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Motivating example

bioreactors




Continuously Stirred Tank
(CST) Reactor
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Single enzymatic reaction TN
Michaelis-Menten Kinetics coc
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Other examples H:
Plant Performance output
Turbine Generated power
Solar cell Generated power

Optical amplifiers

Uniformity of the gain spectrum

Tokamak

Reflected power during Lower Hybrid (LH)
plasma heating experiments

Non-holonomic vehicles

Distance from a source of a signal

Paper machine

Retention of fines and fibers in the sheet

Ultrasonic/Sonic Driller/Corer

Distance from resonance

Human Exercise Machine

The user’s power output

ABS

Magnitude of friction force

Variable cam timing

Fuel consumption




Problem formulation

Assumption 1:

- Q(.) has an extremum (max)

) — é{g%u) Y .| v=0Qw). QW) Bu

- Q(.) is unknown

Dvnamic case:

GG ) 0 = f(l(u),u)
Extremum Q(u) = h

Seeking — Problem:
Controller

Design ESC so that
limsup,_, .. jy(t) i y*j Y40




Background



Classification of approaches

U

Deterministic

1

Stochastic

Adaptive ESC

\ 4

[Krsti¢, Ariyur, Guay, Tan,
Nesi¢,...]

NLP based ESC

\ 4

[Popovic, Teel,...]

\ 4

Adaptive ESC

[Krsti¢, Manzie,...]

NLP based ESC
[Spall,..]

Also continuous-time versus discrete-time.



Brief history (deterministic):
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Adaptive ESC e
[Krstic & Wang 2000], local stability
t = f(z,u)
U v = A J >

a sin(wt) a sin(wt)

: Extremum seeking controller



Our goals:

Precise non-local convergence analysis.

Controller tuning guidelines and trade-offs.



Non-local stability

(no local extrema)

Y. Tan, D. NeSi¢ and |. Mareels, “On non-local stability properties of extremum

seeking control”, Automatica, Vol. 42, No. 6, pp. 889-903, 2006.
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t
Static SISO case :
(gradient descent)
uw=0-+ asin(t Parameters:
L y=ew) s 4
0
8 —_
: o %
¢ sin(t) win?) Notation:
D"’Q — ‘C%%

: Extremum seeking controller



Average system

e The system is periodic in time:
0 = 6Q(0 + asin(t))sin(t) =: 6f(¢, 0, a)
e |ts average is a gradient descent scheme:

9—5]"@@(9&)—5[ DQ(0) +0(a”)]

Gradient descent

/zwatga

fafuea



Assumption 2:

DQ(u)(uj u*) <0, 8ub u*

This assumption holds for many plants, e.g. some models of CST reactor.



KL functions

e Linear UGES systems satisfy the bound
jz(t)j - Kexp(i At to))izoj, 8t, to,8zg

for some K, A\>0.
e Nonlinear UGAS systems satisfy

jz(t)] - B(zoj,ti to), 8t, to,8z0

for some 5 € KL.




Theorem:

Suppose Assumptions 1 and 2 hold. Then,
there exists 3 € KL such that:

8(A,v)9(6*,a*)
+
852 (0,0"),a2 (0,a")

Tuning guidelines

+
j0(to) i 07 A
+

jo(t)i 0% B(0(to) i 0%j,ad(ti to))+v, 8, to

where 0 .= u*.
We say that the system in SPA stable in a, é.



A trade-off

Larger A
or
Smaller v

)

Smaller a

and
Smaller 9

)

Slower
Convergence




Sketch of proof:

e Use the Lyapunov function candidate
1 . *\ 2
V(o) = 5(@0i o)

DV (0)dfau(0.a) = |5 DQ(O)(0i 67)+O0(a’)

e Average system is SPA stable in a.
e Actual system is SPA stable in a, 4.



Comments

e Theorem provides a tuning rule for ESC.

e The trade-off limits the rate of convergence!
e ES with filters can be treated similarly.

e Stronger result possible:

the rate of convergence is proportional the
power of dither signal — square wave best.

Y. Tan, D. NesSi¢c and |. Mareels, “On the choice of dither signals in
extremum seeking control scheme”, Automatica, Vol. 44, No. 5, pp. 1446-
1450, 2008.



Dynamic SISO case

| i = f(z,u) Parameters:
u =0+ asin(t) y = h(x) J > a, w, o,

Q(u) := h +4(u) K :=wdd

0

Yl Kl K
S
a sin(wt) sin(wt)

: Extremum seeking controller



Singularly perturbed model:

e New time scale o=w t:

d

wd—i = f(x,0 4 asin(o0))
do ,
e dh(x) sin(o)

e The model is in standard form.
e Time scale separation: slow & fast systems.



Slow model

o Set w=0
0= f(z,0 +asin(c)) ) = =4£(0+ asin(o))
e Substitution in 8 equation yields:
49 — §h £ 4(0 + asin(0)) sin(o) = 6Q(0 + asin(o)) sin(o)

e This is the same system as in static case!
e \We use Assumptions 1 and 2.



Fast model

e |In the fast time scale:

T = f(x,0y + asin(oy))

Assumption 3:

For any u, the equilibrium
x = f(ug)

of the fast system is UGAS, uniformly in u,.




Theorem

e Suppose Assumptions 1-3 hold. Then, there
exist 3,,8, € KL such that

8(A,v), 9(0*,a*)
+
862 (0,6%), a2 (0,a*), 9w Tuning guidelines
+

j(xz(to),0(to) i 07)j- A
jz(t) i £(0 ()) Bi(jz(to) i £(0(t0))],ad(ti to)) +v, 8t, to
jo)i 0% B2(j0(to) i 07j,adw(ti to))+v, 8t, to



Geometrical interpretation
z 4

Forany A, v 0(6)
Exist 4, a Fast trafsient
ant) » |ad
(0 e "Slow transient
05 \ algorithm » adw
g * f
B,

BA

lim sup jO(t) 6% v

t—00




Bioreactor example

All our assumptions hold.
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Non-local stability

(with local extrema)

Y. Tan, D. NeSi¢ and |. Mareels and A. Astolfi, “On the global extremum

seeking control”, Automatica, Vol. 45, No. 1, pp. 245-251, 2009.



Assumption 2 does not hold! | :

Assumption 4: There exists a unique global maximum:

Olu* ) Q(u*) > Q(u),8u 6 u*.




Static SISO case

> Parameters:
ap, 57 €

a =i eda, a(0) =ag >0

: Extremum seeking controller



Model of the system

e The system is time-varying:
0 = 6Q(6+ asin(t))sin(t) =: §f(t,6,a)

a = j€da, a(0)= ag

and its average with a change of time o=t/e

LA Y

do

da = j da, a(0)=aog
do

IS a singularly perturbed system.



Desired bifurcation diagram :

a = u(h) \ fav(0,0) =0, a>0
- Global maximum 6*
a Local maxima 07,05, ...
Local minima 97,5, . ..
N\ 6
>

pr  at 0* vy 03

Assumption 5:

The average system f_ (6,a) has a desired bifurcation diagram.




Comments

e All 4t order polynomials that satisfy
Assumption 4 also satisfy Assumption 5.

e There exists a 61" order polynomial that
satisfies Assumption 4 but does not satisfy
Assumption 9.

e Dither shape affects Assumption 5!



Theorem

e Suppose Assumptions 4 and 5 hold. Then

8(A,v),ag > a*
+

O¢* > 0,8¢ 2 (0,€)

+
95* > 0,86 2 (0,5%) Tuning guidelines
+
ifoi 0% A
+

061 p@®) - B0 mao)i,oti to))+v
ja(t)i - expli e(ti to))iaol



Comments

e Note that

a(t)! 0) limioop(a(t)) = p(0) = 6

e [0 achieve robustness, we would typically
modify ESC so that

e Similar to “simulated annealing”.



Idea

a A
= 1(0) Pick any ag > a*
Pick sufficiently small ¢, 0
) ao }
Fast transient (8o, ao)
Desired
Accuracy
given Slow transient
R
a*
/\ —>
0" o, 0
~— 2
V

Desired domain of attraction given



Comments

e Assumptions are impossible to verify a priori.

e Our result provides a tuning strategy for ESC
that can improve performance.



Some open problems

e Convergence rate improvements.
e Using the model knowledge in the best way.
e Adaptive versions of non-gradient schemes.

e Selection of efficient algorithms and dithers
for particular applications.

e More detailed tuning guidelines, and so on.
e Multi-valued functions.



Multi-valued functions

G. Bastin, D. Nesi¢, Y. Tan and I. Mareels, “On Extremum Seeking in
Bioprocesses with Multi-valued Cost Functions”, Biotechnology Progress, Vol. 25,
No. 3, pp. 683-689, 2009.



0000
0000
0oo
Multi-valued cost :
e Our assumptions sometimes do not hold.
1 .c_ JP : : 1 .o_ JP/-\H
i I - f
0.6 ! 4 0.6 /
l2 | | /
‘. 1 /1 /
0.2 LL 0.2 / 4 i‘h
0.0 ' ' ' ' : i 0.0_/ . : . .L___‘_—.__“m_.h__mﬁ
Jp is @ multi-valued function For some initial conditions our

analysis is fine



Possible situations

y(1)
1.0
o a = 0.003
0.6-
0.4
1 a = 0.0015
0.21 - A——

0.00—
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Conclusions

e Non-local convergence analysis of a class of
adaptive ES controllers is presented.

e Tuning guidelines follow from our results.
e Interesting trade-offs arise.

e Global ES possible with local extrema.

e Many open problems.
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