
Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 85

Column #121 May 2005 by Jon Williams:

The Parallax Professional Development
Board

When I first started working for Parallax my boss, Ken, handed me a big development board
and said, “See what you can do with this.” The board was, of course, the original NX-1000
and Ken and I went on to create StampWorks around it. Even after StampWorks, the NX-
1000 never left my desk – it was the perfect “playground” for my experiments and many of my
projects for this column originated on the NX-1000 development board.

The NX-1000 went through a series of improvements and ultimately ended up as two
versions: a standard model and one that supported 40-pin BASIC Stamp modules. Not too
long ago my colleague, John Barrowman, was working with an NX-1000 and felt like there
was an opportunity to integrate all the features we liked in the existing models, plus a few
new tricks. John was right, and after a lot of hard work and feedback from me and the other
“power users” in the office, the Professional Development Board (PDB) was born. Figure
121.1 shows the PDB in all its glory.

Column #121: The Parallax Professional Development Board

Page 86 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 121.1: The new Parallax Professional Development Board

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 87

In a word, the PDB is simply stellar; it has become my favorite development platform – you’ll
see why as I work through its features. And don’t get caught out by the term “Professional”
in its moniker; that’s referring to its professional features, not the price tag. As a matter of
fact, the price of the PDB is actually lower than the NX-1000 – we can thank the engineering
and manufacturing folks at Parallax for delivering such a great platform at such a reasonable
price (about $150).

And just a note to my friends who are using “the other guys” 24-pin microcontrollers
(products like the OOPic and BX-24): I think the PDB will work fine for you too – but please,
try before you buy because Parallax hasn’t tested the programming connections with anything
but their own products.

Modules, Modules, Modules

What really excites me about the PDB is that I can develop projects for any of the
microcontroller modules that I would normally work with: the BS1 (SIP version), the BS2
family (24- and 40-pin versions), the Javelin Stamp, and even the SX28. Even better, when
using the BS1 or a 24-pin BASIC Stamp module, the SX28 can be used at the same time.
Remember the LED controller I did back in January using the SX28? I built and tested that
project with a BASIC Stamp master on a very early prototype of the PDB. The only caution
one must take regarding the SX28 is when you want to work with the BS2p40. The AUX
lines of the BS2p40 share the same terminals as the RB and RC ports of the SX28. So, if you
want to use the BS2p40, be sure you remove the SX28 first so that there is no conflict with
the IO pins. Figure 121.2 shows how you can mix-and-match the various microcontroller
modules.

Figure 121.2: Parallax Microcontroller Compatibility on the PDB

Column #121: The Parallax Professional Development Board

Page 88 • The Nuts and Volts of BASIC Stamps (Volume 6)

The next logical question is programming ports; the PDB has four – yes, four: a USB serial
port, a DB-9 serial port, a 3-pin header for the BS1 Serial Adapter, and a 4-pin header for the
SX-Key. Figure 121.3 shows the programming connections and how they work with the
various modules. Suffice to say, the PDB has all the programming connections we’ll need to
get the task done; just note that the USB and DB-9 programming connections cannot be used
at the same time.

Figure 121.3: Programming Connection Options

Parts Galore

Like its cousin the NX-1000, the PDB has a whole host of support components that make
project development a breeze. And when we need something that is not actually part of the
PDB, there’s a full-sized solderless breadboard that gives us ample space for extra
components.

Here’s the complete list of the on-board connections and support components, as they appear
on the PDB moving clockwise from the upper left-hand corner:

• USB port (programming)
• DB-9F (programming)
• 24/40-pin socket
• 14-pin SIP socket (BS1-IC)
• 3-pin BS1 port (programming)
• Reset button
• (16) discrete LEDs
• (5) 7-segment LEDs
• Parallel LCD connection

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 89

• (2) 3-pin servo headers
• (2) 10K pots
• LM386 audio amp
• L293D push-pull driver
• (8) active-low push-buttons
• (8) active-low DIP switches
• Pulse generator
• RJ-11 connector
• DB-9F serial connector
• DS1307 RTC
• SX28AC/DP socket
• 3-pin socket for SX resonator
• 4-pin SX-Key header
• Power switch
• 2.1 mm power input

Yep, that’s a whole lotta good stuff – and remember that this surrounds a large breadboard.
Since most of those components are commonplace and we use them day-in and day-out, I
don’t need to get into any real detail, but let’s do cover the essentials:

LEDs: The 16 discrete LEDs and five 7-segment LED modules are blue. There’s nothing
magic, they just look doggone cool. All LEDs are active high, so for the 7-segment displays
you will enable a digit by pulling its common-cathode line low.

LCD Port: This is a standard 2x7 box header that we can use with common LCDs. One thing
of note is that the socket for the signal lines splits the LCD bus – the DB0-DB3 pins (not used
in 4-bit mode) are on the left, and the DB4-DB7 lines are on the right. If you look very
closely at Figure 121.1 you can see the markings adjacent to the connector. Keep this in mind
when you’re making LCD connections. You can use either 4-bit or 8-bit mode, you just have
to use the appropriate connections in the socket.

Servo Ports: There are two 3-pin headers that can be used with servos or devices that follow
the same connection layout (Signal-Vdd-Vss). For example, the Parallax Serial LCD module
or PING))) sonar sensor could be connected to these ports using a standard servo extender
cable.

Pots: There are two 10K pots with all connections made available. And if you look very
closely you’ll also see a small resistor (220 ohm) inline with the wiper connection. This is
one of the nice features John built into the PDB. This resistor prevents the accidental
connection of an IO pin directly to Vss or Vdd; a connection that when coupled with a

Column #121: The Parallax Professional Development Board

Page 90 • The Nuts and Volts of BASIC Stamps (Volume 6)

programming error could damage the BASIC Stamp or SX. This feature makes the PDB
“expert proof.” Come on, admit it, we’ve all made wiring errors and damaged components –
that’s less likely with the PDB.

Audio Amp: This is a fairly standard LM386 audio amp circuit with a built-in filter that
makes it suitable for the SOUND (BS1), FREQOUT and DTMFOUT instructions. A small
speaker is built right into the PDB, but if you want more volume you can move the speaker
jumper to EXT and connect a small 8-ohm speaker. I use a nice little bookshelf speaker from
RadioShack® and it sounds great.

L293D: The NX-1000 used the ULN2803 for high current outputs; the PDB has changed to
the L293D. The nice thing about the L293D is that it’s a push-pull driver (sources and sinks
current on outputs); the ULN2803 only sinks current. The ability of the L293 to source and
sink current gives us more flexibility – channels can be combined to form an H-Bridge circuit.
Since the L293D is new (to me), we’ll do a simple project with it after we get through the
parts description.

Push buttons: The PDB has eight, active-low (each IO pin gets pulled to Vdd through 10K)
push buttons. As with the 10K pots, the push button circuits have inline 220-ohm resistors to
protect IO pins.

DIP Switches: Eight, active-low DIP switches – electrically identical to the push buttons.

Pulse Generator: The PDB pulse generator is identical to that on the NX-1000; it provides a
50% duty cycle pulse at 1 Hz, 10 Hz, 100 Hz, or 1 kHz. A push button is used to set the
output frequency.

RJ-11: This connection has configuration jumpers so that it can be used with the iButton®
“Blue Dot Receptor” modules (for OWIN and OWOUT), as well as X-10 transmitter modules
(for XOUT).

DB-9F Serial Port: As with the early version of the NX-1000, this lets us connect to off-board
serial devices. The level-shifter gives us TX, RX, RTS, and CTS lines, which means we can
implement full flow control (important for many projects).

DS1307 RTC: This is the same I2C™ RTC that is used on the NX-1000-24/40. A lithium
backup cell is included.

All in all, this is a very nice complement of components and flexibility, and does indeed give
us the freedom to create to our hearts’ desire. As much as I like my NX-1000 boards, the

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 91

PDB has replaced them as my favorite development tool – I think when you give it a try it
will be yours too. Okay, enough chit-chat, right? – let’s do something.

Steppin’ Out With the L293D

Stepper motors are fairly easy to control with the BASIC Stamp, and with the L293D we can
now control either unipolar (5- or 6-wire) or bipolar (4-wire) stepper motors. This is very
cool; I frequently find low-cost bipolar steppers at Tanners – now I can put them to use. And
here’s even better news: the same program will control either motor type!

That last part really made me smile. I had never used a bipolar stepper before so I did a little
Googling to see what I was getting into. Imagine my surprise when I found the step table for
bipolar steppers exactly matched what I was already doing with unipolar motors. Now, I’m a
“Show me” kind of guy, so I tried … it worked! … way cool!

For fun I’m going to present the program for the BS1 – though it is super easy to modify for
the BS2. Why the BS1? Well, I’ve been spending a lot of time with the BS1 lately. In
February John and I went to a Halloween-oriented convention called Death Fest
(www.deathfest.net). It turns out that there are lots of interesting folks that build Halloween
(and other holiday) displays, and many use the BS1 to control things. In fact, there were so
many and their needs were so specific that John and I created a repackaged version of the BS1
called the Prop-1 Controller – it’s a BS1 core with an onboard ULN2803 and a few other
features that help prop and FX builders.

So, contrary to the belief by some, the BS1 is not dead – in fact the 2.1 version of the BASIC
Stamp Editor handles the BS1 very nicely, adding the Memory Map feature that used to be
restricted to the BS2. The Memory Map is really important for the BS1 as its EEPROM space
is so small. The other thing that I like is it will remind me that I can’t use W6 for variable
space when I declare subroutines (because W6 gets used as the GOSUB-RETURN stack).

Okay, onto the stepper code. Since the program is very short, and we haven’t used the BS1 in
a long time, I’m going to go through every part of the program in some detail – this will get
you back into the saddle with the BSI or, perhaps, get you interested if you haven’t used it in
the past.

Let’s look at the declarations first. In the BS1, everything is declared as a SYMBOL; IO pins,
constants, and variables.

Column #121: The Parallax Professional Development Board

Page 92 • The Nuts and Volts of BASIC Stamps (Volume 6)

SYMBOL Stepper = PINS
SYMBOL ChngDir = PIN7

SYMBOL StpsPerRev = 48
SYMBOL NotPressed = 1
SYMBOL Pressed = 0
SYMBOL CW = 0
SYMBOL CCW = 1

SYMBOL rotation = BIT0
SYMBOL idx = B2
SYMBOL phase = B3
SYMBOL stpIdx = B4
SYMBOL stpDelay = B5

The BS1 does not have separate names for the output and input registers (OUTS and INS in
the BS2) – there is a register called PINS that is contextually sensitive. When we write a
value to PINS, that value goes to the output register; when we read a value from PINS, we’re
getting that value from the input register.

Notice that the declaration for Stepper uses the entire PINS register – we need to do this as
there is no way to split PINS into nibble-sized groups. Since our program actually needs just
four pins for the stepper outputs, we’ll use a mask to protect the pins not connected to the
motor. More on that later.

The PINS register can, however be declared as individual bits. For this program we’re going
to use a push-button to set the rotational direction of the stepper; we’ll connect this button to
P7, hence the PIN7 declaration for ChngDir. Note that some commands in PBASIC 1.0
require the pin number as a constant value, so keep that in mind when declaring symbols for
IO pins, and be sure to double-check the help file as to whether a command wants an IO
register variable (e.g., PIN5) or the pin port number (e.g., 5).

As you can see, constants are very easy to define – we simply put the symbol’s value after the
equal sign. The BS1 does allow 16-bit values (like the BS2), so a constant can have value
from zero to 65535.

Finally, we should declare variables with meaningful names – and this can be the trickiest
thing to do with the BS1. In the BS1 we have to manually assign our variable names to a
specific location in RAM. For most programs we will be using byte variables, so I
recommend that you start your definitions at B2. Why? Well, the BS1 only lets us deal with
16 bit-sized variables, and those are attached to W0 (B0 and B1). If we start our byte
definitions at B2 then the bit variables will be available if/when we need them. For example,

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 93

the original version of the stepper program didn’t have the reverse button. Adding the button
and the rotation variable to keep track of direction was no trouble because neither B0 nor B1
had been previously assigned.

I know what you’re thinking … “If I have to map variables manually why don’t I just use the
built-in RAM names?” It’s tempting, I know, but I can’t even begin to remember how many
customer programs I’ve fixed that had crossed-up variables because the internal names were
used. Don’t do it ... don’t go to the dark side … it just takes a few minutes to define useful
names, so trust me and just do it.

For review, we can have BIT0 to BIT15, B0 to B12, and W0 to W6. Not a lot of variable
space, I know, but then we don’t have a lot of code space either so it’s usually not a problem.
Just remember that BIT0 to BIT7 occupy the same space as B0, which is actually the low byte
of W0 – now you can see why the Memory Map is so important for the BS1. Figure 121.4
shows the Memory Map for the stepper program. Note how W6 is colored yellow to indicate
its use for GOSUB-RETURN. If we attempt to assign a variable to W6 (or B11 or B12), the
Memory Map will show yellow with a red slash to indicate a conflict. This issue only comes
up when using GOSUB-RETURN – if that doesn’t exist in a program then we are free to use
the W6 RAM space.

I tend to separate my setup from main loop code to keep things organized. In this program
there are just two things to do: initialize the motor pins to be outputs and set the motor speed.

Reset:
 DIRS = %00001111
 stpDelay = 3

No magic here, the BS1 has a DIRS register just like the BS2 – the difference being that the
BS1 register is only eight bits wide. The variable called stpDelay (delay between steps)
affects how fast the motor turns; the smaller the value, the faster it turns.

Column #121: The Parallax Professional Development Board

Page 94 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 121.4: Memory Map for Stepper Program

And now we get to the heart of the program. The logic is straightforward: check the change-
of-direction input; if it’s pressed we’ll invert the rotation flag and wait for the button to
released, and finally jump to the code that rotates the motor in the current direction. If the
change-of-direction button isn’t pressed we jump right to rotating the motor.

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 95

Main:
 IF ChngDir = NotPressed THEN Move_Motor
 rotation = rotation ^ 1

Force_Release:
 IF ChngDir = Pressed THEN Force_Release

Move_Motor:
 IF rotation = CCW THEN Turn_CCW

Turn_CW:
 GOSUB Step_Fwd
 GOTO Main

Turn_CCW:
 GOSUB Step_Rev
 GOTO Main

If you’re not accustomed to BS1 code the first thing that stands out is the number of program
labels. The BS1 doesn’t have the IF-THEN-ELSE construct, so we have to apply a bit of
inverted logic to get IF-THEN to flow smoothly. It’s not difficult, it just takes a little
planning (very little!). I think that one read-through of the code will make perfect sense and,
if you take away nothing else, please note the use of appropriately named constants and
variables makes the program very easy to follow. This is why I get so adamant about defining
meaningful symbols – it makes the rest of our work easier.

The final section holds the subroutines to actually move the motor. This code is pulled out as
subroutines (instead of being buried in the main program loop) so that it can be used in other
programs.

Step_Fwd:
 stpIdx = stpIdx + 1 // 4
 GOTO Do_Step

Step_Rev:
 stpIdx = stpIdx + 3 // 4
 GOTO Do_Step

Do_Step:
 READ stpIdx, phase
 Stepper = Stepper & %11110000 | phase
 PAUSE stpDelay
 RETURN

Column #121: The Parallax Professional Development Board

Page 96 • The Nuts and Volts of BASIC Stamps (Volume 6)

There are two separate subroutines for movement, but their purpose is the same: calculate the
next step in the sequence so that we can pull the coil data from a table. The key to both of
these routines is the modulus operator (//). I love modulus; my boss on the other hand, he
hates it. Okay, hate is a strong word – let’s just say the modulus operator is not his favorite.
Don’t worry, I’m still working on him.

Modulus is really quite simple: it returns the remainder of a division. In practice this means
that the modulus operator will return a value between zero and the divisor minus one. In our
program, for example, we’re going to control the stepper with four whole steps so we’ll want
to keep the table index between zero and three. The modulus operator is perfect for this. To
point to the next position in the table we’ll add one to the index and then take the modulus of
four. The fact that modulus will cause a wrap-around to zero when we get to the end of the
table is particularly useful. Without modulus, we’d have to do this:

 stpIdx = stpIdx + 1
 IF stpIdx < 4 THEN Do_Step
 stpIdx = 0
 GOTO Do_Step

Do you see how much easier using modulus is? Going backward is the same but requires just
a little bit of thinking. Instead of adding one, we’re going to add the value of the divisor
minus one (three in our program as the divisor is four). Let’s look at real values to be clear:

 0 + 3 = 3 ... 3 // 4 = 3
 3 + 3 = 6 ... 6 // 4 = 2
 2 + 3 = 5 ... 5 // 4 = 1
 1 + 3 = 4 ... 4 // 4 = 0

With the new index in place we will read the coil data from a table. Here’s how that’s
defined:

Full_Steps:
 EEPROM 0, (%0011, %0110, %1100, %1001)

Note that we can place a table at the specific location (first value after EEPROM), but we
can’t use program labels to define table locations – we have to keep track of them manually.
That’s not a problem here as we only have one table.

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 97

Have a look the subroutine called Do_Step – this does the actual work. The first line uses
READ to retrieve coil data from our EEPROM table. The next line writes this data to the
stepper while preserving the condition of P4 – P7. This is done with a mask value
(%11110000). Since the upper four bits of the mask are ones, and we’re using the AND
operator (&), the current values of those pins will be preserved. With the lower four bits of
the mask being zero, the coil outputs will be cleared. The last part of that line adds the new
coil data to the outputs.

Finally, the speed control variable, stpDelay, is used with PAUSE and then the process starts
all over again.

Getting Connected to the PDB.

Now that we’ve worked through the code I should probably give you a couple hints about
connecting your stepper to the PDB. The connections between the BASIC Stamp and the
L293D inputs are obvious; P0 – P3 connects to INPUTS 0 – 3 on the PDB (IN1 – IN4 on the
L293D). There are two enable pins – we need to pull both high to enable the outputs (each
enable pin controls two outputs; when low, the respective outputs go to a Hi-Z state). Power
for the motor is routed from the Vin pin (by the secondary RS-232 port) to the +V terminal
near the L293D. Using an external +V connection lets us supply a voltage appropriate for the
motor we’ll connect.

The last step is to connect the stepper. With a unipolar motor we will connect the phase
connections to the L293D outputs and the common wire to +V. With a bipolar motor we
simply connect the coils.

My unipolar motor is made by Mitsumi and is marked M42SP-5 – you can get this motor
from Parallax. The bipolar motor is made by Minebea and is marked 17BB-H132-11. I
bought mine at Tanners in Dallas, but I’ve seen them online with surplus dealers. The
schematic for the circuit is shown in Figure 121.5, and the color codes for the motors I tested
are shown in Figure 121.6.

Column #121: The Parallax Professional Development Board

Page 98 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 121.5: L293 Stepper Schematic

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 99

Figure 121.6: L293 Stepper Color Code

Before I wrap it up, let me share a hint about bipolar steppers that I found during my research
– you can follow these steps when you don’t know which wire corresponds to which coil
(phase):

• Connect the wires in any order
• Run the program, if it works, you’re done
• If not, reverse the outer two leads (Ph1 and Ph4)
• Run the program, if it works, you’re done
• If not, reverse the inner two leads (Ph2 and Ph3)
• The program will now work

I actually used these steps with my motor, and did in fact have to go to the very end. It did
work, though, and save me a lot of trouble experimenting.

That’s it for this month. Have fun with the PDB and the microcontroller of your choice and,
until next time, Happy Stamping.

Column #121: The Parallax Professional Development Board

Page 100 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File...... Stepper.BS1
' Purpose... Simple Stepper Motor Demo
' Author.... Jon Williams, Parallax Inc.
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 18 MAR 2005
'
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ===

' -----[Program Description]---
'
' Stepper motor demo using the BS1 and L293D push-pull driver. The nature
' of the L293D allows this code to control both unipolar and bipolar
' stepper motors.
'
'
' Connections (BS1 --> L293D --> Mitsumi M43SP-5, unipolar, 5 wires)
'
' PO --> IN1/OUT1 --> Black
' P1 --> IN2/OUT2 --> Orange
' P2 --> IN3/OUT3 --> Brown
' P3 --> IN4/OUT4 --> Yellow
' Vdd --> Enable1
' Vdd --> Enable2
' Vin --> +V --> Red

' Connections (BS1 --> L293D --> Minebea 1788-H132-11, bipolar, 4 wires)
'
' PO --> IN1/OUT1 --> Red
' P1 --> IN2/OUT2 --> Orange
' P2 --> IN3/OUT3 --> Yellow
' P3 --> IN4/OUT4 --> Brown
' Vdd --> Enable1
' Vdd --> Enable2
' Vin --> +V

' -----[Revision History]--

' -----[I/O Definitions]---

SYMBOL Stepper = PINS ' uses P0 - P3
SYMBOL ChngDir = PIN7 ' change direction pin

Column #121: The Parallax Professional Development Board

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 101

' -----[Constants]---

SYMBOL StpsPerRev = 48 ' whole steps per rev

SYMBOL NotPressed = 1
SYMBOL Pressed = 0

SYMBOL CW = 0
SYMBOL CCW = 1

' -----[Variables]---

SYMBOL rotation = BIT0
SYMBOL idx = B2 ' loop counter
SYMBOL phase = B3 ' new phase data
SYMBOL stpIdx = B4 ' step pointer
SYMBOL stpDelay = B5 ' delay for speed control

' -----[EEPROM Data]---

Full_Steps:
 EEPROM 0, (%0011, %0110, %1100, %1001) ' step data

' -----[Initialization]--

Reset:
 DIRS = %00001111 ' make P0..P3 outputs
 stpDelay = 3 ' set step delay

' -----[Program Code]--

Main:
 IF ChngDir = NotPressed THEN Move_Motor ' skip if button not pressed
 rotation = rotation ^ 1 ' reverse motor direction

Force_Release:
 IF ChngDir = Pressed THEN Force_Release ' hold while button pressed

Move_Motor:
 IF rotation = CCW THEN Turn_CCW ' check current rotation

Turn_CW: ' do one step CW
 GOSUB Step_Fwd
 GOTO Main

Column #121: The Parallax Professional Development Board

Page 102 • The Nuts and Volts of BASIC Stamps (Volume 6)

Turn_CCW: ' do one step CCW
 GOSUB Step_Rev
 GOTO Main

 END

' -----[Subroutines]---

' Turn stepper clockwise one full step

Step_Fwd:
 stpIdx = stpIdx + 1 // 4 ' point to next step
 GOTO Do_Step

' Turn stepper counter-clockwise one full step

Step_Rev:
 stpIdx = stpIdx + 3 // 4 ' point to previous step
 GOTO Do_Step

' Read new step data and output to stepper pins while preserving
' the state of other IOs

Do_Step:
 READ stpIdx, phase ' read new phase data
 Stepper = Stepper & %11110000 | phase ' update stepper pins
 PAUSE stpDelay ' pause between steps
 RETURN

