
P2 EXTERNAL MEMORY DRIVER 
DOCUMENTATION (Release 0.8b)

Introduction
This driver provides an external memory expansion capability for the Propeller 2 using HyperRAM
and HyperFlash memory devices. It enables multiple P2 COGs to access multiple Hyper memory
devices on both shared and separate memory buses. It includes a SPIN2 based API to initialize
and map the memory devices into a common address space beyond the HUB memory space. It
also includes dynamic configuration settings for ensuring Quality of Service (QoS) access to the
devices from the COGs. PASM2 client COGs can also control this driver directly, in cases where
SPIN2 code is not present. HUB RAM based mailboxes are used to issue the external memory
requests, and are separated by both COG and bus so that multiple independent requests can be
created simultaneously by multiple COGs. COG requests are serviced according to a nominated
priority, or by a round-robin scheduler in the driver. Larger burst transfers are also fragmented to
remain within the maximum HyperRAM chip select low time to avoid refresh problems.

The driver and its control API offers an extensive list of features including this following:

manages up to 16 different sized HyperRAM and/or HyperFlash devices per shared data bus
each bus provides up to 256MB of addressable memory
requests are serviced by shared mailbox polling, with round-robin and strict priority algorithms
multiple independent memory buses are supported (limited by pin count or available COGs)
HyperRAM/HyperFlash device registers are accessible
transfer burst sizes can be strictly controlled, and bursts are fragmented automatically
optional notification via COGATN at end of request being serviced with the mailbox update
error codes are reported for all failed requests
lists of multiple requests can be issued in one operation to reduce overhead (effectively having
the driver behave like a simple DMA engine for automating multiple memory transfers)
bytes, words and long transfers to/from HUB memory and Hyper memory are all supported
arbitrary length read/write burst/fill transfers supported (byte granular) for highest performance
memory copy operations are supported between the same or different devices on the bus
graphics based fill and copy operations are supported with adjustable image width and height
exclusive access to HyperFlash is provided during erase/programming operations by any COG
Transfers at P2 sysclk/2 rates for reliable reads and writes, and optionally sysclk/1 rates can be
enabled for maximum performance (sysclk/1 writes may require extra HW support)
includes a simple initialization method for the existing Parallax HyperRAM/HyperFlash breakout
module, and a general purpose mapping API exists for different system implementations
selectable control pins for the memory devices, with optional reset strobe support upon startup
adjustable per device latency and read timing delay profile for optimizing transfer performance
contains HyperFlash erase/programming routines in the SPIN2 API
compatible with both FastSpin and Parallax SPIN2 tools

�1

Memory Driver Startup and Configuration

Initialization

The PASM2 driver that accesses HyperRAM or HyperFlash is initialized either by calling:

initHyperDriver - single call to map the Parallax P2-EVAL HyperRAM/HyperFlash breakout
board’s device(s) into the external memory address space and to start the driver

or you can call either of these two methods at least once and then manually start the driver:

mapHyperRAM - maps a HyperRAM device to a bus and address
mapHyperFlash - maps a HyperFlash device to a bus and address

start - start the PASM2 driver for a memory bus containing mapped devices

This initialization sequence will spawn a PASM2 driver COG to manage all the requests to the
device(s) on that data bus. Devices mapped on other data buses will again spawn additional
driver COG(s), for situations with multiple independent memory buses attached to the P2. The
total number of buses supported is controlled by the MAX_INSTANCES constant in the SPIN2
driver. Its default value (1) can be changed to match the system’s requirements.

COG Polling & QoS

Once the PASM2 driver is started, by default all other COGs will share external memory access
opportunities using round robin mailbox polling in the driver. It is also possible to reconfigure the
number of COGs that can access the memory devices supported by the driver and the manner in
which their requests are serviced at any time.

Removing any COGs that do not require access to external memory reduces mailbox polling and
service latency. For example, COG removal can be done once all the particular COG IDs that will
need to access this memory become known following system startup.

To remove a group of COGs from being serviced use the API below. Note that for these methods
the COGs are identified by an 8 bit mask, and not directly by a COG ID.

removeCogs - removes COG mailboxes from being polled by the driver on a given bus

To setup COG mailboxes for polling and to specify their QoS servicing attributes, use this:

setupQoS - sets up QoS parameters and other flags for the selected COGs

�2

This allows the COG’s maximum transfer burst sizes and their mailbox polling priorities to be
specified, and how they are to be managed when servicing their requests.

Several flags can be passed to this API which affect how the nominated COG(s) are processed:
• F_ATN enables additional notification with COGATN on completion of each request
• F_PRIORITY enables priority polling, otherwise round-robin polling is used for these COGs
• F_LOCKED completes full burst transfers from a COG before any other COGs get serviced
• F_STALL stalls round robin COGs if accessing flash that is exclusively locked by another COG

A priority value from 0-7 is provided when F_PRIORITY is active, along with the transfer burst size
before any fragmentation and polling occurs. COGs with higher priorities are serviced first, and
any COGs with equal priorities are serviced in COG ID order. Lower priority or round-robin polled
COGs will ONLY begin to be serviced by the poller when all higher priority COGs are not currently
requesting or being serviced. This priority feature along with setting suitable burst sizes allows
guaranteed real-time support for video/audio clients in the presence of lower priority requests.

The minimum applicable burst size must be at least 4 bytes to enable a long sized data transfer.
Burst sizes below this are not supported and will cause the COG to be removed from service.

Shutdown

To shutdown a memory bus after it has been created the following method is used. This stops
and releases the driver COG for a bus. Any pending requests can either be terminated
immediately or optionally waited on until completion.

shutdown - shuts down a memory bus

Utilities
Several other helper/utility methods are provided to assist with various client operations.

getMailboxAddr - find HUB start address of the 3 long mailbox for a given bus and client COG ID

getDriverCogID - returns the driver COG ID that is managing a given bus  

getDriverLockID - returns the ID of the lock that the driver is using

getResult - check/wait for mailbox success/error result

getFlashLocked - returns whether flash is locked and which COG has locked it for exclusive use

getMaxBurst - utility to help compute a maximum burst size for a given duration

setDelayFrequency - adjusts input delay for P2 operating frequency, if it changes after startup  

�3

External Memory Access

Reads
readByte - reads and returns a single byte from HyperRAM or HyperFlash
readWord - reads and returns a single word from HyperRAM or HyperFlash
readLong - reads and returns a single long from HyperRAM or HyperFlash

read - reads a burst of HyperRAM or HyperFlash memory into HUB memory

readReg - reads a register from HyperRAM or HyperFlash

Writes

writeByte - writes a single byte to HyperRAM
writeWord - writes a single word to HyperRAM or HyperFlash
writeLong - writes a single long to HyperRAM

write - writes a burst of HUB RAM data to HyperRAM or to HyperFlash

writeReg - writes a HyperRAM or HyperFlash register

Read-modify-writes

readModifyByte - reads and alters a byte of memory in HyperRAM using a bit mask
readModifyWord - reads and alters a word of memory in HyperRAM using a bit mask
readModifyLong - reads and alters a long of memory in HyperRAM using a bit mask

Fills & Copy

Ranges of external memory can be filled with data of the given size by using the following:

fill - generalized fill that fills bytes, words or longs in HyperRAM based on a data size argument
 or
fillBytes - fills a block of bytes in HyperRAM with a nominated byte value
fillWords - fills a block of words in HyperRAM with a nominated word value
fillLongs - fills a block of longs in HyperRAM with a nominated long value

External memory blocks can be copied between or within devices on the same bus (in increasing
address order only), or between devices on different buses, with read/write bursts passing
through an intermediate hub buffer in both cases.

copyBus - copies bytes between/within HyperRAM memories or from HyperRAM to HyperFlash
copy - copies bytes from HyperRAM/HyperFlash memory to HyperRAM memory on any bus  

�4

Graphics Operations

There are several methods that are specifically designed to transfer image data in external
memory and these leverage capabilities built into the PASM2 driver that allow rectangular regions
with given width, height and scan line spacing to be transferred in a single mailbox operation.
The graphics fill operations can also be used to support drawing vertical or horizontal lines.

gfxCopyImage - copies a graphics image between or within HyperRAM memory, or from
HyperFlash to HyperRAM (automatically via a HUB buffer)

gfxReadImage - reads a graphics image from HyperRAM or HyperFlash into HUB RAM
gfxWriteImage - writes a graphics image from HUB RAM into HyperRAM

gfxFill - generalized graphics fill which fills bytes, words or longs depending on a size argument
 or
gfxFillBytes - fills a rectangular image area in HyperRAM with a nominated byte value
gfxFillWords - fills a rectangular image area in HyperRAM with a nominated word value
gfxFillLongs - fills a rectangular image area in HyperRAM with a nominated long value

Request List Items

Request list items can be optionally prepared using copyBus or any of the fill or graphics related
methods mentioned above whenever a non-zero list pointer argument is supplied during the call.
Burst reads and writes are also supported in lists by preparing them using either these methods:

writeList - sets up a burst write list item for running from a request list

readList - sets up a burst read list item for running from a request list

Multiple request list items can be linked together to build the full request list for a COG. The
methods that setup list items also return the HUB address of the link field within the newly
created list item, which is useful for chaining them together.

List Execution

The execution of a request list can either be issued in a non-blocking / asynchronous manner
where the requesting COG can continue operating while its request list is being serviced in the
background, or it can be issued synchronously and block until the entire request is complete.
Non-blocking operation can work well with COGATN notification.

execList - executes an already prepared request list, with a blocking/non-blocking option

�5

HyperFlash
HyperFlash has its own set of complex operations and sequences involving erasure and re-
programming. The methods below support these actions but can still be extended by the client if
needed for accessing the advanced HyperFlash features like enabling per sector protection, etc.

readFlashInfo - reads HyperFlash device information

readFlashStatus - reads the HyperFlash status register
clearFlashStatus - clears the HyperFlash status register

eraseFlash - erases either a single sector or the entire HyperFlash memory
pollEraseStatus - checks on the HyperFlash erase status during the non-blocking erase mode

programFlash - writes a block of HUB RAM into HyperFlash memory
programFlashByte - writes a single byte into HyperFlash memory
programFlashWord - writes a single word into HyperFlash memory
programFlashLong - writes a single long into HyperFlash memory

lockFlashAccess - locks the HyperFlash device for exclusive use by a single COG
unlockFlashAccess - unlocks the HyperFlash device for normal use by other COGs

readFlashICR - reads Interrupt Configuration Register in HyperFlash
readFlashISR - reads Interrupt Status Register in HyperFlash
readFlashNVCR - reads Non-Volatile Configuration Register in HyperFlash
readFlashVCR - reads Volatile Configuration Register in HyperFlash

writeFlashICR - writes Interrupt Configuration Register in HyperFlash
writeFlashISR - writes Interrupt Status Register in HyperFlash
writeFlashVCR - writes Volatile Configuration Register in HyperFlash

When HyperFlash is not being programmed, erased or having its registers accessed, then all
COGs can read it. However if it is being accessed using a complex register control sequence, a
lock is required to prevent other COGs from affecting things part way through the sequence.
Both lockFlashAccess and unlockFlashAccess are used to gain or free exclusive flash access by
a single COG. This memory driver API will call these automatically as needed during register
access, erasure and reprogramming. Other COGs that attempt to access the flash in an exclusive
state will either block, or return a flash busy error until the flash exclusion lock is released.

Erasing HyperFlash is slow and can be run in a blocking mode or a non-blocking mode. If non-
blocking erase is requested then pollEraseStatus MUST continue to be called in order to identify
when the erase operation has completed and can be returned into its usual standby ready state,
and no further HyperFlash request activity can be made until then by the COG.

�6

Advanced Configuration
The methods below are provided only for advanced driver configuration, and would not typically
be required for general use while the driver is operating if the default settings are used. These
can be used to experiment with timing and for manually tuning performance by users with more
detailed knowledge of their systems and Hyper memory device behaviour. It can also be used to
access additional internal driver state if reading back the configuration, or for debug purposes.

Delays can be configured per device and bursts and latencies can be adjusted for tuning.

setBurst - set a memory device’s maximum transfer burst size before fragmentation occurs
getBurst - get transfer burst size assigned to a memory device

setDelay - set a memory device’s read delay
getDelay - get a memory device’s configured read delay

getFlags - get a memory device’s configured flag state

getQoS - get the QoS settings for a given COG on a given memory bus

getSize - get the size of a mapped external memory device in bytes

getBusCount - returns the total number of external memory buses supported by the driver
getBus - obtains the bus used by an address if it is mapped

getPinParameters - returns the provisioned Pin Parameter Long for a bank on a bus
getBankParameters - returns the provisioned Bank Parameter Long for a bank on a bus

getFlashLockedCog - returns which COG has locked the HyperFlash device on a bus

setDelayProfile - configures a custom delay profile that can be applied if the frequency changes
getDefaultProfile - retrieves a default delay profile for Flash or RAM

readRamIR - reads an Identification Register in HyperRAM
readRamCR - reads a Control Register in HyperRAM

writeRamCR - writes a Control Register in HyperRAM

setRamLatency - sets up both driver and device latency clocks for HyperRAM
setFlashLatency - sets up both driver and device latency clocks for HyperFlash
getDriverLatency - get the driver’s latency for a device

dump - dumps the PASM2 based driver’s COG+LUT RAM state to HUB RAM, for debugging  

�7

PASM2 Driver Mailbox
Mailbox based transactions are automatically controlled internally by the SPIN2 API, however for
any PASM2 clients that wish to access the HyperRAM or HyperFlash directly, their requests will
need to be setup manually in the mailbox allocated to the requesting COG, or in the mailbox
allocated to the driver COG if they also intend to issue control requests.

Mailbox Format and Usage
The mailbox for each COG is a 3 long structure stored in HUB RAM and is both written and read
by the requesting client COG as well as by the driver COG. Its layout is shown below.

For the standard external memory data read or write requests the first mailbox entry (LONG 1) is
divided up into the following fields:

Bit31 (A) is set 1 to activate a new request by a client COG, and will be cleared by the driver COG
when the request is complete and the mailbox is inactive. The requesting COG can choose to
poll this mailbox address to determine whenever the last transaction has completed and to
determine that the mailbox is now idle. New requests should not be issued while this A bit is set.

The request type identifies what action the driver will perform - it is described in the next section.

The Bank/Address High value is a 4 bit field that identifies which particular memory device on the
bus will be accessed. For memory devices 16MB or smaller, its value uniquely identifies the
device within a given bank, while for memory devices greater than 16MB in size some bank bits
are treated as the higher bits of the external memory address and the device will then need to
span multiple banks.

The Hyper Memory Address (augmented with Address High bits if the device is sized > 16MB) is
the actual external physical address which will be accessed within the external memory device.

MAILBOX PURPOSE

LONG 1 Triggers the request and provides a HyperRAM/HyperFlash address or other data

LONG 2 Contains write data or a HUB address, and the requested data is returned here

LONG 3 Optional mask or transfer count parameter depending on type of request

Bit
31

Bits 
30-28

Bits 
27-24

Bits 
23-0

A Request 
Type

Bank /
AddressHigh

Hyper Memory Address Low

�8

The second mailbox entry (LONG 2) nominates the HUB address to be used as part of the burst
transfer, or the data value to write to HUB (for both Writes and Read-Modify-Write operations).

The third mailbox entry (LONG 3) is used as a count of the number of separate byte/word/long
writes (fill operations), or the number of bytes to transfer for burst reads/writes. For read-modify-
write operations, it is instead used as a 32 bit mask applied to the data before being written back.
If this mask value is 0, nothing will be written back to external memory (i.e. standard read), and if
the mask is all ones ($FFFFFFFF) then all relevant bits in the data field in the second long will
replace the original value. In both cases the original value from external memory will be returned
to the client COG. This is an atomic operation that cannot be pre-empted and as such can be
useful for mutexes. Any zero bits in the mask will leave the corresponding data bit in external
memory intact. Read-modify-write operations only apply to HyperRAM, not to HyperFlash.

Once the request has been serviced by the driver, it will clear bit31 of mailbox LONG 1 to indicate
service completion. If the client COG has also been configured in the driver to receive ATN
notifications on service completion, that will also occur at this time. If the request succeeded
then the entire mailbox LONG 1 will be cleared to zero and any data result is returned in mailbox
LONG 2. If the request failed, the applicable (positive valued) error code will be written to mailbox
LONG 1. Mailbox LONG 3 is always left intact by the driver which can be useful for repeat reads.

Each COG has its own dedicated group of 3 mailbox longs for each memory bus, while each
driver COG’s mailbox is shared by all COGs and is used for their control requests. Exclusion
needs to be enforced to prevent COGs from corrupting the control mailbox if it is already busy.
The SPIN2 API already handles this with a P2 HUB lock protecting the control mailboxes, but any
PASM2 clients also issuing control requests will need to manage this on their own, by sharing the
same lock or by otherwise ensuring only one COG ever performs control requests at any time.

Memory Requests
The request type is a 3 bit value that identifies the type of memory access to be performed by the
driver. The mapping of these request type bits to the request action is shown below:

REQUEST ACTION

%000 Read a byte from external memory, optionally update it with a masked value

%001 Read a word from external memory, optionally update it with a masked value

%010 Read a long from external memory, optionally update it with a masked value

%011 Read a block of bytes from external memory into HUB memory

%100 Write a byte to external memory, or fill a range with a byte value

%101 Write a word to external memory, or fill a range with a word value

%110 Write a long to external memory, or fill a range with a long value

%111 Write a block of bytes into external memory from HUB memory

�9

Requests to read bytes, words or longs all use the following general mailbox format. The only
difference is the size of the data returned in LONG 2 and Write Value used for Read-Modify-Write
as well as the request type value in the first long. This particular example below shows a word
read, and only the least significant word of LONG 2 and LONG 3 would be used if Read-Modify-
Write is applied. For normal reads, keep LONG 3 set to zero and the write back will not occur.

Requests to burst read from external memory to a given HUB address use the following format:

Requests to write or fill bytes, words or longs to an external memory destination address with a
given data value use the following format. The Fill Count would be set to 1 for a single write. This
particular example shows a long fill, the other fill sizes are similar but use different request bits.

Requests to burst write data bytes into external memory Destination Address starting from a
given HUB Address use the following format:

MBOX Bit 
31

Bits 
30-28

Bits 
27-24

Bits 
23-0

LONG 1 1 %001 Bank External Memory Source Address

LONG 2 Optional Write Value for RMW

LONG 3 RMW Mask

MBOX Bit 
31

Bits 
30-28

Bits 
27-24

Bits 
23-0

LONG 1 1 %011 Bank External Memory Source Address

LONG 2 Hub Address

LONG 3 Byte Count

MBOX Bit 
31

Bits 
30-28

Bits 
27-24

Bits 
23-0

LONG 1 1 %110 Bank External Memory Destination Address

LONG 2 Data Value

LONG 3 Fill Count

MBOX Bit 
31

Bits 
30-28

Bits 
27-24

Bits 
23-0

LONG 1 1 %111 Bank External Memory Destination Address

LONG 2 Hub Address

LONG 3 Byte Count

�10

Control Requests
The 3 bit request field mapping for control mailbox transactions are shown below:

Mailbox LONG 1 always has bits 3-0 set to the ID of the calling COG and includes an applicable
bank spanning the device being accessed.

Reading the device registers uses this mailbox format. The RegisterAddr value holds the 16 bit
register address which will be read from the device. The 16 bit result will be returned in LONG 2.

Writing device registers uses this mailbox format. The RegisterAddr value is a 16 bit register
address that will be written. The WriteDataValue is the data to be written to a device register.

REQUEST ACTION

%000 Gets current driver latency clocks for the given bank, puts 8 bit result into LONG 2

%001 Reads a 16 bit device register using LONGs 2 & 3, put result in LONG 2 (see below)

%010 Gets current burst, protection & delay parameters for the bank, result into LONG 2

%011 Copies current COG+LUT register memory into HUB RAM address in LONG 2

%100 Sets the driver latency clocks for a given bank using the 8 bit data in LONG 2

%101 Writes a 16 bit device register using address/data in LONGS 2 & 3 (see below)

%110 Set the burst size, flash protection & delay for a given bank using 32 bits in LONG 2

%111 Reloads & reconfigures all COG QoS parameters from existing HUB RAM structure

MBOX Bit 
31

Bits 
30-28

Bits 
27-24

Bits 
23-4

Bits 
3-0

LONG 1 1 %001 Bank Reserved (set to 0) COG ID of
requestor

LONG 2 $E000 + RegisterAddr[31:19]

LONG 3 (RegisterAddr[18:3] << 16) + RegisterAddr[2:0]

MBOX Bit 
 31

Bits 
30-28

Bits 
27-24

Bits 
23-4

Bits 
3-0

LONG 1 1 %101 Bank Reserved (set to 0) COG ID of
requestor

LONG 2 (WriteDataValue << 16) + $6000 + RegisterAddr[31:19]

LONG 3 (RegisterAddr[18:3] << 16) + RegisterAddr[2:0]

�11

Advanced Requests
More advanced requests such as graphics fills and copies are handled using request lists. A
request list is a linked list that identify a series of request(s) the driver will process sequentially for
the COG until either the list ends or an error occurs. At that time the driver then notifies the COG
of its completion. As such it allows the client COG to prepare requests in advance that can be
processed by the driver in the background without further involvement by the client COG. This
frees the COG for continuing other work in parallel and improves performance.

To start a list the HUB address of the first request item in the request list is written into MBOX
LONG 2 and $FFFFFFFF is written to MBOX LONG 1 in the client COGs mailbox. This special all
ones pattern in MBOX LONG 1 identifies a request list is to be processed instead of otherwise
starting a regular burst write to bank 15 at device address $FFFFFFF. Doing that particular burst
write is therefore excluded by this scheme but that specific restriction will not be particularly
limiting or onerous. Note that writing this all ones pattern to the driver’s control mailbox in LONG
1 is not treated as a request list, but will continue to be handled as a regular control request (it
will still reconfigure QoS parameters). No control requests can be put into request lists.

Once a request list triggered, the driver will begin processing the list, working through each
request item in the list in order. The current list position will be written back to MBOX LONG 2 as
each request completes and progress can be monitored. This will be available if there is an error.

The format of the request list items in HUB memory can use either a 4 long structure or an
extended 8 long structure depending on the type of request.

The smaller 4 long request list item structure starts out with the same 3 long parameter sequence
from the standard mailbox requests, followed by a fourth long. The MSB in the fourth long is
used as a way to identify whether this request list item is using the 4 long or the 8 long structure,
as well as a link to the next request item in the request list (or 0 when the list ends).

If Bit31 of the fourth long is zero, it signifies that this request list item is using the shorter 4 long
structure, and the remaining bits are the HUB address of the next request item in this list.

If Bit31 of the fourth long is one, it signifies this request uses the extended structure needed for
more complex graphics and copy requests and the formats in those case are described in the
different tables below. 

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/AddrHi (4 bits) + AddrLo (24 bits)

List Item+4 Hub Address/Data Value

List Item+8 Count

List Item+12 MSB = 0 Link to next request

�12

Linear Copy

For linear (non-graphics) copies between two external memory addresses, the request list item
format is interpreted as below. Only HyperRAM can be the destination, while either HyperRAM or
HyperFlash can be the source.

List Item + 0 represents the external memory source address being read from, and uses a read
burst request with MSB =1

List Item + 4 represents the HUB address of an intermediate HUB transfer buffer used during
copy

List Item + 8 represents the number of bytes to copy to/from HUB in each transfer burst

List Item + 12 has MSB=1 and the external memory destination address for the copy operation,
and uses a burst write request

List Item + 16 contains the total number of bytes to copy between external memory addresses

List Item + 20 contains zero

List Item + 24 contains zero

List Item + 28 contains a HUB address of the next request list item (or zero to end the list)

Note *: Total Bytes and Hub Buffer Size should not be zero.  

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/SrcAddrHi (4 bits) + SrcAddrLo (24 bits)

List Item+4 Hub Address

List Item+8 Hub Buffer Size*

List Item+12 MSB = 1 Req (3 bits) + Bank/DstAddrHi (4 bits) + DstAddrLo (24 bits)

List Item+16 Total Bytes*

List Item+20 0

List Item+24 0

List Item+28 Link to next request

�13

Graphics Copy

For graphics image copies between two external memory addresses, the request list item format
is this:

List Item + 0 represents the external memory source address being read from, and uses a read
burst request with MSB = 1

List Item + 4 represents the HUB address of an intermediate HUB transfer buffer used during
copy

List Item + 8 represents the number of bytes to copy per scan line (controls image width)

List Item + 12 has MSB=1 and the external memory destination address for the copy operation
and includes a burst write request

List Item + 16 contains the number of scan lines to read (controls image height)

List Item + 20 contains an offset to add to the destination memory address per scan line copied

List Item + 24 contains an offset to add to the source memory address per scan line copied

List Item + 28 contains a HUB address of the next request list item (or zero to end the list)

Note *: Scan lines and Hub Buffer Size should not be zero. HyperFlash can be the source but
cannot be the destination.  

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/SrcAddrHi (4 bits) + SrcAddrLo (24 bits)

List Item+4 Hub Address

List Item+8 Hub Buffer Size*

List Item+12 MSB = 1 Req (3 bits) + Bank/DstAddrHi (4 bits) + DstAddrLo (24 bits)

List Item+16 Scan Lines*

List Item+20 Scan line offset for DstAddr

List Item+24 Scan line offset for SrcAddr

List Item+28 Link to next request

�14

Graphics Read

For graphics image reads from external memory into HUB, the request list item format is this:

List Item + 0 represents the external memory source address being read, and uses a read burst
request with MSB = 1

List Item + 4 represents the HUB address to write the data

List Item + 8 represents the number of bytes to read per scan line (controls image width)

List Item + 12 is zero apart from the MSB which is 1

List Item + 16 contains the number of scan lines to read (image height)

List Item + 20 contains an offset to add to the hub memory address per scan line copied

List Item + 24 contains an offset to add to the external memory address per scan line copied

List Item + 28 contains a HUB address of the next request list item (or zero to end the list)

Note *: Scan lines and Hub Buffer Size should not be zero.

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/SrcAddrHi (4 bits) + SrcAddrLo (24 bits)

List Item+4 Hub Address

List Item+8 Hub Buffer Size*

List Item+12 MSB = 1 0

List Item+16 Scan Lines*

List Item+20 Scan line offset for Hub Address

List Item+24 Scan line offset for SrcAddr

List Item+28 Link to next request

�15

Graphics Write

For graphics image writes into external memory from HUB, the request list item format is this:

List Item + 0 represents the external memory destination address being written, and uses a write
burst request with MSB = 1

List Item + 4 represents the HUB address to read the data from

List Item + 8 represents the number of bytes to write per scan line (controls image width)

List Item + 12 is zero apart from the MSB which is 1

List Item + 16 contains the number of scan lines to read (image height)

List Item + 20 contains an offset to add to the external memory address per scan line copied

List Item + 24 contains an offset to add to the hub memory address per scan line copied

List Item + 28 contains a HUB address of the next request list item (or zero to end the list)

Note *: Scan lines and Hub Buffer Size should not be zero. HyperFlash cannot be the destination.

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/DstAddrHi (4 bits) + DstAddrLo (24 bits)

List Item+4 Hub Address

List Item+8 Hub Buffer Size*

List Item+12 MSB = 1 0

List Item+16 Scan Lines*

List Item+20 Scan line offset for DstAddr

List Item+24 Scan line offset for Hub Address

List Item+28 Link to next request

�16

Graphics Fill

For graphics fill operations into external HyperRAM the request list item format is this:

List Item + 0 represents the external memory destination address being written to, and uses a
write byte or word or long request with MSB = 1

List Item + 4 represents the fill data pattern to write to external memory

List Item + 8 represents the number of byte/word/long items to fill per scan line (e.g. pixels)

List Item + 12 is zero apart from the MSB which is 1

List Item + 16 contains the number of scan lines to fill (or zero for special handling** below)

List Item + 20 contains an offset to add to the destination memory address per scan line filled

List Item + 24 contains zero

List Item + 28 contains a HUB address of the next request list item (or zero to end the list)

Note *: Count should not be zero. HyperFlash cannot be the destination.

Note **: if Scan Lines is set to zero, this optionally triggers a special graphics handler to execute.
Once the first pixel or row of pixels is drawn, the code branches out to a handler that can
determine what pixel addresses to write to next. The intent of this is to support arbitrary angled
lines and other features. Final implementation of this is TBD and may come in a later release.

HUB layout Bit 31 Bits 30-0

List Item+0 MSB = 1 Req (3 bits) + Bank/DstAddrHi (4 bits) + DstAddrLo (24 bits)

List Item+4 Fill Data Pattern

List Item+8 Count*

List Item+12 MSB = 1 0

List Item+16 Scan Lines**

List Item+20 Scan line offset for DstAddr

List Item+24 0

List Item+28 Link to next request

�17

Driver Initialization from PASM2 COGs
While typically started from the SPIN2 code, the HyperRAM PASM2 driver component can still be
spawned from a COG running PASM2 code when SPIN2 is not available. Any bus/device/address
mapping and all other setup and management features normally provided by the SPIN2 API will
need to be handled by the PASM2 clients themselves in this case.

When the HyperRAM/HyperFlash PASM2 driver is started it is also passed a pointer to an 8 long
startup parameter structure held in HUB RAM. This is passed through PTRA at the time the driver
COG is spawned. This HUB RAM structure contains the following information:

The startup configuration option flag bits currently defined are:

The port reset masks in the startup data are used to identify which P2 pins on port A and B will
be pulsed to a logic low level at driver startup, enabling optional memory device reset strobes in
systems that use these. Setting a bit to 1 will enable a reset pulse on the corresponding P2 pin.

The base P2 pin number of the memory data bus is also provided along with the base address of
the mailbox group this driver will use. Two remaining pointers are used for referencing the device
and QoS data structures held in HUB RAM, and are defined in the next sections.  

HUB layout Parameter

StartupParams+0 P2 driver operating frequency in Hz, used for determining reset delays

StartupParams+4 Startup configuration option flags for the driver

StartupParams+8 P2 port A (lower 32 pins) reset mask of all devices on the bus

StartupParams+12 P2 port B (upper 32 pins) reset mask of all devices on the bus

StartupParams+16 Base P2 pin number of data bus used by driver: 0, 8, 16, 24, 32, 40, 48, 56

StartupParams+20 Pointer to 32 long device parameter structure in HUB RAM

StartupParams+24 Pointer to 8 long COG QoS parameter structure in HUB RAM

StartupParams+28 Mailbox base address for the driver to use in HUB RAM

Bit DESCRIPTION

31 Set to 0 to use regular sysclk/2 transfer rate reads, or
Set to 1 to optionally enable high speed sysclk/1 transfer rate reads

30 Set to 0 to for sysclk/2 transfer rate writes, or set to 1 for experimental sysclk/1 writes

29 Set to 0 to use normal registered clock pin timing, or
Set to 1 to enable unregistered clock pin timing (for experimenting only)

28 Reserved for future use to enable further HUB-exec based graphics line/pixel drawing

�18

Device Parameter Structure

This is arranged as 32 longs in total containing 16 bank parameter longs followed by 16 pin
parameter longs, one long each per bank in bank ID order. Devices over 16MB in size span
multiple bank and require duplicate values configured in each associated bank’s long pair.

The device and bank information along with the pin mapping is setup once at driver initialization
time based on how the devices are mapped on the memory bus. Once the driver is running some
fields can still be changed via some SPIN2 control methods, but no new memory devices can be
added dynamically.

Bank parameter long format:

Maximum Burst (16 bits):

This is the burst size allowed for the device in bytes, assuming a sysclk/1 transfer rate. Whenever
the device transfer duration is unrestricted, (i.e. for HyperFlash) it can effectively be set to the P2
streamer transfer limit of just under 64kB bytes (it should be $FFF0 for Flash page alignment
purposes).

For HyperFlash banks, the 3 LSBs in this field are also shared to indicate which COG is currently
allowed to modify the HyperFlash or access it's registers in an uninterruptible sequence
whenever flag bit 11 is also set true.

For HyperRAM this burst field is normally configured to limit the chip select low time to be less
than 4us to avoid encountering refresh related problems, but it can still be adjusted further.

• Delay (4 bits):

This nibble is comprised of two fields which create the overall delay needed for Hyper memory
reads. These values vary with operating P2 frequency (and potentially temperature, PCB routing).

• Flags (4 bits):

Bits 
31-16

Bits 
15-12

Bits 
11-8

Bits 
7-0

Maximum Burst Delay Flags Device size

BIT NAME DESCRIPTION

15-13 DELAY P2 clock delay cycles added while waiting for valid data input to be returned

12 UNREG Set to 0 if bank uses registered data bus inputs for reads, 
Set to 1 if bank uses unregistered data bus inputs for reads

�19

The flag bits associated with each bank are shown below.

• Device size (8 bits):

This size field contains the number of address bits - 1 used by the device mapped into this bank.
The following are the supported sizes. For 8MB devices, use the 16MB size (foldover will occur).

NOTE: If the bank is not in use all of the bank parameters in the long MUST remain zeroed.

The 16 bank parameters identified above are then followed by the 16 pin parameter longs.

Pin parameter long format (16 consecutive longs, again one per bank):

Latency Edges is set to twice the number of latency clocks configured for this device.

The three pin fields select which P2 pins connect to the device’s control pins (from 0-63). All
control pins are required to be defined and are used by this driver. The clock pin can be shared.

If a bank is not in use, bit 31, its invalid bit must be set to 1 otherwise if the bank is valid, it is
cleared to 0.  

BIT NAME DESCRIPTION

11 PROT Set to 0 if Flash bank is not exclusively protected by a COG 
Set to 1 if Flash bank is exclusively protected by a COG

10 TYPE Set to 0 if bank is HyperRAM 
Set to 1 if bank is HyperFlash

9-8 RSVD Reserved, set to 0

VALUE DEVICE SIZE

23 16MB or lower

24 32MB

25 64MB

26 128MB

27 256MB

Bit 
31

Bits 
31-24

Bits 
23-16

Bits 
15-8

Bits 
7-0

Invalid Latency Edges RWDS Pin CLOCK Pin CS Pin

�20

COG QoS Parameter Structure
The COG QoS parameter settings are maintained in another 8 long structure in HUB RAM (one
long per COG, in COG ID order) using the following data format per long:

Configuring this QoS structure is the key to allow COGs to share the external memory in a
controlled way, and to optionally ensure that some COGs will be treated preferentially over others
where required. Real time driver COGs can be configured with a higher priority over normal
COGs for example so their memory transfer requests can be repeatedly issued and serviced
without being noticeably impacted by other COGs. Lower priority COGs can still get access to
memory but can be held off until higher priority COGs have had their requests serviced first.

• Burst Limit (16 bits):

This restricts a COG's maximum burst size before fragmenting which helps bound the latency for
servicing the highest priority COG after the lower priority COG request. A smaller burst size setup
for lower priority COGs would let a video COG have its requests serviced sooner, for example.
This burst size is measured in bytes.

To guarantee that real-time (e.g. video / audio) transfers can be reliably sustained without
artefacts, the burst size for all lower priority and round robin COGs should be set to a value that
allows both the real-time COG's transfer and any single lower priority (or round-robin) serviced
COG's transfer to be completed before the next real-time request requires processing.

In the specific case of video, both the video COG and any lower priority COG's transfers will need
to complete in a single scan line (with some margin for overheads). In this case the optimal burst
limit will depend on the video timing, the resolution and colour depth as well as the P2 frequency
and actual transfer rate on the Hyper bus.

So if you had a 31us video scan line for example, and if the video burst transfers per line totals
24us after any fragmentation/overheads, no more than 7us of bursts (including overheads) should
be allocated to any of the COGs lower in priority. That way, once a lower priority COG is serviced
after a video COG transfer, it’s request will complete in time such that the next video request can
occur and complete again before the total deadline expires.

This burst limit per COG works in conjunction with the device’s own burst size. The lesser of the
two values will apply to the burst transfer sizes on the bus and determines the number of bytes
sent before transfer fragmentation occurs. Fragmentation also provides an opportunity for higher
priority COGs to be serviced. Importantly, to avoid internal page boundary crossing problems if
HyperFlash is used, the COGs that access Flash need to set their burst limit to a multiple of 16.

Bits 
31-16

Bits 
15-12

Bits 
11-10

Bits 
9-0

Burst Limit Priority Flags Internal use

�21

• Priority (4 bits):

This field holds a priority polling flag and the 3 bit priority assigned to the COG being serviced by
the driver. Strict priority COGs are serviced before any round-robin COGs. Round-robin polled
COGs share the bandwidth remaining “fairly”, by request but not necessarily by bandwidth.

• Flags (2 bits):

These per COG flags allow selection of the notification method, as well as the ability to prevent
the COG’s memory access from being pre-empted by other COGs when fragmentation occurs.
This is useful for a couple of reasons:

1) performance - avoiding COG polling during fragmentation reduces software overheads and
increases the bus utilization

2) data integrity - allows atomic transfers to/from memory if larger structure in memory need to
remain consistent before other COGs access or modify the data.

The 10 remaining least significant bits in QoS Parameter long are ignored when writing them to
the driver. These are used for internal purposes in the driver.

This per COG QoS structure in HUB RAM can be modified and re-loaded into the driver if
parameters need to be changed at run-time. Use the setupQos SPIN2 method to update this
structure or alternatively issue a request with type %111 directly to the control mailbox from
PASM2 clients.

PRIORITY DESCRIPTION

%1_111 Highest priority polled COG

%1_110 Second highest priority polled COG

%1_… …

%1_000 Lowest priority polled COG (but still above round-robin COGs)

%0_xxx Round-robin COGs, for xxx<>0 they fail with ERR_BUSY if accessing locked flash

%0_000 If xxx equals 000, the RR COG stalls if accessing flash locked by another COG

Flag
bits

NAME DESCRIPTION

11 ATN 
NOTIFY

if 0, serviced COG is notified of completion/error via its mailbox only
if 1, serviced COG is notified with ATN on completion as well as in its mailbox

10 LOCKED 
BURST

if 0, COG can be pre-empted if its burst is fragmented (polling restarts then)  
if 1, COG's transfer continues to completion before further polling

�22

Current Limitations
There are several limitations to consider when using HyperRAM / HyperFlash and this driver.

• In all cases with memory fills, copies and burst read/write operations, if the number of
transfers from the starting source address (or destination address) exceeds the last address
for that device’s size, the address will wrap around within the device. Both the source and
the destination address increment only, reverse copies are not possible.

• Writes at Sysclk/1 transfer speeds are only experimentally supported by this driver and may
require additional HW support to delay the clock signal in order to get this working reliably.

• Due to the way the P2 streamer samples the input data, there is a chance that incoming read
data from HyperRAM or HyperFlash devices will not be stable at the exact instant it is
clocked into the P2 for all frequency values. There is an internal delay parameter that allows
read timing to be adjusted to try to compensate for this issue, and some experiments with the
P2-EVAL and the HyperRAM/HyperFlash breakout module found that over the operating P2
frequency range at room temperature the memory devices typically have some amount of
overlap between 1-2 working delay values where input data is stable enough to sample,
however this could change with different board layout and temperature ranges, creating
different delay profiles over frequency. A method exists to change the frequency/delay
mapping profile in use (on a per device basis), and in advanced cases where reliability is even
more critical it could even be linked to current operating temperature if this delay/frequency/
temperature relationship is already measured for a given setup and some process continues
to measure temperature and update the driver to in an attempt to compensate for delay
variation. More experiments would likely be needed to see just how much temperature
variation exists at the particular operating frequencies of interest.

• Currently only version 1 HyperRAM has been tested with this driver. It is anticipated that
version 2 HyperRAM should ultimately work too (with minor updates to latency), but until
actual device hardware becomes available it is not yet possible to test to confirm there are no
issues with the newer devices. Determining which type of RAM is fitted will also be required.

• In some MCP (multi-chip package) HyperRAM devices, burst transfers cannot be made to
work contiguously across the die boundaries because the burst simply wraps inside the dies
within the package. It is important to keep this in mind when laying out any large structures
in memory such as frame buffers, which may need to be maintained in one die or the other.

• HyperFlash read burst transfers that cross page boundaries can have issues if some care is
not taken, causing extra unwanted bytes to be inserted in the middle of the read transfers.
The driver has a workaround dealing with this but still depends on the lesser value of the
configured burst sizes for the HyperFlash device and for the COG’s accessing it to always
remain a multiple of 16 bytes. To avoid problems, you can leave the HyperFlash bank’s burst
size as its default, and set the COG’s burst limit to less than $FFF0 and aligned to 16 bytes.

�23

• HyperFlash reads are aligned to their data access size just like the P1 memory reads were.
Reading a long at byte offsets 1, 2, 3 from a long aligned address will return the same value
as found at the aligned address offset 0, (i.e. the 2 address LSBs get interpreted as zero)
when reading longs. Similarly reading words at odd HyperFlash addresses will return the
same word that is read at even HyperFlash addresses.

• HyperRAM reads and writes are unaligned and behave like P2 memory accesses so words
and longs can be read from any byte address and will return the next 2 or 4 bytes from that
initial location respectively.

�24

