I have been trying to learn PASM off and on for a while. After reviewing many tutorials and much of the Parallax forums, I found it not easy to get basic information about just simply communicating with PASM. Everybody wants to blink a light. That is great but how does one do simple math, an array and other tasks that are relatively simple in SPIN or Prop C.
My project involves GPS and other sensors. I decided that I would tackle the project in PASM. So, while attempting to learn to code in assembly I got some jump starts from David and Jeff at parallax which was a great help, scoured the forums and despite finding many broken links and digging through some older tutorials, I found some information. Still everyone wants to blink a light.
I wrote a version of the tutorial that is in the LEARN section for creating Prop C libraries and was encouraged by the compliments, Thank you all.
My approach to that rewrite was from the aspect of a teacher not an engineer as I am a flight instructor and an aircraft mechanic instructor at a college in the Los Angeles area. So, I attempted to not be too geeky with the tutorial so as to appeal to the inexperienced and those who are really techy.
So here is my attempt at a PASM tutorial.
No Blinky lights in the beginning!!!!

The first thing one will need is a copy of the propeller manual that is in the propeller tool and can be found here: https://www.parallax.com/product/122-32000.
Here is a link to Jeff Martin’s webinar I uploaded to youtube: https://www.youtube.com/watch?v=OZHuWYW3o1A

The first exercise will encompass passing variables from a spin method to a pasm method and back.

This the first piece of code that I came up with. There may be better ways to do this so bear with me.

I setup two global variables one for the spin method and the other for the pasm method. A five second waitcnt is used so as to have time to open the serial terminal when launching the code.
In order to launch the pasm code into a new cog this command is needed:
cognew(@asm,@datavar). The cognew means open the next cog, the @asm is the beginning of the assembly routine and the @datavar is the address of the first global variable.
[image:]
	
The next steps are to start the serial terminal wait five seconds to allow one to open the serial terminal and then launch the cog. The code will then take the value in data var and print on the terminal. Now to the PASM method: [image:]

The datavar is assigned a value, in this case 256 which is the maximum pasm will handle without extra work. I will tackle that at a later time. We want to keep it simple at this time. This is also because many of the other tutorials I have seen get really complicated very quickly and do not take it in baby steps. I want to make sure that everybody can grasp the concept before getting into complicated code and get lost.
[image:]
The pasm code starts in a “dat” section of spin. The “asm” “org” “0” indicates the beginning of the pasm code. In the cognew there is also an @datavar expression. This tells the pasm code the address of the first variable and that address will be stored in the “par” value. “par” from what I have found means parameter.
There is a very nice webinar done by Jeff Martin in 2009 that explains a lot of information regarding pasm code. I uploaded it to youtube: https://www.youtube.com/watch?v=OZHuWYW3o1A.

Starting at:
 mov temp_var, par
This is the mov instruction description:

MOV
Instruction: Set a register to a value.
MOV Destination, # Value
Result: Value is stored in Destination.

Destination (d-field) is the register in which to store Value.

Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.
Explanation
MOV copies, or stores, the number in Value into Destination.
If the WZ effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is specified, the C flag is set to Value’s MSB. The result is written to Destination unless the NR effect is specified.
So, our first instruction directive will take the address of the spin code datavar variable in the registers and pass it to a temporary variable that we can manipulate. The code is commented so as to follow the progression and I am using full words instead of abbreviations so as one could more easily follow the progression.

[image:]

Now we have the address of the data_var which corresponds to datavar in the spin method.
[image:]
As you can see, we move over and get the address of the spin code answervar variable and assign it’s address to the pasm code answer_var variable. This is done by adding 4 to the temporary variable. Adding 4 moves to the next adjacent long where the answer var is located in the hub.
We are next going to use the rdlong and wrlong directives. The rdlong directive will read from a location and copy the value into a destination field as is shown in the propeller manual listing.
RDLONG Value, # Address
Result: Long is stored in Value.

Value (d-field) is the register to store the long value into.

Address (s-field) is a register or a 9-bit literal whose value is the main memory address to read from.

The rdlong goes from right to left. We are reading the value that is in the par register which has the location of datavar and it’s contents.

[image:]

Lastly, we are going to write the value to the answer_var location that corresponds with answervar in the spin method and then print the results in a new variable. Note: wrlong works from left to right.

[image:]
You should get a value on the serial terminal. I used 256 as this is the largest value for a single long, which is four bytes in size.
[image:]
Changing the value of datavar to 25 in the spin method to verify.BEFORE

[image:]AFTER

[image:]
RES: We need to reserve space for the pasm variables this is self explanatory.
Now we can manipulate two variables and print them in succession. This is the new code:
[image:]
[image:]
[image:]
[image:]

We have added a couple of items. First a new datavar named datavar2 and a new answervar named answervar2 as well as their counterparts in the pasm method. In the print area answervar2 has been added also.
[image:]
Note the order of the global variables. This will make it easy to find them in the pasm method.
The pasm routine begins just like before and we get the location of datavar from par into the temporary variable and assign the location to data_var and read the value from par to data_var.
Now we have to move over a couple of longs to get the new variables and values:
[image:]
Now we can write the value to the second answer_var. Remember wrlong is from left to right as opposed to rdlong and other directives which are right to left.
[image:]
This is what you should see on the serial terminal:
[image:]
Changing the two datavar’s values:
[image:]
It works.
Now that we can get in and out of spin and pasm, I will present some examples of simple math.
I am trying to avoid the jump to really complicated programs with the assumption that the reader has a total comprehension of coding in assembly language of any type. I have found many tutorials do that.
[image:]These tutorials were good but confusing when they jump ahead and get very complex. Since I am a teacher, I teach flying and aircraft mechanics, I have to assess the background of each student. Academic learning can be difficult and painful, so if the instructor keeps it simple and explains the concept with easy examples that build up slowly, the student has a better chance of understanding and correlating the subject matter.
That results in a much better outcome. First addition, note the global variable name change. We are going to repeat the above code and make some changes:
[image:]
[image:]
[image:]
Subtraction:
[image:]
[image:]
[image:]
[image:]

[image:]
What we have done is simply, at lines 60 and 61, added a new variable as well at line 71, these will be the subtraction variables. Next perform the subtraction and then write to our answer variable.
You should get this:
[image:]
25-10=15

Change subtraction variable to 12.
[image:]
25-12=13

Multiplication this is from the propeller manual page 380:
[image:]
[image:]

[image:]
[image:]3*27=81
[image:]Change 27 to 9.
3*9=27
Basically, we are doing multiplication by addition:
 27+27+27=81
3+3+3+3+3+3+3+3+3=27
We run the loop until the carry flag is empty. This is repeated addition. Jeff and Dave at Parallax told me that there are many ways to do this. I am working on this myself. Basically, it is repetitive addition and that can be done in a loop until the number of iterations required are completed.
[image:]

	
IF: conditional statements.
[image:]
Please refer to the propeller manual for the full list of conditins.

RCR:
[image:]RCR allows the code to rotate the value of the carry flag into a variable. This is used to produce the product during each iteration of the multiplication process. Which in the end of the loop, would be the answer if one did multiplication via the addition process.

DJNZ:
[image:]
This directive allows for repetition while decrementing a particular value of choice and when the result is not zero jump to a particular point in the code until the result is zero. At that point the code will drop down to the next instruction in line.
SHR: There is a shift right and shift left these are self explanatory in the propeller manual as shown. The code will shift left or right by the number specified.

Division:
[image:][image:]
[image:]

[image:]
Counting up and down:

[image:]
[image:]
[image:] [image:]
[image:]
[image:]
[image:]

[bookmark: _GoBack][image:][image:][image:][image:]
2

image2.png
pub main

datavar:= 25 ‘assign a value to datavar

pst. start (115000) “start the serial terminal object

waitent (clkfreqe5 +cnt) “hold five sec to open the

cognew (8asn, 8datavar) open a new cog for pasn. where it starts “asm’”

" the address of the first variable
waitent (clkfreqsent) hold for a second

" print routine

pst.str (string ("ansuerf:)
pst.neuline

pst. dec (answervar)

pst.neuline

and

image3.png
dat

asn

org © This is the starting point for PASM

{{ The first iten is to move the address of the parameter register "PAR” into

a temporary variable and assigne it to the variable in uhich ue uill read the in
this case the value of datavar in the spin method. }}

mov temp_var, par

{{ Now ws are going to assign the pasn variable, data var, the address of datavar in
the spin method. }}

mov data_var, temp_var

{{ Nou ue have to move over to the next long to get the address of ansuervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #

1 Now assign this address to ansuer_var. }}

nov ansuer_var, tenp_var

{{ Next read the value of datavar (spin object) into the pasm data_var. }}

rdlong data_var, par

{{ Finaly urite it to the answer_var uhich is spin’s ansuervar for printing. }}
urlong data_var, ansuer_var

{{ Reserved variables reserved for PASM's use. }}

data_var res 1
ansuer_var res 1
temp_var res 1

image4.png
asn

org © This is the starting point for PASM

{{ The first iten is to move the address of the parameter register "PAR” into
a temporary variable and assigne it to the variable in uhich ue uill read the in
this case the value of datavar in the spin method. }}

mov temp_var, par

{{ Now ws are going to assign the pasn variable, data var, the address of datavar in
the spin method. }}

mov data_var, temp_var

image5.png
{{ Now we have to move over to the next long to get the address of ansuervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #

1 Now assign this address to ansuer_var. }}

mov answer_var,temp_var

image6.png
{{ Next read the value of datavar (spin object)
rdlong data_var, par

into the pasm data_var. }}

image7.png
86|

{{ Finaly write it to the answer_var which is spin s answervar for printing. }}
wrlong data_var, answer var

image8.png
answer:
256

image9.png
answer:
25

image10.png
RES

Directive: Reserve next long(s) for symbol.
(Symboly RES (Count)
e Symbol is an optional name for the reserved long in Cog RAM.

e Count is the optional number of longs to reserve for Symbol. If not specified. RES
reserves one long.

image11.png
{{ Tutorial 2 hou to pass two number variables from spin to pasm and back, this uorks for numbers
fron @ to 256, bigger numbers in a later tutoriall}

CON
_clknode = xtall + pllix
“Txinfreq = 6250000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
Txinfreq = 5_000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
obj
pst: “parallax serial terminal’
var
long datavar {{each of these are one long apart. Have to move over one long
S0 as to access them}}
long ansuervar
long datavar2
long ansuervar2

image12.png
datavar:= 21 “assign a value to datavar
datavar2 := 29
pst. start (115000) ‘start the serial terminal

waitent (clkfreqe5 +cnt) “hold five sec to open the

cognew (asm, edatavar) ° open a new cog for pasm.
" the address of the first

waitent (clkfreqsent) hold for a second
" print routine

pst.str (string (“ansuer: ™))
pst.newline

pst. dec (anservar,
pst.newline

pst.str (string ("answer:
pst.newline

pst. dec (ansuervar?)
pst.newline

object

serial terninal

uhere it starts “asn”

variable

and

image13.png
dat

asn

org © This is the starting point for PASM

{{ The first iten is to move the address of the parameter register "PAR” into
a temporary variable and assigne it to the variable in uhich ue uill read the in
this case the value of datavar in the spin method. }}
nov temp_var, par
{{ Nou ue are going to assign the pasm variable, data_var, the address of datavar in
the spin nethod. }}
nov data_var, temp_var
rdlong data_var, temp_var
{{ Nou ue have to move over to the next long to get the address of ansuervar in the
spin object and assign it to answer_var in the pasm code.}}
add temp_var, #
1 Now assign this address to ansuer_var. }}
nov ansuer_var, tenp_var
{{urite the value to the ansuervar in spin}}
wrlong data_var, answer_var
{{go back and get the par address to access the next variable}}
mov temp_var, par

image14.png
{{jump over tuwo longs to get the address of datavar2 in the spin method}}
add temp_var, #8
{{assign the address}}
mov data_var?, temp_var
{{read the value}}
rdlong data_var2, temp_var
{{skip over one long to get ansuwervar in spin}}
add temp_var, 24
{{assign the address}}
mov answer_var2, temp_var
{{nou urite the value to answervar2 in spin}}
urlong data_var2, answer_var2

{{ Reserved variables reserved for PASM's use. }}

data_var res 1
data_var2 res 1
ansuer_var res 1
ansuer_var? res 1
temp_var res 1

image15.png
long datavar

long ansuervar
long datavar2
long ansuervar2

{{each of these are one long apart. Have to move over one long
S0 as to access them}}

image16.png
mov temp_var, par
{{jump over tuo longs to get the address of datavar2 in the spin method}}
add temp_var, #8
{{assign the address}}
mov data_var?, temp_var
{{read the value}}
rdlong data var?, temp var

image17.png
{{move over one long to get answervar in spin}}
add temp_var, 24

{{assign the address}}
mov answer_var2, temp_var

{{nou urite the value to answervar2 in spin}}
wrlong data_var?, answer var?

image18.png
answer:
21
answer:
29

image19.png
answer:
150
answer:
256

image20.png
ADD

Instruction: Add two unsigned values.

ADD Valuet, (#) Value2
Result: Sum of unsigned Valuel and unsigned Value? is stored in Valuel.

e Valuel (d-field) is the register containing the value to add to Value2 and is the

destination in which to write the result.
* Value2 (s-field) is a register or a 9-bit literal whose value is added into Valuel.

image21.png
{{basic addition in pasm using the add directive. Page259 propeller manuall}
CON
lkmode = xtall + pll16x
"_xinfreq = 6_250_000 'MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5 000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
var
"VARIABLE IN THE PAR ADDRESS TO BE PASSED
long x
long y
long product
obj
pst:“parallax serial terninal”
pub main
x = 30
45

y
pst. start (115000

uaitent (clkfreqr5 +cnt) “hold five sec to open the
“serial terminal and enable it

cogneu (6asm, 8x) "start cog at the first variable address
waitent (clkfreqs2 +cnt) “give pasm time to do the work

pst.str (string (“product: "))
pst. dec (product=

pst.newline

image22.png
dat
asm org
mov tempvar, par ‘get the address of x from par
mov xvar, tempvar 'assign the address to the xvar in pasm
rdlong xvar, tempvar ‘read the value that is in x
add tempvar, #4 move over one long to get y's address
mov yvar, tempvar assign that address to yvar
rdlong yvar, tempvar ‘read the value that is in y
add tempvar, #4 ‘move over one long to get the address of product
mov productvar, tempvar 'assign the address to productvar
add xvar,yvar ‘add x and y together answer will be in x
urlong xvar, productvar ‘urite x into the product variable and print
tempvar long 0

xvar long 0
var long 0
productvar long 0
flag long @ |

image23.png
product:75

image24.png
{{ Tutorial on hou to pass a number variable and perform subtraction
uith the sub directive

from spin to pasm and back, this works for numbers

from @ to 256, bigger numbers in a later tutoriall}

CON
_clknode = xtall + pllix
“Txinfreq = 6250000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
Txinfreq = 5_000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
obj
pst: “parallax serial terminal’
var “global variables
long datavar
long ansuervar
long subvar

image25.png
pub main

datavar:= 25 “assign a value to datavar
subvar = 10
pst. start (115000) “start the serial terminal object

waitent (clkfreqe5 +cnt) “hold five sec to open the

cognew (8asn, 8datavar) open a new cog for pasn. where it starts “asm’”

" the address of the first variable
waitent (clkfreqsent) hold for a second

" print routine

)

pst.str (string ("results
pst.newline

pst. dec (answervar’
pst.newline

and

image26.png
SUB

Instruction: Subtract two unsigned values.

SUB Valuet, (#) Value2

Result: Difference of unsigned Valuel and unsigned Value? is stored in Valuel.

o Valuet (d-field) is the register containing the value to subtract Value2 from, and is the
destination in which to write the result.
o Value2 (s-field) is a register or a 9-bit literal whose value is subtracted from Valuel.

image27.png
dat

asn

org © This is the starting point for PASM

{{ The first iten is to move the address of the parameter register "PAR” into
a temporary variable and assigne it to the variable in uhich ue uill read the in
this case the value of datavar in the spin method. }}

mov temp_var, par

{{ Now ws are going to assign the pasn variable, data var, the address of datavar in
the spin method. }}

mov data_var, temp_var

{{ Nou we have to move over to the next long to get the address of ansuervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #t

1 Now assign this address to ansuer_var. }}

mov ansuer_var, temp_var

add temp_var,#4 'move over to the next long and get the subtraction variable address

nov sub_var, temp_var ‘assign the address to the variable

rdlong sub_var, temp_var 'read the value in that address

{{ Next read the value of datavar (spin object) into the pasm data_var. }

rdlong data_var, par go back and get the value from the data variable that is in the par register
sub data_var,sub_var perforn the subtraction data-subvar= xxx

{{ Finaly urite it to the answer_var uhich is spin’s ansuervar for printing. }}
urlong data_var, ansuer_var

image28.png
70/ {{ Reserved variables reserved for PASM's use. }}
71| sub_var res 1

72| data_var res 1

73| ansuer_var res 1

7 temp_var res 1

image29.png
results:
15

image30.png
results:
13

image31.png
{{Multiplication based on the propeller manual page 380}}
CON
_clknode = xtall + pllix
"_xinfreq = 6_250_000 'MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5 000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
var
"VARIABLE IN THE PAR ADDRESS TO BE PASSED
long x
long y
long product
obj
pst:“parallax serial terninal”
pub main
x =3
21

y
pst. start (115000
uaitent (clifreqs5 +cnt) "hold five sec to open the
“serial terminal and enable it
cogneu (€asm, €x) “start cog at the first variable address |
waitent (clkfreqs2 +cnt) “give pasm time to do the work

pst.str (string (“product: "))
pst. dec (product=
pst.neuline

image32.png
30
31

32|dat

33|"" Multiply x[15..0] by y[15..0] (y[31..16] must be)
3¢ on exit, product in y[31..0.

35|

36[asm org

37

38 mov temp_var, par ‘move par to a temporary variable

39 mov x_var, temp_var 'find the x variable

0 rdlong x_var, temp_var ‘read in the value from top object

41 add temp_var, # jump to next long which is the address of the
2] " next variable

43 mov y_var, temp_var repeat assignment and read in value

4] rdlong y_var, temp_var

45 add temp_var, # ' jump again to assign the product variable address

5] mov product_var, temp_var

image33.png
multiply shl x_var,#16 "get multiplicand into x[31..16

mov t,#16 ‘ready for 16 multiplier bits

shr y_var,#1 uc ‘get initial multiplier bit into c

if_c add y_var,x_var uc 'if c set, add multiplicand to product

rer y_var,#1 uc “put next multiplier in c, shift prod

djnz t,#:100p "loop until done

urlong y_var, product_var urite the product from y[31..0] to the
“product variable for the top object

“multiply_ret ret ‘return with product in y[31..0] "this would be a subroutine
" uhen used in a program

59| temp_var res 1
60)x_var res 1
61/u_var res 1

62 product_var res 1
83/t res 1

image34.png
product:81

image35.png
product:27

image36.png
SHR

Instruction: Shift value right by specified number of bits.

SHR Value, (#) Bits
Result: Value is shifted right by Bits.

Value (d-field) is the register to shift right.
Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

right.

image37.png
IF_x (Conditions)

Every Propeller Assembly instruction has an optional “condition” field that is used to
dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

(Label) (Condition) Instruction Operands (Effects)

The optional Condition field can contain one of 32 conditions (see Table 3-3) and defaults to
IF_ALWAYS when no condition is specified. The 4-bit Value shown for each condition is the
value used for the -CON- field in the instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field. makes Propeller
Assembly very powerful. Flags can be affected at will and later instructions can be
conditionally executed based on the results. Here’s an example:

test _pins, #520 we
and _pins, #$38
shl tl, _pins
shr _pins, #3
movd vecfg, _pins
if_nc mov dira, tl1
if_nc mov dirb, #0
if ¢ mov dira, #0

if ¢ mov dirb, t1

image38.png
RCR

Instruction: Rotate C right into value by specified number of bits.

RCR Value, (#) Bits
Result: Value has Bits copies of C rotated right into it.

* Value (d-field) is the register in which to rotate C rightwards.
e Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value
to rotate C rightwards into.

image39.png
DJNZ

Instruction: Decrement value and jump to address if not zero.

DJUNZ Value, (#) Address
Result: Value-1 is written to Value.

o Value (d-field) is the register to decrement and test.
* Address (s-field) is the register or a 9-bit literal whose value is the address to jump to
when the decremented Value is not zero.

image40.png
11
12
13
14
15
18
17
18
19
20
21
22
23
24
25
28
21
28
29
30
31
29

CON
_clknode
“xinfreq

xtall + pll16x
5_000_000 "QUICKSTART 8@ MHZ NORMAL CRYSTAL

var
long dividend "VARIABLE IN THE PAR ADDRESS TO BE PASSED
long divisor
long quotient
long remainder

obj
pst ¢ “parallax serial terninal”

pub main
dividend := 21
divisor i= 2
pst. start (115200
uaitent (clifreqs5 + cnt) "hold five sec to open the

“serial terminal and enable it

cognew (6asm, €dividend) start cog at the first variable address
uaitent (clkfreq + cnt) “give top object time to catch up to pasm

pst.str (string ("quotient:”))
pst. dec (quotient]

pst.neuline
pst.str (string (“renainder:)
pst. dec (remainder)

pst.neuline

image41.png
33|
34
35
38
37
38
39
40
41
2
43
44
45

48|
L7
48"

49
50
51
52
53
54

55"
56|

57,
58
59
60
61
62
63
64
65
66
67
68
69
70
1
72
73
74
5

dat
asm org
mov tempvar, par “get the par address into the temporary variable
rdlong x, tempvar ‘read the value into the dividend
add tempvar, b “move over to the next long to get the divisor variable
rdlong u, tempvar 'read the value of the divisor into the variable
add tempvar, #4 “move over to the next long to get the quotient address
Divide x[31..0] by y[15..@] (y[16] nust be @]
on exit, quotient is in x[15..0] and remainder is in x[31..16
divide shl y,#15 “get divisor into y[30..15.
mov t,#16 “ready for 16 quotient bits
:loop cmpsub x,u we "y =< x? Subtract it, quotient bit in ¢
rcl x,#1 rotate ¢ into quotient, shift dividend
djnz t,#:loop “loop until done
quotient in x[15..0], ;return if used as a subroutine
remainder in x[31..16]
mov quotientvar,x
and quotientvar,andvar? isolate louer 16 bits
urlong quotientvar,tempvar write into Spinvar 'quotient
mov remaindervar,x
shr remaindervar, #16 “isolate higher 16 bits
add tempvar,#4 “incr pointer to remainder address
urlong remaindervar,tempvar urite into Spinvar 'remainder
andvar2 long SFFFF
tempvar res 1
x res 1
y res 1
quotientvar res 1
remaindervar res 1
© res 1

image42.png
CMPSUB

Instruction: Compare two unsigned values and subtract the second if it is lesser or equal.

CMPSUB Value1, (#) Value2
Result: Optionally, Valuel = Valuel — Value2, and Z and C flags = comparison results.

o Valuet (d-field) is the register containing the value to compare with that of Value2 and
is the destination in which to write the result if a subtraction is performed.

o Value2 (s-field) is a register or a 9-bit literal whose value is compared with and
possibly subtracted from Valuel.

image43.png
RCL

Instruction: Rotate C left into value by specified number of bits.

RCL Value, (#) Bits
Result: Value has Bits copies of C rotated left into it.

o Value (d-field) 1s the register in which to rotate C leftwards.
Bits (s-field) 1s a register or a 5-bit literal whose value 1s the number of bits of Value

to rotate C leftwards into.

image44.png
{{counting up example, have to slow pasm. Introducing conditionals
and jmp command}}|
coN
_clknode = xtall + plli6x
"_xinfreq = 6_250 000 MY BOARD AT 100MHZ
_xinfreq = 5_000_000 "QUICKSTART 80 MHZ
var
long count
ob
pst:“parallax serial terninal®
pub main
pst. start (115000

waitent (clkfreqss +cnt) hold two sed to open the
“serial terminal and enable it
cogneu (easm, ecount]

image45.png
dat

asm

loop
wait

repeat

pst. dec (count~) "post clear p 157
pst.newline
waitent (clkfreq +cnt)

org

mov addr, par
add value,#1 counting variable

rdlong prev, addr uz 'uhat is in par??

ifnz jmp #uait if the value in

“par is zero continue to next command

‘if the value in par “addr” has not been cleared
“meaning the value that was put in “value" from
" addr uhich has the address of par “parameter’

urlong value, addr

“now write the value to the addr which has been assigned
“the same address as par and uhere the address of count in
“memory where the spin program can read it then jump back
“to the top of the loop and continue after the variable

" called count has been cleard to zero

jmp #1oop

image46.png
52|

53|addr long 0
5¢|value long @
55/prev long @

image47.png
The following is an example of the Post-Clear operator form.

Y 1= X~ + 2

The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing
its current value for the next operation. In this example if X started out as 5, X~ would provide
the current value for the expression (5 + 2) to be evaluated later, then would store 0 in X. The
expression 5 + 2 is then evaluated and the result, 7. is stored into Y. After this statement, X
equals 0 and Y equals 7.

image48.png
{{pasm array base 9 [This routine passes variable parameters to a pasm program and into an array.

Displays selected array cells}}

CON
_clknode = xtall + pllix

"_xinfreq = 6_250 000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5_000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
var
long data
Long adder
long matrix[10]
long idx
obj
pst:“parallax serial terninal”
pub main
data “initial variable
adder “var to add to the second array cell
pst. start (115000

uaitent (clifreqs5 +cnt) "hold five sec to open the
“serial terminal and enable it
cogneu (Gasm, €data) “start cog at the first variable address

repeat idx from @ to 3 ‘print the array cells cell [3] will be empty

pst.str (string ("matrix: "))
pst.dec (natrix[idx]~) ‘post clear p 157 propeller manual

pst.neuline

image49.png
49
50
51
52
53
54
55
58
57,
58
59
60
61
62
63
64
65
66
67
68
69
70
1
72
73
74
75
78
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9
95
qR|

dat

asm

loop

wait

{{ working with three array cells. Budgeted for 10}}

org 0

mov tempvar,par 'mov data var address from par to a temp address

mov datvar,tempvar ‘assign data variable address to datvar

rdlong datvar, tempvar 'read the value from top object variable to asm variable
add tempvar,# mov over to next long to get adder variable

mov addervar, tempvar 'get adder variable

rdlong addervar, tempvar ~lode value from top object adder to addervar

add tempvar,#4 ‘mov to next long to get matrix array address

mov matrixvar,tempvar 'assign address array location

urlong datvar,matrixvar ~write the value to matrix[0] cell

add matrixvar, # ‘move over to matrix[1] wewrersIMPORTANT ADDING HERE MOVES OVER TO NEXT LONG

"OF THE “RESERVED 10 LONGS FOR THE MATRIX[101"

add datvar, addervar NOW WE CAN ADD TO IT,add 20 to the value in the data variable
urlong datvar,matrixvar THEN WRITE IT TO THE NEXT ARRAY CELL, write the result to matrix[1]

add matrixvar, # ‘mov over to next array cell
sub datvar, #5 ‘subtract 5 and then write it to the cell

urlong datvar,matrixvar cell will be uritten to from the result of the subtraction

"GOT TO SLOW DOWN PASM

rdlong prev, matrixvar uz ‘has the spin object printed and
“cleared the variable? If zero good to go if not return to the
"WAIT and check again. This is because spin is much slower than pasm
if nz jmp #uait if the value in
"par is zero continue to next command
‘if the value in par “addr” has not been cleared
“meaning the value that was put in “value" from
*addr uhich has the address of par “parameter’
urlong datvar, natrixvar
urlong ansuer_var,c
urlong value, count_address ‘using full uords not acronyms for
“clarity
“now urite the value to the addr which has been assigned
“the sane address as par and uhere the address of count in
“memory uhere the spin program can read it then jump back
“to the top of the loop and continue after the variable
" called count has been cleard to zero
jmp #loop

image50.png
97| reserved variables

98| tempvar res 1

99\datvar res 1

100|addervar res 1

101|matrixvar res 10 reserve 10 longs for an array of 10 matrix[10]
102|prev res 1

103|

104|

105|fit

image51.png
{{pasn array base 9 This routine passes variable parameters to a pasm program and into an array.

Displays selected array cells}}

coN
_clknode = xtall + plli6x
"_xinfreq = 6_250 000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5_000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
var
long data
Long adder
long matrix[10]
long idx
obj
pst:“parallax serial terninal”
pub main
data i= 60 initial variable
adder := 10 "var to add to the second array cell
pst. start (115000

uaitent (clifreqs5 +cnt) "hold five sec to open the
“serial terminal and enable it
cogneu (Gasm, €data) “start cog at the first variable address

repeat idx from @ to 3 ‘print the array cells cell [3] will be empty

pst.str (string ("matrix: "))
pst.dec (natrix[idx]~) ‘post clear p 157 propeller manual

pst.neuline

image52.png
94| "reserved variables

95/ tempvar res 1

96|datvar res 1

97|addervar res 1

98|matrixvar res 10 'reserve 10 longs for an array of 10 matrix[10]
99lprev res 1

100

101

102|fit

image53.png
48]
49
50
51
52
53
54
55
58
57,
58
59
60
61
62
63
64
65
66
67
68
69
70
1
72
73
74
75
78
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93|

dat

asm

loop

wait

{{ working uith three array cells. Budgeted for 10}}

org 0

mov tempvar,par 'mov data var address from par to a temp address

mov datvar,tempvar ‘assign data variable address to datvar

rdlong datvar, tempvar 'read the value from top object variable to asm variable
add tempvar,# mov over to next long to get adder variable

mov addervar, tempvar 'get adder variable

rdlong addervar, tempvar ~lode value from top object adder to addervar

add tempvar,#4 ‘mov to next long to get matrix array address

mov matrixvar,tempvar 'assign address array location

urlong datvar,matrixvar ~write the value to matrix[0] cell

add matrixvar, # move over to matrix[1] wxxrs»s+IMPORTANT ADDING HERE MOVES OVER TO NEXT LONG
"OF THE “RESERVED 10 LONGS FOR THE MATRIX[101"

add datvar, addervar NOW WE CAN ADD TO IT,add 20 to the value in the data variable

urlong datvar,matrixvar THEN WRITE IT TO THE NEXT ARRAY CELL, write the result to matrix[1]

add matrixvar, # ‘mov over to next array cell

sub datvar, #5 ‘subtract 5 and then write it to the cell

urlong datvar,matrixvar cell will be uritten to from the result of the subtraction

"GOT TO SLOW DOWN PASM

rdlong prev, matrixvar uz ‘has the spin object printed and

“cleared the variable? If zero good to go if not return to the

"WAIT and check again. This is because spin is much slower than pasm
if nz jmp #uait if the value in

"par is zero continue to next command

‘if the value in par “addr” has not been cleared

“meaning the value that was put in “value" from

*addr uhich has the address of par “parameter’

“now write the value to the addr which has been assigned
“the same address as par and uhere the address of MATRIX in
“memory where the spin program can read it then jump back
"to the top of the loop and continue after the variable

" called MATRIX has been cleard to zero

jmp #1oop

image1.png
{{ Tutorial 1 how to pass a number variable from spin to pasn and back, this works for numbers
from @ to 256, bigger numbers in a later tutoriall}

CON
_clknode = xtall + pllix
“Txinfreq = 6250000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
Txinfreq = 5_000_000 QUICKSTART 80 MHZ NORMAL CRYSTAL
obj
pst: “parallax serial terminal’
var
long datavar
long ansuervar

