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Motivating example
 bioreactors



Continuously Stirred Tank 
(CST) Reactor

Substrate Product

u=Vol. flow rate Performance output y:

Productivity JP

Yield JY

Inflow Outflow

Overall JT

JT := λJP + (1 ¡ λ)JY , λ 2 (0, 1)

Assumption: u(t) ´ ū =) J?(t) ! J?(ū)



Single enzymatic reaction
 Michaelis-Menten

 
Kinetics

Productivity and yield Total cost

is typically unknown!!
In steady-state, we would typically want to operate around u∗

JT (ū)



Other examples

Plant Performance output
Turbine Generated power

Solar cell Generated power

Optical amplifiers Uniformity of the gain spectrum

Tokamak Reflected power during Lower Hybrid (LH) 
plasma heating experiments

Non-holonomic
 

vehicles Distance from a source of a signal

Paper machine Retention of fines and fibers in the sheet

Ultrasonic/Sonic Driller/Corer Distance from resonance

Human Exercise Machine The user’s power output

ABS Magnitude of friction force

Variable cam timing Fuel consumption



Problem formulation

Extremum
Seeking

Controller

Assumption 1:

-
 

Q(.) has an extremum
 

(max)

-
 

Q(.) is unknown
y = Q(u)

yu ẋ = f(x, u)

y = h(x)
Dynamic case:

Problem:

Design ESC so that

lim supt→∞ jy(t) ¡ y∗j ¼ 0

y∗ := Q(u∗) ¸ Q(u), 8u

9`(¢) ) 0 = f(`(u), u)

Q(u) := h ± `(u)



Background



Classification of approaches

NLP based ESC 
[Popović, Teel,…]

Adaptive ESC 
[Krstić, Ariyur, Guay, Tan, 
Nešić,…]

Deterministic Stochastic

Adaptive ESC 
[Krstić, Manzie,…]

NLP based ESC
[Spall,..]

Also continuous-time versus discrete-time.



Brief history (deterministic):
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Adaptive ESC 
[Krstić

 
& Wang 2000], local stability

θ

a sin(ωt)

K
s

ẋ = f(x, u)

y = h(x)
y

+ x

a sin(ωt)

Extremum
 

seeking controller

Q(u) := h ± `(u)

Wh(s)Wl(s)

u



Our goals:

Precise non-local convergence analysis.

Controller tuning guidelines and trade-offs.



Non-local stability
 (no local extrema)

Y. Tan, D. Nešić

 

and I. Mareels, “On non-local stability properties of extremum

 seeking control”, Automatica, Vol. 42, No. 6, pp. 889-903, 2006.



Static SISO case
 (gradient descent)

a sin(t)

θ

u = θ + a sin(t)

δ
s

θ̇
δ

y = Q(u)
y

+ x
θ

sin(t)

Extremum
 

seeking controller

a, δ
Parameters:

DkQ := dkQ
duk

Notation:



Average system

The system is periodic in time:

Its average is a gradient descent scheme:

θ̇ = δQ(θ + a sin(t)) sin(t) =: δf(t, θ, a)

θ̇ = δfav(θ, a) = δ[
a

2
DQ(θ)| {z }+O(a3)]

fav(θ, a) :=
1

2π

Z 2π

0

f(τ, θ, a)

Gradient descent



DQ(u)(u ¡ u∗) < 0, 8u 6= u∗

u

y = Q(u)

y∗

u∗

DQ(u) < 0DQ(u) > 0

Assumption 2:

This assumption holds for many plants, e.g. some models of CST reactor.



KL functions

Linear UGES systems satisfy the bound

for some K, λ>0.
Nonlinear UGAS systems satisfy

for some β
 

∈
 

KL.

jx(t)j · K exp(¡ λ(t ¡ t0))jx0j, 8t ¸ t0, 8x0

jx(t)j · β(jx0j, t ¡ t0), 8t ¸ t0,8x0



Suppose Assumptions 1 and 2 hold. Then, 
there exists β

 
∈

 
KL such that:

Theorem:

8(∆, ν)9(δ∗, a∗)

θ∗ := u∗.

+
8δ 2 (0, δ∗), a 2 (0, a∗)

+
jθ(t0) ¡ θ∗j · ∆

+
jθ(t) ¡ θ∗j · β(jθ(t0) ¡ θ∗j, aδ(t ¡ t0)) + ν, 8t ¸ t0

where

Tuning guidelines

We say that the system in SPA stable in a, δ.



A trade-off

Larger ∆
or

Smaller ν
)

Smaller a
and

Smaller δ

) Slower
Convergence



Sketch of proof:

Use the Lyapunov function candidate

Average system is SPA stable in a.
Actual system is SPA stable in a, δ.

V (θ) =
1

2
(θ ¡ θ∗)2

DV (θ)δfav(θ, a) = δ

⎡⎣a
2
DQ(θ)(θ ¡ θ∗)| {z }

<0

+O(a3)

⎤⎦



Comments
Theorem provides a tuning rule for ESC.
The trade-off limits the rate of convergence!
ES with filters can be treated similarly.
Stronger result possible: 
the rate of convergence is proportional the 
power of dither signal –

 
square wave best.

Y. Tan, D. Nešić
 

and I.  Mareels, “On the choice of dither signals in 
extremum

 
seeking control scheme”, Automatica, Vol. 44, No. 5, pp. 1446-

 1450, 2008.



Dynamic SISO case

θ

u = θ + a sin(t)

a sin(ωt)

θ̇
KK

s

ẋ = f(x, u)

y = h(x) y

+ x
θ

sin(ωt)

Extremum
 

seeking controller

a, ω, δ,

K := ω ¢δ

Parameters:

Q(u) := h ± `(u)



Singularly perturbed model:

New time scale σ=ω t:

The model is in standard form.
Time scale separation: slow & fast systems.

ω
dx

dσ
= f(x, θ + a sin(σ))

dθ

dσ
= δh(x) sin(σ)



Slow model

Set ω=0

Substitution in θ equation yields:

This is the same system as in static case!
We use Assumptions 1 and 2.

0 = f(x, θ + a sin(σ)) ) x = `(θ + a sin(σ))

dθ
dσ = δh ± `(θ + a sin(σ)) sin(σ) = δQ(θ + a sin(σ)) sin(σ)



Assumption 3:

For any u0

 

the equilibrium

of the fast system is UGAS, uniformly in u0

 

.

Fast model

In the fast time scale:

ẋ = f(x, θ0 + a sin(σ0)| {z }
u0

)

x = `(u0)



Theorem

Suppose Assumptions 1-3 hold. Then, there 
exist β1,β2 ∈ KL such that

8(∆, ν), 9(δ∗, a∗)

+
8δ 2 (0, δ∗), a 2 (0, a∗), 9ω

+
j(x(t0), θ(t0) ¡ θ∗)j · ∆

+
jx(t) ¡ `(θ(t))j · β1(jx(t0) ¡ `(θ(t0))j, aδ(t ¡ t0)) + ν, 8t ¸ t0

jθ(t) ¡ θ∗j · β2(jθ(t0) ¡ θ∗j, aδω(t ¡ t0)) + ν, 8t ¸ t0

Tuning guidelines



Geometrical interpretation

θ

x

(θ0, x0)

Fast transient
(plant)

x = `(θ)

Slow transient
algorithm

» aδ

» aδω

lim sup
t→∞

jθ(t) ¡ θ∗j · ν

B∆

Exist δ, a

θ∗
Bν

For any ∆, ν



Bioreactor example
All our assumptions hold.



Non-local stability
 (with local extrema)

Y. Tan, D. Nešić

 

and I. Mareels and A. Astolfi, “On the global extremum

 seeking control”, Automatica, Vol. 45, No. 1, pp. 245-251, 2009.



Assumption 2 does not hold!

u

y = Q(u)

y∗

u∗ u∗2u∗1

Assumption 4:
 

There exists a unique global maximum:

9!u∗ ) Q(u∗) > Q(u), 8u 6= u∗.



Static SISO case

θ

δ
s

θ̇
δ

y = Q(u)
yu = θ + a(t) sin(t)

+ x
θ

sin(t)

Extremum
 

seeking controller

a0, δ, ²
Parameters:

x

ȧ = ¡ ²δa, a(0) = a0 > 0



Model of the system

The system is time-varying:

and its average with a change of time σ=t/²

is a singularly perturbed system.

θ̇ = δQ(θ + a sin(t)) sin(t) =: δf(t, θ, a)

ȧ = ¡ ²δa, a(0) = a0

²
dθ

dσ
= δfav(θ, a)

da

dσ
= ¡ δa, a(0) = a0



Desired bifurcation diagram

θ

a

a∗

θ∗ θ∗2θ∗1 ψ∗1 ψ∗2

a = μ(θ) fav(θ, a) = 0, a > 0

Global maximum
Local maxima
Local minima

θ∗

θ∗1 , θ
∗
2 , . . .

ψ∗1 ,ψ
∗
2 , . . .

Assumption 5: 

The average system fav

 

(θ,a) has a desired bifurcation diagram.



Comments

All 4th order polynomials that satisfy 
Assumption 4 also satisfy Assumption 5.

There exists a 6th order polynomial that 
satisfies Assumption 4 but does not satisfy 
Assumption 5.

Dither shape affects Assumption 5!



Theorem

Suppose Assumptions 4 and 5 hold. Then 
8(∆, ν), a0 > a∗

+
9²∗ > 0, 8² 2 (0, ²∗)

+
9δ∗ > 0, 8δ 2 (0, δ∗)

+
jθ(t) ¡ μ(a(t))j · β(jθ0 ¡ μ(a0)j, δ(t ¡ t0)) + ν

ja(t)j · exp(¡ ²δ(t ¡ t0))ja0j

+
jθ0 ¡ θ∗j · ∆

Tuning guidelines



Comments

Note that

To achieve robustness, we would typically 
modify ESC so that 

Similar to “simulated annealing”.

a(t) ! 0 ) limt→∞ μ(a(t)) = μ(0) = θ∗

limt→∞ a(t) = ā > 0



Idea

θ

a

a∗

θ∗

a = μ(θ)

Desired domain of attraction given

Pick any a0 > a∗

a0
Pick sufficiently small  ², δ

θ0

(θ0, a0)Fast transient

Slow transient

Desired
Accuracy
given



Comments

Assumptions are impossible to verify a priori.

Our result provides a tuning strategy for ESC 
that can improve performance.



Some open problems

Convergence rate improvements.
Using the model knowledge in the best way.
Adaptive versions of non-gradient schemes.
Selection of efficient algorithms and dithers 
for particular applications.
More detailed tuning guidelines, and so on.
Multi-valued functions.



Multi-valued functions

G. Bastin, D. Nešić, Y. Tan and I. Mareels,

 

“On Extremum

 

Seeking in 
Bioprocesses with Multi-valued Cost Functions”, Biotechnology Progress, Vol. 25, 
No. 3, pp. 683-689, 2009.



Our assumptions sometimes do not hold.

For some initial conditions our
analysis is fine

JP

 

is a multi-valued function

Multi-valued cost



Possible situations

Effects of “small”
 

amplitude Amplitude “too large”



Conclusions

Non-local convergence analysis of a class of 
adaptive ES controllers is presented.
Tuning guidelines follow from our results.
Interesting trade-offs arise.
Global ES possible with local extrema.
Many open problems.
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