
LEO-1 Homebrew Computer
Architecture

Rev 1.10, 5th January 2017, John Croudy

The LEO-1 is a complete 16-bit computer system featuring the LEO-1 CPU, a custom-designed
CPU. This CPU’s architecture was inspired by pioneering RISC CPUs such as MIPS where every
instruction is encoded in one word and memory can only be accessed by load and store
operations.

The LEO-1 CPU has eight general-purpose 16-bit registers designated R0 to R7 which are
visible to the programmer. It also has a 24-bit program counter allowing an addressable
memory space of 16,777,216 words. Because all memory operations are performed through
16-bit registers, only 65,536 words can be directly addressed. To allow access to the full
24-bit memory space, two 8-bit Bank registers are provided. The Instruction Bank is used
when fetching instructions and the Data Bank is used when loading or storing data in memory.

There is no hardware stack, but a custom stack can easily be implemented by reserving a
register (e.g., R7) for this purpose. Since there is no hardware stack, there are no subroutine
call instructions. Indeed, if there were such instructions they would be very difficult to
implement since the CPU is not microprogrammed. However, subroutines can be called by
copying the PC to registers, adding the necessary offset, pushing the registers onto the
custom stack and then jumping or branching. Returning can be done by popping the custom
stack into registers, and then jumping through those registers.

Like MIPS, LEO-1 has no condition code register. Conditional branching is done by checking a
register and branching on 'zero', ‘not zero’, 'negative' or 'positive'. Whereas MIPS was designed
like this for reasons of optimization, LEO-1 was designed like this for reasons of simplification.
 1

1 Condition codes complicate the ALU's carry handling. By eliminating them, the ALU doesn't need an
external carry-in and the programmer doesn't need to worry about clearing the carry before an add or
setting it before a subtract. Since the ALU operation code is limited to 3 bits for register operations, it
can't provide both ADD and ADD-with-carry (or SUB and SUB-with-borrow) operations. Therefore SET
and CLEAR CARRY instructions would be needed as well. I decided that none of this was worth the extra
complexity. Zero and negative flags are not needed if one has a conditional branch instruction that can
check a register against zero. The lack of an overflow flag is not of much concern to me. In 35 years of
programming I have never typed a single instruction that checked for overflow, but then again, I have
never written a compiler or a maths library.

Arithmetic and Logic Unit (ALU)
The ALU has two 16-bit inputs (the ‘A’ and ‘B’ operands), and a 16-bit output. It can perform
the following operations depending on a 4-bit code:

Code Name Description

0000 B Sends the B operand directly to the output.

0001 SUM Adds the A and B operands and sends the result to the output.

0010 DIFF
Subtracts the B operand from the A operand and sends the
result to the output.

0011 AND
Performs logical AND between the A and B operands and sends
the result to the output.

0100 OR
Performs logical OR between the A and B operands and sends
the result to the output.

0101 XOR
Performs logical Exclusive-OR between the A and B operands
and sends the result to the output.

0110 LSL
Performs a logical shift left of the A operand by the number of
bits in the B operand (1-8) and sends the result to the output.

0111 ASR
Performs an arithmetic shift right of the A operand by the
number of bits in the B operand (1-8) and sends the result to
the output.

1000 B Sends the B operand directly to the output (needed for jump).

1001 B Sends the B operand directly to the output (needed for banki).

1010 B Sends the B operand directly to the output (needed for bank).

1011 SB
Swaps the high and low bytes of the B operand and sends the
result to the output (needed for swhl).

Notes
● The ALU does not provide a NOT operation, but this can be achieved by using the XOR

operation with $FFFF as the B operand.

● The ALU operations are split into two banks based on the high bit of the operation
code. The B operation is repeated in both banks. The main ALU code in an instruction
is only 3 bits wide. Register and immediate instructions are limited to using the low
bank of operations, 0000 to 0111. Miscellaneous instructions are limited to using the
high bank of operations, 1000 to 1111. This is because the top bit of the instruction
type field is used as the top bit of the ALU code. This mechanism enables the ALU to
be extended beyond its original 8-operation design.

● Shifts are handled in a special way by the ALU. First of all, only the low 3 bits of the
operand are used. This allows up to eight different shift amounts. However, a shift of
zero actually shifts by eight bits. This keeps the shift amount aligned with the operand
value to prevent confusion when the shift amount is in a register (i.e., shift amounts
of 1, 2, 3, etc. actually shift by 1, 2, 3 bits.

Instruction format
All instructions are encoded in 16 bits and the top two bits form a code which splits the
instruction space into four distinct types, as follows:

00

Register / Memory
Performs ALU operations between registers, placing the result either in a register or in
memory. For register instructions, the result is stored in a destination register. For memory
instructions, the result is used as the effective address of a register load or store operation.

01
Immediate
Performs ALU operations between a register and an unsigned literal value. The result is
stored in a destination register.

10

Jump / Branch
Modifies the Program Counter so that execution jumps to a different address. The program
can jump to a 24-bit address specified in two registers or it can branch conditionally or
unconditionally.

11
Miscellaneous
These instructions perform special operations such as copying the Program Counter to
registers, setting the Bank register, etc.

Type 0; Register / Memory

Assembler Instruction format Operation

mov Rc,Rb 00ddd000bbb 00000 Rc = Rb

add Rc[,Ra],Rb 00dddaaabbb 00001 Rc += Rb; Rc = Ra + Rb

sub Rc[,Ra],Rb 00dddaaabbb 00010 Rc -= Rb; Rc = Ra - Rb

and Rc[,Ra],Rb 00dddaaabbb 00011 Rc &= Rb; Rc = Ra & Rb

or Rc[,Ra],Rb 00dddaaabbb 00100 Rc |= Rb; Rc = Ra | Rb

xor Rc[,Ra],Rb 00dddaaabbb 00101 Rc ^= Rb; Rc = Ra ^ Rb

lsl Rc[,Ra],Rb 00dddaaabbb 00110 Rc <<= Rb; Rc = Ra << Rb

asr Rc[,Ra],Rb 00dddaaabbb 00111 Rc >>= Rb; Rc = Ra >> Rb

An ALU operation is performed on one or two registers. The result of the operation is
stored in the destination register.

aaa Register containing operand A.

bbb Register containing operand B.

ddd Destination register; accepts the result of the ALU operation.

 mov r2,r3 ; r2 = r3

 add r4,r2,r3 ; r4 = r2 + r3

 add r4,r3 ; r4 += r3

 sub r4,r2,r3 ; r4 = r2 - r3

 sub r5,r6 ; r5 -= r6

Assembler Instruction format Operation

movpcl Rd 00ddd00000 010000 Move Program Counter to Register

Moves the 16-bit Program Counter to a register before the former is incremented.

ddd Destination register; accepts the result of the operation.

 movpcl r0 ; r0 = pc

Assembler Instruction format Operation

movpch Rd 00ddd00000 110000 Move Instruction Bank to Register

Moves the Instruction Bank to a register. This is essentially the high 8 bits of a 24-bit PC.

ddd Destination register; accepts the result of the operation.

 movpch r1 ; r1 = instruction bank

Assembler Instruction format Operation

mov Rd,(Rb) 00ddd000bbb 01000 Memory read from address in (Rb)

mov Rd,(Ra + Rb) 00dddaaabbb 01001 Memory read from address in (Ra + Rb)

mov Rd,(Ra - Rb) 00dddaaabbb 01010 Memory read from address in (Ra - Rb)

An ALU operation is performed on one or two registers. The result of the operation gives
the low 16 bits of an address. The high 8 bits of the address is taken from the Bank
register. This forms the 24-bit effective address from which to read data. For more
information, see the Notes section at the end of this document.

aaa Register containing operand A.

bbb Register containing operand B.

ddd Destination register; accepts the data found at the effective address.

 mov r4,(r2) ; r4 = *r2

 mov r5,(r2+r3) ; r5 = *(r2+r3)

Assembler Instruction format Operation

mov (Rb),Rs 00sss000bbb 11000 Memory write to address in (Rb)

mov (Ra + Rb),Rs 00sssaaabbb 11001 Memory write to address in (Ra + Rb)

mov (Ra - Rb),Rs 00sssaaabbb 11010 Memory write to address in (Ra - Rb)

An ALU operation is performed on one or two registers. The result of the operation gives
the low 16 bits of an address. The high 8 bits of the address is taken from the Bank
register. This forms the 24-bit effective address to which data is written. For more
information, see the Notes section at the end of this document.

aaa Register containing operand A.

bbb Register containing operand B.

sss Source register whose contents are stored at the effective address.

 mov (r2),r4 ; *r2 = r4

 mov (r5-r6),r0 ; *(r5-r6) = r0

Assembler Instruction format Operation

nop 0000000000000000 No operation

No operation is performed. This is actually the equivalent of mov r0,r0 which has no
effect.

 nop

Type 1; Immediate

Assembler Instruction format Operation

movi Rn,# 01rrriiiiiiii000 Rn = #

addi Rn,# 01rrriiiiiiii001 Rn = Rn + #

subi Rn,# 01rrriiiiiiii010 Rn = Rn - #

andi Rn,# 01rrriiiiiiii011 Rn = Rn and #

ori Rn,# 01rrriiiiiiii100 Rn = Rn or #

xori Rn,# 01rrriiiiiiii101 Rn = Rn xor #

lsli Rn,£ 01rrr00000sss110 Rn = Rn lsl £

asri Rn,£ 01rrr00000sss111 Rn = Rn asr £

An ALU operation is performed on a register and an unsigned literal value. The result of the
operation is stored in the destination register.

iiiiiiii 8-bit unsigned value (#). This value is promoted to 16-bits without sign extension.

sss 3-bit shift amount (£). This value is interpreted as 1 to 8 (000 means 8).

rrr Source/destination register; accepts the result of the ALU operation.

 movi r2,12 ; r2 = 0x000C (from 12 decimal)

 movi r3,$C4 ; r3 = 0x00C4 (hex)

 movi r4,077 ; r4 = 0x003F (from 077 octal)

 movi r1,%10100101 ; r1 = 0x00A5 (from 0000000010100101 binary)

 subi r0,6 ; r0 -= 6

 addi r3,$99 ; r3 += 0x0099

Type 2; Jump / Branch

Assembler Instruction format Operation

jump Rb,Ra 10000aaabbb00 000 Jump

Program execution jumps to a new address. The high 8 bits of the address is taken from
one register while the low 16 bits is taken from another register.

aaa Register containing the low 16-bits of the address to jump to.

bbb Register containing the high 8-bits of the address to jump to (i.e., the bank).

 jump r1,r0 ; r1=bank, r0=addr. Jump to ((r1 & 0xFF) << 16) | r0

Assembler Instruction format Name Operation

bz Rd,label 10rrrhhhhhhhh 011 Branch if zero
Branch if register value is
zero

bnz Rd,label 10rrrhhhhhhhh 100 Branch if not zero
Branch if register value is
not zero

bpl Rd,label 10rrrhhhhhhhh 101 Branch if plus
Branch if register value is
positive (>= zero)

bmi Rd,label 10rrrhhhhhhhh 110 Branch if minus
Branch if register value is
negative (< zero)

If a condition is met, program execution branches to a new address in the same bank. If
the branch is taken, the branch offset is added to the PC instead of incrementing it.
Because the PC is 16 bits, the branch cannot move the PC to a different bank.

rrr Register containing signed 16-bit value to check.

hhhhhhhh
Branch offset. This is a signed 8-bit value giving a branch range of
-128 to +127 words.

bnz r1,:loop ; Branch to :loop if r1 is not zero.

bmi r2,:loop ; Branch to :loop if r2 is negative.

Name Assembler Instruction format Operation

Branch bra label 10000hhhhhhhh 111 Unconditional branch

Program execution branches to a new address in the same bank. The branch offset is added
to the PC instead of incrementing it. Because the PC is 16 bits, the branch cannot move the
PC to a different bank.

hhhhhhhh
Branch offset. This is a signed 8-bit value giving a branch range of
-128 to +127 words.

 bra :loop ; Branch to :loop.

Type 3; Miscellaneous

Assembler Instruction format Operation

banki # 11000iiiiiiii 001 Load Bank immediate

The Bank register is set to a specific value. This value will subsequently be used as the
upper 8 bits of the effective address of load and store operations.

iiiiiiii 8-bit unsigned value (#)

banki $80 ; Bank = $80

Assembler Instruction format Operation

bank Rb 11000000bbb00 010 Load Bank from register

The Bank register is set from the low 8 bits of a register. This value will subsequently be
used as the upper 8 bits of the effective address of load and store operations.

bank r0 ; Bank = r0 & 0xFF

Assembler Instruction format Operation

swhl Rd [,Rb] 11ddd000bbb00 011 Swap register high and low bytes

The ALU operation SB is performed on a register. The register’s high byte is stored in the
low byte of the destination register, and the register’s low byte is stored in the high byte
of the destination register.

bbb Register whose high and low bytes are to be swapped.

ddd Destination register; accepts the result of the ALU operation.

 movwi r2,$1234 ; r2 = $1234 (movwi is a compound ‘asm’ instruction)
 swhl r2 ; r2 = SB(r2). r2 is now $3412

 swhl r5,r2 ; r5 = SB(r2). r5 is now $1234

Assembler Instruction format Operation

halt 1100000000000 111 Halt the CPU

The CPU halts until it is reset.

 halt

TODO: Display. Large LCD (128 x 64 pixels).

TODO: Keypad.

TODO: Mass storage: IDE hard drive.

TODO: Input and output ports.

