zeros, no terminating zero
 5 - Unsigned leading spaces, no terminating zero
 6 - Signed leading zeros, no terminating zero
 7 - Signed leading spaces, no terminating zero

Related commands: VAL

Page 34

PropBasic 00.01.48
+

Concatenate two strings.

string1 = string2 + string3

* Note: string1 = string2 + string1 is not allowed.

Page 35

PropBasic 00.01.48
\ Creates a single line of propeller assembly code.

\ pasm command

\ ROR myVar,#1

Related commands: ASM...ENDASM

Page 36

PropBasic 00.01.48
'

Anything after an apostrophe is a comment and is ignored by the compiler.
Except directives that start with '{$

' comment

' This is a comment
temp = 100 ' This is a comment

Related commands: { }

Page 37

PropBasic 00.01.48
{ }

Creates a multi-line comment

{ multi
line
comment }

{ This is a
multi-line
comment }

Related commands: '

Page 38

PropBasic 00.01.48
_FREQ

Long Constant that holds the initially assigned clock frequency.

Rate VAR LONG
Rate = _FREQ / 8000

Related commands: FREQ

Page 39

PropBasic 00.01.48
ASM...ENDASM

Creates a block of propeller assembly code.

ASM
 pasm instructions
ENDASM

ASM
 ROL value,#16
 RAR value,#16
ENDASM

Related commands: \

Page 40

PropBasic 00.01.48

BREAK

Sets a break-point when using a debugger.

BREAK

Related commands: PROGRAM

Page 41

PropBasic 00.01.48
BRANCH

Variable determines what label to jump to.

BRANCH var, label0, label1, label2[, label3[,etc]]

value VAR LONG

BRANCH value, Forward, Backward, Left, Right

Forward:
' Forward code
GOTO Done

Backward:
' Backward code
GOTO Done

Left:
' Left code
GOTO Done

Right:
' Right code
GOTO Done

Done:

Related commands: ON...GOTO

Page 42

PropBasic 00.01.48
CLKSET

Sets the clock mode.

CLKSET mode,freq

CLKSET %0_0_0_00_001, 20_000 ' Set RCSLOW clock mode

Note: See the Propeller Manual for detailed information about CLKSET.

Note: The “freq” parameter is NOT used for PropBasic command timing.

Related commands: DEVICE, FREQ

Page 43

PropBasic 00.01.48
COGID

Gets the cog ID of the cog running this command.

COGID var

value VAR LONG

COGID value ' Get this cog's ID
COGSTOP value ' Stop this cog

COGINIT

Initializes a cog with a task. The cog ID must be provided.

COGINIT taskname, value

FlashLED TASK

PROGRAM START

Start:
 COGINIT FlashLED, 1 ' Start task in COG 1
 PAUSE 10_000 ' Let task run for 10 seconds
 COGSTOP 1 ' Stop the task
END

TASK FlashLED
 LED PIN 16 LOW
 DO
 TOGGLE LED
 PAUSE 100
 LOOP
ENDTASK

COGSTART

Starts a task in a new cog. The next available cog is used.
If a var is given it will be set to the cogID that was used, or 8 if no cog was free.

COGSTART taskname{,var}

COGSTOP

Stops a cog. If no cogid is provided, the current cog is stopped.

COGSTOP {value}

* COGINIT differs from COGSTART in that COGSTART uses the next available cog. With
COGINIT you must specify what cog to use.

Page 44

PropBasic 00.01.48
CON

Creates a named constant, with a value or a string.

name CON value

MyCon CON 1000
Grade CON "F"
Baud CON "T115200"

Page 45

PropBasic 00.01.48
COUNTERA / COUNTERB

Setup hardware counter parameters.

 COUNTERA mode{, apin {, bpin{, frqx{, phsx}}}}

COUNTERA 40, 0, 1, 80_000

Mode:
 0 = Counter Disabled
 8 = PLL Internal (Video) *
 16 = PLL Single-Ended *
 24 = PLL Differential *
 32 = NCO/PWM Single Ended – frqx is added to phsx each system clock; apin = phsx[31]
 40 = NCO/PWM Differential – frqx is added to phsx each system clock; apin=phsx[31]; bpin=!phsx[31]
 48 = DUTY Single-Ended – frqx is added to phsx each system clock; apin=carry
 56 = DUTY Differential – frqx is added to phsx each system clock; apin=carry; bpin=!carry
 64 = POS detector - frqx is added to phsx each system clock when apin is high
 72 = POS detector with feedback - frqx is added to phsx each system clock when apin is high (1)
 80 = POSEDGE detector - frqx is added to phsx each system clock when apin goes from low to high
 88 = POSEDGE detector with feedback - frqx is added to phsx each system clock when apin goes from low to high
 96 = NEG detector - frqx is added to phsx each system clock when apin is low
 104 = NEG detector with feedback - frqx is added to phsx each system clock when apin is low (1)
 112 = NEGEDGE detector - frqx is added to phsx each system clock when apin goes from high to low
 120 = NEGEDGE detector with feedback - frqx is added to phsx each system clock when apin goes from high to low
(1)
 128 = LOGIC never – Counter off
 136 = LOGIC !A & !B - frqx is added to phsx each system clock when apin is low AND bpin is low
 144 = LOGIC A & !B - frqx is added to phsx each system clock when apin is high AND bpin is low
 152 = LOGIC !B - frqx is added to phsx each system clock when bpin is low
 160 = LOGIC !A & B - frqx is added to phsx each system clock when apin is low AND bpin is high
 168 = LOGIC !A - frqx is added to phsx each system clock when apin is low
 176 = LOGIC A <> B - frqx is added to phsx each system clock when apin is not equal to bpin
 184 = LOGIC !A | !B - frqx is added to phsx each system clock when apin is low OR bpin is low
 192 = LOGIC A & B - frqx is added to phsx each system clock when apin is high AND bpin is high
 200 = LOGIC A = B - frqx is added to phsx each system clock when apin is equal to bpin
 208 = LOGIC A - frqx is added to phsx each system clock when apin is high
 216 = LOGIC A | !B - frqx is added to phsx each system clock when apin is high OR bpin is low
 224 = LOGIC B - frqx is added to phsx each system clock when bpin is high
 232 = LOGIC !A | B - frqx is added to phsx each system clock when apin is low OR bpin is high
 240 = LOGIC A | B - frqx is added to phsx each system clock when apin is high OR bpin is high
 248 = LOGIC always

 * For PLL modes add:
 0 = VCO / 128 (/8)
 1 = VCO / 64 (/4)
 2 = VCO / 32 (/2)
 3 = VCO / 16 (x1)
 4 = VCO / 8 (x2)
 5 = VCO / 4 (x4)
 6 = VCO / 2 (x8)
 7 = VCO / 1 (x16)

* Even if "bpin" is not used it still must be specified. You may use zero.

(1) bpin is set to the state apin was in LAST clock cycle

Page 46

PropBasic 00.01.48
DATA,WDATA,LDATA Creates data values in HUB ram. DATA = BYTE, WDATA=WORD, LDATA=LONG

[label] DATA value1[,value2[,value3[,etc]]]]

BitMask DATA 1,2,4,8,16

Message DATA "This is a message.", 0

Data labels MUST be on the same line as the DATA command. And there is no colon after a data label.
Data labels may be used in place of a string for command and functions.

Related commands: FILE

Page 47

PropBasic 00.01.48
DEC

Subtract 1 (or any value) from a variable.

DEC varname{, value}

cntr VAR LONG
DEC cntr
DEC cntr, 4

Related commands: INC, DJNZ

Page 48

PropBasic 00.01.48
DEVICE

Sets device type and parameters.

DEVICE deviceID, {settings{,settings}}

DEVICE P8X32A, XTAL1, PLL16X

 deviceID: only P8X32A is supported

 settings: RCSLOW, RCFAST, XINPUT, XTAL1..3, PLL2X, PLL4X, PLL8X, PLL16X

Related commands: FREQ, XIN

Page 49

PropBasic 00.01.48
DJNZ

Decrease variable and jump to label if not zero.

DJNZ var, label

LED PIN 16 LOW
value VAR LONG

value = 100

Again:
 HIGH LED
 PAUSE 100
 LOW LED
 PAUSE 100
DJNZ value, Again

Related commands: DEC, DO...LOOP

Page 50

PropBasic 00.01.48
DO...LOOP

DO WHILE var cond value
LOOP

DO
LOOP UNTIL var cond value

DO
LOOP ' always loops

DO
LOOP var ' Loops var times, var = 0 when finished (similar to DJNZ)

Page 51

PropBasic 00.01.48
END

Ends program execution. Puts cog in low-power mode.

END

END

Page 52

PropBasic 00.01.48
EXIT

Ends the current DO...LOOP or FOR...NEXT loop.

EXIT
IF var cond value THEN EXIT

Page 53

PropBasic 00.01.48
FILE

Loads a binary data file. The contents are read like DATA.

{label} FILE "MyFile.bin"

Message FILE "MyFile.TXT" ' file contains the text HELLO

Related commands: DATA

Page 54

PropBasic 00.01.48
FOR...TO...STEP...NEXT

FOR var = startvalue TO endvalue
 ' Code
NEXT

FOR var = startvalue TO endvalue STEP deltavalue
 ' Code
NEXT

Related commands: DJNZ

Page 55

PropBasic 00.01.48
FREQ

Sets device frequency after pll multiplier.

FREQ freq

FREQ 80_000_000

Do not use FREQ and XIN together, use one or the other

Related commands: _FREQ

Page 56

PropBasic 00.01.48
FUNC...ENDFUNC

Creates a named function. Returns 1 LONG value.

name FUNC [minParams[,maxParams]]

FUNC name
 ...
ENDFUNC

Parameters are passed in __paramx variables.

If a variable number of parameters is specified, the parameter count is
given in the __paramcnt variable.

If a hub variable/label/string is used as a parameter, it’s ADDRESS is passed.
The system array __STRING(__paramx) can be used to access a string parameter.

If a pin variable is used as a parameter, the pin NUMBER is passed.

Calc FUNC 1

myVar = Calc 1

FUNC Calc
 __param1 = __param1 + 1

 RETURN __param1
ENDFUNC

Related commands: SUB...ENDSUB

Page 57

PropBasic 00.01.48
 GOSUB

Jump to a subroutine.

GOSUB subroutine

Calc SUB

GOSUB Calc

SUB Calc
 ' Code
 RETURN value
ENDSUB

ONLY named subroutines can be used with GOSUB, GOSUB is optional.

Related commands: SUB...ENDSUB

Page 58

PropBasic 00.01.48
GOTO

Jump to a label.

GOTO label

GOTO Start

Page 59

PropBasic 00.01.48
HIGH

Makes a pin an output and high.

HIGH pinname | const

LED PIN 0 OUTPUT

HIGH LED
HIGH 3

Related commands: LOW, TOGGLE, INPUT, OUTPUT

Page 60

PropBasic 00.01.48
HUB

Creates HUB variables. Access via GETADDR, RDBYTE, RDWORD, RDLONG, WRBYTE,
WRWORD, WRLONG

name HUB type [= value]
name HUB type(elements) [= value]

myVar HUB LONG = 100_000
myVars HUB LONG(8) = 0

type: BYTE, WORD, LONG, STRING(length)

Use RDBYTE, RDWORD, RDLONG to read value from HUB variables.
Use WRBYTE, WRWORD, RDLONG to write value to HUB variables.

For an array, all elements are pre-initialized to the same value.
If you need the elements to contain different values, then use DATA instead.

myVar HUB LONG(4) = 0 ' All elements are set to zero
myVars LDATA 0, 1, 2, 3 ' Elements have unique values

Related commands: VAR, DATA

Page 61

PropBasic 00.01.48
I2CREAD

Reads a byte from the I2C bus. Then sends “ackbitvalue” bit.

I2CREAD SDAPin, SCLPin, var, ackbitvalue

I2SPEED

Sets the clock speed for I2C operations.

I2CSPEED multipier

* “multiplier” may be a floating point value
 A value of 2 would make I2C operations twice as fast as normal.
 A value of 0.5 would make I2C operations half as fast as normal.

I2CSTART

Sends an I2C start condition.

I2CSTART SDAPin, SCLPin

I2CSTOP

Sends an I2C stop condition.

I2CSTOP SDAPin, SCLPin

I2CWRITE

Writes a byte to the I2C bus. Optionally returns the ACK bit status (0=ACK).

I2CWRITE SDAPin, SCLPin, value[, ackbitvar]

Page 62

PropBasic 00.01.48
IF...ELSE|ELSEIF...ENDIF

IF var cond value THEN label

IF var cond value THEN
 ' code
ENDIF

IF var cond value THEN
 ' code
ELSE
 ' code
ENDIF

IF var cond value THEN
 ' code
ELSEIF var cond value THEN
 ' code
ELSE
 ' code
ENDIF

IF...OR|AND

IF var cond value OR
 var cond value THEN
 ' Code
ELSE
 ' Code
ENDIF

IF var cond value OR
 var cond value AND
 var cond value THEN
 ' Code
ELSE
 ' Code
ENDIF

Page 63

PropBasic 00.01.48
INC

Adds 1 (or any value) to a variable.

INC varname{,value}

cntr VAR LONG

INC cntr
INC cntr, 4

Related commands: DEC

Page 64

PropBasic 00.01.48
INCLUDE

Includes propeller assembly code from a separate file.

INCLUDE "MyFile.spin"

Related commands: LOAD, FILE

Page 65

PropBasic 00.01.48
INPUT

Makes a pin an input.

INPUT pinname | const

switch PIN 1 INPUT

INPUT switch
INPUT 0

Related commands: OUTPUT, LOW, HIGH, TOGGLE

Page 66

PropBasic 00.01.48
LET

Optional

Page 67

PropBasic 00.01.48
LOAD

Load PropBasic code from a separate file.

LOAD "MyFile.pbas"

Related commands: INCLUDE

Page 68

PropBasic 00.01.48
LOCKCLR

Clears a lock ID.
If a second parameter is given, it will hold the previous lock state.

LOCKCLR value{,var}

LOCKNEW

Retreives a new lock ID.

LOCKNEW var

LOCKRET

Returns a lock ID.

LOCKRET var

LOCKSET

Sets a lock ID.
If a second parameter is given, it will hold the previous lock state.

LOCKSET value{,var}

Page 69

PropBasic 00.01.48
LOW

Makes a pin an output and low.

LOW pinname | const

LED PIN 16 OUTPUT

LOW LED
LOW 4

Related commands: HIGH, INPUT, OUTPUT, TOGGLE, REVERSE

Page 70

PropBasic 00.01.48
NOP

No operation. Does nothing. Uses 1 instruction.

NOP

Page 71

PropBasic 00.01.48
ON...GOTO

Jump to label based on value of a variable.

ON var GOTO label1, label2 [, label3, [, etc]]

ON var = value1, value2, value3 GOTO label1, label2, label3

ON...GOSUB

Same as ON...GOTO except does a subroutine jump.

ON var GOSUB label1, label2 [, label3, [, etc]]

ON var = value1, value2, value3 GOSUB label1, label2, label3

Page 72

PropBasic 00.01.48
OUTPUT

Makes a pin an output.

OUTPUT pinname | const

LED PIN 1 OUTPUT

OUTPUT LED
OUTPUT 1

Related commands: INPUT, HIGH, LOW, TOGGLE, REVERSE

Page 73

PropBasic 00.01.48
OWREAD

Reads a byte from the 1-wire buss.

OWREAD DQPin, var{\bits}

OWRESET

Sends a reset on the 1-wire buss.

OWRESET DQPin{,statusVar}

OWWRITE

Writes a byte to the 1-wire buss.

OWWRITE DQPin, value{\bits}

Page 74

PropBasic 00.01.48
PAUSE

Pauses for milliseconds. Can use fractional values.

PAUSE value

PAUSE 1000
PAUSE 27.6

PAUSEUS

Pauses for microseconds. Can use fractional values.

PAUSEUS value

PAUSEUS 1000
PAUSEUS 4.7

Related commands: WAITCNT

Page 75

PropBasic 00.01.48
PIN

Creates a pin variable. #name = pin number, @name = pin mask

name PIN pinnumber [modifier]

LED PIN 0 LOW

name PIN MSBpin..LSBpin [modifier]

LEDS PIN 23..16 LOW 'Normal bit order #LEDS gives LSBpin (16)

LEDSR PIN 16..23 LOW 'Reverse bit order #LEDS gives MSBpin (16)

modifiers: INPUT, OUTPUT, HIGH, LOW

modifier is only used for the task that defines the pin.

A pin with an output modifier (OUTPUT, HIGH, LOW) will be an input in all other tasks. This is because the all the
cog's pin outputs are OR'd together. If you had a pin defined as HIGH, and started another cog, the new cog

would hold the pin high and no other cog would be able to change the pin state.

Page 76

PropBasic 00.01.48
PROGRAM

Sets program start label and main code options.

PROGRAM Start {LMM|PASD}

The LMM parameter causes the compiler to generate LMM code instead of native PASM code.
LMM code runs slower, but allows much larger programs.
The PASD parameter enables use of the PASD debugger.

Page 77

PropBasic 00.01.48
PULSIN

Measure incoming pulse width in microseconds.

PULSIN pin, state, resultVar

NOTE: If the clock frequency is less than 20MHz, the result is still in microseconds but the granularity is greater than 1.
For example when using RCSLOW (20KHz) the result will always be a multiple of 1000.

' This program reads the distance from a PING sensor connected to pin 2.
' Converts the value to tenths of inches and sends the distance to the PC.
'
DEVICE P8X32A, XTAL1, PLL16X
FREQ 80_000_000

Baud CON "T115200" ' Baud rate to communicate with PC

PingPin PIN 2 LOW ' Connected to Sig pin on Ping module
TX PIN 30 HIGH ' Send data back to PC

value VAR LONG

Message DATA "Distance is "
valueStr DATA "1234.5 inches.", 13, 0

PROGRAM Start

Start:
 DO
 PAUSE 10
 PULSOUT PingPin, 5 ' Trigger PING
 PAUSEUS 5
 PULSIN PingPin, 1, value ' Measure PING pulse
 value = value ** 291_198_783 ' Convert to tenths of inches (* 0.0678)
 valueStr = STR value, 5, 5 ' Convert value to ASCII
 RDBYTE valueStr(4), value ' Insert decimal point
 WRBYTE valueStr(4), ".", value
 SEROUT TX, Baud, Message
 LOOP
END

Related commands: PULSOUT

Page 78

PropBasic 00.01.48
PULSOUT

Create a pulse of specified width. Duration is in microseconds. Always pulses pin even if duration is zero.

PULSOUT pin, duration

NOTE: If the clock frequency is less than 20MHz, the duration is still in microseconds but the granularity is greater than 1.
For example when using RCSLOW (20KHz) the duration will be divided by 1024, then that many 1024uSec delays will
take place. Here is a table showing the granularity of different clocks:

20MHz and higher = 1uSec
10Mhz to 19.999Mhz = 2uSec
5MHz to 9.999MHz = 4uSec
2.5MHz to 4.999MHz = 8uSec
1.25Mhz to 2.499MHz = 16uSec
20KHz = 1024uSec

Related commands: PULSIN

Page 79

PropBasic 00.01.48
RANDOM

Creates a random number from a seed variable.

RANDOM seedvar[, copyvar]

Page 80

PropBasic 00.01.48
RCTIME

Measures time (in microseconds) for pin to reach "state" level.

RCTIME pin, state, resultvar

Related commands: PULSIN

Page 81

PropBasic 00.01.48
RDBYTE

Reads the value of a BYTE hub variable or DATA.

RDBYTE bytehubvar{(offset)}, var{,var{,var{,etc}}}

RDSBYTE

Reads the value of a signed BYTE hub variable or DATA.

RDSBYTE bytehubvar{(offset)}, var{,var{,var{,etc}}}

RDLONG

Reads the value of a LONG hub variable or LDATA.

RDLONG longhubvar{(offset)}, var{,var{,var{,etc}}}
Note: longhubvar lowest two bits must be zero (long aligned)

RDWORD

Reads the value of a WORD hub variable or WDATA.

RDWORD wordhubvar{(offset)}, var{,var{,var{,etc}}}
Note: wordhubvar lowest bit must be zero (word aligned)

RDSWORD

Reads the value of a signed WORD hub variable or WDATA.

RDSWORD wordhubvar{(offset)}, var{,var{,var{,etc}}}
Note: wordhubvar lowest bit must be zero (word aligned)

“offset” is in WORDs for RDWORD and RDSWORD
“offset” is in LONGs for RDLONG and RDSLONG

Problems can arise if you use RDWORD to read byte data. Or use RDLONG to read word or byte data. The problem is
that the data may not be aligned properly.

In the Propeller chip WORD data is word aligned (lowest bit of the address must be zero), and LONG data is long aligned
(lowest two bits of the address must be zero).

label1 LDATA 1000
label2 DATA 100
label3 LDATA 2000

There will be three bytes not used between label2 and label3 to make sure that "label3 LDATA" is long aligned.

Related commands: WRBYTE, WRWORD, WRLONG

Page 82

PropBasic 00.01.48
RETURN

Return from a subroutine or function.

RETURN value{,value{,value{,value}}}

The first value specified (__param1) will be automatically assigned to the destination variable.
Additional values will be held in the __param2, __param3, etc variables after the function returns.

RETURN 1

Related commands: GOSUB, SUB...ENDSUB

Page 83

PropBasic 00.01.48
REVERSE

Reverse pin direction (input / output)

REVERSE pinname | const

sensor PIN 1

REVERSE sensor
REVERSE 2

Related commands: HIGH, LOW, INPUT, OUTPUT, TOGGLE

Page 84

PropBasic 00.01.48
SERIN

Serial input. Prefix baud value "T" for true mode, "N" for inverted mode.

If SERIN times-out var is not changed. If label is not specified execution continues with the next line of code.

If "var" is a string, characters are stored until a carrage return is received, timeout is only in effect until the first
character is received.

SERIN pin, baud, var {, timeoutms{, label}}

Related commands: SEROUT

Page 85

PropBasic 00.01.48
SEROUT

Serial output. "T" for true mode, "N" for inverted mode. "O" = Open

SEROUT pin, [T | N | OT | ON]baud, char | string

Related commands: SERIN

Page 86

PropBasic 00.01.48
SHIFTIN

SPI input.

SHIFTIN datapin, clockpin, mode, var[\bits][,speed]

If the bits parameter is not specified, 8 bits are received.

mode: LSBPRE, LSBPOST, MSBPRE, MSBPOST

' This program will read channel 0 from the MCP3204 chip and
' send the value to a terminal program running on the PC.
'
' Set terminal program to 115200 baud.
'
DEVICE P8X32A, XTAL1, PLL16X
XIN 5_000_000

ADC_Clk PIN 2 LOW ' MCP3204.11
ADC_Dout PIN 3 LOW ' MCP3204.10
ADC_Din PIN 4 LOW ' MCP3204.9
ADC_CS PIN 5 HIGH ' MCP3204.8

inValue VAR LONG
ascii HUB STRING(10)

PROGRAM Start

Start:
 DO
 LOW ADC_CS ' Enable MCP3204
 PAUSEUS 100
 SHIFTOUT ADC_Din, ADC_Clk, MSBFIRST, %11000\5 ' Select CH0, Single-Ended
 SHIFTIN ADC_Dout, ADC_Clk, MSBPOST, inValue\13 ' Read ADC
 HIGH ADC_CS ' Disable ADC
 LOW ADC_Clk
 ascii = STR inValue, 4
 ascii = ascii + 13 ' Add a carrage return
 SEROUT 30, T115200, ascii
 PAUSE 1
 LOOP
END

Related commands: SHIFTOUT

Page 87

PropBasic 00.01.48
SHIFTOUT

SPI output.

SHIFTOUT datapin, clockpin, mode, value[\bits][,speed]

If the bits parameter is not specified, 8 bits are sent.
mode: LSBFIRST, MSBFIRST

Related commands: SHIFTIN

Page 88

PropBasic 00.01.48
SUB...ENDSUB

Creates a named subroutine with parameters.

name SUB [minParams[,maxParams]]

Parameters are passed in __paramx variables.

If a variable number of parameters is specified, the parameter count is given in the __paramcnt variable.

If a hub variable/label is used as a parameter, it’s ADDRESS is passed.

If a pin variable is used as a parameter, the pin NUMBER is passed.

SUB name
 ...
ENDSUB

SetDAC SUB 1

SetDAC 1

SUB SetDAC
 ' code to set DAC
ENDSUB

Related commands: FUNC, ENDFUNC

Page 89

PropBasic 00.01.48
TASK...ENDTASK

Creates code that runs in a separate cog.

name TASK {LMM} {AUTO}

TASK name
 ...
ENDTASK

If LMM is specified the compiler will generate LMM code instead of native PASM code. LMM code runs slower, but
allows much larger programs.

If AUTO is specified, the TASK is automatically launched at startup

Task code runs in a separate cogs.

VAR variables are not shared between cogs.

SUBs and FUNCs are not shared between cogs.

HUB variables, PINs and DATA are shared between cogs.

Use COGSTART or COGINIT to start tasks.

Page 90

PropBasic 00.01.48
TOGGLE

Toggles pin state (high / low)

TOGGLE pinname | const

LED PIN 1 OUTPUT

TOGGLE LED
TOGGLE 5

Related commands: HIGH, LOW, REVERSE, INPUT, OUTPUT

Page 91

PropBasic 00.01.48
VAR

Creates a variable. Only LONG types are supported. Arrays are supported.

name VAR LONG
name VAR LONG(elements)

myVar VAR LONG
myVar2 VAR LONG(8)

Note: Since VAR arrays are stored in COG ram, they use up valuable code space.
Consider using HUB arrays when possible.

Related commands: HUB

Page 92

PropBasic 00.01.48
WAITCNT

Waits for the system counter to reach the target value. Then adds the delta value to the variable.

WAITCNT target, delta

Related commands: PAUSE, PAUSEUS

Page 93

PropBasic 00.01.48
WAITPEQ

Waits for a pin (or set of pins) state to equal a mask value.

WAITPEQ state, mask

INA is anded with “mask” then compared to “state”.

WAITPNE

Waits for a pin (or set of pins) state to NOT equal a mask value.

WAITPNE state, mask

INA is anded with “mask” then compared to “state”.

WAITPEQ and WAITPNE are typically used to pause until a pin has reached a certain state. For example:

WAITPEQ myPin, myPin ' Wait to pin "myPin" to go HIGH
WAITPNE myPin, myPin ' Wait for pin "myPin" to go LOW

Page 94

PropBasic 00.01.48
WAITVID

Waits for the video serializer to be able to accept new data.

WAITVID colors, pixels

Page 95

PropBasic 00.01.48
WATCH

When using a debugger, this updates the variables in the debugger.

WATCH

Page 96

PropBasic 00.01.48
WRBYTE

Writes a new value into a BYTE hub variable.

WRBYTE bytehubvar{(offset)}, value{, value{,value{, etc}}}

WRLONG

Writes a new value into a LONG hub variable.

WRLONG longhubvar{(offset)}, value{, value{,value{, etc}}}

WRWORD

Writes a new value into a WORD hub variable.

WRWORD wordhubvar{(offset)}, value{, value{,value{, etc}}}

“offset” is in WORDs for WRWORD
“offset” is in LONGs for WRLONG

Related commands: RDBYTE, RDLONG, RDWORD

Page 97

PropBasic 00.01.48
XIN

Crystal frequency before pll multiplier

XIN freq

XIN 5_000_000

Do not use FREQ and XIN together, use one or the other

Related commands: FREQ

Page 98

PropBasic 00.01.48

General

Literal values are assumed decimal, but can be prefixed to indicate a different base:
$ Hexidecimal 0..9, A..F
%% Quaternary 0..3
% Binary 0..1
"x" Ascii character
Floating Point (only constants supported)

Math operators can only be used when assigning values to a variable.

Math operators cannot be used in commands.

Only 1 math operator can be used per line.

Only LONG vars are supported. LONG arrays are also supported.

Using a variable as an array index generates alot more code. Try to avoid this if possible.

HUB vars can be BYTE, WORD or LONG. Arrays are supported.

HUB vars can ONLY be accessed with RDBYTE, WRBYTE, RDWORD, WRWORD, RDLONG, WRLONG commands.

Be aware that HUB vars must be address aligned by the size. So if you declare a BYTE then a LONG, there will be three
wasted address location between them.

PINs, HUB vars and DATA are global to all COGs (tasks).

VARs, SUBs and FUNCs are local only to the TASK they are declared in.

TASK code generates a separate .spin file.

DATA must be declared before the program code. You cannot put the DATA after the program code.

The main code runs in COG 0.

Page 99

PropBasic 00.01.48

Compiler Directives

Compiler directives are available for conditional compilation.
By default the device name is defined.
VIEWPORT
P8X32A

'{$DEFINE name}
'{$UNDEFINE name}
'{$USES name}

'{$IFDEF name}
'{$IFNDEF name}
'{$IFFREQ condition value}
'{$IFUSED name}
'{$IFNUSED name}

'{$ELSE}
'{$ENDIF}
'{$WARNING message}
'{$ERROR message}
'{$NOWARNINGS}

'{$CODE}
'{$TASKS}
'{$IFFREQ > 4_000_000}

The IFUSED directive tells the compiler if a subroutine or function has been used.

The USES directive tells the compiler that a pin or long constant is used in a task and that it should not be stripped out.
Usually this is used when you have some embedded PASM code that uses a pin or long constant. USES is not needed in
normal PropBasic code because the compiler automatically marks the subroutine as used if it is called.

'{$USES subName}

'{$IFUSED subName}
SUB subName
' put code for subroutine here
ENDSUB
'{$ENDIF}

'{$WARNING message}
'{$ERROR message}

Example:
'{$IFNDEF P8X32A}
'{$ERROR This program requires a P8X32A chip}
'{$ENDIF}

The CODE and TASKS directives are used in library code. These directives separate the definitions from the code and
task sections of the library.

Page 100

PropBasic 00.01.48

Creating PropBasic Libraries

The LOAD command allows you to use libraries with PropBasic. A library has all the definitions support code. Unlike the
INCLUDE directive which just compiles the specified file all in one go as if it was part of your code, the LOAD directive is
more intelligent. It is able to contain three distinct sections of code which will get compiled during different times.

The first part of a library is the defines. This is where you will declare any constants (CON), pins (PIN), variables (VAR) or
hub memory (HUB) that the library requires.

The second part of a library is the code section. This contains the actual code (SUBs and FUNCs) that the library
supports. By using the IFUSED directive some SUBs or FUNCs can be stripped and not included if they are not used by
your code.

The third part of a library is the tasks section. This contains any TASKs that the library may need to support the device.

Let’s look at an example of a library that simply blinks an LED.

‘ Blink_lib.pbas

Hub_LED_Pin HUB LONG = -1 ‘ Assume not set
Hub_LED_OnTime HUB LONG = 1
Hub_LED_OffTime HUB LONG = 1

StartBlinkLED SUB 3 ‘ Provide pin, ontime, offtime
StopBlinkLED SUB 0

BlinkLED TASK AUTO

‘{$CODE}
SUB StartBlinkLED ‘ Pin,OnTime,OffTime
 WRLONG LED_Pin, __PARAM1, __PARAM2, __PARAM3
ENDSUB

SUB StopBlinkLED
 WRLONG LED_Pin, -1
ENDSUB

‘{$TASKS}
TASK BlinkLED
Task_LED_Pin VAR LONG
Task_LED_OnTime VAR LONG
Task_LED_OffTime VAR LONG

DO
 RDLONG Hub_LED_Pin, Task_LED_Pin, Task_LED_OnTime, Task_LED_OffTime
 IF Task_LED_Pin >= 0 THEN
 HIGH Task_LED_Pin
 PAUSE Task_LED_OnTime
 LOW Task_LED_Pin
 PAUSE Task_LED_OffTime
 ENDIF
LOOP

ENDTASK

Page 101

PropBasic 00.01.48

Tips and Tricks
Remember that PropBasic is a single pass compiler. When compiling a line of code the compiler has no idea about what
comes after it. So you cannot do things like try to use a variable before it is defined.

Understanding the */ and ** operators:
When performing multiplication PropBasic performs 32-bit * 32-bit = 64-bit math. Normally only the lower 32-bits of the
result are used with the normal multiply operator (*). However, if you want you can access the 32 middle bits (bits 16 to
48) using the */ operator. Or the 32 highest bits using the ** operator. So basically the */ operator does a multiply by the
value given, then does a divide by 65536. The ** operator does the multiply by the value given, then does a divide by
4294967296.

value1 = value2 */ 81920 ' 81920 = 1.25 * 65536
value1 = value2 */ 205887 ' 205887 = Pi * 65536

Alignment of different data sizes:

In the propeller data stored in the hub must be aligned according to it's length. WORD data must be word aligned, and
LONG data must be long aligned. This can cause problems if you use (for example) RDLONG to read byte data.

__RAM Virtual array:

__STRING virtual array:

When a string (literal or a string variable) is used as a subroutine parameter, what is actually passed to the subroutine is
the LOCATION of the string in HUB memory. The location is of course a long variable stored in the __paramx variables.
If you want to use any of the commands or functions that have string parameters, you need to use __STRING(__paramx).

Like so:

Trim SUB 2 ' Trim string, length

SUB Trim
 __STRING(__param1) = LEFT __STRING(__param1), __param2
ENDSUB

Page 102

