FlexBASIC

Introduction

FlexBASIC is the BASIC language support of the fastspin compiler for the
Parallax Propeller and Prop2. It is a BASIC dialect similar to FreeBASIC or
Microsoft BASIC, but with a few differences. On the Propeller chip it compiles
to LMM code (machine language) which runs quite quickly.

fastspin recognizes the language in a file by the extension. If a file has a “bas”
extension it is assumed to be BASIC. Otherwise it is assumed to be Spin.

Preprocessor

fastspin has a pre-processor that understands basic directives like #include,
#define, and#ifdef / #ifndef / #else / #endif.

Directives

DEFINE
#define FOO hello

Defines a new macro FOO with the value hello. Whenever the symbol FOO
appears in the text, the preprocessor will substitute hello.

Note that unlike the C preprocessor, this one cannot accept arguments. Only
simple defines are permitted.

If no value is given, e.g.
#define BAR

then the symbol is defined as the string 1.

IFDEF

Introduces a conditional compilation section, which is only compiled if the symbol
after the #ifdef is in fact defined. For example:

#ifdef __P2__

"' propeller 2 code goes here
#else

"' propeller 1 code goes here
#endif

IFNDEF

Introduces a conditional compilation section, which is only compiled if the symbol
after the #ifndef is not defined.

ELSE

Switches the meaning of conditional compilation.

ELSEIFDEF

A combination of #else and #ifdef.

ELSEIFNDEF

A combination of #else and #ifndef.

ERROR

Prints an error message. Mainly used in conditional compilation to report an
unhandled condition. Everything after the #error directive is printed. Example:

#ifndef __P2__
#error This code only works on Propeller 2
#endif

INCLUDE

Includes a file. The contents of the file are placed in the compilation just as if
everything in that file was typed into the original file instead. This is often used

#include "foo.h"

Included files are searched for first in the same directory as the file that contains
the #include. If they are not found there, then they are searched for in any
directories specified by a —=I or -L option on the command line. If the environment
variable FLEXCC_INCLUDE is defined, that gives a directory to be searched after
command line options. Finally the path ../include relative to the fastspin
executable binary is checked.

WARN

#warn prints a warning message; otherwise it is similar to #error.

UNDEF
Removes the definition of a symbol, e.g. to undefine FOO do:
#undef FOO

Predefined Symbols

There are several predefined symbols:

Symbol When Defined

__propeller__ always defined to 1 (for P1) or 2 (for P2)
__propeller2__ only defined if compiling for Propeller 2

__P2__ obsolete version of __propeller2__

__FLEXBASIC__ always defined to the fastspin version number
__FASTSPIN__ if the fastspin front end is used

__SPINCVT__ always defined to the fastspin version number
__SPIN2PASM__ if —asm is given (PASM output) (always defined by fastspin)
__SPIN2CPP__ if C4++ or C is being output (never in fastspin)
__cplusplus if C++ is being output (never in fastspin)

Language Syntax
Comments

Comments start with rem or a single quote character, and go to the end of line.
Note that you need a space or non-alphabetical character after the rem; the
word remark does not start a comment. The rem or single quote character may
appear anywhere on the line; it does not have to be the first thing on the line.

There are also multi-line comments, which start with /' and end with '/.
Examples:

rem this is a comment
' so is this
print "hello" ' this part is a comment too
/' here is a multi
line comment '/

Integers

Decimal integers are a sequence of digits, 0-9.

Hexadecimal (base 16) integers start with the sequence “&h”, “Oh”, or “0x”
followed by digits and/or the letters A-F or a-f.

Binary (base 2) integers start with the sequence “&b” or “Ob” followed by the
digits 0 and 1.

Numbers may contain underscores anywhere to separate digits; those underscores
are ignored.

For example, the following are all ways to represent the decimal number 10:

10

1.0
OxA
&h_a
&B1010

Keywords

Keywords are always treated specially by the compiler, and no identifier may be
named the same as a keyword.

abs

and

any

as

asm
__builtin_alloca
byte
case
catch
class
close
const
continue
cpu
data
declare
def
defint
defsng
delete
dim
direction
do
double
else

end
endif
enum
exit
for
function
gosub
goto

if
input
integer
let
long
loop
mod
next
new

nil

not
open
option
or
output
pointer
print
program
ptr

put
read
rem
restore
return
select
self
shared
short
single
sqrt
step
sub
then
throw
to

try
type
ubyte

uinteger
ulong
until
ushort
using
var
wend
while
with
word
Xor

Variable, Subroutine, and Function names

Names of variables, subroutines, or functions (“identifiers”) consist of a letter or
underscore, followed by any sequence of letters, underscores, or digits. Names
beginning with an underscore are reserved for system use. Case is ignored; thus
the names avar, aVar, AVar, AVAR, etc. all refer to the same variable.

Identifiers may have a type specifier appended to them. $ indicates a string
variable or function, % an integer variable or function, and # a floating point
variable or function. The type specifier is part of the name, so a$ and a# are
different identifiers (the first is a string variable and the second is a floating point
variable). If no type specifier is appended, the identifier is assumed to be an
integer. This may be overridden with the defsng directive, which specifies that
variables starting with certain letters are to be assumed to be single precision
floating point.

Variable or function types may also be explicitly given, and in this case the
type overrides any implicit type defined by the name. However, we strongly
recommend that you not use type specifiers like $ for variables (or functions)
that you give an explicit type to.

Examples:
dim a’ ' defines an integer variable
dim a# ' defines a different floating point variable

dim a as string
dim a$ as integer

defines another variable, this time a string
NOT RECOMMENDED: overrides the $ suffix to make an integer variable

"' this function returns a string and takes a float and string as parameters

function f$(a#, b$)

end function

"' this function also returns a string from a float and string
function g(a as single, b as string) as string

end function

Arrays

Arrays must be declared with the dim keyword. FlexBASIC supports only one
and two dimensional arrays, but they may be of any type. Examples of array
declarations:

rem an array of 10 integers

rem note that dim gives the last index
dim a(9)

rem same thing but more verbose

dim c(0 to 9) as integer

rem an array of 10 strings

dim a$(9)

rem another array of strings

dim d(9) as string

rem a two dimensional array of strings
dim g$(9, 9)

Arrays are by default indexed starting at 0. That is, if a is an array, then a(0)
is the first thing in the array, a(1) the second, and so on. This is similar to
other languages (such as Spin and C), where array indexes start at 0. The value
given in the dim is the last array index. This is different from Spin and C, where
arrays are declared with their sizes rather than last array index.

Code to initialize an array to 0 could look like:

dim a(9) as integer
sub zero_a
for i =0 to 9
a(i) = 0
next i
end sub

It is possible to change the array base by using
option base 1 ' make arrays start at 1 by default
The array definition may have an explicit lower bound given, for example:

dim a(l to 10) ' array of 10 items
dim b(0 to 10) ' array of 11 items

This only works for one dimensional arrays. For two dimensional arrays both
dimensions must have the same lower bound, and both must start from the
default set by the last option base.

Note that pointer dereferences (using array notation) always use the last value
set for option base in the file, since we cannot know at run time what the
actual base of the pointed to object was. So it is best to set this just once.

Global, Member, and Local variables.

There are three kinds of variables: global variables, member variables, and local
variables.

Global (shared) variables may be accessed from anywhere in the program, and
exist for the duration of the program. They are created with the dim shared
declaration, and may be given an initial value. For example,

dim shared x = 2
creates a global variable with a value of 2.

A global variable is shared by all instances of the object that creates it. For
example, if “foo.bas” contains

dim shared ctr as integer

function set_ctr(x)
ctr = x

end function

function get_ctr()
return ctr

end function

function inc_ctr()
ctr = ctr + 1

end function

then a program like:

dim x as class using "foo.bas"
dim y as class using "foo.bas"

x.set_ctr(0)
y.set_ctr(1l)
print y.get_ctr()
y.inc_ctr(
print x.get_ctr()

will print 1 and then 2, because x.ctr and y.ctr are the same (shared) global
variable.

Member variables, on the other hand, are unique to each instance of a class.
They are created with regular dim outside of any function or subroutine. If we
modified the sample above to remove the shared from the declaration of ctr,

then the program would print 1 and then 0, because the y.inc_ctr () invocation
would not affect the value of x.ctr.

Member variables are automatically initialized to 0, and may not be initialized
to any other value.

Local variables are only available inside the function or subroutine where they
are declared, and only exist for as long as that function or subroutine is running.
When the routine returns, the variables lose any values they had at the time.
They are re-created afresh the next time the function is called. Local variables
may be initialized to values, but this initialization is done at run time so it has
some overhead.

Extending lines

It is possible to extend a long expression or array initializer over several lines.
To do this, add a single _ immediately before the end of the line. This causes
the compiler to treat the end of line like a space rather than an end of line. For
example:

X=y+_
z

is parsed like x = y + z. This is especially useful for array initializers, which
can often be quite long:

dim shared as integer a(5) = { _
1, 2, 3, _
4, 5 _
}

Note that only shared arrays may be initialized like this.

Multiple statements per line
Generally speaking, you may place multiple statements on one line if you separate
them with a colon (:). For example, these two bits of code are the same:

x =1
y =2

and

Language features
Types

There are a number of data types built in to the FlexBASIC language.

Unsigned integer types

ubyte, ushort, and uinteger are the names for 8 bit, 16 bit, and 32 bit unsigned
integers, respectively. The Propeller load instructions do not sign extend by
default, so ubyte and ushort are the preferred names for 8 and 16 bit integers
on the Propeller.

Signed integer types
byte, short, and integer are 8 bit, 16 bit, and 32 bit signed integers.

Floating point types

single is, by default, a 32 bit IEEE floating point number. There is an option
to use a 16.16 fixed point number instead; this results in much faster calculations,
but at the cost of much less precision and range.

double is reserved for future use as a double precision (64 bit) floating point
number, but this is not implemented yet.

Pointer types

Pointers to any other type may be declared. T pointer is a pointer to type T.
Thus ushort pointer is a pointer to an unsigned 16 bit number, and ubyte
pointer pointer is a pointer to a pointer to an unsigned 8 bit number.

String type

The string type is a special pointer. Functionally it is almost the same as a
const ubyte pointer, but there is one big difference; comparisons involving a
string compare the pointed to data, rather than the pointer itself. For example:

sub cmpstrings(a as string, b as string)
if (a = b) then
print "strings equal"
else
print "strings differ"
end if
end sub

10

sub cmpptrs(a as const ubyte pointer, b as const ubyte pointer)
if (a = b) then
print "pointers equal"
else
print "pointers differ
end if
end sub

dim x as string
dim y as string

x = "hello"

y = llhell + "110"
cmpstrings(x, y)
cmpptrs(x, y)

will always print “strings equal” followed by “pointers differ”. That is because
the cmpstrings function does a comparison with strings (so the contents are
tested) but cmppointers does a pointer comparison (and while the pointers
point at memory containing the same values, they are located in two distinct
regions of memory and hence have different addresses.

Classes

FlexBASIC supports classes, which are similar to records or structs in other
languages. There are two ways to define classes. A whole BASIC (or Spin, or C)
file may be included as a class with the using keyword:

dim ser as class using "FullDuplexSerial.spin"

declares the variable ser as a class, using the Spin variables and methods from
the given file. This also works for .bas or .c files. Any functions declared in
the file become methods of the new class.

Classes may also be declared directly, with the variables and methods of the
class specified between
class and end class

class counter
dim as integer c
sub inc()
c=c+1
end sub
function get() as integer
return c
end function
end class

11

dim x as counter

x.inc
print x.get()

Note that end class must be spelled out in full (unlike many end x pairs which
may be abbreviated as just end).

Type Aliases

An alias for an existing type may be declared with the type keyword. For
example:

type numptr as integer pointer
type fullduplexserial as class using "FullDuplexSerial.spin"

Function declarations

Function names follow the same rules as variable names. Like variable names,
function names may have a type specifier appended, and the type specifier gives
the type that the function returns.

function Add(a, b)
return a+b
end function

This could be written more verbosely as

function Add(a as integer, b as integer) as integer
return a+b
end function

It is often useful for documentation to explicitly specify all types like this, even
when the default types specified by the variable names would work.

Memory allocation

FlexBASIC supports allocation of memory and garbage collection. Memory
allocation is done from a small built-in heap. This heap defaults to 256 bytes
in size on Propeller 1, and 4096 bytes on Propeller 2. This may be changed by
defining a constant HEAPSIZE in the top level file of the program.

Garbage collection works by scanning memory for pointers that were returned
from the memory allocation function. As long as references to the original
pointers returned by functions like 1left$ or right$ exist, the memory will not
be re-used for anything else.

12

Note that a CPU (“COG” in Spin terms) cannot scan the internal memory of
other CPUs, so memory allocated by one CPU will only be garbage collected
by that same CPU. This can lead to an out of memory situation even if in fact
there is memory available to be claimed. For this reason we suggest that all
allocation of temporary memory be done in one CPU only.

new and delete

The new operator may be used to allocate memory. new returns a pointer to
enough memory to hold objects, or nil if not enough space is available for the
allocation. For example, to allocate 40 bytes one can do:

var ptr = new ubyte(40)
if ptr then
"' do stuff with the allocated memory

"' now free it (this is optional)

delete ptr
else

print "not enough memory"
endif

The memory allocated by new is managed by the garbage collector, so it will be
reclaimed when all references to it have been removed. One may also explicitly
free it with delete.

String functions

String functions and operators like left$, right$, and + (string concatenation)
also work with allocated memory. If there is not enough memory to allocate for
a string, these functions/operators will return nil.

Function pointers

Pointers to functions require 8 bytes of memory to be allocated at run time (to
hold information about the object to be called). So for example in:

create a Spin FullDuplexSerial object

dim ser as class using "FullDuplexSerial.spin"
'' get a pointer to its transmit function

var tx = @ser.tx

the variable tx holds a pointer both to the ser object and to the particular
method tx within it. Since this is dynamically allocated, it is possible for the @
operator to fail and return nil.

13

builtin__alloca

Instead of new, which allocates persistent memory on the heap, it is possible
to allocate temporary memory with the __builtin_alloca operator. Memory
allocated in this way may only be used during the lifetime of the function which
allocated it, and may not be returned from that function or assigned to a global
variable. Almost always it is better to use new than __builtin_alloca, but the
latter is more efficient (but dangerous, because the pointer becomes invalid after
the function that uses __builtin_alloca exits).

Templates

FlexBASIC supports polymorphic programming via templates. These are like pa-
rameterized function or class declarations. Only function templates are supported
at this time.

Templates are introduced by the keyword any followed by a parenthesized list of
identifiers which are the types to be subsituted in the declaration. That is, each
identifier in the list represents a type, which may vary at compile time.

Function Templates

A function to find the smaller of two items with the same type t, which can be
string, integer, single, or any other type that supports the < operator, may be
declared as:

any(t) function mymin(x as t, y as t) as t
if x < y then
return x
else
return y
end if
end function

This declares a family of functions mymin__T, where T can be any type. When-
ever the compiler sees mymin (some_expr) it checks the type of some_expr and
changes the function call to mymin__T (some_expr). So for example:

print mymin(1.7, 2.4), mymin("zzz", "aaa")

will print 1.7 and aaa.

14

Propeller Hardware Features
Input, Output, and Direction

For the Propeller we have some special pseudo-variables direction, input,
and output. These may be used to directly control pins of the processor. For
example, to set pin 1 as output and then set it high do:

direction(1l) = output
output (1) = 1

Similarly, to set pin 2 as input and read it:

direction(2) = input
x = input(2)

Pin Ranges

Ranges of pins may be specified with hi,lo or lo,hi. The first form is preferred;
if you do

output(2, 0) = x

then the bottom 3 bits of x are copied directly to the first 3 output pins. If you
use the other form

output (0, 2)
output (0, 2)

X ' note: x is reversed!
&b110 ' sets bits 0 and 1 to 1, and bit 2 to O

then the lower 3 bits are reversed; this is useful if you're directly coding a binary
constant, but
otherwise is probably not what you want.

Hardware registers

The builtin Propeller hardware registers are available with their usual names,
unless they are redeclared. For example, the OUTA register is available as “outa”
(or “OUTA”, or “Outa”; case does not matter).

The hardware registers are not keywords, so they are not reserved to the system.
Thus, it is possible to use dim to declare variables with the same name. Of
course, if that is done then the original hardware register will not be accessible
in the scope of the variable name.

15

Alphabetical List of Keywords and Built In Functions
ABS

y = abs x

Returns the absolute value of x. If x is a floating point number then so will be
the result; if x is an unsigned number then it will be unchanged; otherwise the
result will be an Integer.

AND

a=xandy

Returns the bit-wise AND of x and y. If x or y is a floating point number then
it will be converted to integer before the operation is performed.

Also useful in boolean operations. The comparison operators return 0 for false
conditions and all bits set for true conditions, so you can do things like:
if (x < y AND x = z) then
' code that runs if both conditions are true
end if

ANY

dim x as any

Declares x as a generic 32 bit variable compatible with any other type. Basically
this is a way to treat a variable as a raw 32 bit value. Note that no type checking
at all is performed on variables declared with type any, nor are any conversions
applied to them. This means that the compiler will not be able to catch many
€ommon errors.

any should be used only in exceptional circumstances.

Example: a subroutine to print the raw bit pattern of a floating point
number:

sub printbits(x as single)
dim a as any
dim u as uinteger
"' just plain u=x would convert x from single to unsigned
'' instead go through an ANY type, which will do no conversion
a=x
u=a
print u
end sub

16

AS

as is a keyword that introduces a type for a function, function parameter, or
dimensioned variable.

' declare a function with an integer parameter that returns a string
function f(x as integer) as string

ASC

i = ASC(s$)

returns the integer (ASCII) value of the first character of a string. If the
argument is not a string it is an error.

ASM

Introduces inline assembly. The block between ASM and END ASM is parsed
slightly differently than usual; in particular, instruction names are treated as
reserved identifiers.

Inside inline assembly any instructions may be used, but the only legal operands
are integer constants, registers, and local variables (or parameters) to the function
which contains the inline assembly. Labels may be defined, and may be used as
the target for goto elsewhere in the function. Any attempt to leave the function,
either by jumping out of it or returning, will cause undefined behavior. In other
words, don’t do that!

If you need temporary variables inside some inline assembly, dim them as locals
in the enclosing function.

Example: to implement a wait (like the built-in waitent:

sub wait_until_cycle(x as uinteger)
asm
waitcnt x, #0
end asm
end sub

___ BUILTIN__ALLOCA

Allocates memory on the stack. The argument is an integer specifying how much
memory to allocate. For example:

dim as integer ptr x = __builtin_alloca(256)

17

creates an array of 64 integers (which needs 256 bytes) and makes x into a
pointer to it.

The pointer returned from __builtin_alloca will become invalid as soon as the
current function returns (or throws an exception), so it should never be assigned
to a global variable or be returned from the function.

__builtin_alloca is awkward to work with, and dangerous. Almost always
you should use new instead. The only advantages of __builtin_alloca is that
it is slightly more efficient than new, and does not use up heap space (but uses
stack space instead).

BYTE

A signed 8 bit integer, occupying one byte of computer memory. The unsigned
version of this is ubyte. The difference arises with the treatment of the upper
bit. Both byte and ubyte treat 0-127 the same, but for byte 128 to 255 are
considered equivalent to -128 to -1 respectively (that is, when a byte is copied to
a larger sized integer the upper bit is repeated into all the other bits; for ubyte
the new bytes are filled with 0 instead).

CASE

Used in a select statement to indicate a possible case to match. Only a subset of
FreeBasic’s case options are available. After the case can either be else (which
always matches), a single expression (which matches if the original expression
equals the case one), or an inclusive range a to b which will match if the
original expression is between between a and b (inclusive).

Example:

select case x
case 1
print "it was 1"
case 2 to 4
print "it was between 2 and 4"
print "sorry for being vague!"
case 8
print "it was 8"
case else
print "it was something else"
end select

All of the statements between the case and the next case (or end select) are
executed if the case is the first one to match the expression in the select case.

18

CAST

Used to convert between types. cast(typel, expr) will calculate expr and
then convert it to type typel. This could involve calculation (if expr has an
integer type, for example, and typel is single then the bit pattern of expr is
changed) or could just mean a different way of interpreting the bits in a value.

For example, to get a pointer to the Propeller 1 LOG table, located in ROM at
address 0xC000, you could do:

dim logptr as ushort ptr
logptr = cast(ushort ptr, 0xC000)

CATCH

Used in a try statement to indicate the start of an error handling block.

CHRS$

Not actually a reserved word, but a built-in function. Converts an ascii
value to a string (so the reverse of ASC). For example:
print chr$(65)

prints A (the character whose ASCII value is 65)

CLASS

A class is an abstract collection of variables and functions. If you've used the
Spin language, a class is like a Spin object.

Class Using

Spin objects may be directly imported as classes:

#ifdef __P2__

dim ser as class using "spin/SmartSerial"
#else

dim ser as class using "spin/FullDuplexSerial"
#endif

creates an object ser based on the Spin file “SmartSerial.spin” (for P2) or
“FullDuplexSerial”; this may then be used directly, e.g.:

ser.str("hello, world!")
ser.tx(13) ' send a carriage return
ser.dec(100) ' print 100 as a decimal number

19

BASIC files may also be used as classes. When they are, all the functions and
subroutines in the BASIC file are exposed as methods (there are no private
methods in BASIC yet). Any BASIC code that is not in a function or subroutine
is not accessible.

Abstract classes

Another way to define an object is to first declare an abstract class with a
name, and then use that name in the dim statement:

' create abstract class fds representing Spin FullDuplexSerial
' NOTE: use SmartSerial.spin instead if trying on P2

class fds using "FullDuplexSerial.spin"

' create a variable of that type

dim ser as fds

This is more convenient if there are many references to the class, or if you want
to pass pointers to the class to functions.

Inline Classes

Finally, the functions, subroutines, and variables associated with a class may be
defined directly inline, between the class and a finishing end class. In this
case the class name may be used as a type name. For example:

class counter
dim x as integer

sub reset
x =0
end sub

sub inc(n = 1)
X =X +n
end sub

function getval()
return x
end function
end class

dim cnt as counter
cnt.reset
cnt.inc

cnt.inc
print cnt.getval() ' prints 2

20

cnt.inc
print cnt.getval() ' prints 3

Interoperation with Spin

Using Spin objects with class using is straightforward, but there are some
things to watch out for:

e Spin does not have any notion of types, so most Spin functions will return
type any and take parameters of type any. This can cause problems if you
expect them to return something special like a pointer or float and want
to use them in the middle of an expression. You can either use explicit
cast operations, or assign the results of Spin methods to a typed variable,
and then use that variable in the expression instead.

e Spin treats strings differently than BASIC does. For example, in the Spin
expression ser.tx("A"), "A" is an integer (a single element list). That
would be written in BASIC as ser.tx(asc("A")). Conversely, in Spin
you have to write ser.str(string("hello")) where in BASIC you would
write just ser.str("hello").

Interoperation with C

C files may be used as classes, but there are some restrictions. BASIC and
Spin are both case insensitive languages, which means that the BASIC symbols
AVariable, avariable, and AVARIABLE are all the same, and all are translated
internally to avariable. In C the case of identifiers matters. This makes
accessing C symbols from BASIC somewhat tricky. Only C symbols that are all
lower case may be accessed from BASIC.

CLKSET

clkset (mode, freq, xsel)

Propeller built in function. On the P1, this acts the same as the Spin clkset
function. On P2, this does two hubset instructions, the first to set the oscillator
and the second (after a short delay) to actually enable it. The mode parameter
gives the setup value for the oscillator, and the second hubset to enable the
oscillator uses mode + xsel as its parameter. If xsel is omitted, it defaults to
3.

For example:
clkset (0x010c3£f04, 160_000_000) ' set P2 Eval board to 160 MHz

After a clkset it is usually necessary to call _setbaud to reset the serial baud
rate correctly.

21

Also note that no sanity check is performed on the parameters; it is up to the
programmer to ensure that the frequency actually matches the mode on the
board being used.

CLOSE

Closes a file previously opened by open. This causes the closef function specified
in the device driver (if any) to be called, and then invalidates the handle so that
it may not be used for further I/O operations. Any attempt to use a closed
handle produces no result.

close #2 ' close handle #2

Note that handles 0 and 1 are reserved by the system; closing them may produce
undefined results.

CONST

At the beginning of a line, const declares a constant value. For example:
const x =1, y = 2.0

declares x to be the integer 1 and y to be the floating point value 2.0. Only
numeric values (integers and floats) may be declared with const.

Inside a type name, const signifies that variables of this type may not be
modified. This is mainly useful for indicating that pointers should be treated as
read-only.

sub trychange(s as const ubyte ptr)
s(1) = 0 '' illegal, s points to const ubytes
if (s(1) = 2) then '' OK, s may be read
print "it was 2"
end if
end sub

CONTINUE

Used to resume loop execution early. The type of loop (FOR, DO, or WHILE)
may optionally be given after CONTINUE. However, note that only the innermost
containing loop may be continued. This is different from FreeBasic, where for
example continue for may be placed in a while loop that is itself inside a for
loop. In FlexBasic this will produce an error.

Example:

22

for i =1 to 5
if (i = 3) then
continue for
end if
print i
next i

will print 1, 2, 4, and 5, but will skip the 3 because the continue for will cause
the next iteration of the for loop to start as soon as it is seen.

The example above could be written more succinctly as:

for i =1 to 5
if i = 3 continue
print i

next

CPU

Used to start a subroutine running on another CPU. The parameters are the
subroutine call to execute, and a stack for the other CPU to use. For example:

' blink a pin at a given frequency
sub blink(pin, freq)
direction(pin) = output
do
output(pin) = not output(pin)
waitcnt(getcnt() + freq)
loop
end sub

dim stack(8) ' small stack, blink does not call many other functions

' start the blinking up on another CPU
var a = cpu(blink(LED, 80_000_000), @stack(1))

Note that cpu is not a function call, it is a special form which does not evaluate
its arguments in the usual way. The first parameter is actually preserved and
called in the context of the new CPU.

cpu returns the CPU id (“cog id”) of the CPU that the new function is running
on. If no free CPU is available, cpu returns -1.

DATA

Introduces raw data to be read via the read keyword. This is usually used
for initializing arrays or other data structures. The calculations for converting

23

values from strings to integers or floats are done at run time, so consider using
array initializers instead (which are more efficient).

In contrast to some other BASICs, no parsing at all is done of the information
following the data keyword; it is simply dumped into memory as a raw string.
Subsequent read commands will read the bytes from memory and convert them
to the appropriate type, as if they were input by the user.

Unlike most other statements, the data statement always extends to the end of
the line; any colons (for example) within the data are treated as data.

dim x as integer
dim y as string
dim z as single
read x, y, z
print x, y, z
data 1.1, hello
data 2.2

will print 1 (x is an integer, so the fractional part is ignored), hello, and 2.2000.

The order of data statements matters, but they may be intermixed with other
statements. data statements should only appear at the top level, not within
functions or subroutines.

DECLARE

Keyword reserved for future use.

DEF

Define a simple function. This is mostly intended for porting existing BASIC
code, but could be convenient for creating very simple functions. The syntax
consists of the function name, parameter list, =, and then the return value from
the expression. All of the types are inferred from the names. So for example to
define a function sum to return the sum of two integers we would do:

DEF sum(x, y) = x+y

DEFINT
Dictates the default type for variable names starting with certain letters.
defint i-j

says that variables starting with the letters i through j are assumed to be
integers.

24

The default setting is defint a-z (i.e. all variables are assumed to be integer
unless given an explicit suffix or type in their declaration). A combination of
defsng and defint may be used to modify this.

DEFSNG

Dictates the default type for variable names starting with certain letters.
defsng a-f

says that variables starting with the letters a through f are assumed to be
floating point.

The default setting is defint a-z (i.e. all variables are assumed to be integer
unless given an explicit suffix or type in their declaration). A combination of
defsng and defint may be used to modify this.

Putting defsng a-z at the start of a file may be useful for porting legacy BASIC
code.

DELETE

Free memory allocated by new or by one of the string functions (+, left$, right$,
etc.).

Use of delete is a nice hint and makes sure the memory is free, but it is not
strictly necessary since the memory is garbage collected automatically.

DIM

Dimension variables. This defines variables and allocate memory for them. dim
is the most common way to declare that variables exist. The simplest form just
lists the variable names and (optionally) array sizes. The variable types are
inferred from the names. For example, you can declare an array a of 10 integers,
a single integer b, and a string c¢$ with:

dim a(10), b, c$
It’s also possible to give explicit types with as:

dim a(10) as integer
dim b as ubyte
dim s as string

Only one explicit type may be given per line (this is different from FreeBASIC).
If you give an explicit type, it will apply to all the variables on the line:

25

' this makes all the variables singles, despite their names
' (probably NOT a good ideal!)
dim a(10), b%, c$, d as single

If you want to be compatible with FreeBASIC, put the as first:
dim as single a(10), b%, c$, d

Variables declared inside a function or subroutine are “local” to that function
or subroutine, and are not available outside or to other functions or subrou-
tines. Variables dimensioned at the top level may be used by all functions and
subroutines in the file.

See also VAR.

DIRECTION
Pseudo-array of bits describing the direction (input or output) of pins. In
Propeller 1 this array is 32 bits long, in Propeller 2 it is 64 bits.

direction(2) = input ' set pin 2 as input
direction(6,4) = output ' set pins 6, 5, 4 as outputs

Note that pin ranges may not cross a 32 bit boundary; that is,
direction(33, 30) = input

is illegal and produces undefined behavior.

DO

Main loop construct. A do loop may have the loop test either at the beginning
or end, and it may run the loop while a condition is true or until a condition is
true. For example:

do
x = input(9)
loop until x = 0

will wait until pin 9 is 0.
See also WHILE.

DOUBLE

The type for a double precision floating point number. double is not actually
implemented in the compiler, and is treated the same as single.

26

ELSE

See IF

END

Used to mark the end of most blocks. For example, end function marks the
end of a function declaration, and end if the end of a multi-line if statement.
In most cases the name after the end is optional.

ENDIF

Marks the end of a multi-line if statement. Same as end if.

ENUM

Reserved for future use.

EXIT

Exit early from a loop, function, or subroutine.

Just plain exit on its own will exit early from the innermost enclosing loop, and
will produce an error if given outside a loop.

The exit may also have an explicit do, for, or while after it to say what kind
of loop it is exiting. In this case the innermost loop must be of the appropriate
type. This is different from FreeBasic, where for example exit while may be
used in a for loop that is inside a while loop; we do not allow that.

Finally exit function and exit sub are synonyms for return.

EXIT DO

Exit from the innermost enclosing loop if it is a do loop. If it is not a do loop
then the compiler will print an error.

EXIT FOR

Exit from the innermost enclosing loop if it is a for loop. If it is not a for loop
then the compiler will print an error.

27

EXIT FUNCTION

Returns from the current function (just like a plain return). The value of the
function will be the last default value established by assigning a value to the
function’s name, or 0 if no such value has been established. For example:

function sumif(a, x, y)
sumif = x + y
if (a <> 0)
exit function
sumif = 0O
end function

returns x+y if a is nonzero, and 0 otherwise.

EXIT SUB

Returns from the current subroutine. Same as the return statement.

EXIT WHILE

Exit from the innermost enclosing loop if it is a while loop. If it is not a while
loop then the compiler will print an error.

FOR

Repeat a loop while incrementing (or decrementing) a variable. The default step
value is 1, but if an explicit step is given this is used instead:

' print 1 to 10

for i = 1 to 10
print i

next i

' print 1, 3, 5, ..., 9

for i = 1 to 10 step 2
print i

next i

If the variable given in the loop is not already defined, it is created as a local
variable (local to the current sub or function, or to the implicit program function
for loops outside of any sub or function).

FUNCTION

Defines a new function. The type of the function may be given explicitly with
an as type clause; if no such clause exists the function’s type is deduced from its

28

name. For example, a function whose name ends in $ is assumed to return a
string unless an as is given.

Functions have a fixed number and type of arguments, but the last arguments
may be given default values with an initializer. For example,

function inc(n as integer, delta = 1 as integer) as integer
return n + delta
end function

defines a function which adds two integers and returns an integer result. Since
the default type of variables is integer, this could also be written as:

function inc(n, delta = 1)
return n+delta
end function

In this case because the final argument delta is given a default value of 1, callers
may omit this argument. That is, a call inc(x) is exactly equivalent to inc (x,
1).

Anonymous functions

function may also be used in expressions to specify a temporary, unnamed
function. There are three forms for this. The long form is very similar to ordinary
function declarations. For example, suppose we want to define a function “plusn”
which itself returns a function which adds one to its argument. This would look
like:

' define an alias for the type of a function which takes an integer
' and returns another; this isn't strictly necessary, but saves typing
type intfunc as function(x as integer) as integer

' plusn(n) returns a function which adds n to its argument
function plusn(n as integer) as intfunc
return function(x as integer) as integer
return x + n
end function
end function

dim as intfunc f, g
f = plusn(l) ' function which returns 1 + its argument
g = plusn(7) ' function which returns 7 + its argument

' this will print 1 2 8
print 1, £(1), g(1)

The long anonymous form is basically the same as an ordinary function definition,
but without the function name. The major difference is that an explicit definition

29

of the return type (e.g. as integer) is required, since the compiler cannot use
a name to determine a default type for the function.

For simple functions which just return a single expression, an abbreviated
anonymous form is available. This omits the return type, which is determined
by the expression itself, and puts the expression on the same line. This means
we could write the plusn function above as:

function plusn(n as integer) as intfunc
return (function(x as integer) x+n)
end function

The long and abbreviated forms are compatible with QBasic and some other
PC BASICs. FlexBasic also supports a much more convenient short form. This
short form starts with [, followed by the function parameter list, followed by ‘:’,
the statements in the anonymous function, and finally => and a result expression.
This sounds more complicated than it is. The above plusn function in short
notation is:

function plusn(n as integer) as intfunc
return [x:=>x+n]
end function

This short form is much easier to write for many inline uses, and is very flexible,
but is not compatible with other BASICs.

Closures

You'll note in the examples of anonymous functions that the anonymous function
inside plusn is accessing the parameter n of its parent. This is allowed, and the
value of n is in fact saved in a special object called a “closure”. This closure is
persistent, and functions are allowed to modify the variables in a closure. For
example, we can implement a simple counter object as follows:

type intfunc as function() as integer

' makecounter returns a counter with a given initial value and step
function makecounter(value = 1, stepval = 1) as intfunc
return (function () as integer
var r = value
value = value + stepval
return r
end function)

end function

var ¢ = makecounter(7, 3)

' prints 7, 10, 13, 16

30

for i =1 to 4
print cQ
next

Using the more compact notation for functions this may be written as:
type intfunc as function() as integer
function makecounter(value = 1, stepval = 1) as intfunc

return [:var r = value : value = value + stepval : => r]
end function

var ¢ = makecounter (7, 3)
for i =1 to 4

print cQ
next

GETCNT

Propeller specific builtin function.

function getcnt() as uinteger
x = getcnt()

Returns the current cycle counter. This is an unsigned 32 bit value that counts
the number of system clocks elapsed since the device was turned on. It wraps
after approximately 54 seconds on propeller 1 and 27 seconds on propeller 2.

GOSUB

gosub x pushes a return value on the stack and jumps to the label x (which
may be a numeric label). A return statement will pop the return value off the
stack and resume execution after the original gosub.

gosub is supported for compatibility with old BASIC code, but should not be
used in new code. In new code you should create a subroutine or function instead.
See sub.

GOTO
goto x jumps to a label x, which must be defined in the same function.
Labels are defined by giving an identifier followed by a :. For example:

if x=y goto xyequal
print "x differs from y"
goto done

31

xyequal:
print "x and y are equal"
done:

Note that in most cases code written with a goto could better be written with
if or do (for instance the example above would be easier to read if written with
if ... then ... else). goto should be used sparingly.

Also note that a label must be the only thing on the line; that is:
foo: bar
is interpreted as two statements

foo
bar

whereas

foo:
bar

is a label foo followed by a statement bar.

HEAPSIZE

const HEAPSIZE = 256

Declares the amount of space to be used for internal memory allocation by things
like string functions. The default is 256 bytes for P1 and 4096 bytes for P2. If
your program does a lot of string manipulation and/or needs to hold on to the
allocations for a long time, you may need to increase this by explicitly declaring
const HEAPSIZE with a larger value.

IF

An IF statement introduces some code that should be executed only if a
condition is true:

if x = y then

print "x and y are the same"
else

print "x and y are different"
end if

There are several forms of if.

A “simple if” executes just one statement if the condition is true, and has no
else clause. Simple ifs do not have a then:

32

' simple if example
if x = y print "they are equal"

A one line if executes the rest of the statements on the current line if the condition
is true. This form of if has a then that is followed by one or more statements,
seperated by :. For example:

if x = y then print "they are equal" : print "they are still equal"

which will print “they are equal” followed by “they are still equal” if x equals y,
but which will print nothing if they are not equal. This form of if is provided
for compatibility with old code, but is not recommended for use in new code.

Compound if statements have a then which ends the line. These statements
continue on until the next matching else or end if. If you want to have an
else condition then you will have to use this form of if:

if x = y then

print "they are equal"
else

print "they differ"
end if

You may also put an if statement after an else:

if x = y then
print "x and y are the same"
print "I don't know about z"
else if x = z then
print "x and z are the same, and different from y"
else
print "x does not equal either of the others"
end if

INPUT

Used for reading data

The input keyword when used as a command acts to read data from a handle.
It is followed by a list of variables. The data are separated by commas.

print "enter a string and a number: ";

input s$, n
print "you entered: ", s, "and", n

The input may optionally be preceded by a prompt string, so the above could
be re-written as:

input "enter a string and a number: ", s$, n
print "you entered: ", s, "and", n

33

If the prompt string is separated from the variables by a semicolon ; rather than
a comma, then "? " is automatically appended to the prompt.

Used for accessing pins

input may also be used to refer to a pseudo-array of bits representing the state
of input pins. On the Propeller 1 this is the 32 bit INA register, but on Propeller
2 it is 64 bits.

Bits in the input array may be read with an array-like syntax:
x = input(0) ' read pin O
y = input(4,2) ' read pins 4,3,2

Note that usually you will want to read the pins with the larger pin number

first, as the bits are labelled with bit 31 at the high bit and bit 0 as the low bit.

Also note that before using a pin as input its direction should be set as input
somewhere in the program:

direction(4,0) = input ' set pins 4-0 as inputs

INPUTS$

A predefined string function. There are two ways to use this.

The first, and simpler way, is just as input$(n), which reads n characters from
the default serial port and returns a string made of those characters. input$(1)
is thus a kind of getchar to read a single character.

The second form, input$(n, h) reads up to n characters from handle h, as
created by an open device as #h statement. If there are not enough characters
to fulfil the request then a shorter string is returned; for example, at end of file
an empty string “” will be returned.

Example:

fileg = "" ' initialize read data

do
s$ = input$(80, h) ' read up to 80 characters at a time
file$ = file$ + s$ ' append to the data

until s$§ = "" ' stop at end of file

' now the whole file is in file$

INT

Convert float to int. Any fractional parts are truncated.

i = int(3.1415) ' now i will be set to 3

34

INTEGER

A 32 bit signed integer type. The unsigned 32 bit integer type is uinteger.

LEFTS$

A predefined string function. left$(s, n) returns the left-most n characters of
s. If n is longer than the length of s, returns s. If n =< 0, returns an empty
string. If a memory allocation error occurs, returns nil.

LEN

A predefined function which returns the length of a string.

var s$ = "hello"

var n = len(s$) '

nown =5

LET

Variable assignment:
let a =b

sets a to be equal to b. This can usually be written as:
a=>b

the only difference is that in the let form if a does not already exist it is created
as a member variable (one accessible in all functions of this file). The let
keyword is deprecated in some versions of BASIC (such as FreeBASIC) so it’s
probably better to use var or dim to explicitly declare your variables.

LONG

A signed 32 bit integer. An alias for integer. The unsigned version of this is
ulong.

LOOP

Marks the end of a loop introduced by do. See DO for details.

35

MOD

x mod y finds the integer remainder when x is divided by y.

Note that if both the quotient and remainder are desired, it is best to put the
calculations close together; that way the compiler may be able to combine the
two operations into one (since the software division code produces both quotient
and remainder). For example:

q=x/y
r =xmody
NEW

Allocates memory from the heap for a new object, and returns a pointer to it.
May also be used to allocate arrays of objects. The name of the type of the new
object appears after the new, optionally followed by an array limit. Note that as
in dim statements, the value given is the last valid index, so for arrays starting
at 0 (the default) it is one greater than the number of elements.

var x = new ubyte(10) ' allocate 11 (not 10) bytes and return a pointer to it
x(1) =1 ' set a variable in it

class FDS using "FullDuplexSerial.spin" ' Use "SmartSerial.spin" on P2

var ser = new FDS ' allocate space for a new full duplex serial object

ser.start(31, 30, 0, 115_200) ' start up the new object

See the discussion of memory allocation for tips on using new. Note that the
default heap is rather small, so you will probably need to declare a larger
HEAPSIZE if you use new a lot.

Memory allocated by new may be explicitly freed with delete; or, it may left to
be garbage collected automatically.

NEXT
Indicates the end of a for loop. The variable used in the loop may be placed

after the next keyword, but this is not mandatory. If a variable is present though
then it must match the loop.

See FOR.

NIL

A special pointer value that indicates an invalid pointer. nil may be returned
from any string function or other function that allocates memory if there is not

36

enough space to fulfil the request. nil is of type any and may be assigned to
any variable. When assigned to a numeric variable it will cause the variable to
become 0.

NOT

a = NOT b
Inverts all bits in the destination. This is basically the same as b xor -1.

In logical (boolean) conditions, since the TRUE condition is all 1 bits set, this
operation has its usual effect of reversing TRUE and FALSE.

ON X GOTO

For compatibility only, FlexBASIC accepts statements like:
on x goto 100, 110, 120
This is equivalent to

select case x
case 1

goto 100
case 2

goto 110
case 3

goto 120
end select

OPEN

Open a handle for input and/or output. The general form is:
open device as #n

where device is a device driver structure returned by a system function such
as SendRecvDevice, and n evaluates to an integer between 2 and 7. (Handles 0
and 1 also exist, but are reserved for system use.)

Example:
open SendRecvDevice(@ser.tx, @ser.rx, @ser.stop) as #2

Here the SendRecvDevice is given pointers to functions to call to send a single
character, to receive a single character, and to be called when the handle is
closed. Any of these may be nil, in which case the corresponding function
(output, input, or close) does nothing.

37

OPTION

Gives a compiler option. The following options are supported:

OPTION BASE

option base N, where N is an integer constant, causes the default base of arrays
to be set to N. After this directive, arrays declared without an explicit base will
start at N. Typically N is either 0 or 1. The default is 0.

dim a(9) as integer ' declares an array with indices 0-9
option base 0 ' note: changing option base after declarations is not recommended, buf
dim b(5) as integer ' declares an array with indices 1-5 (5 elements)

It is possible to use option base more than once in a file, but we do not
recommend it. Indeed if you do use option base it is probably best to use it at
the very beginning of the file, before any array declarations

OPTION EXPLICIT

Requires that all variables be explicitly declared before use. The default is to
allow variables in LET and FOR statements to be implicitly declared.

OPTION IMPLICIT

Allows variables to be automatically declared in any assignment statement, read,
or input. The type of the variable will be inferred from its name if it has not
already been declared.

OR

a=xory

Returns the bit-wise inclusive OR of x and y. If x or y is a floating point number
then it will be converted to integer before the operation is performed.

Also useful in boolean operations. The comparison operators return 0 for false
conditions and all bits set for true conditions, so you can do things like:

if (x < y OR x = z) then
' code that runs if either condition is true
end if

38

OoOuTPUT

A pseudo-array of bits representing the state of output bits. On the Propeller 1
this is the 32 bit OUTA register, but on Propeller 2 it is 64 bits.

Bits in output may be read and written an array-like syntax:

output (0) = not output(0) ' toggle pin O
output(4,2) =1 ' set pins 4 and 3 to O and pin 2 to 1

Note that usually you will want to access the pins with the larger pin number
first, as the bits are labelled with bit 31 at the high bit and bit 0 as the low bit.

Also note that before using a pin as output its direction should be set as output
somewhere in the program:

direction(4,0) = output ' set pins 4-0 as outputs

PAUSEMS

A built-in subroutine to pause for a number of milliseconds. For example, to
pause for 2 seconds, do

pausems 2000

PINLO

Force a pin to be output as 0.

pinlo(p)

PINHI

Force a pin to be output as 1.

pinhi(p)

PINSET

Force a pin to be an output, and set its value (new value must be either 0 or 1).

pinset(p, v)

39

PINTOGGLE

Force a pin to be an output, and invert its current value.

pintoggle(p)

PRINT

print is a special subroutine that prints data to a serial port or other stream.
The default destination for print is the pin 30 (pin 62 on P2) serial port, running
at 115200 baud (230_400 baud on P2).

More than one item may appear in a print statement. If items are separated
by commas, a tab character is printed between them. If they are separated by
semicolons, nothing is printed between them, not even a space; this differs from
some other BASICs.

If the print statement ends in a comma, a tab is printed at the end. If it ends
in a semicolon, nothing is printed at the end. Otherwise, a newline (carriage
return plus line feed) is printed.

As a special case, if a backslash character \ appears in front of an expression,
the value of that expression is printed as a single byte character.

Examples

' basic one item print

print "hello, world!"

' two items separated by a tab

print "hello", "world!"

' two items with no separator

print "hello"; "world"

' an integer, with no newline

print 1;

' a string and then an integer, nothing between them
print "then "; 2

prints

hello, world!
hello world
helloworld
1then 2

print may be redirected. For example,
print #2, "hello, world"

prints its message to the device previously opened as device #2.

40

PRINT USING

Formats output using a string. The general form of this is:
print using STRING; expr [,expr...] [;]
where STRING is a string literal and expr is one or more expressions.

Within the string literal output fields are specified by special forms, which are
replaced by the various expressions.

& indicates a variable width field, within which the numbers or strings are printed
with the minimum number of characters.

starts a numeric field with space padding; the number of # characters indicates
the width of the field. The numeric value is printed right-justified within the
field. If it cannot fit, the first digit which will fit is replaced with ‘#’ and the
rest are printed normally. If the field is preceded by a - or + the sign is printed
there; otherwise, if the value is negative then the - sign is included in the digits
to print.

% starts a numeric field with 0 padding; the number of % characters indicates the
width of the field. Leading zeros are explicitly printed. If the number cannot fit
in the indicated number of digits, the first digit which will fit is replaced with
‘#’ and the rest are printed normally.

+ indicates that a place should be reserved for a sign character (+ for non-
negative, - for negative). + must immediately be followed by a numeric field. If
the argument is an unsigned integer, instead of + a space is always printed.

- indicates that a place should be reserved for a sign character (space for non-
negative, - for negative). - must immediately be followed by a numeric field. If
the argument is an unsigned integer, a space is always printed.

! indicates to print a single character (the first character of the string argument).

\ indicates a string field, which continues until the next \. The width of the field
is the total number of characters, including the beginning and ending \. The
string will be printed left justified within the field. Centering or right justification
may be achieved for fields of length 3 or more by using = or ‘>’ characters,
respectively, as fillers between \. If the string is too long to fit within the field,
only the first N characters of the string are printed.

print using "%%A%%4"; x
PROGRAM

This keyword is reserved for future use.

The statements in the top level of the file (not inside any subroutine or function)
are placed in a method called program. This is only really useful for calling them

41

from another language (for example a Spin program using a BASIC program as
an object).

READ

read reads data items declared by data. All of the strings following data
keywords are lumped together, and then parsed by read in the same way as
input parses data typed by the user.

REM

Introduces a comment, which continues until the end of the line. A single quote
character ' may also be used for this.

RESTORE

Resets the internal pointer for read so that it starts again at the first data
statement.

RETURN

Return from a subroutine or function. If this statement occurs inside a function,
then the return keyword may be followed by an expression giving the value to
return; this expression should have a type compatible with the function’s return
value.

A return with a value sets the function’s result value and exits. If the return
does not have a value (or indeed if there is no return), then the function’s result
value is the last value assigned to the pseudo-variable that has the same name
as the function. That is, two equivalent ways of writing a sum function are:

function sum(x, y)
sum = x+y
end function

or

function sum(x, y)
return x+y
end function

42

RIGHTS

A predefined string function. right$(s, n) returns the right-most n characters
of s. If n is longer than the length of s, returns s. If n =< 0, returns an empty
string. If a memory allocation error occurs, returns nil.

RND

A predefined function which returns a random floating point number x such that
0.0 <= x and x < 1.0. A single argument n is given. If n is negative, then it
is used as the seed for the random number sequence. If n is 0, a new sequence is
started with a random seed. If n is positive, the next value in the sequence is
returned.

f
i

rnd(0) ' start a new sequence
int(rnd(1)*6) + 1 ' generate random between 1 and 6

SELECT CASE

Selects between alternatives. The expression after the initial select case is
evaluated once, then matched against each of the case statements (in order)
until one matches or end select is reached. case else will match anything
(and hence should be placed last, since no case after it can ever match).

In case of a match, all of the statements between the matching case and the
next case (or end select) will be executed.

var keepgoing = -1
do
print "continue? ";
a$ = input$(1)
print
a$ = input$(1)
select case a$
case "y"
keepgoing = 1
print "great!"
case "n"
keepgoing = 0
print "ok, not continuing "
case else
print "I did not understand your answer of "; a$
end select
loop while keepgoing = -1

43

SELF

Indicates the current object. Not implemented yet.

SENDRECVDEVICE

A built-in function rather than a keyword. SendRecvDevice(sendf, recvf,
closef) constructs a simple device driver based on three functions: sendf to
send a single byte, recvf to receive a byte (or return -1 if no byte is available),
and closef to be called when the device is closed. The value(s) returned by
SendRecvDevice is only useful for passing directly to the open statement, and
should not be used in any other context (at least not at this time).

_SETBAUD

Set up the serial port baud rate, based on the current clock frequency.
_setbaud(115_200) ' set baud rate to 115_200

The default serial rate on P1 is 115_200 baud, and assuming a clock frequency
of 80_000_000 (on P2 both defaults are doubled). If these are changed, it is
necessary to call _setbaud again in order for serial I/O to work.

SHORT

A signed 16 bit integer, occupying two bytes of computer memory. The unsigned
version of this is ushort. The difference arises with the treatment of the upper
bit. Both short and ushort treat 0-32767 the same, but for short 32768 to
65535 are considered equivalent to -32768 to -1 respectively (that is, when a
short is copied to a larger sized integer the upper bit is repeated into all the
other bits; for ushort the new bits are filled with 0 instead).

SINGLE

Single precision floating point data type. By default this is an IEEE 32 bit single
precision float, but compiler options may change this (for example to a 16.16
fixed point number).

SQR

An alias for sqrt, for compatibility with older BASICs.

44

SQRT

Calculate the square root of a number.
x = sqrt(y)

This is not a true function, but a pseudo-function whose result type depends on
the input type. If the parameter to sqrt is an integer then the result will be an
integer as well. If the parameter is a single then the result is a single.

STEP

Gives the increment to apply in a FOR loop.

for i = 2 to 8 step 2
print i
next

will print 2, 4, 6, and 8 on separate lines.

STRS$

Convert a number to a string. The input is a floating point number (integers will
automatically be converted to single) and the output is a string representing
the number. Unlike the format used for regular print, str$ tries to avoid
trailing zeros, so the output is somewhat more compact than print.

SUB

Defines a new subroutine. This is like a function but with no return value.
Subroutines have a fixed number and type of arguments, but the last arguments
may be given default values with an initializer. For example:

sub say(msg$="hello")
print msg$
end sub

If you call say with an argument, it will print that argument. If you call say
with no argument it will print the default of hello:

say("hi!") ' prints "hi!"
say "hi!" ' the same
say ' prints "hello"

Subroutines may be invoked with function notation (arguments enclosed in
parentheses) or with the arguments separated from the subroutine name by
white space, as in the example above.

45

THEN

Introduces a multi-line series of statements for an if statement. See IF for
details.

THROW
Throws an error which may be caught by a caller’s try/catch block. If none of
our callers has established a try / catch block, the program is ended.

The argument to throw may be of any type. Programmers should beware of
mixing different types, as the try / catch block may need to know what type
of value it should expect to receive.

Example:

if n < O then
throw "illegal negative value"
endif

TO

A syntactical element typically used for giving ranges of items.

TRY

Example:

dim errmsg as string

try
' run subl, sub2, then sub3. If any one of them
' throws an error, we will immediately stop execution
' and jump to the catch block
subl
sub2
sub3
catch errmsg
print "a subroutine reports error: " errmsg
end try
TYPE

Creates an alias for a type. For example,

type uptr as ubyte ptr

46

creates a new type name uptr which is a pointer to a ubyte. You may use the
new type name anywhere a type is required.

UBYTE

An unsigned 8 bit integer, occupying one byte of computer memory. The signed
version of this is byte. The difference arises with the treatment of the upper
bit. Both byte and ubyte treat 0-127 the same, but for byte 128 to 255 are
considered equivalent to -128 to -1 respectively (that is, when a byte is copied to
a larger sized integer the upper bit is repeated into all the other bits; for ubyte
the new bytes are filled with 0 instead).

UINTEGER

An unsigned 32 bit integer.

ULONG

An unsigned 32 bit integer, occupying four bytes of computer memory. The
signed version of this is long.

USHORT

An unsigned 16 bit integer, occupying two bytes of computer memory. The
signed version of this is short. The difference arises with the treatment of the
upper bit. Both short and ushort treat 0-32767 the same, but for short 32768
to 65535 are considered equivalent to -32768 to -1 respectively (that is, when a
short is copied to a larger sized integer the upper bit is repeated into all the
other bits; for ushort the new bits are filled with 0 instead).

USING

Keyword intended for use in PRINT statements, and also to indicate the file to
be used for a CLASS.

VAR

Declare a local variable:

VAR 1 = 2
VAR msg$ = "hello"

47

var creates and initializes a new local variable (only available inside the function
in which it is declared). The type of the new variable is inferred from the type of
the expression used to initialize it; if for some reason that cannot be determined,
the type is set according to the variable suffix (if any is present).

var is somewhat similar to dim, except that the type isn’t given explicitly (it is
determined by the initializer expression) and the variables created are always
local, even if the var is in the main program (in the main program dim creates
member variables that may be used by functions or subroutines in this file).

WAITCNT
Propeller specific builtin function. Waits until the cycle counter is a specific
value

waitcnt (getcent() + clkfreq) ' wait one second

WAITPEQ

Propeller specific builtin function. Waits for pins to have a specific value (given
by a bit mask). Same as the Spin waitpeq routine. Note that the arguments
are bit masks, not pin numbers, so take care when porting code from PropBasic.

WAITPNE

Propeller specific builtin function. Waits for pins to not have a specific value
(given by a bit mask). Same as the Spin waitpne routine. Note that the
arguments are bit masks, not pin numbers, so take care when porting code from
PropBasic.

WHILE

Begins a loop which continues as long as a specified condition is true.

' wait for pin to go low
loopcount = 0
while input(1) <> 0
loopcount = loopcount + 1
wend
print "waited "; loopcount; " times until pin went high"

The end of the repeated code may be terminated either with wend or with end
while.

The while loop may also be written as do while:

48

do while input(1l) <> 0
loopcount = loopcount + 1
loop

or

do until input(1) =0
loopcount = loopcount + 1
loop

WORD

Reserved for use in inline assembler.

XOR

a=2xzxory

Returns the bit-wise exclusive or of x and y. If x or y is a floating point number
then it will be converted to integer before the operation is performed. xor is
often used for flipping bits.

Propeller Specific Variables

clkfreq
dim clkfreq as uinteger

Clkfreq gives the frequency of the system clock in cycles per second.

Sample Programs
Toggle a pin

This program toggles a pin once per second.
rem simple program to toggle a pin
const pin = 16
direction(pin) = output
do

output (pin) = not output(pin)

pausems 1000
loop

49

	FlexBASIC
	Introduction
	Preprocessor
	Directives
	Predefined Symbols

	Language Syntax
	Comments
	Integers
	Keywords
	Variable, Subroutine, and Function names
	Extending lines
	Multiple statements per line

	Language features
	Types
	Function declarations
	Memory allocation
	Templates

	Propeller Hardware Features
	Input, Output, and Direction
	Hardware registers

	Alphabetical List of Keywords and Built In Functions
	ABS
	AND
	ANY
	AS
	ASC
	ASM
	__BUILTIN_ALLOCA
	BYTE
	CASE
	CAST
	CATCH
	CHR$
	CLASS
	CLKSET
	CLOSE
	CONST
	CONTINUE
	CPU
	DATA
	DECLARE
	DEF
	DEFINT
	DEFSNG
	DELETE
	DIM
	DIRECTION
	DO
	DOUBLE
	ELSE
	END
	ENDIF
	ENUM
	EXIT
	FOR
	FUNCTION
	GETCNT
	GOSUB
	GOTO
	HEAPSIZE
	IF
	INPUT
	INPUT$
	INT
	INTEGER
	LEFT$
	LEN
	LET
	LONG
	LOOP
	MOD
	NEW
	NEXT
	NIL
	NOT
	ON X GOTO
	OPEN
	OPTION
	OR
	OUTPUT
	PAUSEMS
	PINLO
	PINHI
	PINSET
	PINTOGGLE
	PRINT
	PRINT USING
	PROGRAM
	READ
	REM
	RESTORE
	RETURN
	RIGHT$
	RND
	SELECT CASE
	SELF
	SENDRECVDEVICE
	_SETBAUD
	SHORT
	SINGLE
	SQR
	SQRT
	STEP
	STR$
	SUB
	THEN
	THROW
	TO
	TRY
	TYPE
	UBYTE
	UINTEGER
	ULONG
	USHORT
	USING
	VAR
	WAITCNT
	WHILE
	WORD
	XOR
	Propeller Specific Variables

	Sample Programs
	Toggle a pin

