
Altera JTAG-to-Avalon-MM Tutorial

Version 1.0

D. W. Hawkins (dwh@ovro.caltech.edu)

March 14, 2012

Contents

1 Introduction 3

2 SOPC Builder and Qsys 5

3 SOPC Builder Design Flow 6
3.1 Project Creation . 6
3.2 SOPC Builder Component . 7
3.3 Top-Level Design . 9
3.4 Synthesis . 10
3.5 Simulation . 12

3.5.1 SOPC Builder test bench . 12
3.5.2 Avalon-MM Master BFM . 15
3.5.3 JTAG-to-Avalon-MM Master . 17

3.6 Synthesis and Simulation Scripts . 20

4 Qsys Design Flow 21
4.1 Project Creation . 21
4.2 Qsys Component . 22
4.3 Top-Level Design . 25
4.4 Synthesis . 25
4.5 Simulation . 27

4.5.1 Qsys simulation configuration . 27
4.5.2 Avalon-MM Master BFM . 28
4.5.3 JTAG-to-Avalon-MM Master . 29

4.6 Synthesis and Simulation Scripts . 31

5 Host-to-FPGA Communications 33
5.1 System Console . 33
5.2 quartus stp . 33
5.3 Client/Server . 37

A Software Versions 40

B Tutorial Source 41

C Altera Tool Improvement Recommendations 42

D Altera Documentation Web Links 45

2

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Client
Application
(Tcl GUI)

Server
Application

(system console
or quartus_stp)

TCP/IP
(sockets)

USB-Blaster

JTAG
HUB

JTAG-to-Avalon-MM
Master

Avalon-MM
Master BFM

M M

System Interconnect Fabric

On-Chip SRAM

S

LED PIO

S

Button PIO

S

Figure 1: System block diagram for host communication to an Altera Avalon hardware design.

1 Introduction

A common question on the Altera forum is;

How can I use a USB-Blaster to communicate with my system design?

The Altera USB-Blaster interface is used by the Quartus II programmer to configure the FPGA,
used by the SignalTap II logic analyzer for trace capture, and used by the NIOS II processor tools
for debugging and memory inspection, so it is reasonable for users to assume that the interface
can be used to communicate with their designs. This tutorial demonstrates how to implement this
communications.

The target audience for this tutorial is developers new to Altera’s SOPC Builder and Qsys system
design tools. This tutorial improves the user experience with these tools, by providing a step-by-step
walk-though of the system design in Figure 1. While many of the concepts covered will be foreign
to the new user, having an example of the end-to-end system design sequence, makes reading and
comprehension of the extensive tool and device documentation a little easier.

The tutorial shows how to create and simulate the hardware design shown on the right of Figure 1,
and then how to communicate with the design. The hardware design is based solely on Altera-
provided IP components. The software design uses the Altera Tcl-based tools System Console and
quartus_stp for the host-to-JTAG communications, and uses a (generic) Tcl GUI for the client
application. Client-to-server communications are performed using ASCII strings transported using
TCP/IP (sockets); the client can be easily replaced with one written in your favorite programming
language.

The tutorial walks the reader through the creation, synthesis, and simulation of SOPC and Qsys
systems. Tcl scripts are provided that automate the regeneration and simulation of the systems.
The tutorial points out some of the problems with the Altera-provided IP and software; in part so
that the reader can avoid the problems, but also in the hope that Altera will rectify them.

If you liked this tutorial, or have feedback or suggestions on how it can be improved, please post
a message to the Altera Forum thread

http://www.alteraforum.com/forum/showthread.php?t=34787.

Software Versions

The tutorial was written using Altera Quartus 11.1sp1 and Modelsim-ASE (Altera Starter Edition)
10.0c. Appendix A provides details on the operating systems tested, and differences with earlier tool
versions.

3

http://www.alteraforum.com/forum/showthread.php?t=34787

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Table 1: altera jtag to avalon mm tutorial directory layout.
Path Description

doc/ Documentation
hdl/ HDL source code
tcl/ Tcl client/server source code

Simulation

hdl/sopc_system/ SOPC system simulation
hdl/qsys_system/ Qsys system simulation

Synthesis

hdl/boards/ Hardware targets

hdl/boards/bemicro_sdk/ Arrow BeMicro-SDK projects
hdl/boards/bemicro_sdk/sopc_system/ SOPC system synthesis
hdl/boards/bemicro_sdk/qsys_system/ Qsys system synthesis
hdl/boards/bemicro_sdk/share/ Board constraints

hdl/boards/bemicro/ Arrow BeMicro projects
hdl/boards/bemicro/sopc_system/ SOPC system synthesis
hdl/boards/bemicro/qsys_system/ Qsys system synthesis
hdl/boards/bemicro/share/ Board constraints

hdl/boards/de2/ Terasic DE2 projects
hdl/boards/de2/sopc_system/ SOPC system synthesis
hdl/boards/de2/qsys_system/ Qsys system synthesis
hdl/boards/de2/share/ Board constraints

Tutorial Source Code

The tutorial zip file, altera_jtag_to_avalon_mm_tutorial.zip [6], unzips1 to create the directory
layout shown in Table 1. The path to the unzipped directory is referred to in this document via the
variable TUTORIAL. For example, if you unzip the file into your Windows c:/temp directory, then
paths in this document are referenced relative to

TUTORIAL = c:/temp/altera_jtag_to_avalon_mm_tutorial

The example hardware design described in the text targets the Arrow BeMicro-SDK Cyclone IV
board, but the procedure works equivalently well on any other development board. The example
source contains completed designs for the Arrow BeMicro-SDK Cyclone IV, Arrow BeMicro Cyclone
III, and Terasic DE2 Cyclone II boards. The main difference between boards is in their top-level
entities, which contain all pins used on each board. The Qsys or SOPC system is instantiated into
the top-level entity.

1See Appendix B for the recommended unzip methods under Windows and Linux.

4

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

2 SOPC Builder and Qsys

Altera provides two tools for graphically building hardware systems; the classic tool SOPC Builder,
and the new tool Qsys. The main difference between tools is the interconnect fabric, and the support
for hierarchical designs in Qsys [2].

The Avalon Interface Specification consists of bus protocols and an interconnect fabric defined
by Altera [1, 3]. The bus protocols consist of two variants; Avalon Memory Mapped (Avalon-MM)
and Avalon Streaming (Avalon-ST). The Avalon-MM protocol is used to create systems like that
shown in Figure 1, where multiple masters connect to multiple slaves, and the masters control the
slaves by performing read and write accesses to addresses defined by the system memory map. The
Avalon-ST protocol is used in data streaming applications, such as signal processing, where data
sources pass data onto data sinks.

SOPC Builder is used to create systems containing Avalon-MM components and Avalon-ST
components. The Avalon fabric is used to connect Avalon-MM masters to Avalon-MM slaves. SOPC
Builder automates the systematic and tedious task of creating address decoding, bus arbitration,
and multiplexing logic between masters and slaves. The connections between Avalon-ST sources
and sinks are point-to-point, so no fabric is required.

Qsys takes a different approach to the implementation of the interconnect fabric; master and slave
transactions are converted to packets, and those packets are transported through a network-on-chip.
This approach abstracts the bus interface protocol of the masters and slaves, allowing different
bus protocols to interface to the network. This allows Altera to continue to use the Avalon-MM
protocol, and to add support for ARM defined bus protocols such as the Advanced Microcontroller
Bus Architecture (AMBA) Advanced eXtensible Interface (AXI). For example, a Qsys system can be
created with Avalon-MM masters and AXI slaves, and the interconnect fabric performs the required
bus protocol translation. To create this system using SOPC Builder, you would need to create an
Avalon-MM-to-AMBA bridge to adapt the AMBA slave before connecting it to the Avalon-MM
fabric.

The following sections define the system shown in Figure 1 first using SOPC Builder and then
using Qsys. The two designs allow you to contrast the two tools.

5

http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

3 SOPC Builder Design Flow

In this section, the system in Figure 1 is created using SOPC Builder, synthesized using Quartus,
and simulated using Modelsim. The design is implemented using the Quartus GUI. Once the design
is complete, I show how to create Tcl scripts that can regenerate the system from the minimum
number of design files.

3.1 Project Creation

Start Quartus 11.1sp1 and create a new project targeting the BeMicro-SDK board;

• File→New Project Wizard

• Directory, Name, Top-level Entity [page 1 of 5]

– Working directory name: c:\temp\altera_jtag_to_avalon_mm_tutorial\sopc\

– Project and top-level entity name: tutorial

– Click Next

– Click Yes when prompted to create the working directory

• Add Files [page 2 of 5]

– Click Next

• Family & Device Settings [page 3 of 5]

– Device Family: use the pull-down menu to select Cyclone IV E

– In the Available Devices spreadsheet, select EP4CE22F17C7

– Click Next

• Click Finish, leaving all other settings at their defaults

6

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Figure 2: SOPC Builder sopc system design.

3.2 SOPC Builder Component

Start SOPC Builder and create the system shown in Figure 2;

• Tools→SOPC Builder

• In the Create New System GUI select Verilog as the target language, and name it sopc_system.

Selecting Verilog is a requirement, since in the next section I show how to simulate the sys-
tem using the free version of Modelsim supplied by Altera, i.e., Modelsim-ASE. The Altera
Avalon and Avalon Verification IP components are written in Verilog and SystemVerilog, and
Modelsim-ASE only supports single language simulation. The full version of Modelsim can be
used for mixed language designs.

• Under Clock Settings, rename the clock to clk (the default clock frequency of 50MHz is correct
for the BeMicro-SDK).

• Add the SOPC System components from the Component Library;

– Add the Avalon-MM BFM master;
∗ Verification→Simulation→Altera Avalon-MM Master BFM

For previous versions of Quartus use;
Avalon Verification Suite→Altera Avalon-MM Master BFM

∗ Uncheck Use the burstcount signal and click finish.
∗ Right click on the component and rename it bfm_master.

– Add the JTAG-to-Avalon-MM master;
∗ Bridges→Memory Mapped→JTAG to Avalon Master Bridge

For previous versions of Quartus use;
Bridges and Adapters→Memory Mapped→JTAG to Avalon Master Bridge

7

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

∗ Accept the defaults, and click finish.
∗ Right click on the component and rename it jtag_master.

– Add the LED parallel I/O slave;

∗ Peripherals→Microcontroller Peripherals→PIO (Parallel I/O).
∗ Accept the defaults, and click finish.
∗ Right click on the component and rename it led_pio.
∗ Connect the slave to the two masters; it will be assigned the base address 0x00000000.

– Add the button parallel I/O slave;

∗ Peripherals→Microcontroller Peripherals→PIO (Parallel I/O).
∗ Change the direction to input, and click finish.
∗ Right click on the component and rename it button_pio.
∗ Connect the slave to the two masters; and change its base address to 0x00000010.

– Add the on-chip memory slave;

∗ Memories and Memory Controllers→On-chip→On-chip Memory (RAM or ROM).
∗ Uncheck Initialize memory content, and click finish.
∗ Right click on the component and rename it onchip_ram.
∗ Connect the slave to the two masters; and change its base address to 0x00001000.

• The SOPC System should now look like that in Figure 2. The warnings shown in the SOPC
builder GUI can be ignored.

• Click Generate to generate the system.

SOPC Builder pops-up a Save changes? dialog window asking if you want to Save changes to
unnamed? Click the Save button to bring up the Save dialog window. Enter the system name,
sopc_system.sopc, and click Save2.

• When the message Info: System generation was successful appears, click the Exit button (click
Save again when it prompts you).

So what did this just create? In the project directory, you will see Verilog files for the SOPC sys-
tem components; bfm_master.v, jtag_master.v, led_pio.v, button_pio.v, and onchip_ram.v,
and a Verilog file for the top-level SOPC system, sopc_system.v. Open the files and look at the
Verilog code; the BFM master, JTAG master, and on-chip RAM files simply instantiate components,
while the LED and button PIO components contain Verilog code. The SOPC system file is the most
complicated, it contains automatically generated interconnect code (the main reason for using the
system generation tool). The SOPC system file is not particularly readable, however, there are
important sections of the file that are discussed in Section 3.5.

The SOPC system description is implemented in the XML file sopc_system.sopc. All of the
Verilog files generated by SOPC Builder can be considered as intermediate files, and they can be
deleted and regenerated; much like you would consider object files as intermediate files when com-
piling and linking programs. Go ahead and delete all the SOPC system generated Verilog files and
other related files with sopc_system in their names (except of course for sopc_system.sopc), delete
the directories jtag_master and sopc_system_sim too. Open the SOPC Builder GUI, and you will
see the system unchanged. Click Generate and all the files you just deleted will be regenerated. The
point of this last exercise was to show you that the SOPC System component can be regenerated
from the single file sopc_system.sopc, so that is the file to preserve when creating a project archive
or checking the project into a version control system.

2See Appendix C, Note 1.

8

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

module sopc system (
// 1) g l o b a l s i g n a l s :
c lk ,
r e s e t n ,

// t h e b u t t o n p i o
i n po r t t o t h e bu t t on p i o ,

// t h e l e d p i o
ou t po r t f r om th e l e d p i o

) ;

Figure 3: SOPC Builder sopc system top-level Verilog module.

3.3 Top-Level Design

Figure 3 shows the Verilog module generated for the SOPC system component (buried inside the
sopc_system.v file). So how should this component be used?

SOPC Builder components can be used in one of two ways; the component can be considered
the top-level component, or the component can be considered just one component in a top-level
design, i.e., a component that you instantiate in a top-level design. I encourage you to use the latter
interpretation. Here is my argument;

• FPGA pin assignments are essentially invariant once the device is placed-and-routed on a
PCB. The design may contain multiple general purpose I/Os (GPIO), whose properties can
be changed, but the wiring associated with GPIO bit 0 in the schematic will always route to
the same pin on the FPGA, regardless of what you would like to name that signal within your
specific Verilog project.

• Design constraints for I/O signals are generally applied to the pin names of the signals. To
avoid having to copy identical constraints between projects, it is convenient to define a top-
level entity for a board with a fixed set of port names, along with a constraints file with
the nominal constraints. Design-specific constraints can then either replace or augment the
nominal constraints.

• Figure 3 shows the port names of the example SOPC system design. These port names depend
on the SOPC system master and slave names. Any changes to the SOPC master and slave
names results in port name changes.

If the top-level SOPC component is used as your top-level design file, then the port names
become the pin names. Pin constraints must then be applied to pin names that are being
generated by SOPC Builder. This is a design maintenance headache.

By instantiating the SOPC component in a top-level component, you gain the advantage of
being able to rename the ports to the standard pin names used for that particular board.

Consider the case where a SOPC component output or input port is not used on a particular
board. If the SOPC component is instantiated in a top-level design, then you can leave unused
outputs disconnected, and you can drive unused inputs to static values. You cannot do this if
you use the SOPC component as the top-level design, as all ports become pins, and all pins
need assignments (otherwise Quartus will assign default values that could be incorrect and
result in damage to your board).

9

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

You also gain the appreciation that the SOPC system is a reuseable component. For example,
the SOPC system developed in this tutorial is instantiated in top-level designs for the BeMicro,
BeMicro-SDK, and DE2 boards.

Because the SOPC system can be considered as a component, rather than a top-level design,
it can be placed in its own source directory, with a simulation testbench. A board design that
instantiates the SOPC system then adds the source path to its project, generates the Verilog source
in a work directory, and uses that code for synthesis. The example source provided with this tutorial
shows this approach.

Caveat: An SOPC System should be able to be treated as a component, however, the .sopc
file contains a reference to the FPGA device part number used when creating the system (the part
number is displayed on the SOPC Builder GUI). The example code provided with this tutorial
shows that a single SOPC system file can be used with multiple boards containing different devices.
The SOPC System was designed targeting the BeMicro-SDK Cyclone IV E device, but is reused
unchanged for the BeMicro Cyclone III and DE2 Cyclone II devices. The synthesis script for each
board first copies sopc_system.sopc from the common area to the board-specific project work
directory. The script needs to do this, as SOPC Builder generates the output files in the same
location as the SOPC file. The synthesis script then requests the user to start the SOPC Builder
GUI and to generate the SOPC system files3. The synthesis script request to generate the SOPC
system occurs before the device constraint has been setup, so the SOPC Builder GUI will always
generate a warning that the device currently selected for the project, the Cyclone IV GX, does not
match that in the SOPC file. The warning can be ignored.

3.4 Synthesis

Now that we have established why you should not use the SOPC system as the top-level entity,
we will ignore that advice, and do it anyway. In the Quartus GUI, under the Project Navigator
window (located on the top-left of the GUI), click on the Files tab, and you should see the file
sopc_system.qip listed. If you do not, add it using the Project→Add/Remove Files in Project
menu. Right click on the file, and select Set as Top-Level Entity, then synthesize the design (press
the play button on the GUI).

Figure 4 shows the post-synthesis hierarchy display for the SOPC system design (when synthe-
sized as the top-level design entity). The SOPC design uses a total of 986 LCs, with the majority
used by the JTAG hub (sld_hub, 99 LCs), and the JTAG master (jtag master, 816 LCs). The
Qsys design uses a similar number of LCs.

Before moving on, look at the Quartus II message window (bottom left of the GUI, with the
Processing tab selected). Scroll up to the top of the messages, and then scroll down until you see
the warning text (highlighted in blue). These warnings are generated by the Avalon-MM BFM
component. This component is used in simulation only. The warnings appear because the authors
of the BFM components have not used synthesis directives correctly. The Verilog source for the
Avalon-MM BFM should have an Avalon-MM master interface for simulation, and another for
synthesis. For synthesis, the Avalon-MM master interface signals should be driven to deasserted
levels, allowing the synthesis tool to eliminate the logic (without generating warnings). However,
as it is currently implemented, Quartus generates a large number of warnings about missing drivers
and dangling pins!

3I have not figured out how to automate this from Tcl. The Tcl shell environment variables do not appear to be
setup appropriately to exec the command-line tool sopc builder.

10

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

F
ig

ur
e

4:
Q

ua
rt

us
II

hi
er

ar
ch

y
di

sp
la

y
fo

r
th

e
s
o
p
c
s
y
s
t
e
m

de
si

gn
.

T
he

de
si

gn
us

es
98

6
L
C

s,
w

it
h

th
e

bu
lk

be
in

g
us

ed
by

th
e

JT
A

G
hu

b
(s
l
d
h
u
b
,
99

L
C

s)
an

d
th

e
JT

A
G

-t
o-

A
va

lo
n-

M
M

m
as

te
r

(j
t
a
g
m
a
s
t
e
r
,
81

6
L
C

s)
.

11

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

3.5 Simulation

The SOPC System design can be simulated using two possible methods; use the Avalon-MM master
BFM documented in the Verification IP Guide, or live-on-the-edge and use the completely undoc-
umented Verilog tasks hidden deep within the JTAG-to-Avalon-MM master implementation. The
following sections describe both methods.

3.5.1 SOPC Builder test bench

The observant user would have noticed that SOPC Builder has a simulate option; what does that
do? Open up the SOPC Builder GUI, click on the System Generation tab, and check the Sim-
ulation. Create project simulator files. check-box. Check that Modelsim-ASE is setup by using
Tools→Options, highlighting HDL Simulator, and for the simulator Mentor Graphic’s Modelsim-
Altera set the Application Path, eg., c:\software\altera\11.1sp1\modelsim_ase\win32aloem,
and click Finish. Now click the Run Simulator button. You will get an error about a missing .mpf
file (this is the Modelsim project file); the Run Simulator button should not really be highlighted
until the .mpf file is present in the project. To create the file, click the SOPC Builder Generate
button, and then once generation completes, click the Run Simulator button.

Run Simulator starts Modelsim-ASE, changes directory to $TUTORIAL/sopc/sopc_system_sim
directory, and loads the project file. The Modelsim command where can be used to display the
current directory and project. The SOPC system simulation is controlled by Tcl procedures defined
in the script setup_sim.do. Open the script and look at the Tcl commands (they are far from easy
to read); the Tcl commands determine if the version of Modelsim is the Altera Edition or not, sets
up a vsim (simulator) command to run on a component called test_bench, and creates commands
to build library components and the sopc_system.v file.

At the Modelsim console type do setup_sim.do to source the Tcl procedures defined in the
script. Figure 5 shows the Modelsim console output generated by the script. Type the command s
to build the components and load the simulation. The simulation should load without errors, alas,
Modelsim fails with the message # Error loading design (along with a message that the design
unit for the altera_avalon_mm_master_bfm could not be found). The simulation files generated by
Quartus 11.1sp1 do not include the Avalon-MM BFM source files (earlier versions of Quartus work
fine). The problem can be rectified by editing setup_sim.do to add the BFM source files inside the
alias for the s command, i.e., change the code to

alias s "vlib work;
_init_setup

vlog -sv [file join $env(QUARTUS_ROOTDIR)]/../ip/altera/sopc_builder_ip/
verification/lib/verbosity_pkg.sv
vlog -sv [file join $env(QUARTUS_ROOTDIR)]/../ip/altera/sopc_builder_ip/
verification/lib/avalon_mm_pkg.sv
vlog -sv [file join $env(QUARTUS_ROOTDIR)]/../ip/altera/sopc_builder_ip/
verification/altera_avalon_mm_master_bfm/altera_avalon_mm_master_bfm.sv

vlog +incdir+.. ../sopc_system.v;

(where the start and end of this script segment already exist in the file, and each vlog com-
mand is on one line, i.e., 3 new lines are added to the script). After editing setup_sim.do, type
do setup_sim.do at the Modelsim prompt to read the modified script, and then s to build the simu-
lation files. This time, the command completes without error (there is a warning about onchip_ram
not being initialized, but that can be ignored).

12

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

@@ setup_sim.do
@@
@@ Defined aliases:
@@
@@ s -- Load all design (HDL) files.
@@ re-vlog/re-vcom and re-vsim the design.
@@
@@ s_cycloneiv -- For Modelsim SE, compile Cyclone IV models.
@@ (Ignored in Modelsim AE.)
@@
@@ s_stratixiv -- For Modelsim SE, compile Stratix IV models.
@@ (Ignored in Modelsim AE.)
@@
@@ s_stratixv -- For Modelsim SE, compile Stratix V models.
@@ (Ignored in Modelsim AE.)
@@
@@ w -- Sets-up waveforms for this design
@@ Each SOPC-Builder component may have
@@ signals ’marked’ for display during
@@ simulation. This command opens a wave-
@@ window containing all such signals.
@@
@@ l -- Sets-up list waveforms for this design
@@ Each SOPC-Builder component may have
@@ signals ’marked’ for listing during
@@ simulation. This command opens a list-
@@ window containing all such signals.
@@
@@ h -- print this message
@@

Figure 5: SOPC system Modelsim setup script (setup sim.do) Tcl commands.

13

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Load the Modelsim wave window with the default SOPC system signals by typing the w com-
mand; this populates the wave window with the onchip_ram signals. Not very exiting is it? Type
add wave * to add the clock, reset, LED output, and button input signals. Type run 1 us to run
the simulation for 1µs. In the Modelsim console, you will see a message output by the Avalon-MM
master BFM. Look at the wave window, and zoom to show the simulation time from 0 to 1us (by
clicking on the magnifying glass with the solid blue center). What happened in the wave window?
Well, if we had not added the clock and reset, a whole lot of nothing (well, 1µs of nothing really)!
By adding the reset and clock, at least we see some activity.

This exercise shows that there is no free lunch; just because SOPC Builder has a simulate button,
does not mean it will write your simulation testbench for you, all it does is provide the infrastructure
for you to write your simulation testbench.

To see what infrastructure Altera provides, open up the sopc_system.v file and scroll to the
bottom of it. There are a couple of things to observe;

• There is a module called test_bench. This is the testbench that you just simulated in Mod-
elsim. The testbench contains a clock generator, a reset generator, and the device under test;
the SOPC system component. Not much of a testbench really.

• In the Verilog source, above the test_bench component, Verilog include statements are
used to inline a mixture of code from the Quartus install directory, code copied to the project
directory, and generated code. Appendix C Notes 5 and 6 have comments on the disadvantages
of using this technique to resolve source code dependencies.

The Tcl simulation script described in Section 3.6 uses the vsim +incdir+ command line
option to compile the source that is include’d inline in the Verilog source. For this simulation
to work, make sure to check the Simulation check box under the System Generation tab in the
SOPC Builder GUI.

So how then do we simulate this system? The Altera Verification IP suite shows you one option;
you create your own testbench and then instantiate test_bench as the clock and reset generator.
Personally, I do not like that solution, as you lose control of the reset line. Rather, I recommend
ignoring test_bench entirely. The only useful simulation code that SOPC Builder generates are
some of the script commands within setup_sim.do; the lines of code telling you the paths to the
components included in the project, and the arguments to the vsim command to get the simulation
to run (without generating lots of warnings).

14

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

3.5.2 Avalon-MM Master BFM

The source code for the Avalon-MM master BFM testbench is located at;

$TUTORIAL/hdl/sopc_system/test/sopc_system_bfm_master_tb.sv

This testbench uses the Altera Verification IP Suite to generate Avalon-MM master transactions.
The Avalon-MM master BFM testbench can be simulated as follows;

• Start Modelsim.

This can be performed from the SOPC Builder GUI by clicking on the Run Simulator button
or you can run the simulator directly.

• Set the tutorial path variable

Modelsim> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial

• If you did not start Modelsim from the SOPC Builder GUI, change directory to the SOPC
simulation directory and reset the work library mapping

Modelsim> cd $TUTORIAL/sopc/sopc_system_sim
Modelsim> vmap work work

The first argument to vmap is the library name, and the second is the path to that library, i.e.,
the command maps the work library to the work/ directory in the current directory.

• Compile the SOPC Builder source

Modelsim> do setup_sim.do
Modelsim> s

This step will only succeed if the script has been edited per the instructions in the previous
section.

• Compile the testbench

VSIM> vlog -sv $TUTORIAL/hdl/sopc_system/test/sopc_system_bfm_master_tb.sv

• Run the simulation

VSIM> vsim -t ps +nowarnTFMPC sopc_system_bfm_master_tb
VSIM> do $TUTORIAL/hdl/sopc_system/scripts/sopc_system_bfm_master_tb.do
VSIM> run -a

where the vsim +nowarnTFMPC option suppresses warnings about missing connections (this
argument was copied from setup_sim.do), and the .do file populates the wave window.

• Modify the testbench source, recompile, and rerun the simulation via

VSIM> vlog -sv $TUTORIAL/hdl/sopc_system/test/sopc_system_bfm_master_tb.sv
VSIM> restart -f; run -a

Figure 6 shows the Modelsim console output produced by the testbench. The testbench checks
the operation of the LEDs, push buttons, and several locations in RAM. The testbench code contains
SystemVerilog assertions that would have generated an error message for any failed test.

15

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

==
JTAG-to-Avalon-MM SOPC System Testbench (using the BFM master)
==
* Deassert reset
#
--
1: Test the LEDs.
--
* Write 0xAA to the LEDs
- LED register value = aah
- LED port value = aah
* Walking 1’s test
- LED port value = 01h
- LED port value = 02h
- LED port value = 04h
- LED port value = 08h
- LED port value = 10h
- LED port value = 20h
- LED port value = 40h
- LED port value = 80h
#
--
2: Test the push buttons.
--
* Push button value = 55h
* Walking 1’s test
- Push button value = 01h
- Push button value = 02h
- Push button value = 04h
- Push button value = 08h
- Push button value = 10h
- Push button value = 20h
- Push button value = 40h
- Push button value = 80h
#
--
3: Test the on-chip RAM.
--
* Fill 1024 locations of RAM with an incrementing count
* Read and check the RAM
#
==
Simulation complete.
==

Figure 6: Modelsim console output for the SOPC Builder Avalon-MM BFM master testbench,
sopc system bfm master tb.

16

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

3.5.3 JTAG-to-Avalon-MM Master

Using only the Avalon-MM BFM master to test your design violates the principle

“Test what you fly, and fly what you test”

The main idea of the principle that you should test what you use. Using the Avalon-MM BFM
to generate Avalon-MM transactions does not test the JTAG-to-Avalon-MM master logic, which
is what generates the Avalon-MM master transactions in the actual hardware. How then can you
be sure that your hardware design will function correctly? Arguably, you could test individual
components using the Avalon Verification IP suite, which would then give you higher confidence
that the components within the system are functionally correct. The final SOPC system should
still have its own testbench, since the system has a fabric that is specific to the design. So, lets use
the Verification IP suite to test the JTAG-to-Avalon Master . . . Oh, but there is no documented
way to simulate the JTAG-to-Avalon-MM master interface, bummer. We won’t let the lack of
documentation stop us though, continue reading!

The Altera wiki entry Avalon-ST JTAG Interface PLI Simulation Mode shows how to exercise
the JTAG-to-Avalon-MM master in simulation using Verilog PLI (Programming Language Inter-
face). The PLI method uses a socket connection between System Console and Modelsim, and
magically (the code is hidden in a Java library) generates transactions within the testbench. While
the PLI interface could be useful for some applications, eg., developing a software interface, it is
not appropriate for use in self-verifying (automated) testbenches. A self-verifying testbench should
run completely within the Modelsim simulator, and the easiest way to do that, is to implement
the testcase generator, the assertion logic, and the device under test using a hardware description
language.

The JTAG-to-Avalon-MM master consists of a JTAG-to-Avalon-ST interface that converts JTAG
transactions into byte streams in and out of the design, bytes-to-packets conversion logic that encodes
and decodes a binary protocol transported over the byte streams. The binary protocol encodes
whether to perform an Avalon-MM read or write transaction, and the response for each transaction
type. The packets to transactions component converts the commands into Avalon-MM master
commands. The JTAG-to-Avalon-ST, bytes-to-packets, packets-to-transactions, packets-to-bytes,
and JTAG-to-Avalon-MM components are only partially documented in the Altera literature. See [5]
for a detailed analysis of the JTAG-to-Avalon components.

The analysis document [5] shows that buried deep within the source code for the JTAG-to-Avalon-
ST component is the logic for the JTAG node (which connects to the JTAG hub). Hidden within
the JTAG node are Verilog tasks for performing low-level JTAG operations. Figure 7 shows the
path to the JTAG node in the testbench developed for this section. The JTAG node is highlighted
in the figure, and the node’s Verilog tasks are listed beneath it. If you know how to generate JTAG
transactions, and know how to use them to generate byte streams, then you have the makings of
a JTAG-to-Avalon-MM master simulation. I won’t bore you with the details, the morbidly curious
can read the testbench code and the analysis document.

The source code for the JTAG-to-Avalon-MM master testbench is located at;

$TUTORIAL/hdl/sopc_system/test/sopc_system_jtag_master_tb.sv

This testbench uses the undocumented Verilog tasks in the JTAG node to generate byte-streams
which encode Avalon-MM master transactions for the packets-to-transactions component.

17

http://www.alterawiki.com/wiki/Avalon-ST_JTAG_Interface_PLI_Simulation_Mode

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Figure 7: Altera JTAG node location in the SOPC Builder JTAG-to-Avalon-MM master testbench,
sopc system jtag master tb. The tasks under the highlighted JTAG node, i.e., reset jtag state
down to shift one bit, are used to simulate the JTAG-to-Avalon-MM bridge.

18

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

The JTAG-to-Avalon-MM master testbench can be simulated as follows;

• Start Modelsim.

This can be performed from the SOPC Builder GUI by clicking on the Run Simulator button
or you can run the simulator directly.

• Set the tutorial path variable

Modelsim> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial

• If you did not start Modelsim from the SOPC Builder GUI, change directory to the SOPC
simulation directory and reset the work library mapping

Modelsim> cd $TUTORIAL/sopc/sopc_system_sim
Modelsim> vmap work work

The first argument to vmap is the library name, and the second is the path to that library, i.e.,
the command maps the work library to the work/ directory in the current directory.

• Compile the SOPC Builder source

Modelsim> do setup_sim.do
Modelsim> s

This step will only succeed if the script has been edited per the instructions in Section 3.5.1.

• Compile the testbench

VSIM> vlog -sv $TUTORIAL/hdl/sopc_system/test/sopc_system_jtag_master_tb.sv

• Run the simulation

VSIM> vsim -t ps +nowarnTFMPC sopc_system_jtag_master_tb
VSIM> do $TUTORIAL/hdl/sopc_system/scripts/sopc_system_jtag_master_tb.do
VSIM> run -a

where the vsim +nowarnTFMPC option suppresses warnings about missing connections (this
argument was copied from setup_sim.do), and the .do file populates the wave window.

• Modify the testbench source, recompile, and rerun the simulation via

VSIM> vlog -sv $TUTORIAL/hdl/sopc_system/test/sopc_system_jtag_master_tb.sv
VSIM> restart -f; run -a

The JTAG-to-Avalon-MM master testbench reproduces the test sequences performed by the Avalon-
MM BFM master testbench shown in Figure 6. The JTAG-to-Avalon-MM master testbench console
output is slightly different, as the testbench first performs a JTAG protocol test, and then duplicates
the Avalon-MM BFM master testbench sequences. The run-time of the JTAG testbench is much
longer than that of the Avalon-MM BFM master testbench, due to the fact that the JTAG clock
is slower than the Avalon-MM clock, and byte stream transactions are serialized over JTAG. In
practice, you should use the Avalon-MM BFM master for performing exhaustive tests on Avalon-
MM slaves, and perform token tests with the JTAG simulation interface to check that devices are
connected correctly. Thus we finally reach our goal of testing what we fly.

19

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

3.6 Synthesis and Simulation Scripts

Up until this point, you have been entering commands in the Quartus or Modelsim console. What
happens when you get bored with typing, or forget the commands? Surely there is an easier way?
Yes, there is! Tcl scripts.

The BeMicro-SDK SOPC system project directory is located at;

$TUTORIAL/hdl/boards/bemicro_sdk/sopc_system/

The project directory contains the synthesis script scripts/synth.tcl, and the top-level design file
src/bemicro_sdk.sv (with the SOPC system instantiated as a component). The synthesis script
can be run by starting Quartus, selecting the Tcl console (if you cannot see it in the GUI, make it
visible using View→Utility Windows→Tcl Console), changing to the project directory, and running
the script, i.e., at the Quartus Tcl prompt

tcl> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial
tcl> cd $TUTORIAL/hdl/boards/bemicro_sdk/sopc_system/
tcl> source scripts/synth.tcl

The script will determine that the SOPC System needs to be generated. I have not figured out
how to automate that from Tcl, so the script asks you to run SOPC Builder, and generate the
SOPC system. Generate the system, and then exit the SOPC Builder GUI. In the Tcl console, press
the up-arrow to bring back the last command, and re-run the script. Quartus will then synthesize
the design. The top-level design connects 7-bits of the LED control register to 7 of the 8 LEDs
on the board, and blinks the other LED at about 1Hz (so you can see the board is alive). Thus
implementing the design has been reduced to a few Tcl commands and GUI button clicks—much
less to remember!

The SOPC System simulations also have a Tcl script that will setup the simulator without
having to run the setup_sim.do script generated by Quartus. The SOPC system simulation project
directory is located at;

$TUTORIAL/hdl/sopc_system/

That directory contains a scripts/ directory containing the simulation script sim.tcl. The sim-
ulation script can be run by starting Modelsim, changing to the project directory, and running the
script, i.e.,

ModelSim> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial
ModelSim> cd $TUTORIAL/hdl/sopc_system/
ModelSim> source scripts/sim.tcl

The script will determine whether the SOPC System needs to be generated (remember, Quartus
generates code, so the simulation needs to compile the generated code). The script is configured to
look for the SOPC system in the BeMicro-SDK project directory. If it does not find it, it asks you
to run Quartus to generate it (which can be done using the synth.tcl script following the sequence
just described). Once the simulation script finds the Quartus generated source, it compiles the test-
benches, and creates two Tcl procedures with the same names as the testbenches. Either testbench
can be run by typing the procedure name. Each procedure issues the vsim command, populates the
wave window, and runs the simulation (see the script for the procedure implementations). Again,
much less typing!

The nice thing about the synthesis and simulation scripts is that they show you the minimum
number of source files needed to reproduce both the Quartus and Modelsim projects. These are the
source files that you check into a code versioning system (along with the synthesis and simulation
scripts).

20

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

4 Qsys Design Flow

In the following sections, I show how to use the Qsys tool to create a system, and then how to
simulate it. Qsys is Altera’s the new-and-improved replacement for SOPC Builder. Reproducing the
SOPC Builder design using Qsys helps contrast the tools, and provides the reader with a reference
design when porting their own SOPC system designs to Qsys.

4.1 Project Creation

Start Quartus 11.1sp1 and create a new project targeting the BeMicro-SDK board;

• File→New Project Wizard

• Directory, Name, Top-level Entity [page 1 of 5]

– Working directory name: c:\temp\altera_jtag_to_avalon_mm_tutorial\qsys\

– Project and top-level entity name: tutorial

– Click Next

– Click Yes when prompted to create the working directory

• Add Files [page 2 of 5]

– Click Next

• Family & Device Settings [page 3 of 5]

– Device Family: use the pull-down menu to select Cyclone IV E

– In the Available Devices spreadsheet, select EP4CE22F17C7

– Click Next

• Click Finish, leaving all other settings at their defaults

21

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Figure 8: Qsys qsys system design.

4.2 Qsys Component

Start Qsys and create the system shown in Figure 8;

• Tools→Qsys

• The Qsys GUI starts up with a Clock Source already populated. Right click, and rename it
clk.

• Add the Qsys components from the Component Library;

– Add the Avalon-MM BFM master;

∗ Verification→Simulation→Altera Avalon-MM Master BFM
For previous versions of Quartus use;
Avalon Verification Suite→Altera Avalon-MM Master BFM

∗ Uncheck Use the burstcount signal and click finish.
∗ Right click on the component and rename it bfm_master.

– Add the JTAG-to-Avalon-MM master;

∗ Bridges→Memory Mapped→JTAG to Avalon Master Bridge
For previous versions of Quartus use;
Bridges and Adapters→Memory Mapped→JTAG to Avalon Master Bridge

∗ Accept the defaults, and click finish.
∗ Right click on the component and rename it jtag_master.

22

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

∗ Export the master_reset signal to the top-level, by clicking on the Click to export
text in the Export column, Reset Output row, and enter the name resetrequest.
This creates the top-level port resetrequest_reset on the Qsys system (which can
be viewed on the HDL Example tab). This signal is an output from the JTAG master
that is intended for use as a JTAG controlled reset source (the hardware examples
instead use this signal to control an LED).

– Add the LED parallel I/O slave;

∗ Peripherals→Microcontroller Peripherals→PIO (Parallel I/O).
∗ Accept the defaults, and click finish.
∗ Right click on the component and rename it led_pio.
∗ Export the I/O to the top-level, by clicking on the Click to export text in the Export

column, Conduit Endpoint row, and enter the name led. This creates the top-level
port led_export on the Qsys system (which can be viewed on the HDL Example
tab).

∗ Connect the slave to the two masters; it will be assigned the base address 0x00000000.

– Add the button parallel I/O slave;

∗ Peripherals→Microcontroller Peripherals→PIO (Parallel I/O).
∗ Change the direction to input, and click finish.
∗ Right click on the component and rename it button_pio.
∗ Export the I/O to the top-level, by clicking on the Click to export text in the Export

column, Conduit Endpoint row, and enter the name button. This creates the top-
level port button_export on the top-level Qsys system (which can be viewed on the
HDL Example tab).

∗ Connect the slave to the two masters; and change its base address to 0x00000010.

– Add the on-chip memory slave;

∗ Memories and Memory Controllers→On-chip→On-chip Memory (RAM or ROM).
∗ Uncheck Initialize memory content, and click finish.
∗ Right click on the component and rename it onchip_ram.
∗ Connect the slave to the two masters; and change its base address to 0x00001000.

• Connect the clock and reset signals;

– Connect the Clock Source component (clk) Clock Output (clk) to the clock input on each
of the Avalon-MM masters and slaves.

– Connect the Clock Source component (clk) Reset Output (clk_reset) to the reset input
on each of the Avalon-MM masters and slaves.

• The Qsys system should now look like that in Figure 8. The warnings shown in the Qsys GUI
can be ignored.

• Click on the Generation tab. Uncheck Create block symbol file (.bsf), then click the Generate
button to generate the system.

Qsys generates a pop-up asking if you want to save changes to unnamed. Click Save and enter
the system name; qsys_system.qsys.

• When the message Generate Complete. 0 Errors, 3 Warnings appears, click the Close button,
and then close the GUI using File→Exit.

23

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

The Qsys system files are generated in a directory called qsys_system. This is an improvement over
SOPC Builder, which would generate many of the system files in the top-level of the Quartus work
directory. The top-level Qsys system module is located in the file

qsys_system/synthesis/qsys_system.v

This file is an improvement over that generated by SOPC Builder in that it contains only the
sopc_system component module, making it easier to comprehend. If you check the simulation
option in the generate tab, and re-generate the system, another version of the file is created in

qsys_system/simulation/qsys_system.v

and while the two files appear to be very similar, unfortunately, the code generator generates the
Verilog code in a different order, making it impossible to compare the synthesis and simulation
versions to determine actual code differences. On a more positive note, Qsys does not use Verilog
include statements, so that is another improvement over SOPC Builder (see Appendix C Note 5
for the SOPC Builder discussion).

The Qsys generated directories

qsys_system/synthesis/submodules
qsys_system/simulation/submodules

contain copies of Quartus II installation library code (eg., the JTAG node, altera_jtag_sld_node.v,
which is used for JTAG-to-Avalon-MM master simulation). Appendix C Note 6 discusses the dis-
advantages of copying what is essentially library source code into a project.

The Qsys system description is implemented in the XML file qsys_system.qsys. As with SOPC
Builder, all of the generated files can be considered as intermediate files; these files can be deleted and
regenerated. Go ahead and delete all of the Qsys files and directories, except for qsys_system.qsys.
Open the Qsys GUI, you will be prompted for a system file, select qsys_system.qsys, and you will
see the Qsys system unchanged. Select the Generation tab, and then click the Generate button to
regenerate the system.

Caveat: When you select the Generate tab, you may notice that the Create block symbol file
check-box is checked again. The settings selected on the Generate page are not preserved in the
.qsys file. See Appendix C Note 7 for a discussion.

24

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

module qsys system (
output wire r e s e t r e q u e s t r e s e t , // r e s e t r e q u e s t . r e s e t
output wire [7 : 0] l ed expor t , // l e d . expor t
input wire [7 : 0] button export , // but ton . expor t
input wire r e s e t r e s e t n , // r e s e t . r e s e t n
input wire c l k c l k // c l k . c l k

) ;

Figure 9: Qsys qsys system top-level Verilog module.

4.3 Top-Level Design

Figure 9 shows the top-level Qsys system module port definitions from qsys system/synthesis/
qsys system.v; the naming convention is a bit redundant isn’t it? It seems kind of pointless that
Altera allows you to define a port name in the Export column in Figure 8, and then they go and
munge the names to produce the port names in Figure 9. From the comments after each port, it
appears that Altera’s port naming convention is a mapping of a SystemVerilog interface definition
into a Verilog compatible port name.

4.4 Synthesis

Section 3.3 discusses the reasons why an SOPC System or Qsys System should not be used as a
top-level component. Section 3.4 ignores that advice to gauge the logic utilization of the system.
We repeat that procedure here, to determine the Qsys system logic utilization.

In the Quartus GUI, under the Project Navigator window (located on the top-left of the GUI),
click on the Files tab, and then add the Qsys IP file qsys_system.qip using the Project→Add/Remove
Files in Project menu. Right click on the file, and select Set as Top-Level Entity, then synthesize
the design (press the play button on the GUI).

Figure 10 shows the post-synthesis hierarchy display for the Qsys system design (when synthesized
as the top-level design entity). The Qsys design uses a total of 1058 LCs, with the majority used by
the JTAG hub (sld_hub, 99 LCs), and the JTAG master (jtag master, 811 LCs). Figure 4 shows
that the SOPC system design uses a similar number of LCs.

25

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

F
ig

ur
e

10
:

Q
ua

rt
us

II
hi

er
ar

ch
y

di
sp

la
y

fo
r

th
e
q
s
y
s
s
y
s
t
e
m

de
si

gn
.

T
he

de
si

gn
us

es
10

58
L
C

s,
w

it
h

th
e

bu
lk

be
in

g
us

ed
by

th
e

JT
A

G
hu

b
(s
l
d
h
u
b
,
99

L
C

s)
an

d
th

e
JT

A
G

-t
o-

A
va

lo
n-

M
M

m
as

te
r

(j
t
a
g
m
a
s
t
e
r
,
81

1
L
C

s)
.

26

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

#
List Of Command Line Aliases
#
dev_com -- Compile device library files
#
com -- Compile the design files in correct order
#
elab -- Elaborate top level design
#
elab_debug -- Elaborate the top level design with novopt option
#
ld -- Compile all the design files and elaborate the top
level design
#
ld_debug -- Compile all the design files and elaborate the top
level design with -novopt
#
List Of Variables
#
TOP_LEVEL_NAME -- Top level module name.
#
SYSTEM_INSTANCE_NAME -- Instantiated system module name inside top level
module.
#
QSYS_SIMDIR -- Qsys base simulation directory.
#

Figure 11: Qsys system Modelsim setup script (msim setup.tcl) Tcl commands.

4.5 Simulation

The Qsys System design can be simulated using two possible methods; use the Avalon-MM master
BFM documented in the Verification IP Guide, or live-on-the-edge and use the completely undoc-
umented Verilog tasks hidden deep within the JTAG-to-Avalon-MM master implementation. The
following sections describe both methods.

4.5.1 Qsys simulation configuration

The Qsys Generate tab has several simulation options that are described in the Quartus II Handbook,
Volume 1, Chapter 5, Creating a System with Qsys under Simulating a Qsys System, on page 5-14 [4].
This tutorial supplies the top-level testbench, so Qsys only needs to generate the simulation model
for the Qsys system. The simulation model is created by setting the Create simulation model pull-
down to Verilog, and then clicking the Generate button to generate the system. The simulation
model files are output in the project directory qsys_system/simulation.

The Qsys simulation option creates directories containing copies of code from the Quartus instal-
lation, eg., the code in the synthesis directory qsys_system/synthesis/submodules, is duplicated
in the simulation directory qsys_system/simulation/submodules (along with a few extra files
copied from the Quartus install). Appendix C Note 6 discusses the disadvantages of copying what
is essentially library source code into a project.

27

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

4.5.2 Avalon-MM Master BFM

Simulation of the Qsys system in Modelsim is performed with the assistance of the generated simu-
lation script qsys_system/simulation/mentor/msim_setup.tcl. The tutorial supplied testbench
qsys_system_bfm_master_tb.sv can be simulated as follows;

• Start Modelsim

• Change directory to the Mentor simulation directory

ModelSim> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial
ModelSim> cd $TUTORIAL/qsys/qsys_system/simulation/mentor

• Source the simulation script

ModelSim> source msim_setup.tcl

Figure 11 shows the script output.

• Compile the device library source (not required for Modelsim-ASE)

ModelSim> dev_com

• Compile the Qsys source

ModelSim> com

• Compile the tutorial testbench

ModelSim> vlog -sv $TUTORIAL/hdl/qsys_system/test/qsys_system_bfm_master_tb.sv
-L qsys_system_bfm_master

The library path option, -L, is required so that the SystemVerilog verbosity package, compiled
by the msim_setup.tcl script com procedure, is located.

• Set the testbench to the top-level entity (TOP_LEVEL_NAME is used by the msim_setup.tcl
script elab procedure)

ModelSim> set TOP_LEVEL_NAME qsys_system_bfm_master_tb

• Elaborate the testbench

ModelSim> elab +nowarnTFMPC

where the argument to the command gets passed to vsim to suppress warnings about missing
connections.

• Populate the wave window using

VSIM> do $TUTORIAL/hdl/qsys_system/scripts/qsys_system_bfm_master_tb.do

• Run the simulation

VSIM> run -a

The testbench console output matches that generated by SOPC Builder in Figure 6.

28

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

4.5.3 JTAG-to-Avalon-MM Master

The tutorial supplied testbench qsys_system_jtag_master_tb.sv can be simulated as follows;

• Start Modelsim

• Change directory to the Mentor simulation directory

ModelSim> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial
ModelSim> cd $TUTORIAL/qsys/qsys_system/simulation/mentor

• Source the simulation script

ModelSim> source msim_setup.tcl

Figure 11 shows the script output.

• Compile the device library source (not required for Modelsim-ASE)

ModelSim> dev_com

• Compile the Qsys source

ModelSim> com

• Compile the tutorial testbench

ModelSim> vlog -sv $TUTORIAL/hdl/qsys_system/test/qsys_system_jtag_master_tb.sv
-L qsys_system_bfm_master

The library path option, -L, is required so that the SystemVerilog verbosity package, compiled
by the msim_setup.tcl script com procedure, is located.

• Set the testbench to the top-level entity (TOP_LEVEL_NAME is used by the msim_setup.tcl
script elab procedure)

ModelSim> set TOP_LEVEL_NAME qsys_system_jtag_master_tb

• Elaborate the testbench

ModelSim> elab +nowarnTFMPC

where the argument to the command gets passed to vsim to suppress warnings about missing
connections.

• Populate the wave window using

VSIM> do $TUTORIAL/hdl/qsys_system/scripts/qsys_system_jtag_master_tb.do

• Run the simulation

VSIM> run -a

The testbench console output matches that generated by SOPC Builder in Figure 6.
Figure 12 shows the path to the JTAG node within the JTAG-to-Avalon-MM bridge. The path

to this node was first determined by elaborating qsys_system (rather than the testbench), and then
using the Modelsim hierarchy window to determine the path to the node.

29

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Figure 12: Altera JTAG node location in the Qsys system JTAG-to-Avalon-MM master testbench,
qsys system jtag master tb. The tasks under the highlighted JTAG node, i.e., shift one byte
down to clear states, are used to simulate the JTAG-to-Avalon-MM bridge.

30

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

4.6 Synthesis and Simulation Scripts

The Qsys design can be synthesized as follows;

• Start Quartus.

• Change to the Qsys BeMicro-SDK project and source the synthesis script

tcl> set TUTORIAL c:/temp/altera_jtag_to_avalon_mm_tutorial
tcl> cd $TUTORIAL/hdl/boards/bemicro_sdk/qsys_system
tcl> source scripts/synth.tcl

• The first time the script is run, it will copy the qsys_system.qsys file to a work directory,
and request the user to manually run the Qsys GUI.

The .qsys file does not preserve the settings on the Generate tab, so uncheck Create block
symbol file and select Verilog for Create Simulation Model. Click Generate to generate the
system files.

Source the synthesis script (use the up-arrow in the Quartus Tcl console to bring back the last
command issued)

tcl> source scripts/synth.tcl

• Synthesis of the Qsys design should complete without error.

The Quartus Processing window will generate warning messages (blue text). Warning messages
relating to HDL coding style are generated for some of the Altera IP, eg., missing connections
for the Avalon-MM BFM master (since it is for simulation only), signals that were assigned and
never read, and truncated signals. Ideally, these warnings would be eliminated or suppressed
by the Altera IP developers, either by correcting the code or using synthesis constraints.

The Qsys design can be simulated as follows;

• Start Quartus and Generate the Qsys system (making sure the Verilog simulation option is
checked).

• Start Modelsim.

• Change to the Qsys system directory and source the simulation script

ModelSim> cd $TUTORIAL/hdl/qsys_system
ModelSim> source scripts/sim.tcl

• The simulation script uses the msim_setup.tcl script to compile the Qsys source, and creates
two Tcl procedures that can be used to run the simulation, i.e.,

JTAG-to-Avalon-MM tutorial testbench procedures

#
qsys_system_bfm_master_tb - run the Avalon-MM BFM testbench
qsys_system_jtag_master_tb - run the JTAG-to-Avalon-MM testbench

Issue either of these commands to run the respective simulation.

31

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

• The simulation script creates a working directory called mwork, changes into that directory,
sources and then calls procedures in the msim_setup.tcl script.

The msim_setup.tcl procedures copy files into the working directory and create Modelsim
library mappings in a subdirectory called libraries. The library mappings are created with
relative path names, so the testbenches must be run from within the mwork directory, otherwise
Modelsim cannot locate the design components.

To re-run the simulation script, quit the simulation (since Modelsim will not allow you to
change directories otherwise), change directory to the top-level directory and source the script
again, i.e.,

VSIM> quit -sim
ModelSim> cd $TUTORIAL/hdl/qsys_system
ModelSim> source scripts/sim.tcl

Alternatively, if you simply edited the top-level testbench, recompile it and restart the simu-
lation via

VSIM> vlog -sv ../test/qsys_system_bfm_master_tb.sv -L qsys_system_bfm_master
VSIM> restart -f; run -a

The tutorial source contains Qsys projects for Quartus synthesis on the BeMicro-SDK, BeMicro,
and DE2 boards. The Qsys Modelsim simulation script would ideally be board agnostic, however, it
needs to use Quartus generated Qsys source. By default the Qsys Modelsim simulation script checks
for the existence of the BeMicro-SDK Quartus work directory (which is setup by the synthesis
script). If you synthesize the Qsys design for the BeMicro or DE2 board, and want to simulate that
source, you need to edit the the board variable in the sim.tcl script to reflect the path to the board
you are targeting. However, since Quartus generates the same Qsys simulation files regardless of
the board type, just follow the synthesis procedure above for the BeMicro-SDK board to create the
files needed for Qsys simulation (no editing of tutorial scripts required).

32

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

5 Host-to-FPGA Communications

The goal of this tutorial is to demonstrate communications between a client application and an Altera
Avalon system such as that shown in Figure 1. Previous sections have shown how to construct the
Altera Avalon hardware using both SOPC Builder and Qsys tools. This section shows how to
communicate with that hardware via the USB-Blaster interface and Altera-provided applications.

5.1 System Console

The Quartus II Handbook, Volume 3, Chapter 10, Analyzing and Debugging Designs with the System
Console, describes the System Console interactive debugging console. Table 10-3 on pages 10-7 and
10-8 lists the console commands [4].

The BeMicro-SDK board was configured with the Altera Avalon system developed in this tutorial.
Figure 13 shows the System Console commands issued to interact with the BeMicro-SDK (the session
was repeated for both the SOPC and Qsys hardware configurations).

The System Console procedures were used to create higher-level Tcl procedures for controlling
the LEDs, reading the switches and push-button, and for accessing SRAM. The script is located in
the BeMicro-SDK shared scripts directory,

$TUTORIAL/hdl/boards/bemicro_sdk/share/scripts/jtag_cmds_sc.tcl

Similar scripts exist for the BeMicro and DE2 boards. Read the scripts for the slight differences in
procedures (due to the slight difference in hardware available on these boards). Figure 14 shows an
interactive System Console session with the BeMicro-SDK. Note how the device was never opened;
the scripts use a Tcl global variable to track whether the JTAG interface is open, and if it is not,
the procedures automatically open the JTAG interface. Read the script source for details.

5.2 quartus stp

The command-line tool quartus_stp can also be used for JTAG access. Unfortunately, Altera does
not provide Tcl procedures for accessing the JTAG-to-Avalon-MM master component from within
quartus_stp. The functionality of the JTAG-to-Avalon-MM master communications was reverse-
engineered from the source code and SignalTap II logic analyzer traces in [5], and from that analysis
a set of Tcl procedures was developed. The tutorial source contains the procedures in the directory

$TUTORIAL/tcl/altera_jtag_to_avalon_stp

The procedures are written as a Tcl package. Use of the package requires the user to either; configure
the environment variable TCLLIBPATH to point to the package directory, or the package directory
can be copied into the Altera Tcl packages directory, eg.,

c:/software/altera/11.1sp1/quartus/common/tcl/packages

Figure 15 shows an interactive quartus_stp session with the BeMicro-SDK. The session starts by
loading the JTAG-to-Avalon-MM master package, and then importing the Tcl procedure names
(saving you typing the namespace of the package as a prefix to every command). For details on Tcl
packages and namespaces see [7].

33

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Get the list of master services
% set masters [get service paths master]
{/devices/EP3C25|EP4CE22@1#USB-0/(link)/JTAG/(110:132 v1 #0)/phy 0/master}

Select the first master
% set master [lindex $masters 0]

Open the master service
% open service master $master

Write to the LEDs
% master write 32 $master 0 0x55

Read the push-button and switches SW[2:1]
% master read 32 $master 0x10 1
0x00000000

Change SW[1] and re-read
% master read 32 $master 0x10 1
0x00000001

Change SW[2] and re-read
% master read 32 $master 0x10 1
0x00000003

Hold down the push-button and re-read
% master read 32 $master 0x10 1
0x00000007

Write four 32-bit locations in SRAM
% master write 32 $master 0x1000 [list 0x33221100 0x77665544 0xbbaa9988
0xffeeddcc]

Read four 32-bit locations from SRAM
% master read 32 $master 0x1000 4
0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

Read sixteen 8-bit locations from SRAM
% master read memory $master 0x1000 16
0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xaa 0xbb 0xcc 0xdd 0xee
0xff

Close the master service
% close service master $master

Figure 13: System Console interactive session controlling the BeMicro-SDK board configured with
the Altera Avalon system shown in Figure 1. The lines starting with # are comments and were not
entered at the console.

34

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Source the System Console JTAG Tcl procedures
% set TUTORIAL c:/temp/altera jtag to avalon mm tutorial
% source $TUTORIAL/hdl/boards/bemicro sdk/share/scripts/jtag cmds sc.tcl

Write/read the LEDs
% led write 0x23
% led read
0x23

Read the switches
% sw
2

Read the push-button (not pressed)
% pb
0

Read the push-button (pressed)
% pb
1

Write/read the SRAM
% sram write 0 0x12345678
% sram read 0
0x12345678

Figure 14: System Console interactive session controlling the BeMicro-SDK board using the Tcl
procedures implemented in jtag cmds sc.tcl. The lines starting with # are comments and were
not entered at the console.

35

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Print TCLLIBPATH (needed to load the JTAG-to-Avalon-MM Tcl package)
tcl> puts $env(TCLLIBPATH)
c:/temp/altera jtag to avalon mm tutorial/tcl/altera jtag to avalon stp

Load the JTAG-to-Avalon-MM Tcl package and import the package commands
tcl> package require altera jtag to avalon stp
1.0
tcl> namespace import altera jtag to avalon stp::*

Print the list of JTAG commands (commands prefixed with jtag)
tcl> info commands jtag*
jtag idcode jtag pulse nconfig jtag read jtag node id jtag node is bytestream
jtag open jtag resetrequest jtag write jtag node is master jtag send
jtag print hub info jtag close jtag usercode jtag print node info
jtag number of nodes

Open the JTAG interface
tcl> jtag open
JTAG: USB-Blaster [USB-0], FPGA: @1: EP3C25/EP4CE22 (0x020F30DD)

Print the JTAG hub info
tcl> jtag print hub info
Hub info: 0x8086E04
VIR m-width: 4
VIR n-width: 1
Manufacturer ID: 0x6E
Number of nodes: 1
IP Version: 1

Print the JTAG node info
tcl> jtag print node info
Node index: 0
Node instance: 0 (0x0)
Node manufacturer: 110 (0x6E)
Node ID: 132 (0x84)
Node purpose: 1 (0x1)
Node version: 1 (0x1)

Write/read the LEDs (the first argument is the JTAG node index)
% jtag write 0 0 0x23
% jtag read 0 0
0x23

Write/read the SRAM
% jtag write 0 0x1000 0x12345678
% jtag read 0 0x1000
0x12345678

Figure 15: quartus stp interactive session controlling the BeMicro-SDK board.

36

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Figure 16: quartus stp JTAG client Tcl/Tk GUI.

5.3 Client/Server

Altera does not provide a shared library or DLL for accessing the JTAG interface from custom code,
so how then do you write code in your favorite programming language, eg., C/C++, MATLAB, or
LabView? One solution is to use System Console or quartus_stp to implement a TCP/IP server
that provides hardware access, and implement your custom code as a TCP/IP client application.
The tutorial source contains Tcl-based server and client applications in the directory

$TUTORIAL/tcl/jtag_client_server

Figure 16 shows a Tcl/Tk based client graphical user interface (GUI). The client can issue read and
write requests to the server, and the server then performs those accesses on the hardware. The figure
shows the result of reading the first address in SRAM (which was previously written with the value
0x12345678).

Figure 17 shows the Tcl/Tk based server console output for quartus_stp. Note the comment
Handle the client via a fileevent callback. The Tcl fileevent command is critical to the
implementation of a Tcl TCP/IP server [7]. Versions of System Console earlier than Quartus II
version 11.1sp1 did not support the Tcl fileevent procedure, so they could not implement a proper
server, i.e., a server able to handle multiple clients. Figure 18 shows the server output for System
Console (Quartus II version 11.1sp1).

The server application has a debug mode. If the server is started via

% set debug 1
% source jtag_server.tcl

then the server starts in a debug mode where hardware accesses are not performed, and client
read/write accesses are performed on a server variable, eg., the client can write to an address and
then read it back. The server debug mode allows you to test the client/server interface without
having access to hardware. It also allows the client/server TCP/IP communications path to be
tested without hardware interaction.

To test the multiple client handling of the server (in either hardware or debug mode), use the
client to write the hexadecimal values (address,data) = (1000, 11111111), (1004, 22222222), (1008,
33333333), and (100C, 44444444). Click on the client disconnect button, then reconnect and read
from the four hexadecimal addresses 1000, 1004, 1008, 100C. Start multiple quartus_stp clients,

37

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

or start the client in another Tcl/Tk tool, eg., the ActiveState ActiveTcl Tcl/Tk shell wish84, and
use the multiple clients to write and read to different server addresses.

The client/server source also contains a command-line C language client, jtag_client.c. The
client can be built at the NIOS IDE shell using

bash-3.1$ gcc -Wall -o jtag_client jtag_client.c

The client can write to multiple SRAM locations using

./jtag_client -w 0x1000 -d 0x11111111

./jtag_client -w 0x1004 -d 0x22222222

./jtag_client -w 0x1008 -d 0x33333333

./jtag_client -w 0x100C -d 0x44444444

and read back using

./jtag_client -r 0x1000

./jtag_client -r 0x1004

./jtag_client -r 0x1008

./jtag_client -r 0x100C

The NIOS IDE shell generates output showing the address and data. The server console shows how
the client opens and closes a socket connection each time the client application runs.

The client/server example performs TCP/IP communications using ASCII strings, and the server
performs hardware access using 32-bit read/write commands. The performance bottleneck with this
approach is not the use of ASCII over TCP/IP, but the server hardware access. When performing
accesses to large numbers of bytes, the JTAG 32-bit read/write commands do not make the most
efficient use of the underlying JTAG bytestreams. If your custom server needs a hardware access
performance boost, then use the System Console master_read_memory and master_write_memory
commands. The JTAG bytestream performance is analyzed in [5]. For simple hardware accesses,
eg., updating LEDs, reading switches and push buttons, and accessing sensors, the 32-bit read/write
routines used in the client/server example are more than sufficient.

38

http://www.activestate.com/activetcl

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

tcl> source jtag server.tcl
JTAG server running under quartus stp

Open JTAG to access the JTAG-to-Avalon-MM master
JTAG: USB-Blaster [USB-0], FPGA: @1: EP3C25/EP4CE22 (0x020F30DD)

Start the server on port 2540

Wait for clients

Accept sock1284 from 127.0.0.1 port 1427
Handle the client via a fileevent callback
SERVER (sock1284): jtag read 0x00000000
SERVER: jtag read 0x00000000
SERVER (sock1284): 0x00000045
SERVER (sock1284): jtag read 0x00001000
SERVER: jtag read 0x00001000
SERVER (sock1284): 0x12345678

Figure 17: quartus stp JTAG server console output.

% source jtag server.tcl
JTAG server running under system console

This version of SystemConsole (11.1sp1 216) supports fileevent.
The server can support multiple clients.

Open JTAG to access the JTAG-to-Avalon-MM master

Start the server on port 2540

Wait for clients

Accept sock2024 from 127.0.0.1 port 1466
Handle the client via a fileevent callback
SERVER (sock2024): jtag read 0x00000000
SERVER: jtag read 0x00000000
SERVER (sock2024): 0x00000045
SERVER (sock2024): jtag read 0x00001000
SERVER: jtag read 0x00001000
SERVER (sock2024): 0x12345678

Figure 18: System Console JTAG server console output.

39

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

A Software Versions

Current version of Quartus

This tutorial was tested using the following Quartus II 11.1sp1 editions, and operating systems;

• The tutorial was written to be implemented using Quartus II 11.1sp1.

• The tutorial was developed using Quartus II 11.1sp1 (full edition) under Windows XP Profes-
sional 32-bit. The synthesis scripts for all boards and both SOPC and Qsys systems were fully
tested. The simulation script was tested targeting the hardware generated for the BeMicro-
SDK. Each board was configured with the SOPC or Qsys designs, and system console was
used to interactively check each design.

• Linux Centos 6.2 32-bit running Quartus II 11.1sp1 full-edition; tested the synthesis scripts,
the simulation script with the BeMicro-SDK generated files, and hardware tested using system
console.

• Windows 7 Professional 64-bit running Quartus II 11.1sp1 full-edition (32-bit and 64-bit);
tested the BeMicro-SDK synthesis and simulation scripts, and hardware tested using system
console.

• Windows 7 Professional 64-bit running Modelsim SE 10.0c 64-bit; tested the simulation scripts
with the BeMicro-SDK generated files.

The Qsys BFM testbench fails to load due to the DLL bytestream_pli.dll being incompat-
ible with 64-bit Modelsim. This DLL is not used by the testbench, so the BeMicro-SDK Qsys
project msim_setup.tcl script elab procedure was edited to remove the vsim PLI argument.
The Qsys BFM testbench then loads and runs correctly.

• Quartus II v11.1sp1 Web Edition for;

– Windows XP (32-bit)

– Linux Centos 6.2 (32-bit)

– Linux Ubuntu 11.10 (32-bit)

Each installation was used to test the BeMicro-SDK synthesis and simulation scripts, and
hardware tested using system console.

Each Web Edition installation was tested running in a VirtualBox (version 4.1.8) virtual ma-
chine (VM). The VMs were tested from hosts running Windows XP, Centos 6.2, and Windows
7. The USB-Blaster can be captured by the VM under Windows XP and Centos 6.2, but not
under Windows 7 (so the issue is likely with the host VM support, rather than with the client).

The tutorial scripts use the environment variable QUARTUS_ROOTDIR. This variable is created
automatically by Quartus II under Windows, but under Linux it needs to be defined by the
user. For example, under Linux, after installing Quartus II Web Edition and Modelsim-ASE
into the directory /opt/altera/11.sp1_free, the user .bashrc should be edited to add

export QUARTUS_ROOTDIR=/opt/altera/11.sp1_free/quartus
export PATH=$PATH:$QUARTUS_ROOTDIR/bin
export PATH=$PATH:/opt/altera/11.sp1_free/modelsim_ase/linuxaloem

The commands quartus and vsim can then be used from the bash shell.

40

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

Older versions of Quartus

• SOPC Builder

The SOPC Builder GUI and generated components have changed slightly between Quartus
version 10.1 and 11.1sp1. The slight differences in SOPC Builder GUI paths to components
is noted in the tutorial. The source generated by SOPC Builder has changed with Quartus
11.1sp1, eg., the JTAG-to-Avalon-MM bridge is now described solely by a _hw.tcl file, with
the component being dynamically created by SOPC Builder. Previous versions of Quartus
had an explicit JTAG master component (which looked like it was SOPC Builder generated
source that was copied to the Quartus IP directory).

• Qsys

The Qsys GUI, generated scripts, and source have changed significantly since 10.1, where Qsys
was in beta format. No attempt was made to try and support earlier versions of Qsys (it looked
too painful).

B Tutorial Source

The tutorial zip file, altera_jtag_to_avalon_mm_tutorial.zip, unzips to create the directory
layout shown in Table 1. There are slight differences in how zip extraction tools work under Win-
dows and the bash shell (Cygwin or Linux). To unzip the tutorial zip file into a directory named
altera_jtag_to_avalon_mm_tutorial, perform the following;

• Windows extraction

Under Windows Explorer, select the zip file, and then right click and select Extract all . . .

• Bash command line extraction

Unzip using

unzip -d altera_jtag_to_avalon_mm_tutorial altera_jtag_to_avalon_mm_tutorial.zip

If the -d option is not used, then the zip file creates the directories doc, hdl, and tcl in the
current directory. Alternatively, you can first create the directory and then unzip, eg.,

mkdir altera_jtag_to_avalon_mm_tutorial
cp altera_jtag_to_avalon_mm_tutorial.zip altera_jtag_to_avalon_mm_tutorial/
cd altera_jtag_to_avalon_mm_tutorial/
unzip altera_jtag_to_avalon_mm_tutorial.zip

Using the -d option is recommended (as it involves less typing).

The contents of the zip file can be listed using

unzip -l altera_jtag_to_avalon_mm_tutorial.zip

41

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

C Altera Tool Improvement Recommendations

During the development of the tutorial, problems experienced with the user interface, the tool IP, or
the tool design philosophy were cross-referenced to this appendix. The text references the following
note numbers;

1. Page 8: Why does SOPC Builder forget the SOPC System name?

When the Generate button is pressed to generate the SOPC System, a pop-up dialog asks if
the unnamed system should be saved. The system was however named when the SOPC Builder
GUI was started, so this dialog should not be necessary.

2. Page 10: Synthesis issues with the Avalon-MM Master BFM.

The Avalon-MM Master BFM component is intended for simulation-only. However, it can be
incorporated into a system that is both simulated and synthesized. The source code for the
component should include synthesis directives that disable the component during synthesis (by
tying signals to deasserted levels), so that the synthesis tool can eliminate the logic without
generated warnings about missing drivers and dangling pins.

3. Page 12: SOPC Builder Run Simulator Button.

The button should not be activated until the .mpf file has been generated.

4. Page 12: Missing source files for Avalon-MM Master BFM simulation.

The sopc_system.v verilog file does not include the packages required to simulate the Avalon-
MM Master BFM.

5. Page 24: Using Verilog include statements to resolve source dependencies.

In the SOPC Builder example,

• In the sopc_system.v Verilog source, above the test_bench component, Verilog include
statements have been used to include a mixture of code from the Quartus install directory,
code copied to the project directory, and generated code (the list of includes changes
depending on whether the Simulation check-box is checked or not).
This support or library code should really be included into the project using the scripting
features of the tool, eg., using Quartus or Modelsim Tcl commands, it should not use a
Verilog-specific language feature embedded within a generated source file.
For more proof for this argument, consider that VHDL does not even support this type
of include construct.

• Because the SOPC System file sopc_system.v includes library source directly, this source
is compiled every time the SOPC System is changed. This unnecessarily compiles source
that has not changed. Under Modelsim, the only source that would need to be recompiled
would be the interconnect and any new components added to the system.

• The use of absolute paths in the include statements means that this code is not portable
between machines, so the code should not be checked into a code versioning system.
Admittedly, this is generated code, so the use of the absolute paths could be tolerated.

• The Verilog include statements are not used consistently. In SOPC Builder, if you do not
check the Simulation checkbox, then the JTAG master components are not listed in the
include statements, whereas, if you do check the check box, the components are listed.
The JTAG master is a synthesizable component, it should always be included! If there
are differences between synthesis and simulation, then those differences should be hidden
in the source code using synthesis directives (which both Verilog and VHDL support).

42

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

In this particular example, the synthesis tool is provided the path to the JTAG component
in the sopc_builder.qip file. This is a better solution, however, it is not reuseable by
Modelsim.

• Verilog and VHDL source files can be described via two strings; the source file name
and the library in which that source should be compiled. The HDL source often has a
compilation order requirement, eg., VHDL packages need to be compiled before use, and
Verilog modules need to be compiled before they are instantiated in other modules.
A general-purpose approach to including source would be for SOPC Builder to generate
a list of source files per library, or a list of source file and library name pairs, with the
list in the appropriate compilation order. Tcl synthesis and simulation scripts can then
parse that list and issue the appropriate Quartus or Modelsim commands to include
that source for compilation. This would allow source to be included into projects using
scripting features, not HDL language features.

6. Pages 14 and 27: The copying of library component source to multiple project directories
complicates verification.

The Modelsim simulator can be used to compile Verilog and VHDL source code into li-
braries. The intention for those libraries is that they contain the components that are reusable
across multiple projects. For example, Modelsim-ASE ships with the Altera LPM lpm and
Megafunction altera_mf components pre-compiled for Verilog and VHDL in the directory
c:/software/altera/11.1sp1/modelsim_ase/altera/. However, this is not how Quartus
11.1sp1 operates for SOPC Builder library components. For example, in the SOPC Builder
example on page 14,

• For synthesis, the JTAG-to-Avalon-MM master source code is copied from the Quartus
II installation into the directory jtag_master.

• For simulation, the JTAG-to-Avalon-MM master source code is copied from the Quartus II
installation into the directory jtag_master_sim, and the sopc_system.v Verilog source,
test_bench include statements refer to this new directory, eg.,
‘include "jtag_master_sim/jtag_master.v".
In addition, the directory jtag_master_sim, also contains a copy of the jtag_master.v
component instance from the project directory (which is just one directory above the
copy).

Why do all these copies complicate things? Well, if you are verifying all of your designs using
Modelsim, then you should use Modelsim to build the library components into libraries, and
then reuse those libraries while verifying all of the project-specific generated components. If
there was a valid argument for copying library components to the project directory, then there
should only be a single copy, the same copy could be used for both synthesis and simulation,
and Modelsim could be used to create a project specific SOPC builder component library.
However, SOPC Builder copies the library components a per-component instance basis. For
example, if you add another JTAG-to-Avalon-MM bridge component called jtag_master_two,
and regenerate the system with Simulation checked, then two new directories are created with
additional copies of the library component source.

Quartus 10.1 would generate Verilog include statements that referred to the original source
files in the Quartus II installation (the SOPC Builder IP directory). This method at least
points to the installed source area, but still uses a Verilog-specific language feature to include
source, whereas scripting features should be used, as commented above.

The Qsys example on page 14 also copies code, but with a few differences relative to SOPC
Builder;

43

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

• Qsys creates a copy of library source code in synthesis and simulation directories;

qsys_system/synthesis/submodules
qsys_system/simulation/submodules

• The top-level qsys_system file no longer contains Verilog include statements, the source
files are instead included in a tool-specific manner; Quartus is provided the source infor-
mation in the Tcl script

qsys_system/synthesis/qsys_system.qip

while Modelsim is provided the files via the Tcl script

qsys_system\simulation\mentor\msim_setup.tcl

The Modelsim Tcl script hard-codes the library mappings into the relative directory
./libraries making this script difficult to support in a verification system that uses
multiple versions of Modelsim, eg., Modelsim-ASE and Modelsim-SE (the binary library
files produced by different versions of Modelsim are not compatible). Page 32 has com-
ments on difficulties experienced with scripting the Qsys design.
My preference would be to see these separate methods combined into a parseable Tcl list
containing the source file name and the target library name. This would ease the writing
of custom synthesis and simulation scripts.

7. Page 24: The Qsys system file does not contain all of the system settings.

The Qsys file .qsys does not preserve the state of the generate tab checkboxes. The state of the
checkboxes and the simulation pull-down menus is stored in a preferences file. For example,
in the Qsys example on page 24, the Qsys Generation tab options are stored in the XML
file .qsys_edit/preferences.xml in an XML entry called generation, containing key-value
pairs for each of the GUI settings, eg., in the Qsys generation tab

• If the Create block symbol file checkbox is unchecked, that selection is stored in the
preferences file as <generation block_symbol_file="0"/>.

• If the Create simulation model pull-down menu selects Verilog, that selection adds the
key-value pair simulation="VERILOG" to the existing generation entry.

The use of an additional file to store the GUI settings complicates the re-generation of a Qsys
system with simulation support (from a minimal set of files), as now both the .qsys and
preferences files are required. Without the preferences files, the simulation files will not get
generated.

This is a change from SOPC Builder, where the system (including simulation settings) could
be regenerated using only the .sopc file.

8. Page 25: Port names exported from Qsys are not what the user entered.

44

Altera JTAG-to-Avalon-MM Tutorial March 14, 2012

D Altera Documentation Web Links

• Quartus II Software Support

• Quartus II Development Software Documentation

• Qsys System Integration Tool Support

• SOPC Builder Documentation

• SOPC Builder Support

• NIOS II Processor Documentation

• Nios II Embedded Design Suite Support

References

[1] Altera Corporation. Avalon Interface Specifications (version 1.3, for SOPC Systems), August
2010. (mnl avalon spec 1 3.pdf).

[2] Altera Corporation. Applying the Benefits of Network on a Chip Architecture to FPGA System
Design, April 2011. (wp-01149-noc-qsys.pdf).

[3] Altera Corporation. Avalon Interface Specifications (version 2.0, for Qsys Systems), May 2011.
(mnl avalon spec.pdf).

[4] Altera Corporation. Quartus II Handbook (version 11.1), November 2011.
(quartusii handbook.pdf).

[5] D. W. Hawkins. Altera JTAG-to-Avalon Analysis, January 2012.
(altera jtag to avalon analysis.pdf, altera jtag to avalon analysis.zip).

[6] D. W. Hawkins. Altera JTAG-to-Avalon MM Tutorial, March 2012.
(altera jtag to avalon mm tutorial.pdf, altera jtag to avalon mm tutorial.zip).

[7] B. B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, 3rd edition, 2000.

45

http://www.altera.com/support/software/sof-quartus.html
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/support/software/system/qsys/sof-qsys-index.html
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/support/software/system/sopc/sof-sopc_builder.html
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf
http://www.altera.com/literature/wp/wp-01149-noc-qsys.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.ovro.caltech.edu/~dwh/correlator/pdf/altera_jtag_to_avalon_analysis.pdf
http://www.ovro.caltech.edu/~dwh/correlator/pdf/altera_jtag_to_avalon_analysis.zip
http://www.ovro.caltech.edu/~dwh/correlator/pdf/altera_jtag_to_avalon_mm_tutorial.pdf
http://www.ovro.caltech.edu/~dwh/correlator/pdf/altera_jtag_to_avalon_mm_tutorial.zip

	1 Introduction
	2 SOPC Builder and Qsys
	3 SOPC Builder Design Flow
	3.1 Project Creation
	3.2 SOPC Builder Component
	3.3 Top-Level Design
	3.4 Synthesis
	3.5 Simulation
	3.5.1 SOPC Builder test_bench
	3.5.2 Avalon-MM Master BFM
	3.5.3 JTAG-to-Avalon-MM Master

	3.6 Synthesis and Simulation Scripts

	4 Qsys Design Flow
	4.1 Project Creation
	4.2 Qsys Component
	4.3 Top-Level Design
	4.4 Synthesis
	4.5 Simulation
	4.5.1 Qsys simulation configuration
	4.5.2 Avalon-MM Master BFM
	4.5.3 JTAG-to-Avalon-MM Master

	4.6 Synthesis and Simulation Scripts

	5 Host-to-FPGA Communications
	5.1 System Console
	5.2 quartus_stp
	5.3 Client/Server

	A Software Versions
	B Tutorial Source
	C Altera Tool Improvement Recommendations
	D Altera Documentation Web Links

