
P16X64A
'P2'

ASSEMBLY MANUAL

PRELIMINARY - DOCUMENT UNDER CONSTRUCTION
web document link

CONTENTS

COG REGISTERS
TIMING
P 16 X 64 A INSTRUCTION SET

INSTRUCTION FORMAT (GENERAL)
ROTATE INSTRUCTIONS
ADD INSTRUCTIONS
LOGICAL INSTRUCTIONS
INC INSTRUCTIONS
MUX INSTRUCTIONS
MULTIPLY INSTRUCTIONS
LOGICAL INSTRUCTIONS
HUB INSTRUCTIONS

COG REGISTERS

ADDR NAME READ WRITE

000-1F7 RAM RAM

1F8 PTRA PTRA RAM+PTRA

1F9 PTRB PTRB RAM+PTRB

1FA INA INA RAM

1FB INB INB RAM

1FC OUTA RAM RAM+OUTA

1FD OUTB RAM RAM+OUTB

1FE DIRA RAM RAM+DIRA

1FF DIRB RAM RAM+DIRB

Note: Instructions writing OUTx and DIRx also write to the shadow RAM. Therefore the shadow RAM retains the last values written to the
OUTx and DIRx registers, which can then be read back (by reading the shadow RAM). This is useful in read-modify-write instructions
such as: ANDN DIRx,#$003 which turns off the DIRx bits [1:0].

TIMING

|<----5ns period------->| | | | | |
------------____________------------____________------------____________------------____________------------____________------------____________-
-------.	rdRAM Ic	-------.	rdRAM Id	-------.	rdRAM Ie			
---+ +----> rdRAM Db	------------> latch Db	---+ +----> rdRAM Dc	------------> latch Dc	---+ +----> rdRAM Dd	------------> latch Dd			
---+ +----> rdRAM Sb	------------> latch Sb	---+ +----> rdRAM Sc	------------> latch Sc	---+ +----> rdRAM Sd	------------> latch Sd			
---+ +----> latch Ib	------------> latch Ib	---+ +----> latch Ic	------------> latch Ic	---+ +----> latch Id	------------> latch Id			
+------------------ALU-----------> wrRAM Ra	+------------------ALU-----------> wrRAM Rb	+------------------ALU-----------> wrRAM Rc						
	<wait a>		<wait b>		<wait c>			

https://docs.google.com/document/d/1rAmQxegWJB6gWoajs1qnNVW2gSiXAHilJiYxeD_PL2w/pub
https://docs.google.com/document/d/1rAmQxegWJB6gWoajs1qnNVW2gSiXAHilJiYxeD_PL2w/pub
https://docs.google.com/document/d/1rAmQxegWJB6gWoajs1qnNVW2gSiXAHilJiYxeD_PL2w/pub

P16X64A INSTRUCTION SET

Notes:
Unless stated otherwise if the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero.

INSTRUCTION FORMAT (GENERAL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i i i i i i i Z
L

C
L

I
L

C C C C D D D D D D D D D S S S S S S S S S

All instructions utilise a 32-bit instruction:
iiiiiii Instruction OpCode
Z If set (1) by WZ (with zero), then the Z (zero flag) will be updated by this instruction
C If set (1) by WC (with carry), then the C (cary flag) will be updated by this instruction
I If set (1) by #S, then the SSSSSSSSS will be used as an immediate value instead of register address
L If set (1) by #D, then the DDDDDDDDD will be used as an immediate value instead of register address

Note: “L”, when available, repurposes Z, C or I bit
n/nn/nnn Word/Byte/Nibble select (Repurposes lower opcode bit and Z C bits)
CCCC Conditional execution code
DDDDDDDDD Destination address, or immediate value when L=1
SSSSSSSSSS Source address, or immediate value when I=1

OpCode Field:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i i i i i i i

These field bits[31:25] represent the 7-bit instruction opcode.
Note: Some extended opcode instructions also utilise a mix of the Z, C, I and SSSSSSSSS bits.

ZCI (and L) Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Z
L

C
L

I
L

These field bits[24:22] represent the Z, C and I 1-bit fields for WZ (Zero flag), WC (Carry flag) and Immediate (#) S field modifier.
Some instructions my alternately utilise any of these bits as an Immediate (#) D field modifier, designated by “L”.
Those instructions capable of changing the “Zero Flag” are designated with a “Z” in bit[24].
Those instructions capable of changing the “Carry Flag” are designated with a “C” in bit[23].
Those instructions capable of utilising a 9-bit “Immediate Source Field” in bits[8:0] are designated with an “I” in bit[22].
Those instructions capable of utilising a 9-bit “Immediate Destination Field” in bits[17:9] are designated with an “L” in one of bit[24], bit[23]
or bit[22].
Note: Some extended opcode instructions repurpose a mix of the Z, C and I bits, making those bits unavailable for those instructions.

CCCC Field:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C

These field bits[21:18] represent the instructions’ 4-bit conditional execution bits. This 4-bit code, together with the current value of the Z
(zero flag) and C (carry flag), determines whether this instruction will execute or be transformed into an effective “NOP” (no-operation)
instruction.

CONDITION INSTRUCTION EXECUTES CODE SYNONYMS

IF_ALWAYS always 1111

IF_NEVER never 0000

IF_E if equal (Z = 1) 1010 IF_Z

IF_NE if not equal (Z = 0) 0101 IF_NZ

IF_A if above (!C & !Z = 1) 0001 IF_NC_AND_NZ –and– IF_NZ_AND_NC

IF_B if below (C = 1) 1100 IF_C

IF_AE if above or equal (C = 0) 0011 IF_NC

IF_BE if below or equal (C | Z = 1) 1110 IF_C_OR_Z –and– IF_Z_OR_C

IF_C if C set 1100 IF_B

IF_NC if C clear 0011 IF_AE

IF_Z if Z set 1010 IF_E

IF_NZ if Z clear 0101 IF_NE

IF_C_EQ_Z if C equal to Z 1001 IF_Z_EQ_C

IF_C_NE_Z if C not equal to Z 0110 IF_Z_NE_C

IF_C_AND_Z if C set and Z set 1000 IF_Z_AND_C

IF_C_AND_NZ if C set and Z clear 0100 IF_NZ_AND_C

IF_NC_AND_Z if C clear and Z set 0010 IF_Z_AND_NC

IF_NC_AND_NZ if C clear and Z clear 0001 IF_A –and– IF_NZ_AND_NC

IF_C_OR_Z if C set or Z set 1110 IF_BE –and– IF_Z_OR_C

IF_C_OR_NZ if C set or Z clear 1101 IF_NZ_OR_C

IF_NC_OR_Z if C clear or Z set 1011 IF_Z_OR_NC

IF_NC_OR_NZ if C clear or Z clear 0111 IF_NZ_OR_NC

IF_Z_EQ_C if Z equal to C 1001 IF_C_EQ_Z

IF_Z_NE_C if Z not equal to C 0110 IF_C_NE_Z

IF_Z_AND_C if Z set and C set 1000 IF_C_AND_Z

IF_Z_AND_NC if Z set and C clear 0010 IF_NC_AND_Z

IF_NZ_AND_C if Z clear and C set 0100 IF_C_AND_NZ

IF_NZ_AND_NC if Z clear and C clear 0001 IF_A –and– IF_NC_AND_NZ

IF_Z_OR_C if Z set or C set 1110 IF_BE –and– IF_C_OR_Z

IF_Z_OR_NC if Z set or C clear 1011 IF_NC_OR_Z

IF_NZ_OR_C if Z clear or C set 1101 IF_C_OR_NZ

IF_NZ_OR_NC if Z clear or C clear 0111 IF_NC_OR_NZ

DDDDDDDDD Field:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D D D D D D D D

These field bits[17:9] represent the 9-bit register address to be utilised as the destination value.
Some instructions permit the use of the “D” bits[17:9] to be utilised as an immediate (#) 9-bit value. Those instructions will utilise an “L” bit
modifier in one of the bit[24:22] positions (by repurposing the Z, C or I bit).

SSSSSSSSS Field:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S S S S S S S S

These field bits[8:0] represent the 9-bit register address to be utilised as the source value.
Most instructions permit the use of the “S” bits[8:0] to be utilised as an immediate (#) 9-bit value. Those instructions will utilise the “I” bit
modifier in bit[22].
Note: Some extended instructions repurpose the “S” bits[8:0] to extend the opcode space.

ROTATE INSTRUCTIONS

ROR D,S/# ROTATE RIGHT

0 0 0 0 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Rotate the contents of the destination D right by S bits with the carry out feeding back into bit 31.
If the WC effect is specified, the C flag is set equal to the last bit shifted out

ROL D,S/# ROTATE LEFT

0 0 0 0 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Rotate the contents of the destination D left by S bits with the carry out feeding back into bit 0.
If the WC effect is specified, the C flag is set equal to the last bit shifted out

SHR D,S/# SHIFT RIGHT

0 0 0 0 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Shift the contents of the destination D right by S bits with the MSBs filling with zeros.
If the WC effect is specified, the C flag is set equal to the last bit shifted out

SHL D,S/# SHIFT RIGHT

0 0 0 0 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Shift the contents of the destination D left by S bits with the LSBs filling with zeros.
If the WC effect is specified, the C flag is set equal to the last bit shifted out

RCR D,S/# ROTATE CARRY RIGHT

0 0 0 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Rotate the contents of the destination D right by S bits using the C flag's original value for each of the MSBs affected
If the WC effect is specified, the C flag is set equal to the last bit shifted out

RCL D,S/# ROTATE CARRY LEFT

0 0 0 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Rotate the contents of the destination D left by S bits using the C flag's original value for each of the LSBs affected
If the WC effect is specified, the C flag is set equal to the last bit shifted out

SAR D,S/# SHIFT ARITHMETIC RIGHT

0 0 0 0 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Shift the contents of the destination D arithmetically right by S bits extending the MSB along the affected bits to preserve the sign.
If the WC effect is specified, the C flag is set equal to the last bit shifted out

SAL D,S/# SHIFT ARITHMETIC LEFT

0 0 0 0 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Shift the contents of the destination D arithmetically left by S bits while preserving the sign
If the WC effect is specified, the C flag is set equal to the last bit shifted out ??

ADD INSTRUCTIONS

ADD D,S/# ADD

0 0 0 1 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Add the unsigned contents of the source S to the destination D
If the WC effect is specified, the C flag is set if there was an overflow

ADDX D,S/# ADD EXTENDED

0 0 0 1 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Add the unsigned contents of the source S along with the carry to the destination D
If the WC effect is specified, the C flag is set if there was an overflow

ADDS D,S/# ADD SIGNED

0 0 0 1 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Add the signed contents of the source S to the destination D
If the WC effect is specified, the C flag is set if there was a signed overflow

ADDSX D,S/# ADD SIGNED EXTENDED

0 0 0 1 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Add the signed contents of the source S along with the carry to the destination D
If the WC effect is specified, the C flag is set if there was a signed overflow

SUB D,S/# SUBTRACT

0 0 0 1 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Subtract the unsigned contents of the source S from the destination D
If the WC effect is specified, the C flag is set if there was an overflow

SUBR D,S/# SUBTRACT REVERSE

0 0 1 0 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Subtract the destination from the source with the result into the destination (D = S - D)

SUBX D,S/# SUBTRACT EXTENDED

0 0 0 1 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Subtract the unsigned contents of the source S along with the borrow (C flag) from the destination D
D = D - (S + C)
If the WC effect is specified, the C flag is set if there was an overflow

SUBS D,S/# SUBTRACT SIGNED

0 0 0 1 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Subtract the signed contents of the source S from the destination D and update the sign
D = D - S
If the WC effect is specified, the C flag is set if there was a signed overflow

SUBSX D,S/# SUBTRACT SIGNED EXTENDED

0 0 0 1 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Subtract the signed contents of the source S along with the borrow (C flag) from the destination D
D = D - (S + C)
If the WC effect is specified, the C flag is set if there was a signed overflow

CMP D,S/# COMPARE

0 0 1 0 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare…

CMPR D,S/# COMPARE REVERSE

0 0 1 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare the source with the destination in reverse (S - D)

CMPX D,S/# COMPARE EXTENDED

0 0 1 0 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare…

CMPS D,S/# COMPARE SIGNED

0 0 1 0 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare…

CMPSX D,S/# COMPARE SIGNED EXTENDED

0 0 1 0 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare…

CMPM D,S/# COMPARE M???

0 0 1 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare…

CMPSUB D,S/# COMPARE SUBTRACT

0 0 1 0 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Compare two unsigned values and subtract the second if it is lesser or equal

MIN D,S/# MIN

0 0 1 1 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Limit minimum of unsigned destination D to source S by storing the greater in D.
If the WC effect is specified, the C flag is set (1) if the unsigned value D is less than the unsigned value S.

MAX D,S/# MAX

0 0 1 1 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Store the less of the two values S and D in the destination D.
If the WC effect is specified, the C flag is set (1) if the unsigned value D is less than the unsigned value S

MINS D,S/# MIN SIGNED

0 0 1 1 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Limit minimum of signed destination D to source S by storing the greater in D.
If the WC effect is specified, the C flag is set (1) if the signed value D is less than the signed value S.

MAXS D,S/# MAX SIGNED

0 0 1 1 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Store the lesser of the two signed values S and D in the Destination D.e
If the WC effect is specified, the C flag is set (1) if the signed value D is less than the signed value S.

DECOD D,S/# DECODE TO SETUP A BIT MASK

0 1 1 1 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Decode lower 5 bits of S into a single bit mask.
S represents a bit number from 0 to 31. Decode sets all bits of the destination except the specified bit in S which is set to “1”. It is typically
used to setup a bit mask.
If the WC effect is specified, the C flag is set (1) if
Note: BOTONE D,S can be used to perform the reverse of this instruction.

TOPONE D,S/# GET TOP-MOST “1” BIT POSITION

0 1 1 1 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Get the top-most “1” bit position in D.
If the WC effect is specified, the C flag is set (1) if a “1” bit is located.

BOTONE D,S/# GET BOTTOM-MOST “1” BIT POSITION

0 1 1 1 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Get the bottom-most “1” bit position in D.
If the WC effect is specified, the C flag is set (1) if a “1” bit is located.

INCMOD D,S/# INCREMENT D MOD S

0 1 1 1 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

If D=S then D=0, else increment D (D++).
WARNING: If D>S it will not set D=0 because an equality is performed rather than a comparison with S.
If the WC effect is specified, the C flag is set (1) if

DECMOD D,S/# DECREMENT D MOD S

0 1 1 1 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

If D=0 then D=S, else decrement D (D--)
WARNING: If D>S it will not set D=S because an equality is performed rather than a comparison with S.
If the WC effect is specified, the C flag is set (1) if

DJZ D,S/@ DECREMENT D AND JUMP TO S/@ IF ZERO

0 1 1 1 1 1 0 0 0 I C C C C D D D D D D D D D S S S S S S S S S

Decrement D and jump to S/@ if the result is zero.
Note: WZ and WC are not valid for this instruction.

DJNZ D,S/@ DECREMENT D AND JUMP TO S/@ IF NON-ZERO

0 1 1 1 1 1 0 0 1 I C C C C D D D D D D D D D S S S S S S S S S

Decrement D and jump to S/@ if the result is non-zero.
Note: WZ and WC are not valid for this instruction.

DJS D,S/@ DECREMENT D AND JUMP TO S/@ IF NEGATIVE ???

0 1 1 1 1 1 0 1 0 I C C C C D D D D D D D D D S S S S S S S S S

Decrement D and jump to S/@ if the result is negative.
Note: WZ and WC are not valid for this instruction.

DJNS D,S/@ DECREMENT D AND JUMP TO S/@ IF NOT NEGATIVE

0 1 1 1 1 1 0 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Decrement D and jump to S/@ if the result is not negative.
Note: WZ and WC are not valid for this instruction.

JZ D,S/@ JUMP TO S/@ IF ZERO

0 1 1 1 1 1 1 0 0 I C C C C D D D D D D D D D S S S S S S S S S

Jump to S/@ if D is zero.
Note: WZ and WC are not valid for this instruction.

JNZ D,S/@ JUMP TO S/@ IF NON-ZERO

0 1 1 1 1 1 1 0 1 I C C C C D D D D D D D D D S S S S S S S S S

Jump to S/@ if D is zero.
Note: WZ and WC are not valid for this instruction.

JS D,S/@ JUMP TO S/@ IF NEGATIVE

0 1 1 1 1 1 1 1 0 I C C C C D D D D D D D D D S S S S S S S S S

Jump to S/@ if D is zero.
Note: WZ and WC are not valid for this instruction.

JNS D,S/@ JUMP TO S/@ IF NOT NEGATIVE

0 1 1 1 1 1 1 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Jump to S/@ if D is not negative.
Note: WZ and WC are not valid for this instruction.

SUMC D,S/# SUM on CARRY

0 0 1 1 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Sum a signed value with another whose sign is inverted depending on C

SUMNC D,S/# SUM on NOT CARRY

0 0 1 1 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Sum a signed value with another whose sign is inverted depending on !C

SUMZ D,S/# SUM on ZERO

0 0 1 1 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Sum a signed value with another whose sign is inverted depending on Z

SUMNZ D,S/# SUM on NOT ZERO

0 0 1 1 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Sum a signed value with another whose sign is inverted depending on !Z

LOGICAL INSTRUCTIONS

ISOB D,S/# ISOLATE BIT
ZCMS

0 1 0 0 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Lower 5 bits at S specify the bit while the upper 4 bits of S define the sub instruction??
If the WC effect is specified, the C flag is set (1) if selected bit is set()

NOTB D,S/# NOT BIT
ZCMS

0 1 0 0 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Invert (NOT) the bit in D specified at S ???
If the WC effect is specified, the C flag is set (1) if ???

CLRB D,S/# CLEAR BIT
ZCMS

0 1 0 0 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Clear the bit in D specified at S ???
If the WC effect is specified, the C flag is set (1) if ???

SETB D,S/# SET BIT
ZCMS

0 1 0 0 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the bit in D specified at S ???
If the WC effect is specified, the C flag is set (1) if ???
ZCMS 0100011 ZCI CCCC DDDDDDDDD SSSSSSSSS SETB D,S/# log

SETBC D,S/# SET BIT with C
ZCMS

0 1 0 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the bit in D specified at S if the C flag is set ???
If the WC effect is specified, the C flag is set (1) if ???
ZCMS 0100100 ZCI CCCC DDDDDDDDD SSSSSSSSS SETBC D,S/# log

SETBNC D,S/# SET BIT with NOT C
ZCMS

0 1 0 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the bit in D specified at S if the C flag is clear ???
If the WC effect is specified, the C flag is set (1) if ???
ZCMS 0100101 ZCI CCCC DDDDDDDDD SSSSSSSSS SETBNC D,S/# log

SETBZ D,S/# SET BIT with Z
ZCMS

0 1 0 0 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the bit in D specified at S if the Z flag is set ???
If the WC effect is specified, the C flag is set (1) if ???
ZCMS 0100110 ZCI CCCC DDDDDDDDD SSSSSSSSS SETBZ D,S/# log

SETBNZ D,S/# SET BIT with NOT Z
ZCMS

0 1 0 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the bit in D specified at S if the Z flag is clear ???
If the WC effect is specified, the C flag is set (1) if ???
ZCMS 0100111 ZCI CCCC DDDDDDDDD SSSSSSSSS SETBNZ D,S/# log

ANDN D,S/# BITWISE D AND NOT S
ZCMS

0 1 0 1 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Perform a bitwise AND of the inverted value (bitwise NOT) in the source S with the value in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.

If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
See the TESTN instruction for a no-result (does not write result) version.

AND D,S/# BITWISE AND S WITH D
ZCMS

0 1 0 1 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Perform a bitwise AND of the value in the source S with the value in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
See the TEST instruction for a no-result (does not write result) version.

OR D,S/# BITWISE OR S WITH D
ZCMS

0 1 0 1 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Bitwise OR the value in the source S into the value of the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
See the ANYB instruction for a no-result (does not write result) version.

XOR D,S/# BITWISE EXCLUSIVE OR S WITH D
ZCMS

0 1 0 1 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Bitwise Exclusive OR the value in the source S into the value of the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

MUXC D,S/# D BITS, INDICATED BY MASK S, ARE SET TO THE STATE OF C
ZCMS

0 1 0 1 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

MUXC sets each bit of the value in the destination D, which corresponds to the Mask’s high (1) bits in the source S, to the state of C.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

MUXNC D,S/# D BITS, INDICATED BY MASK S, ARE SET TO THE STATE OF NOT C
ZCMS

0 1 0 1 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

MUXNC sets each bit of the value in the destination D, which corresponds to the Mask’s high (1) bits in the source S, to the inverted state
of C.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

MUXZ D,S/# D BITS, INDICATED BY MASK S, ARE SET TO THE STATE OF Z
ZCMS

0 1 0 1 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

MUXZ sets each bit of the value in the destination D, which corresponds to the Mask’s high (1) bits in the source S, to the state of Z.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

MUXNZ D,S/# D BITS, INDICATED BY MASK S, ARE SET TO THE STATE OF NOT Z
ZCMS

0 1 0 1 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

MUXNZ sets each bit of the value in the destination D, which corresponds to the Mask’s high (1) bits in the source S, to the inverted state
of Z.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

INC INSTRUCTIONS

MOV D,S/# Move (copy) the value in the source S to the destination D
ZCMS

0 1 1 0 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Move (copy) the value in the source S to the destination D.

If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set to the value of bit D[31] of the result.

NOT D,S/# Move (copy) the bitwise inversion of the value in the source S to the destination D
ZCMS

0 1 1 0 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Move (copy) the bitwise inversion of the value in the source S to the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set to the value of bit D[31] of the result.

ABS D,S/# Move (copy) the Absolute value in the source S to the destination D
ZCMS

0 1 1 0 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Move (copy) the absolute value in the source S to the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if S is positive.

NEG D,S/# GET THE NEGATIVE OF A NUMBER
ZCMS

0 1 1 0 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Set the destination D to the negative value in the source S.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if it is positive.

NEGC D,S/# GET A VALUE, OR ITS ADDITIVE INVERSE, BASED ON C
ZCMS

0 1 1 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

If C=0 copy the value in the source S, else copy the additive inverse of the value in the source S, and store in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if it is positive.

NEGNC D,S/# GET A VALUE, OR ITS ADDITIVE INVERSE, BASED ON !C
ZCMS

0 1 1 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

If C=1 copy the value in the source S, else copy the additive inverse of the value in the source S, and store in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if it is positive.

NEGZ D,S/# GET A VALUE, OR ITS ADDITIVE INVERSE, BASED ON Z
ZCMS

0 1 1 0 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

If Z=0 copy the value in the source S, else copy the additive inverse of the value in the source S, and store in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if it is positive.

NEGNZ D,S/# GET A VALUE, OR ITS ADDITIVE INVERSE, BASED ON !Z
ZCMS

0 1 1 0 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

If Z=1 copy the value in the source S, else copy the additive inverse of the value in the source S, and store in the destination D.
If the WZ effect is specified, the Z flag is set (1) if the result equals zero.
If the WC effect is specified, the C flag is set (1) if the value in the source S is negative, or cleared (0) if it is positive.

ALTDS D,S/# SELECTIVELY ALTER D (read and write result addresses) & S address for the following instruction
ZCMS

0 1 1 1 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

A B B B C D D D

ALTDS uses a D register for D/S field substitutions in the next instruction, while S/# modifies the D register's D and S fields and controls
D/S substitution.

D - a register whose D/S fields may be substituted for the next instructions' D/S fields
S/# - an 8-bit code: %ABBBCDDD

%A: 0 = don't substitute next instructions' D field with current D register's D field.,

1= substitute next instructions' D field with current D register's D field

%BBB: 000 = leave the current D register's D field the same,
0xx = add 1/2/3 to D field,
1xx = subtract 1/2/3/4 from D field

%C: 0 = don't substitute next instructions' S field with current D register's S field,
1 = substitute next instructions' S field with current D register's S field

%DDD: 000 = leave the current D register's S field the same,
0xx = add 1/2/3 to S field,
1xx = subtract 1/2/3/4 from S field

MUX INSTRUCTIONS

SETNIBn D,S/# SET NIBBLE
--MS

1 0 0 0 0 0 n n n I C C C C D D D D D D D D D S S S S S S S S S

Set nibble n in D with nibble in S

GETNIBn D,S/# GET NIBBLE
--WS

1 0 0 0 0 1 n n n I C C C C D D D D D D D D D S S S S S S S S S

Get nibble n in S into D

ROLNIBn D,S/# ROTATE LEFT NIBBLE
--MS

1 0 0 0 1 0 n n n I C C C C D D D D D D D D D S S S S S S S S S

Rotate nibble in S left into D x n

SETBYTn D,S/# SET BYTE
--MS

1 0 0 0 1 1 0 n n I C C C C D D D D D D D D D S S S S S S S S S

Set nth byte ???

GETBYTn D,S/# GET BYTE
--WS

1 0 0 0 1 1 1 n n I C C C C D D D D D D D D D S S S S S S S S S

Get nth byte from source S into destination D ???
--WS 1000111 nnI CCCC DDDDDDDDD SSSSSSSSS GETBYTn D,S/# mux

ROLBYTn D,S/# ROTATE LEFT BYTE
--MS

1 0 0 1 0 0 0 n n I C C C C D D D D D D D D D S S S S S S S S S

Rotate nth byte in D left by S bits ???
--MS 1001000 nnI CCCC DDDDDDDDD SSSSSSSSS ROLBYTn D,S/# mux

SETWRDn D,S/# SET WORD
--MS

1 0 0 1 0 0 1 0 n I C C C C D D D D D D D D D S S S S S S S S S

Set nth word in D with S ???
--MS 1001001 0nI CCCC DDDDDDDDD SSSSSSSSS SETWRDn D,S/# mux

GETWRDn D,S/# GET WORD
--WS

1 0 0 1 0 0 1 1 n I C C C C D D D D D D D D D S S S S S S S S S

Get nth word in S to D ???
--WS 1001001 1nI CCCC DDDDDDDDD SSSSSSSSS GETWRDn D,S/# mux

ROLWRDn D,S/# ROTATE LEFT WORD
--MS

1 0 0 1 0 1 0 0 n I C C C C D D D D D D D D D S S S S S S S S S

Rotate nth word in D by S ???
--MS 1001010 0nI CCCC DDDDDDDDD SSSSSSSSS ROLWRDn D,S/# mux

SETBYTS D,S/# SET BYTES
--WS

1 0 0 1 0 1 0 1 0 I C C C C D D D D D D D D D S S S S S S S S S

Set all bytes in D to S ???
--WS 1001010 10I CCCC DDDDDDDDD SSSSSSSSS SETBYTS D,S/# mux

MOVBYTS D,S/# MOVE BYTES
--MS

1 0 0 1 0 1 0 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Move to all bytes in D with S ???
--MS 1001010 11I CCCC DDDDDDDDD SSSSSSSSS MOVBYTS D,S/# mux

SPLITB D,S/# SPLIT BYTE
--WS

1 0 0 1 0 1 1 0 0 I C C C C D D D D D D D D D S S S S S S S S S

Split value in S where ???
 the SPLITB/MERGEB pair can be used to do 3 and 4 dimensional z-order curve.
--WS 1001011 00I CCCC DDDDDDDDD SSSSSSSSS SPLITB D,S/# mux

MERGEB D,S/# MERGE BYTE
--WS

1 0 0 1 0 1 1 0 1 I C C C C D D D D D D D D D S S S S S S S S S

Merge bytes ???
--WS 1001011 01I CCCC DDDDDDDDD SSSSSSSSS MERGEB D,S/# mux

SPLITW D,S/# SPLIT WORD
--WS

1 0 0 1 0 1 1 1 0 I C C C C D D D D D D D D D S S S S S S S S S

Split value in S where odd bits are copied to upper word and even bits to lower word of D
the SPLITW/MERGEW paiir is good for the normal 2 dimensional z-order curve
--WS 1001011 10I CCCC DDDDDDDDD SSSSSSSSS SPLITW D,S/# mux

MERGEW D,S/# MERGE WORD
--WS

1 0 0 1 0 1 1 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Merge upper word of S to odd bits of D and lower word of S to even bits of D ???
--WS 1001011 11I CCCC DDDDDDDDD SSSSSSSSS MERGEW D,S/# mux

SETS D,S/# SET SOURCE
--MS

1 0 0 1 1 0 0 0 0 I C C C C D D D D D D D D D S S S S S S S S S

Set the source field of the instruction (b0..b8) specified at D to S
--MS 1001100 00I CCCC DDDDDDDDD SSSSSSSSS SETS D,S/# mux

GETS D,S/# GET SOURCE
--WS

1 0 0 1 1 0 0 0 1 I C C C C D D D D D D D D D S S S S S S S S S

Get the source field of the instruction (b0..b8) specified at S to D
--WS 1001100 01I CCCC DDDDDDDDD SSSSSSSSS GETS D,S/# mux

SETD D,S/# SET DESTINATION
--MS

1 0 0 1 1 0 0 1 0 I C C C C D D D D D D D D D S S S S S S S S S

Set the destination field of the instruction (b9..b17) specified at D to S
--MS 1001100 10I CCCC DDDDDDDDD SSSSSSSSS SETD D,S/# mux

GETD D,S/# GET DESTINATION
--WS

1 0 0 1 1 0 0 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Get the destination field of the instruction (b9..b17) specified at S to D
--WS 1001100 11I CCCC DDDDDDDDD SSSSSSSSS GETD D,S/# mux

SETDS D,S/# SET DESTINATION and SOURCE
--MS

1 0 0 1 1 0 1 0 0 I C C C C D D D D D D D D D S S S S S S S S S

Set both the destination and source field of the instruction specified at D to S ???
--MS 1001101 00I CCCC DDDDDDDDD SSSSSSSSS SETDS D,S/# mux

SETCOND D,S/# SET CONDITION
--MS

1 0 0 1 1 0 1 0 1 I C C C C D D D D D D D D D S S S S S S S S S

Sets the CCCC bits in D to the lower 4 bits in S
--MS 1001101 01I CCCC DDDDDDDDD SSSSSSSSS SETCOND D,S/# mux

SETI D,S/# SET I
--MS

1 0 0 1 1 0 1 1 0 I C C C C D D D D D D D D D S S S S S S S S S

SETI D,S/# sets the bits in D[31:23] to the lower 9 bits in S (was MOVI)

REV D,S/# REVERSE BITS
--WS

1 0 0 1 1 0 1 1 1 I C C C C D D D D D D D D D S S S S S S S S S

Reverses the lower (32 - Bits) of D’s LSB and clears the upper Bits of D’s MSBs

MULTIPLY INSTRUCTIONS

MUL D,S/# MULTIPLY
ZCMS

1 0 0 1 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Multiply two unsigned 16-bit values
If the WC effect is specified, the C flag is set if ???

MULS D,S/# MULTIPLY SIGNED
ZCMS

1 0 0 1 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Multiply two signed 16-bit values
If the WC effect is specified, the C flag is set if ???

LOGICAL INSTRUCTIONS

TESTN D,S/# TEST NOT BITS
ZCRS

1 0 1 0 0 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

TEST the bits in D NOT specified in the bit mask specified in S, that is ANDN without write.
Set the Z flag if D AND !S = 0
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

TEST D,S/# TEST BITS
ZCRS

1 0 1 0 0 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

TEST the bits in D specified in the bit mask specified in S, that is AND without write
Set the Z flag if D AND S = 0
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

ANYB D,S/# TEST ANY BITS
ZCRS

1 0 1 0 0 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

TEST any of the the bits in D specified in the bit mask specified in S, that is OR without write
Set the Z flag if
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

TESTB D,S/# TEST A BIT
ZCRS

1 0 1 0 0 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

TEST a bit in D specified by the bit position (5 bits) at S (IOSB without write)
If the WZ effect is specifed set the Z flag to the state of the bit ?
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

WAITCNT D,S/# WAIT CNT
ZCMS

1 0 1 0 1 0 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Wait for CNT

LINK D,S/@ LINK and JUMP
ZCMS

1 0 1 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Write PC[18:0] and Z & C flags to D and jump to S

JP D/#,S/@ JUMP if PIN high
--LS

1 1 0 0 0 0 0 L 0 I C C C C D D D D D D D D D S S S S S S S S S

Jump if PIN is high. Uses INA registered at beginning of ALU cycle.

JNP D/#,S/@ JUMP if PIN low
--LS

1 1 0 0 0 0 0 L 1 I C C C C D D D D D D D D D S S S S S S S S S

Jump if PIN is low. Uses INA registered at beginning of ALU cycle.

REP D/#,S/# REPEAT
--LS

1 1 0 0 0 0 1 L 0 I C C C C D D D D D D D D D S S S S S S S S S

Begin repeat block of size D/# with S/# iterations

HUB INSTRUCTIONS

WRFAST D/#,S/PTRx WRITE FAST
--LS

1 1 0 0 0 1 0 L 0 I C C C C D D D D D D D D D S S S S S S S S S

Write long to hub and bypass the FIFO when free (Blocking) ???

WRBYTE D/#,S/PTRx WRITE BYTE
--LS

1 1 0 0 0 1 0 L 1 I C C C C D D D D D D D D D S S S S S S S S S

Write byte to hub via the FIFO (blocking) ???

WRWORD D/#,S/PTRx WRITE WORD
--LS

1 1 0 0 0 1 1 L 0 I C C C C D D D D D D D D D S S S S S S S S S

Write word to hub via the FIFO (blocking) ???

WRLONG D/#,S/PTRx WRITE LONG
--LS

1 1 0 0 0 1 1 L 1 I C C C C D D D D D D D D D S S S S S S S S S

Write long to hub via the FIFO (Blocking) ???

RDFAST D/#,S/PTRx READ FAST
--LS

1 1 0 0 1 0 0 L x I C C C C D D D D D D D D D S S S S S S S S S

Read a long from hub memory bypassing the FIFO (blocking) ???

RDBYTE D,S/PTRx READ BYTE
ZCWS

1 1 0 0 1 0 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Read byte from hub memory
ZCWS 1100101 ZCI CCCC DDDDDDDDD SSSSSSSSS RDBYTE D,S/PTRx mem (waits for mem)

RDWORD D,S/PTRx READ WORD
ZCWS

1 1 0 0 1 1 0 Z C I C C C C D D D D D D D D D S S S S S S S S S

Read word from hub memory
ZCWS 1100110 ZCI CCCC DDDDDDDDD SSSSSSSSS RDWORD D,S/PTRx mem (waits for mem)

RDLONG D,S/PTRx READ LONG
ZCWS

1 1 0 0 1 1 1 Z C I C C C C D D D D D D D D D S S S S S S S S S

Read long from hub memory
ZCWS 1100111 ZCI CCCC DDDDDDDDD SSSSSSSSS RDLONG D,S/PTRx mem (waits for mem)

QSINCOS D/#,S# CORDIC SINCOS
--LS

1 1 0 1 0 0 0 L 0 I C C C C D D D D D D D D D S S S S S S S S S

Cordic SIN COS
--LS 1101000 L0I CCCC DDDDDDDDD SSSSSSSSS QSINCOS D/#,S/# 2 ..2 (1000) wait sys

--LS 1101000 L1I CCCC DDDDDDDDD SSSSSSSSS QARCTAN D/#,S/# 2 ..2 (1001) wait sys
--LS 1101001 L0I CCCC DDDDDDDDD SSSSSSSSS QROTATE D/#,S/# 3 ..2 (1010) wait sys
--LS 1101001 L1I CCCC DDDDDDDDD SSSSSSSSS QMUL D/#,S/# 2 ..2 (1011) wait sys
--LS 1101010 L0I CCCC DDDDDDDDD SSSSSSSSS QDIV D/#,S/# 3 ..2 (1100) wait sys
--LS 1101010 L1I CCCC DDDDDDDDD SSSSSSSSS QSQRT D/#,S/# 2 ..1 (1101) wait sys

COGINIT D/#,S# COG INIT
-CLS

1 1 0 1 0 1 1 L C I C C C C D D D D D D D D D S S S S S S S S S

Cog init

-CLS wr if !L 1101011 LCI CCCC DDDDDDDDD SSSSSSSSS COGINIT D/#,S/# 2 1? (0010) wait sys + 2 if WC and reg

ZCL- wr if C 1101111 0CL CCCC DDDDDDDDD 000000000 CLKSET D/# 1 0 (0000) wait sys + 2 if WC
ZCL- 1101111 Z1L CCCC DDDDDDDDD 000000001 COGID D/# WC 1 0/C (0001) wait sys + 2
ZCL- wr 1101111 Z00 CCCC DDDDDDDDD 000000001 COGID D 0 1 (0001) wait sys + 2
ZCL- 1101111 00L CCCC DDDDDDDDD 000000011 COGSTOP D/# 1 0 (0011) wait sys
ZCL- wr 1101111 ZC0 CCCC DDDDDDDDD 000000100 LOCKNEW D 0 1/C (0100) wait sys + 2
ZCL- 1101111 00L CCCC DDDDDDDDD 000000101 LOCKRET D/# 1 0 (0101) wait sys
ZCL- 1101111 0CL CCCC DDDDDDDDD 000000110 LOCKCLR D/# 1 0/C (0110) wait sys + 2 if WC
ZCL- 1101111 0CL CCCC DDDDDDDDD 000000111 LOCKSET D/# 1 0/C (0111) wait sys + 2 if WC

QLOG D/# LOG
ZCL-

1 1 0 1 1 1 1 0 0 L C C C C D D D D D D D D D 0 0 0 0 1 0 0 0 1

QLOG ??
ZCL- 1101111 00L CCCC DDDDDDDDD 000001110 QLOG D/# 1 ..1 (1110) wait sys

ZCL- 1101111 00L CCCC DDDDDDDDD 000001111 QEXP D/# 1 ..1 (1111) wait sys

ZCL- 1101111 00L CCCC DDDDDDDDD 000000000 SETQ D/#

RFBYTE D RFBYTE
ZCL- wr

1 1 0 1 1 1 1 Z C 0 C C C C D D D D D D D D D 0 0 0 0 1 0 0 0 1

RFBYTE
ZCL- wr 1101111 ZC0 CCCC DDDDDDDDD 000010001 RFBYTE D

ZCL- wr 1101111 ZC0 CCCC DDDDDDDDD 000010010 RFWORD D
ZCL- wr 1101111 ZC0 CCCC DDDDDDDDD 000010011 RFLONG D
ZCL- 1101111 00L CCCC DDDDDDDDD 000010100 WFBYTE D/#
ZCL- 1101111 00L CCCC DDDDDDDDD 000011000 WFWORD D/#
ZCL- 1101111 00L CCCC DDDDDDDDD 000011100 WFLONG D/#

AUGS #23bits AUGMENT SOURCE

1 1 1 1 0 n n n n n C C C C n n n n n n n n n n n n n n n n n n

Appends n to upper bits of next immediate S

To help make hub execution practical, there are two instructions, AUGS and AUGD, which each provide 23 bits of data to extend 9-bit
constants in subsequent instructions to 32 bits. AUGS is cancelled when a subsequent instruction expresses a constant S. AUGD is
cancelled when a subsequent instruction expresses a constant D.

Note: Use of ## and @@ implements AUGx

AUGD #23bits AUGMENT DESTINATION

1 1 1 1 1 n n n n n C C C C n n n n n n n n n n n n n n n n n n

Appends n to upper bits of next immediate D

Instructions to be added:

ZCWS * 1011001 ZCI CCCC DDDDDDDDD SSSSSSSSS MSGIN D,S/# msg (waits up to 32 clocks to receive %010_data32 message on pin S/#,
C=timeout)

--LS * 1100000 1LI CCCC DDDDDDDDD SSSSSSSSS WAITPAE D/#,S/# (waits for INA)
--LS * 1100000 0LI CCCC DDDDDDDDD SSSSSSSSS WAITPAN D/#,S/# (waits for INA)
--LS * 1100001 1LI CCCC DDDDDDDDD SSSSSSSSS WAITPBE D/#,S/# (waits for INB)
--LS * 1100001 0LI CCCC DDDDDDDDD SSSSSSSSS WAITPBN D/#,S/# (waits for INB)

--LS * 1100100 0LI CCCC DDDDDDDDD SSSSSSSSS MSGOUTA D/#,S/# (send message to pin(s) on DIRA)
--LS * 1100100 1LI CCCC DDDDDDDDD SSSSSSSSS MSGOUTB D/#,S/# (send message to pin(s) on DIRB)

--LS * 1100110 0LI CCCC DDDDDDDDD SSSSSSSSS PICKZC D/#,S/# adr (always writes Z/C) - maybe change to {base5+offset4, base5) (1-
based offset)

JMP #abs JUMP

1 1 0 1 1 0 0 0 0 n C C C C n n n n n n n n n n n n n n n n n n

Jump to 19-bit absolute address
---- * 1101100 00n CCCC nnnnnnnnn nnnnnnnnn * JMP #abs adr (jump to 19-bit absolute address)

JMP @rel JUMP

1 1 0 1 1 0 0 0 1 n C C C C n n n n n n n n n n n n n n n n n n

Jump to 19-bit relative address
---- * 1101100 01n CCCC nnnnnnnnn nnnnnnnnn * JMP @rel adr (jump to 19-bit relative address)

CALL #abs CALL

1 1 0 1 1 0 0 1 0 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit absolute address using 4-level stack
---- * 1101100 10n CCCC nnnnnnnnn nnnnnnnnn * CALL #abs adr (call to 19-bit absolute address, using 4-level stack)

CALL @rel CALL

1 1 0 1 1 0 0 1 1 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit relative address using 4-level stack
---- * 1101100 11n CCCC nnnnnnnnn nnnnnnnnn * CALL @rel adr (call to 19-bit relative address, using 4-level stack)

CALLA #abs CALLA

1 1 0 1 1 0 1 0 0 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit absolute address using PTRA as stack pointer
---- * 1101101 00n CCCC nnnnnnnnn nnnnnnnnn * CALLA #abs adr (call to 19-bit absolute address using PTRA)

CALLA @rel CALLA

1 1 0 1 1 0 1 0 1 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit relative address using PTRA as stack pointer
---- * 1101101 01n CCCC nnnnnnnnn nnnnnnnnn * CALLA @rel adr (call to 19-bit relative address using PTRA)

CALLB #abs CALLB

1 1 0 1 1 0 1 1 0 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit absolute address using PTRB as stack pointer
---- * 1101101 00n CCCC nnnnnnnnn nnnnnnnnn * CALLB #abs adr (call to 19-bit absolute address using PTRB)

CALLB @rel CALLB

1 1 0 1 1 0 1 1 1 n C C C C n n n n n n n n n n n n n n n n n n

Call to 19-bit relative address using PTRB as stack pointer
---- * 1101101 01n CCCC nnnnnnnnn nnnnnnnnn * CALLB @rel adr (call to 19-bit relative address using PTRB)

ZCW- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0000 GETCNT D cog (get CNT into D)
ZCW- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0001 GETRND D cog (get RND into D)

ZCW- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0010 POP D cog (pop 4-level stack into D) (D[20:19] into Z/C via WZ/WC for
POP..CALLB D)

ZCR- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0011 CALL D adr (call to D[18:0] using 4-level stack)
ZCR- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0100 * CALLA D adr (call to D[18:0] using PTRA stack)
ZCR- * 1101111 ZCx CCCC DDDDDDDDD xxxxx0101 * CALLB D adr (call to D[18:0] using PTRB stack)

--L- * 1101111 00L CCCC DDDDDDDDD xxxxx0110 PUSH D/# (push D/# into 4-level stack)
--L- * 1101111 00L CCCC DDDDDDDDD xxxxx0111 SETVID D/# (set video mode)
--L- * 1101111 00L CCCC DDDDDDDDD xxxxx1000 WAIT D/# (wait for some number of clocks, 0 same as 1)
--L- * 1101111 00L CCCC DDDDDDDDD xxxxx1001 WAITPX D/# (wait for any edge on pin D/#)
--L- * 1101111 00L CCCC DDDDDDDDD xxxxx1010 WAITPR D/# (wait for pos edge on pin D/#)
--L- * 1101111 00L CCCC DDDDDDDDD xxxxx1011 WAITPF D/# (wait for neg edge on pin D/#)

---- * 1101111 00x CCCC xxxxxxxxx xxxxx1100 SETQ D/#

---- * 1101111 ZCx CCCC xxxxxxxxx xxxxx1101 RET cog (return using 4-level stack)
---- * 1101111 ZCx CCCC xxxxxxxxx xxxxx1110 * RETA cog (return using PTRA stack)
---- * 1101111 ZCx CCCC xxxxxxxxx xxxxx1111 * RETB cog (return using PTRB stack)

---- wr * 111000r rrn CCCC nnnnnnnnn nnnnnnnnn LOCADDR reg,#abs adr (write 19-bit absolute address to $1F2..$1F9, includes PTRA/PTRB)
---- wr * 111001r rrn CCCC nnnnnnnnn nnnnnnnnn LOCADDR reg,@rel adr (write 19-bit relative address to $1F2..$1F9, includes PTRA/PTRB)
---- wr * 111010r rrn CCCC nnnnnnnnn nnnnnnnnn * LINK reg,#abs adr (jump to 19-bit absolute address, write {Z,C,P[18:0]} to
$1F2..$1F9)
---- wr * 111011r rrn CCCC nnnnnnnnn nnnnnnnnn * LINK reg,@rel adr (jump to 19-bit relative address, write {Z,C,P[18:0]} to
$1F2..$1F9)

	COG REGISTERS
	TIMING
	P16X64A INSTRUCTION SET
	INSTRUCTION FORMAT (GENERAL)
	ROTATE INSTRUCTIONS
	ADD INSTRUCTIONS
	LOGICAL INSTRUCTIONS
	INC INSTRUCTIONS
	MUX INSTRUCTIONS
	MULTIPLY INSTRUCTIONS
	
	LOGICAL INSTRUCTIONS
	HUB INSTRUCTIONS

