
P ropeller P rogramming Tutorial

Page 86 · Propeller Manual v1.0

Propeller Languages (Spin and Propeller Assembly)
The Propeller chip is programmed using two languages designed specifically for it: 1) Spin, a
high-level object-based language, and 2) Propeller Assembly, a low-level, highly-optimized
assembly language. There are many hardware-based commands in Propeller Assembly that
have direct equivalents in the Spin language. This makes learning both languages, and the
use of the Propeller chip overall, much easier to handle.

The Spin language is compiled by the Propeller Tool software into tokens that are interpreted
at run time by the Propeller chip�s built-in Spin Interpreter. Those familiar with other
programming languages usually find that Spin is easy to learn and is well-suited for many
applications. With Spin you can easily perform high-level/low-bandwidth tasks and can even
create code to handle some typically higher-bandwidth features like asynchronous serial
communication at 19200 baud.

The Propeller Assembly language is assembled into pure machine code by the Propeller Tool
and is executed in its pure form at run time. Assembly language programmers enjoy
Propeller Assembly�s nature and its ability to achieve high-bandwidth tasks with very little
code.

Propeller Objects (see below) can be written entirely in Spin or can use various combinations
of Spin and Propeller Assembly. It�s possible to write objects almost entirely in Propeller
Assembly as well, but at least two lines of Spin code are required to launch the final
application.

Propeller Objects
The Propeller chip�s Spin language is object-based and serves as the foundation for every
Propeller Application.

What is an Object?
Objects are really just programs written in a way that: 1) create a self-contained entity, 2)
perform a specific task, and 3) may be reused by many applications.

For example, the Keyboard object and Mouse object each come with the Propeller Tool
software. The Keyboard object is a program that interfaces the Propeller chip to a standard
PC-style keyboard. Similarly, the Mouse object interfaces to a standard computer mouse.
Both of these objects are self-contained programs with carefully designed software interfaces
that allow other objects, and developers, to use them easily.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 87

By using existing objects, more sophisticated applications can be built very quickly. For
instance, an application can include both the Keyboard and Mouse objects, and with just a
few additional lines of code, a standard user interface is realized. Since the objects are self-
contained and provide a concise software interface, application developers don�t necessarily
need to know exactly how an object achieves its task just to be able to use it. In a similar
way, a driver of a car doesn�t necessarily know how the engine works, but as long as that
driver understands the interface (the ignition key, gas pedal, brakes, etc.) he or she can make
the car accelerate and decelerate.

Well-written objects can be created by one developer and easily used by many different
applications from many different developers.

Objects and Applications
A Propeller Object consists of Spin code and, optionally, Propeller Assembly code; see
Figure 3-1. We�ll simply call these �objects� from now on.

Propeller Object

Spin Code

Propeller Assembly Code

Figure 3-1: Propeller
Object

Objects are stored on your computer as files with �.spin� extensions, therefore you should
always think of each Spin file as an object.

P ropeller P rogramming Tutorial

Page 88 · Propeller Manual v1.0

Figure 3-2: Object Files consist of Spin, and possibly Propeller Assembly, and are
stored as �.spin� files on your computer�s hard drive.

Each object can be thought of as a �building block� for an application. An object may choose
to utilize one or more other objects in order to build a more sophisticated application. This is
loosely called �referencing� or �including� another object. When an object references other
objects it forms a hierarchy where it is the object at the top, as in Figure 3-3. The topmost
object is referred to as the �Top Object File� and is the starting point for compiling a
Propeller Application.

Figure 3-3: Object
Hierarchy

When compiled, the
Graphics Demo object
is the �Top Object
File� that references
the other three
objects shown below
it.

In the above figure, the Graphics Demo object references three other objects: TV, Graphics,
and Mouse. If the Graphics Demo object is compiled by the user, it is considered the Top

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 89

Object File and the other three objects are loaded and compiled with it resulting in a finished
program called a Propeller Application, or �application� for short.

Applications are formed from one or more objects. The application is really a specially
compiled binary stream that consists of executable code and data and can be run by the
Propeller chip.

When downloaded, the application is stored in the Propeller chip�s Main RAM and optionally
into an external EEPROM. At run time, the application is executed by one or more of the
Propeller chip�s processors, called cogs, as directed by the application itself.

Figure 3-4:
Downloading

Applications
consisting of one
or more objects are
downloaded to the
Propeller chip�s
RAM, and
optionally, its
external EEPROM.

P ropeller P rogramming Tutorial

Page 90 · Propeller Manual v1.0

Connect for Downloading
In order to download a Propeller Application from the PC, you first need to connect the
Propeller chip properly.

• If you have a Propeller Demo Board (Rev C or D), it includes the Propeller chip and
all the necessary circuitry. Connect it to a power supply and the PC�s USB cable and
switch the power on. You may also need to install the USB drivers as directed by the
Propeller Demo Board�s documentation.

• If you do not have the Propeller Demo Board, we�ll assume you have the Propeller
chip and that you are experienced with wiring prototype circuits. Refer to Package
Types on page 14 (showing the Propeller pinout) and Hardware Connections on page
17 for an example circuit showing the connections for power and programming. If
you are using the Propeller Plug device, you may also need to install the USB drivers
as directed by its documentation. The rest of this chapter relies heavily on circuitry
similar to that of the Propeller Demo Board. In addition to the above power and
programming connections, include the components and connections of the following
schematic in your prototype circuit. You may also refer to the Propeller Demo
Board�s schematic; downloadable from the Parallax website.

Figure 3-5: Propeller Tutorial Schematic

If you have made the connections suggested above, you should be able to verify and identify
the Propeller chip via the Propeller Tool software. Start the Propeller Tool software (Version
1.0) and then press the F7 key (or select Run � Identify Hardware� from the menu). If the

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 91

Propeller chip is powered and connected to the PC properly, you should see an �Information�
dialog similar to Figure 3-6.

Figure 3-6: The
Information Dialog

The port (COM5) may
be different on your
computer.

Quick Review: Intro
• The Propeller is programmed using two custom-designed languages: Spin and

Propeller Assembly.
o Spin is a high-level, object-based language interpreted at run time.
o Propeller Assembly is a low-level, optimized assembly language which is

executed directly at run time.
• Objects are programs that:

o are self-contained.
o perform a specific task.
o may be reused by many applications.

• Well-written objects from one developer can easily be used by other developers and
applications.

• A Propeller Object:
o consists of two or more lines of Spin code and possibly Propeller Assembly

code.
o is stored on the computer as a file with a �.spin� extension.
o may use one or more other objects to build a sophisticated application.

• Propeller Applications:
o consist of one or more objects.
o are compiled binary streams containing executable code and data.
o are run by the Propeller chip in one or more cogs (processors) as directed by

the application.
• The topmost object in a compiled application is called the �Top Object File.�

P ropeller P rogramming Tutorial

Page 92 · Propeller Manual v1.0

Exercise 1: Output.spin � Our First Object
The following is a simple object, written in Spin, that will toggle an I/O pin high and low
repeatedly. Start the Propeller Tool software and enter this program into the editor. We�ll
explain how it works in a moment. Make sure the �PUB� line begins in column 1 (the leftmost
edge of the edit pane) and pay very close attention to each line�s indention; it�s important for
proper operation.

PUB Toggle
 dira[16]~~
 repeat
 !outa[16]
 waitcnt(3_000_000 + cnt)

While indentation is critical, capitalization is not. Propeller code is not case-senitive.
However, throughout this book, reserved words appear in bold all-captials, except in code
snippets and excerpts, to help you become familiar with them.

After checking that you�ve typed it in properly, press the F10 key (or select Run � Compile
Current � Load RAM + Run from the menu) to compile and download our example
program. If the program you entered is syntactically correct and the Propeller chip is
properly powered and connected to the PC, you should see a �Propeller Communication�
dialog appear momentarily on the screen, like the one in Figure 3-7, and now the LED on I/O
pin 16 of the Propeller chip should be blinking about twice per second. What we just
accomplished is what is shown at the top of Figure 3-4: Downloading on page 89.

Figure 3-7: Propeller
Communication
Dialog

What really happened was probably too fast to see because the example program we entered
is so small. When you pressed F10 it caused the Propeller Tool to compile the source code
you entered and turn it into a Propeller Application. The Propeller Tool then searched for a
Propeller chip connected to the PC and downloaded the application into its RAM. Finally,
the Propeller started running the application from RAM, blinking the LED on I/O pin 16.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 93

Downloading to RAM vs. EEPROM
Before we explain the code, let�s take a closer look at the downloading process. Since our
code was downloaded to RAM only, power cycling or resetting the Propeller will cause RAM
contents to be lost and the program to stop permanently. Try pressing the reset button. The
LED should turn off and never turn on again.

What if we don�t want it to stop permanently? We could download to EEPROM instead of
just RAM. Let�s download again, but this time press the F11 key (or select Run � Compile
Current � Load EEPROM + Run from the menu) to compile and download our example
program to EEPROM. This is what is shown at the bottom of Figure 3-4: Downloading on
page 89. As you may see from the figure, this actually downloaded to RAM first, then the
Propeller chip programmed its external EEPROM, then started running the application from
RAM, blinking the LED on I/O pin 16.

You probably noticed that the �Propeller Communication� dialog stayed on the screen much
longer; EEPROMs take much longer to program than RAMs do.

Try pressing the reset button now. When you release the reset button, you�ll notice a delay of
about 1 ½ seconds and then the LED starts blinking. This is exactly what we wanted; a more
permanent application in our Propeller chip.

Upon waking up from reset, the Propeller chip performed the boot-up procedure detailed on
page 18. During that procedure, it determined it needed to boot up from the external
EEPROM and then it took approximately 1½ seconds to completely copy the 32 Kbytes of
content into its RAM and start running it.

Downloading only to RAM is convenient for development sessions because it is much faster.
Downloading to both RAM and EEPROM to make the application more permanent is best
done only when necessary because of the extra download time required.

A word of caution: If you download to EEPROM one or more times then revise your program
and download to RAM only, when manually reset, the Propeller will boot up with your old
program. This may make sense now, but that result can be very confusing when you�re not
paying attention. If things don�t work right after a reset occurs, suspect the program in
EEPROM first.

P ropeller P rogramming Tutorial

Page 94 · Propeller Manual v1.0

Exercise 1: Output.spin Explanation
Now for an explanation of the source code:

PUB Toggle
 dira[16]~~
 repeat
 !outa[16]
 waitcnt(3_000_000 + cnt)

The first line, PUB Toggle, declares that we�re creating a �public� method called �Toggle.� A
method is the object-oriented term for �procedure� or �routine.� We chose the name Toggle
simply because it is descriptive of what the method does and we knew it is a unique symbol;
it must be a unique symbol and conform to the Symbol Rules on page 159. We�ll describe
the term PUB, �public,� in more detail later, but it�s important to note that every object must
contain at least one public (PUB) method.

The rest of the code is logically part of the Toggle method. We indented each line by two
spaces from the PUB�s column to make that more clear; this indenting isn�t required but is a
good habit for clarity.

The first line of the Toggle method (second line of our example), dira[16]~~, sets the
direction of I/O pin 16 to output. The DIRA symbol is the direction register for I/O pins P0
through P31; clearing or setting bits within it changes the corresponding I/O pin�s direction to
input or output. The [16] following dira indicates we want to access only the direction
register�s bit 16; the one that corresponds to I/O pin 16. Finally, the ~~ is the Post-Set
operator that causes direction register bit 16 to be set to high (1); which makes I/O pin 16�s
direction an output. The Post-Set operator is a shorthand way of saying something like
dira[16] := 1 which may look familiar to you from other languages.

The next line, repeat, creates a loop consisting of the two lines of code below it. This REPEAT
loop runs infinitely, toggling P16, waiting ¼ second, toggling P16, waiting ¼ second, etc.

The next line, !outa[16], toggles the state of I/O pin 16 between high (VDD) and low (VSS).
The OUTA symbol is the output state register for I/O pins P0 through P31. The [16] in
!outa[16] indicates we want to access only the output register�s bit 16; the one that
corresponds to I/O pin 16. The ! at the start of this statement is the Bitwise Not operator; it
toggles the state of all bits specified to its right (the bit corresponding to I/O pin 16 in this
case).

The last line, waitcnt(3_000_000 + cnt), causes a delay of 3 million clock cycles. WAITCNT
means �Wait for System Counter.� The cnt symbol is the System Counter register; CNT

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 95

returns the current value of the System Counter, so this line means �wait for System Counter
to equal 3 million plus its current value.� In this code example, we didn�t specify any clock
settings for the Propeller chip, so by default it runs with its internal fast clock (about 12 MHz)
meaning a delay of 3 million clock cycles is about ¼ second.

Remember how we said to pay close attention to each line�s indenting? Here is where
indenting is required: the Spin language uses levels of indention on lines following
conditional or loop commands (IF, CASE, REPEAT, etc.) to determine which lines belong to that
structure. In this case, since the two lines following repeat are indented to the right by at
least one space beyond repeat�s column, those two lines are considered to be a part of the
repeat loop. If you have trouble recognizing these structural groupings, the Propeller Tool
can make them more visible on-screen through the Block-Group Indicators feature. Use
Ctrl+I to toggle this feature on or off. Figure 3-8 shows our example code with these
indicators visible.

Figure 3-8: Block-
Group Indicators

Ctrl+I toggles them on
and off.

If you haven�t saved this example object yet, you may do so by pressing Ctrl+S (or selecting
File � Save from the menu). You may save it in a folder of your choosing but make sure to
save it with the filename �Output.spin� since some exercises below rely on it.

P ropeller P rogramming Tutorial

Page 96 · Propeller Manual v1.0

Quick Review: Ex 1
• Applications are downloaded to either Propeller RAM only or RAM and EEPROM.

o Those in RAM will not survive power cycling or resetting the Propeller chip.
o Those in EEPROM are loaded into RAM on boot-up in approximately 1½

seconds.
o To download the current object to:

� RAM only: press F10 or select Run � Compile Current � Load
RAM + Run.

� RAM + EEPROM: press F11 or select Run � Compile Current �
Load EEPROM + Run.

• Spin language:
o Method means �procedure� or �routine.�
o PUB Symbol declares a public method called Symbol. Every object must

contain at least one public (PUB) method. See PUB on page 287 and Symbol
Rules on page 159.

o DIRA is the direction register for I/O pins 0-31. Each bit sets the
corresponding I/O pin�s direction to input (0) or output (1). See DIRA, DIRB
on page 212.

o OUTA is the output state register for I/O pins 0-31. Each bit sets the
corresponding I/O pin�s output state to low (0) or high (1). See OUTA, OUTB
on page 280.

o Registers can use indexes, like [16], to access individual bits within them.
See DIRA, DIRB on page 212 or OUTA, OUTB on page 280.

o ~~ following a register/variable sets its bit(s) high. See Sign-Extend 15 or
Post-Set �~~� on page 263 in the Operators section.

o ! preceding a value/register/variable sets its bit(s) opposite their current state.
See Bitwise NOT �!�on page 272 in the Operators section.

o REPEAT creates a loop structure. See REPEAT on page 293.
o WAITCNT creates a delay. See WAITCNT on page 322.
o Indention at the start of lines:

� indicates they belong to the preceding structure; it is required for
lines following conditional or loop commands (like REPEAT).
(Indenting is optional after block indicators, such as PUB.)

� Ctrl+I toggles visible block-group �structure� indicators on and off.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 97

Cogs (Processors)
The Propeller has eight identical processors, called cogs. Each cog can be individually set to
run or stop at any time as directed by the application it is running. Each cog can be
programmed to run independent tasks or cooperative tasks with other cogs, as needed, and
this can change as desired during the application�s run time.

But we didn�t specify which cog(s) to run in our Output.spin example, so how did it work?
For a review, you could read Boot Up Procedure, page 18, and Run-Time Procedure, page 18,
in Chapter 1, but we�ll discuss it a bit more here.

For our example, upon power-up, the Propeller chip starts the first processor (Cog 0) and
loads it with a built-in Boot Loader program. The Boot Loader program is copied from the
Propeller chip�s ROM into Cog 0�s internal RAM memory. Cog 0 then runs the Boot Loader
program in its internal memory and the Boot Loader soon determines it should copy user-
code from the external EEPROM. So Cog 0 copies the entire 32 K byte EEPROM contents
into the Propeller chip�s 32 K byte main RAM memory (separate from the cog�s internal
memory). Then the Boot Loader program makes Cog 0 reload itself with the built-in Spin
Interpreter; the Boot Loader program in Cog 0 halts at this point while it is being overwritten
with the Spin Interpreter program.

Main RAM

C
o

g
0

R
A

M

C
o

g
1

R
A

M

C
o

g
2

R
A

M

C
o

g
7

R
A

M

Application

...

ROMInterpreter

Figure 3-9: Running
Output.spin

Notice that the Spin
Interpreter, not the
Spin Application, is
loaded into Cog RAM.
The Spin Application
resides in Main RAM
and is interpreted by
the Spin Interpreter
program that is
running in the cog.

Now, Cog 0 is running the Spin Interpreter, which fetches and executes our application�s
code from main memory (RAM). This is shown in Figure 3-9. Since our application consists

P ropeller P rogramming Tutorial

Page 98 · Propeller Manual v1.0

entirely of interpreted Spin code, it continues to reside only in main memory while a cog
running the Spin Interpreter (Cog 0 in this case) reads, interprets and effectively executes it.
No other cogs were started during boot up or during our application�s execution; the other
seven cogs remain in a dormant state consuming virtually no current at all. Later, we�ll
change our application to start other cogs as well.

Exercise 2: Output.spin - Constants
Let�s enhance our program a little. Suppose we want to make it easy to change the I/O pin
and the length of the delay used. As it is written currently, we�d have to find and change the
pin number in two places and the delay in yet another place. We can make it better by
defining those items in a separate place that is easy to find and edit. Look at the following
example and edit your code to match (we highlighted every new or modified element).

CON
 Pin = 16
 Delay = 3_000_000

PUB Toggle
 dira[Pin]~~
 repeat
 !outa[Pin]
 waitcnt(Delay + cnt)

The new CON block at the top of the code defines global constants for the object (see CON,
page 194.) In it, we created two symbols, Pin and Delay, and assigned the constant values 16
and 3,000,000 to them, respectively. We can now use the symbols Pin and Delay elsewhere
in the code to represent our constant values 16 and 3,000,000. Notice that we used
underscores (_) to separate the �thousands� groups in the number 3,000,000? Commas are
not allowed there but underscores are allowed anywhere inside of constant values; this makes
large numbers more readable.

In the Toggle method, we replaced both occurrences of 16 with the symbol Pin, and replaced
the 3_000_000 with the symbol Delay. When compiled, the Propeller Tool will use the
constant values in place of their respective symbols. This makes it easy, later on, to change
the pin number or delay at will since we only have to change it up at the top of code in a
place that is easy to find and understand.

Try changing the Delay constant from 3,000,000 to 500,000 and download again; the LED
should now flicker at a rate of 12 blinks per second (24 toggles per second). You can also

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 99

change the Pin constant from 16 to 17 and download again to see a different LED blink.
NOTE: you can try 18 through 23 as well, but on the Propeller Demo Board they are
connected in pairs with resistors for the VGA driver circuit, so two LEDs will blink at once.

Block Designators
You may have noticed that the backgrounds of the CON and PUB blocks of code were colored
differently when you entered them into the editor. This is the Propeller Tool�s way to
indicate these are distinct blocks of code.

Spin code is organized in blocks that have distinct purposes. CON and PUB are block
designators that indicate the start of a �constant block� and �public method block�,
respectively. Every block designator must start in the first column of text (the leftmost edge
of the edit pane) on a line. There are six types of blocks in the Spin language: CON, VAR, OBJ,
PUB, PRI, and DAT. The following is a list of the block designators and their purpose:

CON Global Constant Block. Defines symbolic constants that can be used anywhere
within the object (and in some cases outside the object) wherever numeric values
are allowed.

VAR Global Variable Block. Defines symbolic variables that can be used anywhere
within the object wherever variables are allowed.

OBJ Object Reference Block. Defines symbolic references to other existing objects.
These are used to access those objects and the methods and constants within
them.

PUB Public Method Block. Public methods are code routines that are accessible both
inside and outside the object. Public routines provide the interface to the object;
the way methods outside of the object interact with the object. There must be at
least one PUB declaration in every object.

PRI Private Method Block. Private methods are code routines that are accessible only
inside the object. Since they are not visible from the outside, they provide a level
of encapsulation to protect critical elements within the object and help maintain
the integrity of the object�s purpose.

DAT Data Block. Defines data tables, memory buffers, and Propeller Assembly code.
The data block�s data can be assigned symbolic names and can be accessed via
Spin code and assembly code.

There can be multiple occurrences of each block type, arranged in any order desired, but there
must be at least one PUB block per object. Even though the number of blocks and their order

P ropeller P rogramming Tutorial

Page 100 · Propeller Manual v1.0

is quite flexible, typically there is only one occurrence of CON, VAR, OBJ and DAT blocks,
multiple occurrences of PUB and PRI blocks, and the suggested order for typical programs is
the order they are given in the list above.

The very first PUB block in the very first object (the Top Object File where compilation starts
from) automatically becomes the Propeller Application�s starting point; it is executed first
when the application starts. No other public or private method is executed automatically, but
rather they are executed only as determined by the natural flow of the application.

The Propeller Tool automatically colors the backgrounds of each block differently, even two
consecutive occurrences of the same block type, in order to make it easy to identify the type,
start, and end of each block. This in no way affects the actual source code itself, it is simply
an indicator for on-screen use that is intended to solve a typical problem with source code;
that is, as the code gets larger, it is harder to find a particular method quickly as you scroll up
and down through the code unless you have some kind of separator between methods. The
background color coding serves as an automatic separator that prevents you from having to
waste time typing in text-based separators manually.

Exercise 3: Output.spin - Comments
Our Output object is better now, but it still could be more readable. How about adding some
comments to the code to make it easier for other readers to understand? The next example
functions the same as before, but with a number of comments (human-readable, non-
executable text) above and to the right of our existing code.

These comments should help people figure out what it does. There are four types of
comments supported by the Propeller Tool (all of which are shown in this example):

 '� - Single-line code comment (apostrophe).

 ''� - Single-line document comment (two apostrophes, NOT a quotation mark).

 {�} - Multi-line code comment (curly braces).

 {{�}} - Multi-line document comment (two curly braces).

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 101

{{Output.spin

Toggles Pin with Delay clock cycles of high/low time.}}

CON
 Pin = 16 { I/O pin to toggle on/off }
 Delay = 3_000_000 { On/Off Delay, in clock cycles}

PUB Toggle
''Toggle Pin forever
{Toggles I/O pin given by Pin and waits Delay system clock cycles
in between each toggle.}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat 'Repeat following endlessly
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Single line comments begin with at least one apostrophe (') and continue until the end of the
line. Executable code can be to the left of a single-line comment but not to the right of it
since that would make it �commented out.� The �'Set I/O pin�� and �'Repeat
following�� comments are examples of single-line comments.

Multi-line comments begin with at least one open curly brace ({) and end with at least one
close curly brace (}). Unlike single-line comments, executable code can be to the left and
the right of multi-line comments. Multi-line comments can actually be entirely on one line,
or can span across multiple lines. The �{On/Off Delay...}� and �{Toggles I/O pin

given...}� comments are both examples of a multi-line comments.

If a comment begins with just one apostrophe (') or one open curly brace ({), it is a �code�
comment. This is a comment meant to be read by code developers while reviewing the
source code itself.

If a comment begins with either two apostrophes ('') or two open curly braces ({{), with
no spaces in between, it is a �document� comment. This is a special type of comment that is
visible within the code, but can also be extracted by the Propeller Tool into a document
formatted for easier reading, containing no executable code.

As discussed in Chapter 2View Modes on page 61, the Propeller Tool�s editor has a
Documentation view mode. With the above code entered into the editor, if the
Documentation view mode is selected, the code is compiled and the document comments are

P ropeller P rogramming Tutorial

Page 102 · Propeller Manual v1.0

shown along with some statistics about the compiled code. The following is what this looks
like:

Output.spin

Toggles Pin with Delay clock cycles of high/low time.
Object "Output" Interface:

PUB Toggle

Program: 8 Longs
Variable: 0 Longs

PUB Toggle

Toggle Pin forever

If you compare this to our code you should recognize all the text that came directly from our
document comments. The section �Object "Output" Interface:� is created automatically by
the Propeller Tool; it lists all the public methods (just PUB Toggle in this case) and shows that
the program size is 8 longs (32 bytes) and no variables were used. Following that, it lists all
the public methods again, with an overbar above each method, and the document comments
that belong with them. This section shows the public Toggle method and our last document
comment, �Toggle Pin forever,� indicating what the Toggle method does.

Adding document comments to your code allows you to create just one file that contains both
source code and documentation for an object. This is extremely convenient for developers
since they can easily switch to Documentation view to learn how to use an object they are
unfamiliar with. To support this further, the Propeller Tool�s Parallax font has many special
characters for including schematics, timing diagrams, and mathematical symbols right in the
objects that they relate to, like those shown in Figure 2-1 on page 36.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 103

Quick Review: Ex 2 & 3
• The Propeller has eight identical processors, called cogs.

o Any number of cogs can be running or halted at any time as directed by the
application.

o Each cog can run independent or cooperative tasks.
o At boot-up, Cog 0 runs the Spin Interpreter to execute the main memory-

based Spin application.
• Spin language:

o Organized in blocks that have distinct purposes.
� CON - Defines global constants, see page 194.�
� VAR - Defines global variables, see page 315.
� OBJ - Defines object references, see page 247.
� PUB - Defines a public method, see page 287.
� PRI - Defines a private method, see page 286.
� DAT - Defines data, buffers, and assembly code, see page 208.�

o Block designators must be in column 1 of a line.
o Each block type can occur multiple times and can be arranged in any order.
o The very first PUB block in the very first object is the Propeller Application�s

starting point.
o Underscores �_� in constants denote logical groupings, like thousands in

decimal numbers.
o Types of comments:

� Code comments; visible in source code only. Great for notes to
developers regarding function of specific code.�
� '… � Single-line; starts at apostrophe and continues to

end of line.
� {…} � Multi-line; starts and ends with single curly

braces.
� Document comments; visible in source code and documentation

view. Great for object documentation. Can even include schematics,
timing diagrams and other special symbols.�
� ''… � Single-line; starts at double-apostrophe and

continues to end of line.
� {{…}} � Multi-line; starts and ends with double-curly

braces.

P ropeller P rogramming Tutorial

Page 104 · Propeller Manual v1.0

Exercise 4: Output.spin � Parameters, Calls, and Finite Loops
Our current object from Exercise 3 is interesting, but still isn�t very flexible; after all, the
Toggle method only works with a specific pin and delay. Let�s make the Toggle method
more flexible and also give it the ability to toggle a specific, finite number of times. Look at
the following example and edit your code to match. We�ve crossed out the elements that
should be removed, and highlighted every new element.

{{Output.spin

Toggles Pin with Delay clock cycles of high/low time.}}
Toggles two pins, one after another.}}

CON
 Pin = 16 { I/O pin to toggle on/off }
 Delay = 3_000_000 { On/Off Delay, in clock cycles}

PUB Main
 Toggle(16, 3_000_000, 10) 'Toggle P16 ten times, 1/4 s each
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty times, 1/6 s each

PUB Toggle(Pin, Delay, Count)
''Toggle Pin forever
{Toggles I/O pin given by Pin and waits Delay system clock cycles
in between each toggle.}
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Compile and download this application to see the results. The LED on pin 16 should blink
five times (10 toggles) with 1/4th second durations and intervals, then it will stop and the
LED on pin 17 will blink ten times (20 toggles) at 1/6th second durations and intervals.

In this example we removed the constant (CON) block, added a new method called Main, and
made some minor modifications to the Toggle method. The Toggle method still performs the
actual pin-toggling action, but the Main method tells it when and how to do so.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 105

The Toggle Method
Let�s look closely at the Toggle method first. In its declaration, we added (Pin, Delay,
Count) immediately to the right of its name. This creates a �parameter list� for our Toggle
method consisting of three parameters, Pin, Delay and Count. A parameter list is one or more
symbols that must be filled with values when the method is called; more on that in a moment.
Each parameter symbol is a long-sized (4-byte) variable that is local to the method; they are
all accessible within the method but not outside of the method. Parameter variables can be
modified within the method but those modifications do not affect anything outside the
method.

Now, our Toggle method can be called by other methods and given unique values to use as its
Pin, Delay and Count symbols; it is more flexible since we can adjust its operational
parameters.

Inside of Toggle, nothing changed except the REPEAT command, which is now repeat Count.
Remember, in our previous examples the REPEAT loop was an infinite loop; it never stopped.
Well, if you immediately follow REPEAT with an expression, it becomes a finite loop that
iterates the number of times indicated by the expression. In this case our REPEAT loop will
execute Count times, then it will stop, and any lines of code below the end of the loop will
begin to execute.

The Main Method
Now look at the Main method. Main�s first line, Toggle(16, 3_000_000, 10), is a method call;
it causes the Toggle method to execute using 16 for its Pin parameter, 3 million for its Delay
parameter, and 10 for its Count parameter. The following line looks similar, Toggle(17,
2_000_000, 20), but it calls the Toggle method with different values: 17 for Pin, 2 million for
Delay, and 20 for Count.

Notice that we put the Main method above Toggle? Remember that the first public method in
the first object is automatically executed when the application is started by the Propeller. We
are only using one object in this case, so Main is automatically executed after we download
this application.

When Main�s first line, Toggle(16, 3_000_000, 10), is executed, the Toggle method is called
and it executes its function: blinking the LED on pin 16 five times with a delay of 1/4th
second in between. Then, because Toggle has no more code to execute after the loop, it
returns to the caller, Main, and execution continues at the next line of Main: Toggle(17,
2_000_000, 20). When that line executes, the Toggle method is called, and it blinks the LED
on pin 17 ten times with a delay of 1/6th second in between. Finally, the Toggle method
returns to Main again, but Main has no more code to execute so it exits and the application

P ropeller P rogramming Tutorial

Page 106 · Propeller Manual v1.0

terminates; the cog stops and the Propeller goes into a low-power mode until the next reset or
power cycle.

Don�t be confused by the look of the code. The two methods, Main and Toggle, are shown one
right after another, but they are treated as distinct routines starting at their PUB block
declarations and ending at the next block declaration or the end of the source code, whichever
comes first. In other words, the Propeller knows that the Toggle method is not a part of the
Main method�s executable code.

Also note we�ve still used just one cog in our example, and the entire application is executed
serially: first blink P16, then stop, blink P17, then stop. We�ll begin to use multiple cogs in
the next exercise.

Exercise 5: Output.spin � Parallel Processing
In exercises 1 through 4 we�ve used just one cog to process the application; it toggles P16
only, then stops and toggles P17 only, then terminates. This is called �serial processing.�

Suppose, however, that we want to do things in parallel; simultaneously toggling pins 16 and
17, each at different rates and for different finite periods. Tasks like this can certainly be
done with serial processing and clever programming but it is easier with parallel processing
by having the Propeller activate two cogs. Look at the following example and edit your code
to match. We added a variable block (VAR) and made a slight change to the Main method.

{{Output.spin
Toggle two pins, one after another simultaneously.}}

VAR
 long Stack[9] 'Stack space for new cog

PUB Main
 cognew(Toggle(16, 3_000_000, 10), @Stack) 'Toggle P16 ten…
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty…

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 107

The VAR Block
In the VAR block we defined an array of longs, Stack, which is 9 elements in length. This is
used by the Main method.

The Main Method
We modified the Main method�s first line such that its original code, the call to Toggle, is
encased in a COGNEW command. The COGNEW command starts a new cog to run either Spin or
Propeller Assembly code. In this case, we entered Toggle(16, 3_000_000, 10), for COGNEW�s
first parameter, and @Stack for its second parameter. This means COGNEW will start a new cog
to run the Toggle method and will use the memory starting at the address of Stack for run-
time stack space. The @ is the Symbol Address operator; it returns the actual address of the
variable following it.

To run Spin code, the new cog needs some run-time workspace, called �stack space,� where
it can store temporary things like return addresses, return values, intermediate expression
values, etc. We chose to reserve 9 longs of space (36 bytes), and passed the address of that
space as COGNEW�s second parameter, @Stack. How much stack space is needed? It varies
depending on the Spin code being executed, but we�ll discuss those details later. For now,
rest assured that 9 longs of space is enough for our Toggle method.

Compile and download Output.spin. You should see that the LEDs on P16 and P17 now
simultaneously blink at different rates, 5 times and 10 times, respectively. This is because we
now have two cogs running simultaneously; one toggles P16 while the other toggles P17.

Here�s how it works: Cog 0 starts executing our application�s Main method. The first line of
Main uses the COGNEW command to activate a new cog (Cog 1) to run the Toggle method with
the parameters (16, 3_000_000, 10) passed to it. While Cog 1 is starting up, Cog 0
continues on with the second line of the Main method, the direct call to Toggle with the
parameters (17, 2_000_000, 20) passed to it. Ultimately, Cog 0 is left executing Toggle on
P17 while Cog 1 executes Toggle on P16, simultaneously. When their individual tasks have
expired, they each terminate due to lack of code. Cog 1 terminates the moment it finishes
Toggle. Cog 0 finishes Toggle, returns to Main and then terminates. Cog 1 happens to
terminate earlier than Cog 0 in this case.

P ropeller P rogramming Tutorial

Page 108 · Propeller Manual v1.0

Figure 3-10 illustrates this. The Propeller loads the Spin Interpreter into Cog 0 to execute the
application (the two leftmost arrows in the figure). Then the application requests a new cog
to activate, via the COGNEW command, which causes the Propeller to load the Spin Interpreter
into the next available cog, Cog 1, to execute a smaller portion of Spin code from the
application, the Toggle method (the two rightmost arrows in the figure). Each cog executes
its code completely independently of the other; true parallel processing. Note that towards
the end of the application both cogs are executing the same piece of Spin code, the Toggle
method, but each is using its own workspace and its own values for Pin, Delay and Count.

Main RAM

C
o

g
0

R
A

M

C
o

g
1

R
A

M

C
o

g
2

R
A

M

C
o

g
7

R
A

M

Application

...

Spin Code

ROMInterpreter

Figure 3-10: Two
Cogs Running Output
Application and
Toggle method.

Notice that the Spin
Interpreter is loaded
into each Cog�s RAM.
The Spin Application,
Output, resides in
Main RAM interpreted
by Cog 0 and it
launches Cog 1 to run
just the Toggle
method.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 109

Quick Review: Ex 4 & 5
• Spin language:

o Methods:
� To call methods in the same object, use method where method is the

method�s name, see PUB on page 287.
� Methods automatically exit, returning to their caller, when they run

out of code to execute.
� When an application�s first method exits, the application and the cog

it is running in terminate.
o Parameter Lists

� Methods declare parameters in the form: method(param1, param2,
etc.) , see PUB on page 287.

� Parameters are long-sized, local variables that are accessible from
within the method only.

• They can be modified within the method but any
corresponding variables used in the call are left unaffected.

o REPEAT command:
� Infinite loop: repeat
� Finite loop: repeat expression where expression evaluates to the

desired number of loops to iterate through, see REPEAT on page 293.
o Arrays:

� Arrays are defined with the form symbol [count] where symbol is the
array�s symbolic name and count is the number of elements in the
array, see VAR on page 315.

o COGNEW command:
� Activates another cog (processor) to run either Spin or Propeller

Assembly code, see COGNEW on page 189.
� Allows for true parallel processing.
� Requires an address to reserve run-time stack space for Spin code.

o The Symbol Address operator (@) returns the address of the variable
following it. See Symbol Address �@� on page 278.

P ropeller P rogramming Tutorial

Page 110 · Propeller Manual v1.0

Exercise 6: Output.spin & Blinker1.spin � Using Our Object
Now let�s explore the power of objects. All of the preceding exercises created an application
that contained only one object; the Output.spin object is the entire application. This is typical
of how new objects begin their development. Suppose that the motivation behind all this
work was really to create an object other developers could use to easily toggle one or more
I/O pins. Yes, it may be silly to create an object for such a use, but let�s have fun with it
anyway!

It�s time to make our Output object easily interface with other objects. Edit your code to look
like the following:

Example Object: Output.spin

{{ Output.spin }}
Toggle two pins, one after another.}}

VAR
 long Stack[9] 'Stack space for new cog

PUB Main
 cognew(Toggle(16, 3_000_000, 10), @Stack) 'Toggle P16 ten…
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty…

PUB Start(Pin, Delay, Count)
{{Start new toggling process in a new cog.}}

 cognew(Toggle(Pin, Delay, Count), @Stack)

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Be sure to save this object with the filename �Output.spin� for later use by our next object.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 111

The Start Method
Here we replaced the Main method with a Start method. The Start method activates another
cog to run the Toggle method independently and passes along the Pin, Delay, and Count
parameters.

The interface to an object is made up of its public (PUB) methods, so our Output object now
has two interface components, the Start method and the Toggle method.

Now our Output object can be used by other objects to toggle any pin at any rate for any
number of times they want. They can also choose to do this serially, by calling Output�s
Toggle method, or in parallel with other tasks, by calling Output�s Start method.

Let�s create another object that uses Output. To create a new object, select File � New from
the menu and a new edit tab will appear. In this new edit page, enter the following code. Pay
attention to the bold items, as we will discuss them soon.

Example Object: Blinker1.spin

{{ Blinker1.spin }}

OBJ
 LED : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}
 LED.Start(16, 3_000_000, 10)
 LED.Toggle(17, 2_000_000, 20)

Save this new object as �Blinker1.spin� in the same folder as you saved Output.spin. Now,
with Blinker1�s edit tab active, press F10 to compile and download. The LEDs should have
blinked in the same way they did in Exercise 5, but a different technique was used by the
code; Blinker1 used our Output object and simply called Output�s Start and Toggle methods.

Here�s how it worked. In Blinker1 we have an object block (OBJ) and a public method (PUB).
The object block�s LED : "Output" line declares that we�re going to use another object called
Output and that we�ll refer to it as LED within this Blinker1 object.

The Object-Method Reference

In the public method, Main, we have two method calls. Remember how we learned in
Exercise 4 that one method can call another just by referencing its name? That works for
methods that are in the same object, but now we need to call a method that is in another
object. To do this, we use the form object . method where object is the symbolic name we

P ropeller P rogramming Tutorial

Page 112 · Propeller Manual v1.0

gave the object in the OBJ block (LED in this case) and method is the name of that object�s
method. This is called an Object-Method reference. Blinker1 refers to the Output object as
LED, so LED.Start calls Output�s Start method, and LED.Toggle calls Output�s Toggle
method.

When Blinker1 is compiled, since it references Output, the two objects get compiled into one
application. Figure 3-11 illustrates this. This structure is also shown in the Object View,
which we�ll learn about next.

Figure 3-11: Blinker1 Hierarchy and Blinker1 Application

The Object View
When you compiled Blinker1, the Object View pane updated to indicate the application�s
structure. The Object View is in the upper left corner of the Propeller Tool if you have the
Integrated Explorer pane open (see Pane 1: Object View Pane on page 39.) Figure 3-12
shows what it should look like now.

Figure 3-12: Blinker1
Object View

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 113

The Object View updates itself each time an application is successfully compiled to show you
the logical structure of that application. The view shown in Figure 3-12 is the Object View�s
way of illustrating the logical structure in Figure 3-11. It is necessary to check the Object
View once in a while to troubleshoot or to verify proper compilation.

Your entire application is displayed in the Object View, or at least what it looked like after
the last successful compile. You can also use it to explore the application. For example,
pointing the mouse at each object in the Object View gives you hint information about that
object. Left-clicking each of those objects either opens them up or switches the active edit
tab to that object. Right-clicking each of those objects does the same as left-clicking but it
makes the object switch to Documentation view instead of Full Source view.

Top Object File
The object at the top of the Object View is always the �Top Object File� for that particular
compilation. That means the compilation started from Blinker1, in this case. When we
compile by using the F10 or F11 shortcut keys, or their corresponding menus, the Propeller
Tool starts the compile operation using whatever edit tab is active at that moment. The active
edit tab is the one that is highlighted differently than the rest; see Pane 4: Editor Pane on page
40 and Figure 2-4 on page 40 for an example.

If we had accidentally clicked on the Output object�s tab first and then compiled with F10 or
F11 the compile would have started from that object instead. This would not have resulted in
the application we desired and the Object View would have shown only one object, Output,
in its structure. This is all because the compile functions we�ve been using are the �Compile
Current� options; meaning they compile from the currently active object, or edit tab.

There are other compile functions that can help us. Select the Run menu and look at the
options. You should see a �Compile Current� and �Compile Top� flyout menu (Figure 3-13).

P ropeller P rogramming Tutorial

Page 114 · Propeller Manual v1.0

Figure 3-13: Compile
Current Menu (top)
and Compile Top
Menu (bottom)

Each menu, Compile Current and Compile Top, has the same sub-options but they start their
compilation from different places. Compile Current starts from the active edit tab and
Compile Top starts from the designated Top Object File.

You can tell the Propeller Tool which object to treat as the �designated Top Object File� at
any time. You do this by any one of the following methods:

1) Right-click the desired object�s edit tab and select �Top Object File,� or

2) Right-click the desired object from the File List (in the Integrated Explorer) and
select �Top Object File,� or

3) Choose the File � Select Top Object File� menu option and select the desired file
from the browse window, or

4) Press Ctrl+T and select the desired file from the browse window.

We used option #1 to select Blinker1 as the Top Object File, in the figure below. Note that
afterwards, the Blinker1 tab�s text is bold; see Figure 3-14b. The file the Propeller Tool
knows as the Top Object File always appears in bold.

Now, if we use one of the Compile Top options, such as Ctrl+F10 or Ctrl+F11, regardless of
which edit tab is active, the Propeller Tool will compile starting from the Top Object File.
For example, in Figure 3-14b the Output object is the active edit tab. If we press Ctrl+F10,
the application will be compiled starting with the Blinker1 object, however. If we had
pressed F10 instead, the Output object would have been compiled.

Each of the shortcut keys for the Compile Current options, F8, F9, F10, etc., has a similar
variation for the Compile Top options, Ctrl+F8, Ctrl+F9, Ctrl+10, etc.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 115

Figure 3-14: Setting Blinker1 to be the Top Object File

a.

One way to set the Top Object File is by
right-clicking the desired edit tab, and
choosing Top Object File.

b.

The Top Object File�s name will show in
bold on its Edit Tab.

Which Objects Were Compiled?
If there�s ever a question of which object files were compiled in the last successful compile
operation, use the mouse to explore the resulting application�s structure in the Object View.

It�s important to keep track of which file you�ve designated as the Top Object File and what
compile option you chose; Current vs. Top. Only one file can be designated as the Top
Object File at a time and the Propeller Tool remembers that file even between sessions.

Also, keep in mind that an object doesn�t really need to be open in the Propeller Tool just to
be compiled. If an object you compiled references another object, that object will be
compiled whether or not it is currently open. Even the Top Object File can be compiled
without it being open. For example, pressing Ctrl+F10 will compile the last designated Top
Object File regardless of whether or not it even belongs to the current application you are
working on.

P ropeller P rogramming Tutorial

Page 116 · Propeller Manual v1.0

Quick Review: Ex 6
• Spin language:

o Methods:
� To call methods in anoTher object, use object . method where object

is the object�s symbolic name (given to it in the OBJ block) and
method is the method�s name within that other object. See OBJ on
page 247.

� Public (PUB) methods are an object�s interface; other objects call its
public methods. See PUB on page 287.

• Object View
o Illustrates the structure of the most recent successfully compiled application.

See Object View, page 52.
o Pointing the mouse at displayed objects displays hints about them.
o Left-clicking a displayed object either opens it up or makes it the active edit

tab.
o Right-clicking a displayed object opens or switches to it in Documentation

view.
• Compile Current � (F8 through F11) - compiles starting from the current object

(active edit tab).
• Compile Top � (Ctrl+F8 through Ctrl+F11) - compiles starting from the Top Object

File.
• Top Object File:

o Appears with a bold name in the edit tab and File List.
o Can be designated by one of the following (and compiled via Compile Top

operation):
1) Right-click object�s edit tab and select �Top Object File,� or
2) Right-click object in the File List and select �Top Object File,� or
3) Choose File � Select Top Object File� menu and select object from

browser, or
4) Press Ctrl+T and select object from browser.

• Objects don�t have to be open to be compiled; they may be compiled as the result of
another object�s compilation or as the result of a Compile Top operation.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 117

Objects vs. Cogs
It�s important to understand that there is no direct relationship between objects and cogs.
Remember, Exercise 5 used just one object but two cogs and Exercise 6 used two objects and
two cogs, but each of these exercises could have used only one cog if they wanted to process
everything serially. When and how cogs are used is completely determined by the
application and the developer(s) who wrote it.

Exercise 7: Output.spin � More Enhancements
Let�s add some significant enhancements to our Output object. Currently the Toggle method
can be called to toggle a pin serially, or the Start method can be called to launch the Toggle
method as a separate process, to run in parallel. But we haven�t provided a way to stop that
process once it is going or even a way to determine if it�s running in the first place. Also, it
would be nice to have the option of toggling the pin endlessly, in addition to the finite count
feature we already have.

Let�s add a Stop method to stop the active process and an Active method to test whether a
parallel process is currently running. In addition, we�ll enhance our Toggle method as
described above.

For objects like this one, it is a common and recommended convention to use the name
�Start� for a method that activates a new cog and the name �Stop� for a method that
deactivates a cog previously started by that object. This way, while scanning an object in
summary or documentation view, other developers can more quickly understand how to use
your object; when they see Start and Stop they can infer that the object activates/deactivates
another cog. For objects that don�t activate another cog but still need some kind of
initialization, it is recommended to use the name �Init� for the key method.

This code is loaded with clever changes; be prepared, it will take a lot to explain it but the
knowledge you�ll gain is well worth it.

Here�s the code; modify yours to match:

P ropeller P rogramming Tutorial

Page 118 · Propeller Manual v1.0

{{ Output.spin }}

VAR
 long Stack[9] 'Stack space for new cog
 byte Cog 'Hold ID of cog in use, if any

PUB Start(Pin, Delay, Count): Success
{{Start new blinking process in new cog; return TRUE if successful}}

 Stop
 Success := (Cog := cognew(Toggle(Pin, Delay, Count), @Stack) + 1)

PUB Stop
{{Stop toggling process, if any.}}

 if Cog
 cogstop(Cog~ - 1)

PUB Active: YesNo
{{Return TRUE if process is active, FALSE otherwise.}}

 YesNo := Cog > 0

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}
 If Count = 0, toggle Pin forever.}}

 dira[Pin]~~ 'Set I/O pin to output…
 repeat Count 'Repeat for Count iterations
 repeat 'Repeat the following
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles
 while Count := --Count #> -1 'While not 0 (make min -1)
 Cog~ 'Clear Cog ID variable

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 119

The VAR Block
In the VAR block we�ve added a byte-sized variable, Cog. This will be used to keep track of
the ID of the cog started by the Start method, if any. Both Stack and Cog variables are global
to the object; they can be used within any PUB or PRI block in the Output object. If they are
modified by one method, other methods will see the new value when they are referenced.

The Start Method
For the Start method, we�ve decided it may be nice to know if it was successful or not.
Since there are a limited number of cogs in the Propeller, the Start method may not be able
to activate another cog every time it is called. For this reason, we�ll make it return a Boolean
(TRUE or FALSE) value as an indication of its outcome; the �: Success� in its declaration
indicates it will return this value we chose to call Success. Each PUB and PRI method always
returns a long value (4 bytes) whether or not it is specified to have one. When a method is
designed to return a meaningful value, it is always good practice to declare a return value as
we have done here. Our Success symbol becomes an alias for the method�s built-in RESULT
variable, so we can assign either Success or RESULT a value to have that value returned upon
exit.

The body of the Start method now does two things: first it stops any existing process and
then it starts a new process. It calls the Stop method first just in case Start has been called
multiple times without first calling Stop from outside the object. Without that, a new cog
would start up and overwrite another cog�s workspace variables, such as Stack.

The next line is similar to our original but may seem a bit overwhelming because it is a
compound expression. We�ll dissect it a piece at a time from the inside out. The COGNEW
portion of the line is exactly as it was before: cognew(Toggle(Pin, Delay, Count), @Stack).
It activates another cog to run the Toggle method. What you may not have known is that
COGNEW always returns the ID of the cog it started; 0 to 7, or -1 if no cog was available to start.
In the prior version of the Output object, we simply ignored the return value. This time,
however, we use COGNEW�s return value in this expression and assign the result to a variable:
Cog := cognew(Toggle(Pin, Delay, Count), @Stack) + 1. This expression says to execute
COGNEW, take its returned value and add it to 1, then assign that result to the variable named
Cog. The �:=�is the assignment operator; similar to the equal sign �=� in other languages.

We�ll use the Cog variable to remember the ID of the cog we started so we can later stop it if
necessary. We�ll explain why we added 1 to it in a moment.

We�re not done with that line yet. To the left of the Cog := � part is the Success :=
assignment statement. So after the new cog�s ID is returned, added to 1 and stored in Cog,
that final value is also stored in the Success variable. Remember how Success is supposed to

P ropeller P rogramming Tutorial

Page 120 · Propeller Manual v1.0

be our Start method�s Boolean return value? A Boolean result of FALSE is actually the
numerical value 0 and TRUE is -1, but Boolean comparisons treat zero (0) as FALSE and any
non-zero value (�0) as TRUE. This is very convenient and is the reason we added 1 to
COGNEW�s return value; the range -1 to 7 becomes 0 to 8, and 0 (FALSE) means no cog was
started while 1 to 8 (TRUE) means a cog was started.

So, in that single line of code we launched a new cog (hopefully), passed it the reference to
the Toggle routine and stack space to use, stored the newly activated cog ID plus 1 in the
variable Cog and used that final result to set Start�s return value, the Success variable! This
line demonstrates one of the most powerful features of the Spin language: compound
expressions with assignable intermediate results.

The outer parentheses encasing the Cog :=� part are not required but we added them to help
separate the two different variable assignments; Cog is assigned first then that result is
assigned to Success. To assist you in studying complex expressions such as this one, the
Propeller Tool temporarily bolds the matching pairs of parentheses that surround the current
cursor position. Place the cursor in various positions on the line to see the effect. The figure
below illustrates this; the star shows the cursor position, arrows show the bolded parentheses,
and the shaded area is what is contained within those parentheses.

Figure 3-15: Matching Parentheses Bolded

Matching parentheses are temporarily displayed in bold for the expression group
the cursor is currently within. Use this feature to study complex expressions.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 121

The Stop Method
Our Stop method needs to stop the cog that was started by Start. The if Cog statement is a
conditional structure meaning �if the Cog variable is TRUE execute the following indented
block. � Remember, Cog was set to 0 if no cog was started, and set to 1 through 8 if a cog was
started. Since 0 means FALSE and non-0 means TRUE, the IF statement is true only if we
actually started a cog.

The COGSTOP statement is indented below the IF statement so it is executed only when the IF
statement is true. The COGSTOP command deactivates the cog whose ID is indicated by its
parameter: Cog~ - 1. This is another tricky but powerful expression in Spin. Remember the
Post-Set operator, ~~, from earlier exercises? Well, a single ~ following a variable is the
Post-Clear operator; it clears the variable preceding it to zero (0). These are called �post�
operators because they perform their duty �after� the variable�s original value is used by the
expression that it is involved in. So Cog~ - 1 takes the value of Cog, subtracts 1, gives that
value to the COGSTOP command, then clears Cog to zero (0). In effect, the cogstop(Cog~ - 1)
statement stops the cog whose ID is Cog-1, then clears the Cog variable to 0 so future
references to Cog reflect that there is no additional cog running.

The Active Method
The Active method is simple, it sets its return value, YesNo, to TRUE if Cog is greater than 0,
FALSE otherwise. The > symbol is the Is Greater Than operator. Note that we could also have
just set YesNo equal to Cog since zero is considered to be FALSE and non-zero is considered to
be TRUE; that would have the additional advantage of being a true/false return value as well as
the actual ID of the cog in use by this object.

The Toggle Method
We made a couple of minor but significant enhancements to the Toggle method. First, let�s
look at the last line, Cog~. Remember that if Start is called, it runs the Toggle method in
another cog and stores the ID of that cog in the Cog variable. When Toggle terminates, that
cog terminates as well, but the Cog variable would be left holding the ID of that cog, fooling
the Active and Start methods into thinking its cog was still active. We put Cog~ at the end of
Toggle to clear the Cog variable to zero (0) to maintain the code�s integrity.

Remember we said we�d like to change Toggle to allow for an infinite loop as well as a finite
loop? Our next change achieves that in a clever way. The Count parameter is the number of
times to toggle the pin. That means it doesn�t make sense to set Count equal to 0� who
would want to toggle a pin zero times? So, we�ll make 0 an exception case that means
�toggle the pin infinitely.�

P ropeller P rogramming Tutorial

Page 122 · Propeller Manual v1.0

We changed the loop from repeat Count to repeat..while. The while is at the end of the
loop, three lines below repeat. This is another form of REPEAT loop structure called a
�conditional one-to-many loop.� It executes the statement block within it at least once, and
iterates again and again as long as the �while� condition is true. In this case it repeats while
Count := --Count #> -1 is TRUE (ie: non-zero). This condition is another compound
expression. The double-minus, �--� �preceding Count is the Pre-Decrement operator; it
decrements Count by 1 before its value is used by the expression. The #> is the Limit
Minimum operator; it takes the value on its left and returns either that value, or the number
on its right, whichever is greater. So each time this expression is evaluated, Count is
decremented by 1, that result is limited to -1 or higher, and that final result is assigned back
into Count. This has a clever effect that we�ll explain next.

If Toggle was called with Count set to 2, the loop would execute two times, just like we want.
After the first iteration, the while Count := --Count #> -1 would decrement Count, making
it 1, then would limit it to -1 or higher (still 1) and store that value in Count. Since the result,
1, is non-zero (TRUE) the loop would execute again. After the second iteration, the WHILE
statement would decrement Count, making it 0, would limit that to -1 or higher (still 0) and
store that in Count. Since 0 is FALSE, the WHILE condition terminates the loop.

That works for all normal Count values, but what about when Toggle is called with a Count
of 0? After the first iteration, the while Count := --Count #> -1 would decrement Count,
making it -1, then would limit it to -1 or higher (still -1) and store that value in Count. Since
the result, -1, is non-zero (TRUE) the loop would execute again. After the second iteration, the
WHILE statement decrements Count, making it -2, limits that to -1 or higher (it is changed to
-1) and stores that in Count. Once again, since the result, -1, is non-zero (TRUE) the loop
would execute again.

So, if Count started out as 0, the loop iterates endlessly! If Count started out as greater than 0,
it loops only that number of times!

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 123

Quick Review: Ex 7
• Objects:

o Have no direct relationship with cogs.
o Should call interface methods �Start� and �Stop� if they affect other cogs.
o Should call interface method �Init� if it needs initialization.

• Spin language:
o Variables defined in variable blocks are global to the object so modifications

by one method are visible by other methods. See VAR, page 315.
o Booleans: (See Constants (pre-defined), page 202 and Operators, page 249).

� FALSE = 0
� TRUE = -1; any non-zero (�0) value is True for Boolean comparisons.

o Compound expressions can include Intermediate Assignments, see page 253.
o Operators:

� �Pre�/�Post� operators perform their duty before/after the variable�s
value is used by the expression.

� Assignment �:=� is similar to equal �=� in other languages, see
Variable Assignment �:=�, page 255.

� Post-Clear �~� clears the variable preceding it to zero (0), see Sign-
Extend 7 or Post-Clear �~�, page 262.

� Pre-Decrement �--� decrements the variable following it, giving the
expression the result, see Decrement, pre- or post- �- -�, page 257.

� Is Greater Than �>� returns True if value on left-side is greater than
that of right-side, see Boolean Is Greater Than �>�, �>=�, page 276.

� Limit Minimum �#>� returns the greater of either the value on its left
or its right, see Limit Minimum �#>�, �#>=�, page 260.

o Methods: (See PUB, page 287).
� Always return a long value (4 bytes) whether or not one is specified.
� Contain a built-in local variable, RESULT, that holds its return value.
� Return values are declared by following the method�s name and

parameters with a colon (:) and a descriptive return value name.
o COGNEW returns the ID (0 to 7) of cog started; -1 if none, see COGNEW, page 189.
o COGSTOP deactivates a cog by ID, see COGSTOP, page 193.
o IF is a conditional structure that executes the indented block of code

following it if the conditional statement is true, see IF, page 220.
o REPEAT�s conditional, one-to-many form: REPEAT WHILE Condition executes at

least once and continue while Condition is true. See REPEAT, page 293.
• The Propeller Tool bolds matching parentheses pairs surrounding the cursor.

P ropeller P rogramming Tutorial

Page 124 · Propeller Manual v1.0

Exercise 8: Blinker2.spin � Many Objects, Many Cogs
Now let�s make a new object that takes advantage of the enhancements to Output to use many
cogs for many parallel processes. Here�s the code:

Example Object: Blinker2.spin

{{ Blinker2.spin }}

CON
 MAXLEDS = 6 'Number of LED objects to use

OBJ
 LED[6] : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}

 dira[16..23]~~ 'Set pins to outputs
 LED[NextObject].Start(16, 3_000_000, 0) 'Blink LEDs
 LED[NextObject].Start(17, 2_000_000, 0)
 LED[NextObject].Start(18, 600_000, 300)
 LED[NextObject].Start(19, 6_000_000, 40)
 LED[NextObject].Start(20, 350_000, 300)
 LED[NextObject].Start(21, 1_250_000, 250)
 LED[NextObject].Start(22, 750_000, 200) '<-Postponed
 LED[NextObject].Start(23, 400_000, 160) '<-Postponed
 LED[0].Start(20, 12_000_000, 0) 'Restart object 0
 repeat 'Loop endlessly

PUB NextObject : Index
{Scan LED objects and return index of next available LED object.
 Scanning continues until one is available.}

 repeat
 repeat Index from 0 to MAXLEDS-1
 if not LED[Index].Active
 quit
 while Index == MAXLEDS

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 125

Compile and download Blinker2. You should see six LEDs start blinking with different,
independent, rates and periods. Look carefully, after about 8 seconds P20 will stop blinking
and P22 will start. A few seconds later, P18 will stop and P23 will start, then P16 will stop
and P20 will start again, but at a different rate. Eventually, all but P17 and P20 will cease.
Can you figure out why it behaves this way? We�ll explain it below.

The OBJ Block
In the object block we defined an array of Output objects, called LED, with six elements. This
is so we can have six simultaneous processes running, each operating independently.

The Main Method
The first line of Main, dira[16..23]~~, sets I/O pins 16 through 23 to outputs. The I/O
registers, DIRA, OUTA, and INA, can use this form to affect multiple contiguous pins. We are
setting this group of I/O pins to outputs only to prevent confusing results due to the Propeller
Demo Board�s resistors between the I/O pairs in 18 to 23. If a cog is the only one making a
particular pin an output, upon shutting down that pin becomes an input again which allows
the resistor between it and its neighbor to affect the LED on it. We�ll keep this application�s
cog active so results are clear.

The next nine lines, LED[�, call the Output object�s Start method to activate a new cog and
toggle different I/O pins at different rates. The lines in the form LED[NextObject].Start�,
call the NextObject method to get an index value for the array. We�ll explain the NextObject
method in more detail soon, but simply put, it returns the index of the next available Output
object in the LED array (i.e. the index of the first idle object) and pauses until one is available.

We only have six Output objects defined for the LED array, so the first six calls to Start are
going to execute quickly, each one accessing LED indexes 0 through 5 and activating a total of
6 additional cogs. The first two have a Count parameter of 0, so they will toggle infinitely;
the last four will terminate after the given number of toggles is performed.

The seventh line, LED[NextObject].Start(22, 750_000, 200) will first call NextObject to get
the index of the next available object, but since all six objects are busy toggling pins,
NextObject will wait and won�t return to Main until it finds that an object has finished. As it
turns out, the object at index 4 (I/O pin 20) finishes its task first and shuts down. The
NextObject method then returns the number 4, allowing that object�s Start method to
execute, which will re-launch another cog to toggle pin 22. A similar process happens with
the eighth line, LED[NextObject].Start(23, 400_000, 160); all objects are busy so
NextObject postpones further operation until one becomes available, index 2 in this case.

Immediately after the eighth line is executed, the ninth line executes, LED[0].Start(20,
12_000_000, 0). This statement is unlike the previous in that it doesn�t call NextObject, but

P ropeller P rogramming Tutorial

Page 126 · Propeller Manual v1.0

rather it uses a fixed index of 0. This means the LED object at index 0, which is busy toggling
I/O pin 16 endlessly, suddenly has its Start method called again. This causes the cog that is
toggling P16 to immediately stop and start again but with P20 instead.

The final line, repeat, is only there to keep the application�s cog alive. It creates an endless
loop that executes no additional code since there is nothing indented underneath it. If the
application cog stopped, the I/O pins it directed to be outputs may switch back to inputs,
causing strange-looking results due to the resistors between some pairs of LEDs on the
Propeller Demo Board. If you are not using the Propeller Demo Board, the first line and last
line of Main are not necessary.

The NextObject Method
We have six LED objects in this code and any number of them can be processing in parallel at
any time. The point of the NextObject method is to tell us which one is available and to
postpone future operations until one is available. To do this, it scans through all six LED
objects looking for the first one that is not running as a parallel process and returns the LED-
based index of that object. If all are currently running, it continues scanning until one
becomes available. NextObject uses our Output object�s Active method to assist with this.

There are two nested REPEAT loops. The outer loop, repeat..while Index == MAXLEDS
iterates as long as Index equals MAXLEDS, 6 in this case. We learned how this type of REPEAT
loop works in the previous exercise.

The inner REPEAT loop, repeat Index from 0 to MAXLEDS-1, is new to us, however. It is
called a �counted loop� and repeats the indented block below it but for each iteration it sets
the variable Index to a new value. Index is set to 0 for the first iteration, 1 for the second,
etc., until the last iteration where Index equals MAXLEDS-1, or 5. This is an excellent way to
adjust the operation within a loop based on how many times the loop has executed.

The next line, if not LED[Index].Active, is a conditional statement that executes the
indented code below it if the LED object at Index is �not active.� Since the inner loop changes
the value of Index from 0 through 5 as it executes, this conditional statement calls the Active
method of each of our LED objects, in order.

Once the condition is true (the LED object at Index is not active) the next line, quit, executes.
The QUIT command is a special command for REPEAT loops only; it causes the REPEAT loop it
is contained within to terminate immediately. When this happens, execution continues with
the end of the outer REPEAT loop, the �while� condition.

If all LED objects are active, the inner loop will count, with Index, from 0 to 5, then Index will
be 6 (MAXLEDS) when it exits, causing the outer loop to iterate again and the whole process
starts over. If, however, an inactive LED object is found, the Index value will be less than

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 127

MAXLEDS, and the outer loop will terminate, causing the NextObject method to return the Index
of the available object. That value is used by Main to select the right LED object to start.

Behind the Scenes
In the object block, we created an array of six Output objects. Each object that an application
uses needs to be treated as its own individual entity with its critical data kept separate from
that of any other object. So, since we needed the capabilities of six Output objects, we
declared the need for six of them in the object block.

After compiling Blinker2, the Object View shows that there are six occurrences of the Output
object in our application; the �[6]� that appears to the right of the Output object image. This
is the Object View�s way of illustrating the structure of our application, indicated by Figure
3-16.

Figure 3-16:

Blinker2 Application

There are six
instances of the
Output object. The
application actually
uses only one copy of
its executable code
and six copies of its
global variable space.

Does this mean our application grew by the size of the Output object times six? Fortunately,
the answer is no. The Propeller Tool optimizes the application�s code such that, for every
occurrence of an object only one copy of the object�s code is included, but multiple copies of
the object�s global variables are created. This is because the code is considered to be static
(unchanging) and exactly the same for each object. However, the object�s global variables
(defined in its VAR block), are not static; each object needs its own variable space in order to
work independently without interference from other instances of itself.

P ropeller P rogramming Tutorial

Page 128 · Propeller Manual v1.0

Object Info Window
We can see this effect using the Propeller Tool�s Object Info feature. First, change the object
block in Blinker2 to specify only one instance of the Output object; LED[1] : "Output".
Don�t run the code this way, it will not work, we�re just experimenting for a moment.

Now, press the F8 key (or select Run � Compile Current � View Info�) to compile the
application and display the Object Info window. Figure 3-17 shows how this should look.

Figure 3-17:

Object Info Window
for Blinker2
Application

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 129

The top part of the window is the Info Object View; it is similar to the Object View. The
center part of the window shows the application�s RAM Usage. Notice that the �Program�
(the compiled source code) itself consumes 68 longs of RAM and the �Variable� (the global
variables) consumes 10 longs of space.

Now, close this window and change the object block back to the way it was, specifying six
instances of the Output object; LED[6] : "Output". Compile and view info again (F8 or Run
� Compile Current � View Info�). Notice that now the program consumes 73 longs of
RAM and the variable space consumes 60 longs. This is only 5 additional longs of program
space but 50 additional longs of variable space. The extra program space is just overhead to
deal with five additional objects but the variable space is six times its previous size; each
object has its own global variable space. Our Blinker2 object doesn�t define any global
variable space, but Output defines nine longs for Stack and one byte for Cog for a total of 10
longs of space since an object�s variable space is always long-aligned.

In the Object Info window, you can also click on the Output object to see how much space
each individual instance of that object consumes. We can see that Output�s program size is
21 longs and variable space is 10 longs.

Object Lifetime
When applications are compiled a binary image of the executable code is created. That
binary image is what is actually downloaded into the Propeller and is usually what we are
referring to when we say �application� or �Propeller Application.�

The compiled code for each object used by an application is included within that binary
image along with variable space for each instance of each of those objects.

During run time, the application may use any object for any amount of time; some may be
used always and others only on occasion but all are consuming a static amount of memory for
their code and variables.

For developers accustomed to programming with objects on a computer, this is an important
concept to understand. On the Propeller an object�s lifetime is static; whether or not it is
actively in use at the time, it always requires a specific amount of memory in the
application�s binary image. On desktop/laptop computers, objects require a dynamic amount
of memory because they are �created� and �destroyed� during the run-time process as is
needed. On the Propeller, the objects are �created� at compile time and are never �created�
or �destroyed� at run time because the act of doing so would fragment memory and cause
indeterministic behaviour in real-time embedded systems.

P ropeller P rogramming Tutorial

Page 130 · Propeller Manual v1.0

This means that every instance of an object that is, or may be, required must be declared at
compile time in the OBJ block, just as we did in Exercise 8 with the array of Output objects.

Quick Review: Ex 8
• Applications:

o Use unique symbols, or elements of an array, for each distinct object in use.
o Use one copy of an object�s code and one or more copies of its global

variables.
• Objects:

o An object array may be created in object blocks similar to a variable array in
variable blocks.

o An object�s lifetime is static, consuming a specific, static amount of memory
regardless of whether or not it is active. This eliminates the possibility of
fragmented memory during normal run-time use and ensures deterministic
behavior in real-time systems.

• Spin language:
o REPEAT command: (See REPEAT, page 293).

� Finite, counted loop: REPEAT Variable FROM Start TO Finish where
Variable is the variable to use as the counter and Start and Finish
indicate the range.

� The QUIT command works inside REPEAT loops only and causes the
loop to terminate immediately, see QUIT, page 291.

o I/O registers (DIRx, OUTx, and INx) may use the form reg[a..b] to affect
multiple contiguous pins; where reg is the register (DIRx, OUTx, or INx) and a
and b are I/O pin numbers, see DIRA, DIRB on page 212, OUTA, OUTB on page
280, and INA, INB on page 225.

• I/O pins are set to outputs only while a cog that set them that way remains active, see
DIRA, DIRB, page 212.

• Compile & View Info: F8 key (or select Run � Compile Current � View Info�),
see Object Info, page 55.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 131

Exercise 9: Clock Settings
The Propeller chip�s internal clock has two speeds, slow (� 20 KHz) and fast (� 12 MHz).
Since we never specified any clock settings for our application, all previous exercises used
the Propeller chip�s default, internal RC clock in fast mode.

To specify the clock settings for the application, the top object file must set values for one or
more special constants in a CON block. These constants are: _CLKMODE, _CLKFREQ and _XINFREQ.

We�ll start with _CLKMODE first. Refer to Table 4-3: Clock Mode Setting Constants on page
180 for a listing of pre-defined symbolic values to set _CLKMODE to. For example, continuing
with our Blinker2 object, changing the CON block as follows sets the clock mode to use the
internal slow clock (only the CON block is shown here).

{{ Blinker2.spin }}

CON
 _CLKMODE = RCSLOW 'Set to internal slow clock
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Try compiling and downloading Blinker2 now. Once the Propeller finishes the
download/boot-up process, it switches to the RCSLOW clock mode and executes the application.
Since the application is now running with a clock that is hundreds of times slower that before,
the application will run much slower, taking more than 20 seconds for the fastest toggling
pin, P20, to toggle off for the first time.

You can replace _CLKMODE = RCSLOW with _CLKMODE = RCFAST to have the application run with
the internal fast clock (the default).

If you�d like to use an external clock, there are many more options for _CLKMODE. We�ll
assume you�re using a 5 MHz external crystal, like the one that comes with the Propeller
Demo Board.

P ropeller P rogramming Tutorial

Page 132 · Propeller Manual v1.0

Modify your code to match the following:

{{ Blinker2.spin }}

CON
 _CLKMODE = RCSLOW 'Set to internal slow clock
 _CLKMODE = XTAL1 'Set to ext. low-speed crystal
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Here we set _CLKMODE to XTAL1 which configures the clock mode for an external low-speed
crystal and configures the Propeller internal oscillator gain circuitry to drive a 4 MHz to 16
MHz crystal. Besides the crystal itself (which should be connected to the XI and XO pins),
no other external circuitry is required for this clock configuration.

Whenever external crystals or clocks are used, either _XINFREQ or _CLKFREQ must be specified
in addition to _CLKMODE. _XINFREQ specifies the frequency coming into the XI pin (Crystal
Input pin). _CLKFREQ specifies the System Clock frequency. The two are related by PLL
settings which we�ll discuss later.

In this example we specified an _XINFREQ value of 5 million to indicate that the frequency on
the XI pin is 5 MHz, since we have a 5 MHz crystal connected to XI and XO. Once that is
specified, the _CLKFREQ value is automatically calculated and set by the Propeller Tool.

You could also have specified a _CLKFREQ of 5 MHz (instead of _XINFREQ) and the proper
_XINFREQ value would automatically be set by the Propeller Tool. However, it is more typical
to specify the _XINFREQ value since _CLKFREQ is directly affected by PLL settings. In our
example, both _XINFREQ and _CLKFREQ end up with the same value, but a later example will
show how they can typically differ.

If you compile and download Blinker2 now, you should see the LEDs toggle at slightly less
than half the speed as in Exercise 8. Our settings specified an external 5 MHz crystal instead
of the internal 12 MHz oscillator.

So why would anyone want to use an external crystal that is slower than the internal clock?
Two reasons: 1) for accuracy; the internal clock is not very accurate from chip to chip or
across voltage variances but external crystals or clock/oscillators are typically very accurate,
and 2) the phase-locked loop (PLL) can only be used with external clock sources.

Try the following example:

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 133

{{ Blinker2.spin }}

CON
 _CLKMODE = XTAL1 + PLL4X 'Set to ext low-speed crystal, 4x PLL
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Here we changed the _CLKMODE setting slightly by adding the + PLL4X value. This configures
the clock mode to use the internal phase-locked loop (PLL) to wind up the XIN frequency by
four times, resulting in a System Clock frequency of 5 MHz * 4 = 20 MHz.

Try compiling and downloading Blinker2 with these settings. You should see the LEDs blink
at a faster rate than you�ve seen before.

NOTE: Since we specified _XINFREQ here, _CLKFREQ is automatically calculated to be 20 MHz.
If we had specified a _CLKFREQ value of 5 MHz instead, adding the PLL4X setting would have
calculated an _XINFREQ value of 1.25 MHz, which doesn�t match our external crystal�s
frequency. This is why it is more common to specify an XIN frequency (_XINFREQ) rather
than a clock frequency (_CLKFREQ).

The Clock PLL circuit, when enabled, always winds up the frequency by 16 times, but you
can select any of the 1x, 2x, �16x taps for the final System Clock frequency using the
settings PLL1X, PLL2X, PLL4X, PLL8X and PLL16X.

Try changing _CLKMODE from XTAL1 + PLL4x to XTAL1 + PLL16x and download again. That
configures the System Clock to be 5 MHz * 16 = 80 MHz! Most of the LEDs blink so
quickly that they appear to be solidly on.

Exercise 10: Clock-Related Timing
The last exercise may have made you aware of something; our Output object is easily
affected by the clock frequency. It relies on a specific, hard-coded time-base but subordinate
objects (those that are not the top object) should never do that because they cannot predict
what the clock frequency will be for the many applications they may be used for.
Additionally, the Propeller application can change the System Clock frequency a number of
times throughout its run time.

Suppose that we really intended to make an Output object that toggles pins at a specific rate
that is essentially clock independent. This means that it must respond dynamically to the
System Clock frequency. Below is the modified code; make sure to edit your code to match.

P ropeller P rogramming Tutorial

Page 134 · Propeller Manual v1.0

Example Object: Output.spin

{{ Output.spin }}

VAR
 long Stack[9] 'Stack space for new cog
 byte Cog 'Hold ID of cog in use, if any

PUB Start(Pin, DelayMS, Count): Success
{{Start new blinking process in new cog; return True if successful.}}

 Stop
 Success := (Cog := cognew(Toggle(Pin, DelayMS, Count), @Stack) + 1)

PUB Stop
{{Stop toggling process, if any.}}

 if Cog
 cogstop(Cog~ - 1)

PUB Active: YesNo
{{Return TRUE if process is active, FALSE otherwise.}}

 YesNo := Cog > 0

PUB Toggle(Pin, DelayMS, Count)
{{Toggle Pin, Count times with DelayMS milliseconds clock cycles
 in between. If Count = 0, toggle Pin forever.}}

 dira[Pin]~~ 'Set I/O pin to output…
 repeat 'Repeat the following
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(clkfreq / 1000 * DelayMS + cnt) ' Wait for DelayMS…
 while Count := --Count #> -1 'While not 0 (make min…
 Cog~ 'Clear Cog ID variable

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 135

We modified the Start and Toggle methods by changing the Delay parameter to DelayMS,
meaning �delay in units of milliseconds.� Then we modified the waitcnt� statement such
that instead of waiting a fixed number of clock cycles, it calculates the number of clock
cycles that there are in DelayMS milliseconds of time. CLKFREQ is a command that returns the
current System Clock frequency in Hertz (cycles per second). Its value is set by the Propeller
Tool at compile time and also by the CLKSET command at run time; see CLKSET on page 183.
There are 1,000 milliseconds per second and CLKFREQ is the number of clock cycles per
second, so clkfreq / 1000 * DelayMS is the number of clock cycles in DelayMS milliseconds
of time.

With this modification, regardless of the application�s start-up frequency, or how often the
application changes the frequency during run time, the Output object will recalculate the
proper delay each time through its loop.

Now, of course, we need to modify our Blinker2 object to adjust the DelayMS parameters
appropriately. Enter the code modifications shown in the listing on page 136. Note that we
entered the _CLKMODE and _XINFREQ settings just as we had left them from the last exercise.

P ropeller P rogramming Tutorial

Page 136 · Propeller Manual v1.0

Example Object: Blinker2.spin

{{ Blinker2.spin }}

CON
 _CLKMODE = XTAL1 + PLL4X 'Set to ext low-speed crystal, 4x PLL
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

OBJ
 LED[6] : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}

 dira[16..23]~~ 'Set pins to outputs
 LED[NextObject].Start(16, 250, 0) 'Blink LEDs
 LED[NextObject].Start(17, 500, 0)
 LED[NextObject].Start(18, 50, 300)
 LED[NextObject].Start(19, 500, 40)
 LED[NextObject].Start(20, 29, 300)
 LED[NextObject].Start(21, 104, 250)
 LED[NextObject].Start(22, 63, 200) '<-Postponed
 LED[NextObject].Start(23, 33, 160) '<-Postponed
 LED[0].Start(20, 1000, 0) 'Restart object 0
 repeat 'Loop endlessly

PUB NextObject : Index
{Scan LED objects and return index of next available LED object.
 Scanning continues until one is available.}

 repeat
 repeat Index from 0 to MAXLEDS-1
 if not LED[Index].Active
 quit
 while Index == MAXLEDS

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 137

In Main, we adjusted the second parameter of the all the calls to Start from �delay in clock
cycles� to �delay in milliseconds.� Compile and download the Blinker2 object now. Notice
that the rate at which each LED blinks is the same as it was when we used the internal fast
clock. Try increasing the clock speed by changing _CLKMODE from XTAL1 + PLL4X to XTAL1 +
PLL16X. You should not see any change in the blink rates even though we just multiplied the
clock frequency by four!

Keep in mind that the accuracy of the internal clock on your particular Propeller chip can
play a big role in the way this example looks, especially when using the RCSLOW mode.

There are two techniques for using the WAITCNT command but we only demonstrated one of
them. For further tips regarding timing, see the WAITCNT command on page 322.

Quick Review: Ex 9 & 10
• Clock:

o The internal clock has two speeds, slow (� 20 KHz) and fast (� 12 MHz).
o To specify clock settings for an application, the top object file sets values for

one or more special constants: _CLKMODE, _CLKFREQ and _XINFREQ.
o Whenever external crystals or clocks are used, either _XINFREQ or _CLKFREQ

must be specified in addition to _CLKMODE.
o _CLKMODE specifies the clock mode: internal/external, oscillator gain, PLL

settings, etc. See _CLKMODE, page 180.
o _XINFREQ specifies the frequency coming into the XI pin (Crystal Input pin).

See _XINFREQ, page 337.
o _CLKFREQ specifies the System Clock frequency. See _CLKFREQ, page 177.
o Use the internal clock for convenience where accuracy doesn�t matter. Use

an external clock for accuracy or when the phase-locked loop (PLL) is
needed.

• Timing:
o Subordinate objects can�t rely on a specific, hard-coded time-base since

applications which use them may change the clock frequency.
o Use the CLKFREQ command to get the current System Clock frequency in

Hertz for timing calculations. See CLKFREQ, page 175.

P ropeller P rogramming Tutorial

Page 138 · Propeller Manual v1.0

Exercise 11: Library Objects
The Propeller Tool comes with a library of objects created by Parallax engineers. These
objects perform many useful functions such as serial communication, floating-point math,
number-to-string and string-to-number conversion, and TV display generation, using standard
PC-style keyboards, mice and monitors, etc.

The Propeller Object Library is simply a folder containing Propeller object files that are
automatically created during the Propeller Tool software installation. You can get to the
Propeller Library folder by selecting �Propeller Library� from the Recent Folders list; see
Figure 3-18. After selecting the Propeller Library, the Files List will display all the available
objects.

Figure 3-18:

Propeller Library
Browsing

Select �Propeller
Library� from the
Integrated Explorer�s
Recent Folders list to
quickly browse to the
library folder.

Let�s use some of them now. Create a new file and enter the code below. The highlighted
items are important for the discussion following the code.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 139

Example Object: Display.spin

{{ Display.spin }}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ
 Num : "Numbers"
 TV : "TV_Terminal"

PUB Main | Temp
 Num.Init 'Initialize Numbers
 TV.Start(12) 'Start TV Terminal

 Temp := 900 * 45 + 401 'Evaluate expression
 TV.Str(string("900 * 45 + 401 = ")) 'then display it and
 TV.Str(Num.ToStr(Temp, Num#DDEC)) 'its result in decimal
 TV.Out(13)
 TV.Str(string("In hexadecimal it's = ")) 'and in hexadecimal
 TV.Str(Num.ToStr(Temp, Num#IHEX))
 TV.Out(13)
 TV.Out(13)

 TV.Str(string("Counting by fives:")) 'Now count by fives
 TV.Out(13)
 repeat Temp from 5 to 30 step 5
 TV.Str(Num.ToStr(Temp, Num#DEC))
 if Temp < 30
 TV.Out(",")

Save this object as �Display.spin� in a folder of your choice; for this example we�ll use the
�C:\Source\� folder.

In this example we use two Propeller Library objects, Numbers and TV_Terminal, to convert
numeric values to strings and display them on a TV. Compile and download this example
object and connect a TV (NTSC) display to the composite output (RCA jack) on the Propeller
Demo Board. The TV display should show the following text:

P ropeller P rogramming Tutorial

Page 140 · Propeller Manual v1.0

900 * 45 + 401 = 40,901
In hexadecimal it's = $9FC5
Counting by fives:
 5, 10, 15, 20, 25, 30

Look at what we just achieved! Using just a few lines of our own code plus two existing
library objects and three resistors (on the Propeller Demo Board) we converted numeric
values to text strings and generated a TV-compatible signal to display that text in real time on
a standard TV! In fact, while you are reading this, a cog is keeping busy constantly
generating an NTSC signal at 60 frames per second that the TV can lock onto.

The TV_Terminal object provides a great display for debugging purposes. Since the
Propeller has many processors and can run quite fast, a real-time display such as a TV
monitor (CRT or LCD) used for debugging purposes goes a long way toward developing
optimal source code. We recommend using this technique along with the usual debugging
techniques to speed up development time.

Let�s look at some important parts of our code now. The first new item in our code is the
| Temp that appears in Main�s declaration line. Don�t be fooled, this may look like a return
variable declaration, but it is not. The pipe symbol �|� indicates we are declaring local
variables next. So, | Temp declares that Temp is a long-sized local variable for Main.

Next we have two very important statements, Num.Init and TV.Start(12). These two
statements initialize the Numbers object and start the TV_Terminal object (on pins 12, 13 and
14), respectively. Each of these objects requires some kind of initialization before using it.
Numbers requires that its Init method is called to initialize some internal registers.
TV_Terminal requires that its Start method is called to configure the proper output pins and
to start two more cogs to generate the display signals. Objects typically indicate these
requirements in their documentation, but it is common that they include an Init or a Start
method if they require some initial setup before use.

The next line performs some arithmetic and sets our local variable, Temp, to the result. We�ll
use this result soon.

The next three statements create the first line of text on the TV display:
9 * 45 + 401 = 40,901. The TV.Str method outputs a zero-terminated string to the display.
Its parameter, string("900 * 45 + 401 = ") is new to us. STRING is a directive that creates a
zero-terminated string of characters (multiple bytes of character data followed by a zero;
sometimes called a z-string) and returns the address of that string. Most methods that deal
with strings require just the address of the starting character and for the string to end with a
byte equal to zero. TV.Str method�s parameter requires exactly that, the address of a zero-

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 141

terminated string. So the line TV.Str(string("900 * 45 + 401 = ")) causes the string �900
* 45 + 401 = � to be displayed on the TV.

The next statement, TV.Str(Num.ToStr(Temp, Num#DDEC)) prints the �40,901� part of the line.
The Num.ToStr method converts the numeric value in Temp into a string using delimited
decimal format and returns the address of that string. Temp, of course, holds the long-sized
result of our earlier expression: 40901. The Num#DDEC part is new to us, however. The #
symbol when used this way is an Object-Constant reference; it is used to reference a constant
that was defined in another object. In this case, Num#DDEC refers to the �format constant� DDEC
that is declared within the Numbers object. As defined by Numbers, DDEC stands for
Delimited Decimal and holds a value that indicates to the ToStr method that it should format
the number with a thousands-group delimiter; a comma in this case. So, ToStr creates a z-
string equal to �40,901� and returns the address of it. TV.Str then outputs that string onto the
display. Read the documentation in the Numbers object for more information about this and
other format constants.

TV.Out(13) outputs a single byte, 13, to the display. The 13 is the ASCII code for a carriage
return (a non-visible character) and causes the TV_Terminal object to move to the next text
line. We do this in preparation for the next string we�ll print afterward.

Work and Library Folders
When our Display object is compiled, the Object View displays the structure shown below.
This shows us that our Display object uses the Numbers and TV_Terminal objects and the
TV_Terminal object uses the TV and Graphics objects.

Figure 3-19:

Object View of
Display Application

Yellow folders
indicate objects in the
�work� folder. Blue
folders indicate
objects in the
�library� folder.

The folder icons in front of each object are different colors to indicate their individual folder
locations. Objects with yellow folders are in the �work� folder while those with blue folders

P ropeller P rogramming Tutorial

Page 142 · Propeller Manual v1.0

are in the �library� folder. From this display we can see that the Propeller Tool found the
Numbers, TV_Terminal, TV and Graphics objects in the library folder and the Display object
in the work folder.

Remember that we saved our Display object in the C:\Source folder? When an application is
compiled, the folder that the top object file is stored within becomes known as the work
folder. If that file refers to other objects, the work folder is the first place where the Propeller
Tool looks for them. If the referenced object is not in the work folder, the library folder is
searched next. If an object in the library folder refers to another object, the library folder is
searched for that other object. An error occurs if referenced objects are not found in either
the work folder or the library folder.

Due to this nature, it can be said that every application is composed entirely of files from as
many as two folders; the work folder and/or the library folder. Keep this in mind while
building your applications.

You can find out the location of each object, and the work and library folders, by pointing the
mouse at each object in the Object View. In the figures below we see that Display is in
C:\Source (the �work� folder) and Numbers is in C:\Program Files\Parallax Inc\Propeller
Tool (the �library� folder).

Figure 3-20:

Object View Hints for
Display Application

The work and library
folder paths can be
seen in the hint
messages

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 143

Exercise 12: Whole and Real Numbers
The Propeller is a 32-bit device and can naturally handle whole numbers as signed integers
(-2,147,483,648 to 2,147,483,647) both in constants or in run-time math expressions.
However, for real numbers (those with both integer and fraction components) the compiler
supports floating-point format (single-precision, IEEE-754 compliant) for constants, and
there are library objects that allow for run-time floating-point math operations.

Pseudo-Real Numbers
For handling real numbers, there are many possible techniques. One technique is to use
integer math in a way that accommodates your real values as well as the run-time expressions
involved. We call this pseudo-real numbers.

Having 32-bit integers built in to the Propeller provides us with a lot of �elbow room� for
calculations. For example, perhaps we have an equation to multiply and divide values that
have 2-digit fractions, like the following:

A = B * C / D

For our example, let�s use A = 7.6 * 38.75 / 12.5 which evaluates to 23.56.

To solve this at run time, we can adjust all the equation�s values upward by 2 digits to make
them all integers, perform the math and then treat the rightmost 2 digits of the result as being
the fractional portion. Multiplying each value by 100 achieves this. Here�s the algebraic
proof:

A = (B* 100) * (C * 100) / (D * 100)

A = (7.6 * 100) * (38.75 * 100) / (12.5 * 100)

A = 760 * 3875 / 1250

A = 2356

Since we multiplied all the original values by 100, we know that the final value is really
2356 / 100 = 23.56, but for most purposes we can keep it in integer form knowing that the
rightmost two digits are really to the right of the decimal point.

The above solution works as long as each of the original values and each of the intermediate
results never exceed the signed integer boundaries: -2,147,483,648 to 2,147,483,647.

The example presented next includes code that uses both the pseudo-real number technique as
well as floating-point numbers.

P ropeller P rogramming Tutorial

Page 144 · Propeller Manual v1.0

Floating-Point Numbers
In many cases, expressions involving real numbers can be solved without using floating-point
values and methods, such as with the pseudo-real number technique. Since solutions like the
one above tend to execute much faster and consume less memory, it is recommended that you
think carefully about whether or not you really need floating-point support before you
actually use it. If you can afford the extra execution time and memory usage, floating-point
support may be the best solution.

The Propeller Tool supports floating-point constants directly. The Propeller chip supports
floating-point run-time expressions through the use of objects; ie: at run time the Spin
Interpreter can only directly process integer-based expressions.

The next example object, RealNumbers.spin, demonstrates using integer constants (iB, iC,
and iD) that are pre-translated to pseudo-real numbers, floating-point constants (B, C, and D)
used in their native form by the FloatMath and FloatString library objects, and also those
same floating-point constants translated to pseudo-real numbers at compile time.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 145

Example Object: RealNumbers.spin

{{ RealNumbers.spin}}
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 iB = 760 'Integer constants
 iC = 3875
 iD = 1250

 B = 7.6 'Floating-point constants
 C = 38.75
 D = 12.5

 K = 100.0 'Real-to-Pseudo-Real multiplier

OBJ
 Term : "TV_Terminal"
 F : "FloatMath"
 FS : "FloatString"

PUB Math
 Term.Start(12)

 {Integer constants (real numbers * 100) to do fast integer math}
 Term.Str(string("Pseudo-Real Number Result: "))
 Term.Dec(iB*iC/iD)

 {Floating-point constants using FloatMath and FloatString objects}
 Term.Out(13)
 Term.Str(string("Floating-Point Number Result: "))
 Term.Str(FS.FloatToString(F.FDiv(F.FMul(B, C), D)))

 {Floating-point constants translated to pseudo-real for fast math}
 Term.Out(13)
 Term.Str(string("Another Pseudo-Real Number Result: "))
 Term.Dec(trunc(B*K)*trunc(C*K)/trunc(D*K))

P ropeller P rogramming Tutorial

Page 146 · Propeller Manual v1.0

Compile and download RealNumbers.spin. It will display the following on a TV display:

Pseudo-Real Number Result: 2356
Floating-Point Number Result: 23.56
Another Pseudo-Real Number Result: 2356

The pseudo-real results, of course, each represent the value 23.56 but the entire value is
shifted upwards by two digits to maintain integer math compatibility. With some additional
code we could output it as 23.56 for display purposes.

The constants iB, iC, and iD are standard integer constants as we�ve seen before, but their
values are really pseudo-real numbers representing the values in our example equation.

The constants B, C, D, and K, are floating-point constants (real numbers). The compiler
automatically recognizes them as such and stores them in 32-bit single-precision floating-
point format. They can be used in other compile-time floating-point expressions directly but
at run time they should only be used with floating-point methods such as those found in the
FloatMath and FloatString objects.

The statement Term.Dec(iB*iC/iD) uses the pre-translated pseudo-real constants as suggested
by the Pseudo-Real Numbers technique, above. This is evaluated about 1.6 times faster than
with the floating-point technique and takes much less code space.

The statement Term.Str(FS.FloatToString(F.FDiv(F.FMul(B, C), D))) calls FloatMath�s
FMul method to multiply the floating-point values B and C, then calls FloatMath�s FDiv method
to divide that result by the floating-point value D, translates the result to a string using
FloatString�s FloatToString method and displays that on the TV.

The statement Term.Dec(trunc(B*K)*trunc(C*K)/trunc(D*K)) uses compile-time expressions
inside of TRUNC directives to shift the floating-point constants B, C, and D upwards by two
digits and truncate the values to integers. The resulting expression is equivalent to that of the
first pseudo-real number equation Term.Dec(iB*iC/iD) but has the added benefit of allowing
its component values to be defined in floating-point terms.

The TRUNC directive truncates fully resolved floating-point expressions to their integer form at
compile time. It is required here since floating-point constant values can not be used directly
by run-time expressions.

3: P ropeller P rogramming Tutorial

Propeller Manual v1.0 · Page 147

Context-Sensitive Compile Information
After an object has been compiled, the Propeller Tool displays context-sensitive compile
information on the status bar (panel 5) about the source item the cursor is currently near or
within. This is very useful in verifying and understanding the values of constants declared in
an object. For example, compile this example by pressing F9 (or selecting the Run �
Compile Current � Update Status menu option) and then place the cursor on the iB constant
in the CON block. The status bar will temporarily highlight the context information and should
look similar to the figure below.

Figure 3-21:

Status Bar with
Compile Information

After a compile
operation, the status
bar�s panel 5 displays
information about the
source item nearest
the cursor.

This tells us that our iB constant is defined by the CON block to be 760 decimal, or $2F8
hexadecimal.

Try placing the cursor on the B constant. The compile information should now read �CON B
= 7.6 ($40F3_3333) Floating Point� to indicate this is a real number, in floating-point form,
equal to 7.6 decimal ($40F3_3333 hexadecimal) This illustrates that floating-point values are
encoded into 32 bits in a way that makes them incompatible with integer values.

In addition to symbols in CON and DAT blocks, the compile information displays shows the
size, in bytes, of PUB/PRI/DAT blocks when the cursor is within that block. In our case, the
Math method is 196 bytes long. This is a great feature to use when optimizing code for size;
make small changes to code, press F9, check size against that of the previous code, and so on.

P ropeller P rogramming Tutorial

Page 148 · Propeller Manual v1.0

Quick Review: Ex 11 & 12
• Propeller Library:

o Is a folder automatically created by the Propeller Tool installer.
o Contains Parallax-made Propeller objects that perform useful functions.
o The �Propeller Library� item in the Recent Folders list allows for quick

access.
• Spin Language:

o The pipe symbol �|� on method declaration lines declares a list of local
variables for the method; see Parameters and Local Variables, page 289.

o The STRING directive creates a zero-terminated string and returns its address;
see STRING, page 310.

o The # symbol forms an Object-Constant reference used to access constants
defined in other objects; see Scope of Constants, page 199.

o The TRUNC directive truncates floating-point constants to integers; see TRUNC,
page 314.

• Work and Library Folders:
o The Object View�s folder icons indicate the object�s location.

� Objects with yellow folders are in the �work� folder.
� Objects with blue folders are in the �library� folder.

o Every application is composed entirely of files from as many as two folders;
the work folder and/or the library folder.

• Integers and Real Numbers: (See CON, page 194, or Operators, page 249)
o Integers are directly supported both in constants and in run-time expressions.
o Real numbers, in floating-point format, are directly supported in constants

and are indirectly supported at run time by special library objects.
o In many cases, expressions involving real numbers can be solved without

using floating-point values and methods.
• The Status Bar displays compile information about the source item nearest to the

cursor. This includes CON/DAT block symbol�s size/address and PUB/PRI/DAT block�s
size.

Where to go from here...
You should now have the knowledge you need to explore the Propeller chip on your own and
develop your first applications. Use the rest of this manual as a reference to the Spin and
Propeller Assembly languages, explore every existing library object that interests you and
join the Propeller Forum to keep learning and sharing with other active Propeller chip users.

