eForth Overview

Before diving directly into eForth, | would like to discuss the general principles of Forth language. The
language consists of a collection of words, which reside in the memory of a computer and can be
executed by entering their names on the computer keyboard. A list of words can be compiled, given a
new name and made a new word. In fact, most wordsin Forth are defined as lists of existing words. A
small set of primitive words are defined in machine code of the native CPU. All other words are built
from this primitive words and eventually refer to them when executed.

Words are similar to procedures and subroutines in other languages. The difference is that Forth words
are executable interactively when referenced by name, and they can be compiled into lists which can be
referenced as new words. Programming in Forth is to define new and more powerful words as lists of
existing words. This process continues until the final word becomes the solution to an application.

Here | will state 'The Forth Law of Computing” without a proof:

All computable functions can be constructed by defining new wor ds as lists of words which include
a small number of primitive words.

This eForth model consists of about 200 words, of which only 31 are primitive words. Although it isvery
difficult to prove the above law, | will demonstrate it to you that from this small set of primitive words a
compl ete operating system with many tools, that is the eForth model itself, can be built. 1f an operating
system can be built thisway, it is not difficult to understand that any application can be so devel oped.

Forth is very similar to machine code. In acomputer, the CPU has afinite set of machine instructions,
and all computable functions are implemented as lists of these machine instructions. High level
languages generally replace machine instruction lists by statements, functions, subroutines, and
procedures, which can be used to construct procedures and subroutines at higher levels until the last
procedure which is the application. This also helps demonstrating the validity of the above law.

The primitive words must be constructed using native machine code of the host computer. They are also
called low level words or code words. All other words are constructed as lists of existing words. They
are called high level words or colon words because ":" (colon) is a Forth word which defines or constructs
new words to replace lists of existing words.

Forth as a computing system has two principal components: an user interface as the Forth language

processor which interprets the commands entered from keyboard or equivalent devices; and a machine
interface which interprets lists or words recursively until it can issue machine instructionsin the primitive
words to the host computer for execution. The user interface processes commandsin text form. Itis
often referred to as the text interpreter and the outer interpreter.

The machine interface executes words by processing recursively the word lists compiled in colon words
to reach the primitive words which are handed to the host computer for execution. It is often called the
inner interpreter and the address interpreter, because the word lists are often stored in the dictionary as
address lists.

Virtual Forth Computer

Forth is a computer model which can be implemented on any real CPU with reasonable resources. This
model is often called avirtual Forth computer. The minimal components of avirtual Forth computer are:

1. A dictionary in memory to hold all the execution procedures.
2. A return stack to hold return addresses of procedures yet to be executed.
3. A datastack to hold parameters passing between procedures.
4. A user areain RAM memory to hold all the system variables.

5. A CPU to move date among stacks and memory, and to do ALU operations to parameters stored on
the data stack.

The eForth model is a detailed specification of avirtual Forth computer which can be implemented on
many different CPU's and forces them to behave identically in executing an identical Forth instruction set.
It was first implemneted on a PC using Intel 8086 CPU as a guiding model for other implementations.
Here we will try to describe precisely the behavior of the virtual Forth computer. To describe precisely
how this computer functions, we will use the 8086 machine code to clarify the specification.

The following registers are required for avirtual Forth computer:

Forth Register 8086 Register Function

IP S Interpreter Pointer

SP SP Data Stack Pointer

RP RP Return Stack Pointer
WP AX Word or Work Pointer
UP (in memory) User Area Pointer

In the dictionary, each procedure (or word in Forth terminology) occupies an area called code field, which
contains executable machine code and data required by the code. There are two types of words used in
eForth: code word whose code field contains only machine instructions, and colon word whose code field
contains acall to the list processing subroutine and alist of word addresses. A word addressis the code
field address of the word in the dictionary. 4 bytes are allocated for the call to list processor. Word
addresses are 2 bytesin length, and are pointers to code fields of words in the dictionary. The length of a
code field varies depending upon the complexity of the word.

In the code field of acode word thereisalist of machine instructions of the native CPU. The machine
instructions are terminated by a group of instructions, generally specified as a macro instruction named
$NEXT. The function of SNEXT isto fetch the next word pointed to by the Interpreter Pointer |P,
increment 1P to point to the next word in the word list, and jump to the address just fetched. Since aword
address points to a code field containing executable machine instructions, executing aword means
jumping directly to the code field pointed to by the word address. $NEXT thus allows the virtual Forth
computer to execute alist of words with very little CPU overhead. In the 8086 implementation, SNEXT
isamacro assembling the following two machine instructions as shown below.

In acolon word, the first four byte in the code field must be a subroutine call instruction to process the
address list following this call instruction. This address list processing subroutine is named doLIST.
doL|IST pushes the contents in IP onto the return stack, copies the address of the first entry in its address
list into IP and then calls SNEXT. $NEXT will then start executing this list of addresses in sequence.

The last entry in the addresslist of a colon word must be EXIT. EXIT isacode word which undoes what
doLIST accomplished. EXIT pops the top item on the return stack into the IP register. Consequently, 1P
points to the address following the colon word just executed. EXIT then invokes SNEXT which
continues the processing of the word list, briefly interrupted by the last colon word in thisword list.

$NEXT MACRO
LODSW \ load next word into WP (AX)
JMP AX \ jump directly to the word thru WP

ENDM \ IP (SI) now points to the next word

doLI ST (a--) \ Run address list in a colon word.

XCHG BP, SP \ exchange pointers

PUSH Sl \ push return stack

XCHG BP, SP \ restore the pointers

POP Sl \ new |ist address

SNEXT

CODE EXIT \ Terminate a colon definition

XCHG BP, SP \ exchange pointers

POP Sl \ pop return stack

XCHG BP, SP \ restore the pointers

SNEXT

It isinteresting to note that in this eForth implementation, SNEXT isamacro, doLIST is a subroutine, and
EXIT isactually a Forth code words. $NEXT, doLIST and EXIT are collectively call the 'inner
interpreters and 'address interpreters of Forth. They are the corner stones of avirtual Forth computer as
they control the execution flow of Forth words in the system.

Based on the above mechanism to execute code words and colon words, a Forth computer can be
constructed using a small set of machine dependent code words and a much larger set of colon words.
Tools are provided so that the user can extend the system by adding new words in truly modular fashion
to solve any practical problems.

There are 190 high level words in eForth, built on the 31 low level primitive words. The high level word
set isrequired to build the outer interpreter and the associated utility words. Asthe outer interpreter itself
represents afairly substantial application, the word set necessary to build the outer interpreter formsa
very solid foundation to build most other applications. However, for any real world application one
would not expect that this eForth word set is sufficient. The beauty of Forth is that in programming an
application, the user designs and implements a new word set best tailored to his application. Forthisan
open system, assuming that no operating system can be complete and all-encompassing. The user has the
best understanding of his own needs, and he knows the best way to accomplish his goal.

Memory Map

The most important contribution by von Neumann to the computer design was the recognition that a
single, uniform memory device can be used to store program and data, contrasting to the then prevailing
architectures in which program and data were stored separately and most often using very different
storage media. It greatly ssimplified the design of computers and had become the dominant computer
architecture for all the important computer families ever since.

Memory space is a concept of paramount importance in computer hardware and assembly programming,
but often hidden and ignored in most conventional high level languages. High level languages and
operating systems hide the addressable memory space from the user in order to protect the operating
system, because there are very sensitive areas in the memory space and unintentional alterations to the
information stored in these areas would cause the system to malfunction or even to crash. The point of
view from the operating system and from the computer priesthood, these sensitive areas must be
protected at al cost, and they are the reserved territory of the systems programmers. Ordinary
applications programmers are allocated only enough space to run their programs safely, for their own
good.

Forth opens the entire memory space to the user. The user can freely store data and code into memory
and retrieve them from the memory. Coming with the freedom is the responsibility of handling the
memory correctly.

Memory used in eForth is separated into the following areas:

Col d boot 100H 17FH Cold start and variable initial values
Code dictionary 180H 1344H Code dictionary grow ng upward

Free space 1346H 33E4H Shared by code and name dictionaries
Nane/ wor d 33E6H 3BFFH Nane dictionary grow ng downward

Dat a stack 3C00H- 3E7FH G owi ng downward

TI B 3E80H Growi ng upward

Return stack - 3F7FH G owi ng downward

User vari abl es 3F80H 3FFFH

These areas are allocated by assembly constants and can be changed conveniently to suit the target
environment. The following assembly code segment prescribes the memory allocation in atypical eForth

system. The memory map isalso illustrated in a schematic drawing for easier visulization.

;7 Menory allocation

;7 0//code>--//--<nane//up>--<sp//tib>--rp//em

EM EQU
COLDD EQU
us EQU
RTS EQU
RPP EQU
TIBB EQU
SPP EQU
UPP EQU
NAVEE EQU
CODEE EQU

04000H

00100H

64* CELLL

64* CELLL

EM 8* CELLL

RPP- RTS

TI BB- 8*CELLL

EM 256* CELLL

UPP- 8* CELLL

COLDD+US

;top of nenory

;cold start vector

user area size in cells
;return stack/ TIB size
;start of return stack (RPO)
;termnal input buffer (TIB)
;start of data stack (SPO)
;start of user area (UPO)
;name dictionary

;code dictionary

eForth Kernd

One of the most important feature of eForth is the small machine dependent kernel, which allowsitsto be
ported to other CPU's very conveniently. The selection of words in this kernel is based on the criteria that
they are very difficult if not impossible to synthesize from other primitive words. From this set of kernel
words, all other Forth words have to be built. The kernel words can be classified as following:

System interface: BYE, 7rx, tx!, lio

Inner interpreters: doLIT, doLIST, next, Zoranch, branch, EXECUTE, EXIT

Memory access. @, Cl, C@

Return stack: RP@, RP!, R>, R@, R>

Data stack: SP@, SP!, DROP, DUP, SWAP, OVER
Logic: 0<, AND, OR, XOR

Arithmetic: UM+

The virtual Forth computer is based on atwo-stack architecture. The return stack is used to alow ahigh
level word to be executed in the address list of another high level word. It isvery similar to the return
stack used for nested subroutine callsin a conventional computer. Before executing a high level word in
an address list, the next address of thelist is pushed on the return stack so that the | P register can be used
to scan the address list in the called word. When the called word is executed to completion, the stored
address on the returned stack is popped back into | P register and execution of the calling word list can be
continued.

The data stack is used to pass parameters from one word to another. Conventional computers use the
return stack to do the parameter passing, and it takes a very complicated compiler to figure out which are
return addresses and which are parameters. Forth segregated these two types of information on two
separate stacks and thus greatly simplies the execution and compilation of words. Passing parameter on
the data stack also reduces the syntactical complexity of Forth language to the minimum and allows
words to be strung together into lists with minimum overhead in compilation and interpretation.

The kernal words move and process data and address among the stacks and the memory. They
emcompass the minimal functionality necessary to make a computer to behave like a Forth computer. A
complete understanding of these kernel word isvital to the understanding of avirtual Forth computer.
However, it is not difficult to understand the kernel words, because there are only 31 of them.

It is my intention to use this eForth model to illustrate the validity of ‘the Forth Law of Computing', which
stated that all computable functions can be constructed by lists of these kernel words and the high level
words built from these kernel words. The eForth model includes atext interpreter which allows the user
to type lists of word names and execute them in sequence, a compiler which allows the user to name lists
of words and compile new words, and utilities like memory dump, stack dump, and a colon word
decompiler. Thusthe eForth system forms afairly complete software development environment for the
user to develop applications. If such asystem can be built from this small set of kernel words, it should
be obvious that most practical applications can also be built from it.

System Interface

BY E returns control from eForth back to the operating system. !io initializes the seria 1/0 devicein the
system so that it can interact with the user through aterminal. These two words are not needed once the
eForth system is up and running, but they are essential to bring the system up in DOS. ?rx isused to
implement ?KEY and KEY, and tx! isused to implement EMIT. eForth communicates with the user
through these words which supports terminal interactions and file download/upload. Here these words
are defined using the DOS service calls. For embedded controllers, these three words must be defined for
the specific 1/0 devices.

?RX isaunigque design invented by Bill Muench to support seria input . ?RX provides the functions
required of both KEY and KEY ? which accept input from aterminal. ?RX inspects the terminal device
and returns a character and atrueflag if the character has been received and is waiting to be retrieved. If
no character was received, ?RX simply returns afalse flag. With ?RX, both KEY and KEY ? can be
defined as high level colon definitions.

TX! sends a character on the data stack to the terminal device. Both ?RX and TX! are coded here as DOS
calls. In embedded applications, they will have to be coded in machine specific code to handle the
specific serial 1/0 device. 'O initializes the serial 1/0 device, which is not necessary here becauseit is
taking care of by the DOS. In embedded systems, the 1/O device must beinitialized by !10O.

CODE BYE (--, exit Forth)
INT 020H \ return to DCS
CODE ?RX (-- ¢ T| F) \ Return input character and true,

\ or afalse if no input.

$CODE 3, ' ?RX' , QRX

XOR BX, BX \ BX=0 setup for false flag
MoV DL, OFFH \ input command

MOV AH 6 \ M5-DOS Direct Console I/0
I NT 021H

JzZ QRX3 \ ?key ready

oR AL, AL \ AL=0 if extended char

JNZ QRX1 \ ?extended character code

I NT 021H
MOV BH, AL \ extended code in mnsb
I QRX2

QRX1: MV BL, AL

@QRX2: PUSH BX \ save character

MOV BX -1 \ true flag

QRX3: PUSH BX

SNEXT
CODE TX! (c--) \ Send character c to output device.
POP DX \ char in DL
CwvP DL, OFFH \ OFFH is interpreted as input
JNz TX1 \ do NOT all ow i nput
MoV DL, 32 \ change to bl ank
TX1: MOV AH 6 \ M5-DCOS Direct Console I/0
INT 021H \ display character
SNEXT
CODE 1O (--) \ Initialize the serial 1/0 devices.

SNEXT

Inner Interpreter

In the word list of acolon definition, it is generally assumed that words are execution addresses, which
can be executed sequentially by the address interpreter SNEXT. However, occasionally we do need to
compile other types of datain-line with the words. Special mechanisms must be used to tell the address
interpreter to treat these data differently. All data entries must be preceded by specia words which can
handle the data properly. A special word and its associated data form a data structure. Data structures are
extensions of words and can be thought of as building blocks to form listsin colon definitions.

SNEXT must be assembled at the end of acode word. It fetches the next address in the address list
pointed to by IP and jumps to that address. It allows an address list to be scanned and thus executed.
doLIST starts the execution of an address list by saving IP on the return stack and stores the starting
address of an address list into IP, and then $SNEXT starts executing this addresslist. EXIT must be
compiled asthe last entry in an address list. It terminates the execution of the current address list and
returns execution to the address saved on the return stack.

EXECUTE takes the execution address from the data stack and executes that word. This powerful word
allows the user to execute any word which is not a part of an address list.

doLIT pushes the next word onto the data stack as an integer literal instead of as an addresses to be
executed by SNEXT. It allows numbers to be compiled asin-line literals, supplying data to the data stack
at runtime. doLIT isnot used by itself, but rather compiled by LITERAL which insertsdoLIT and its
asociated integer into the address list under construction. Anytime you see a number in a colon
definition, LITERAL isinvoked to compile an integer literal with doLIT.

Integer literals are by far the most numerous data structures in colon definitions other than regular words.
Address literals are used to build control structures. String literals are used to embed text stringsin colon
definitions.

$NEXT MACRO

LCODSW \ load next word into WP (AX)

JMP AX \ junmp directly to the word thru WP

ENDM \ IP (SI) now points to the next word
doLI ST (a--) \ Run address list in a colon word.

XCHG BP, SP \ exchange pointers

PUSH S
XCHG BP, SP
POP I
SNEXT

CODE EXIT
XCHG BP, SP
POP Sl
XCHG BP, SP
SNEXT

CODE EXECUTE (ca--)
POP BX
JMP BX

CODE doLIT (-- w)
LODSW
PUSH AX

SNEXT

\

\

\

\

\

\

push return stack
restore the pointers

new | i st address

\ Termnate a colon definition

exchange pointers
pop return stack

restore the pointers

\ Execute the word at

ca.

junp to the code address

\ Push inline litera

on data stack.

get the literal conpiled in-line

push literal on the stack

execute next word after

literal

L oops and Branches

eForth uses three different types of addressliterals. 'next’, "?branch’ and 'branch’ are followed not by word
addresses but by pointersto locationsin alist to be executed next. These address literals are the building
blocks upon which loops and branching structures are constructed. An address literal isfollowed by a
branch pointer which causes execution to be transferred to that location. The branch location most often
points to a different location in the address list of the same colon word.

CODE next (--) \ Decrenent index and exit | oop

\ if index is |l ess than 0.

SUB WORD PTR [BF], 1 \ decrenent the index
JC NEXT1 \ ?decrenent below 0O
MOV SI,O0[SI] \ no, continue |oop
SNEXT
NEXT1: ADD BP, 2 \ yes, pop the index
ADD SI, 2 \ exit |oop
SNEXT
CODE ?branch (f --) \ Branch if flag is zero.
POP BX \ pop flag
R BX, BX \ ?flag=0
Jz BRAN1 \ yes, so branch
ADD SI, 2 \ point IP to next cell
SNEXT
BRAN1: MOV SI, O[SI] \ IP.=(IP), junp to new address
SNEXT
CODE branch (--) \ Branch to an inline address.
MOV SI,O0[SI] \ jump to new address unconditionally

SNEXT

Address literals are used to construct control structures in colon definitions. 'next' is compiled by NEXT.
“?branch’ is compiled by IF, WHILE and UNTIL. 'branch’iscompiled by AFT, ELSE, REPEAT and
AGAIN. Inthe colon wordsto be discussed in the later sections, you will not see these kernel words but
words which construct loops and branches. For examples:

IF (compiles ?branch and address after THEN) <true clause> THEN
IF (compiles ?branch and address after ELSE) <true clause>
EL SE (compiles branch and address after THEN) <false clause>
THEN
BEGIN (marks current address) <loop clause>
AGAIN (compiles branch and address after BEGIN)
BEGIN (mark current address) <loop clause>
UNTIL (compiles ?oranch and address after BEGIN)
BEGIN (mark current address) <loop clause>
WHILE (compiles ?branch and address after REPEAT) <true clause>
REPEAT (compile branch and address after BEGIN)
FOR (set up loop, mark current address) <loop clause>
NEXT (compile next and address after FOR)
FOR (set up loop, mark current address) <loopclause>
AFT (change marked address to current address, compile branch
and address after THEN) <skip clause>

THEN <loop clause> NEXT (compile next and address after AFT)

Memory Access

Four memory accessing words are included in the eForth kernel: ! (store), @ (fetch), C! (C-store) and C@
(C-fetch). ! and @ access memory in cells, whose size depends on the CPU underneath. eForth assumes
that the CPU can access memory in bytes and that all addresses are in the units of bytes. C! and C@
allow the user access memory in bytes.

The two most important resources in a computer are the CPU and the memory. There is not much one
can do with the CPU, except to use itsinstruction set to write programs. However, the real usefulness and
intelligence lies with the memory, which holds both the program and the data. In conventional languages,
you humbly request memory to store your data, and the compiler reluctantly alocate it to you. If you
exceed your memory allocation, your program will be ruthlessly terminated.

In Forth, you have all the memory and you are allowed to do anything with the memory. !, @, C! and
C@ do not place restriction on their use. Y ou can use them to write self-modifying code if you like.
However, you must know exactly what you are doing.

It isnot avery good idea to change the contents of the dictionary, except in the parameter fields of
variables and arrays you defined specifically for data storage. The space occupied by the stacks should be
respected, too. The user variable area holds vital information for the system to run correctly. The space
bewteen the code dictionary and the name dictionary are not used and you are free to use it to store
temporary data. Be reminded, however, that as you define new words, the dictionaries are extended and
may over-write data you placed there.

Themoral is: Use @ and C@ freely, but be careful with ! and C!.

CODE ! (wa--) \ Pop the data stack to nenory.
POP BX \ get address fromtos
POP 0[BX] \ store data to that adddress
SNEXT
CODE @ (a--w) \ Push nmenory | ocation to data stack.
POP BX \ get address
PUSH Of BX] \ fetch data

SNEXT

CODE (chb--) \ Pop data stack to byte nenory.

POP BX \ get address
POP AX \ get data in a cell
MOV O[BX], AL \ store one byte
SNEXT
CODE C@ (b--1c¢) \ Push byte nmenory content on data stack.
POP BX \ get address
XOR AX, AX \ AX=0 zero the hi byte
MOV AL, O] BX] \ get low byte
PUSH AX \ push on stack

SNEXT

Return Stack

RP! pushes the address on the top of the data stack to the return stack and thusinitializes the return stack.
RP! isonly used to initialize the system and are seldom used in applications. RP@ pushes the contents of
the return stack pointer RP on the data stack. Itisaso used very rarely in applications.

>R pops a number off the data stack and pushes it on the return stack.. R> does the opposite. R@ copies
the top item on the return stack and pushes it on the data stack.

The eForth system uses the return stack for two specific purposes: to save addresses while recusing
through an address list, and to store the loop index during a FOR-NEXT loop. Asthe addresses piled up
on the return stack changes dynamically as words are executed, there is very little useful information the
user can get from the return stack at the run time. In setting up aloop, FOR compiles >R, which pushes
the loop index from the data stack to the return stack. Inside the FOR-NEXT loop, the running index can
berecaled by R@. NEXT compiles'next' with an address after FOR. when 'next’ is executed, it
decrements the loop index on the top of the return stack. If the index becomes negative, the loop is
terminated; otherwise, 'next’ jumps back to the word after FOR.

Return stack is used by the virtual Forth computer to save return addresses to be processes later. Itisalso
a convenient place to store data temporarily. The return stack can thus be considered as a extension of the
data stack. However, one must be very careful in using the return stack for temporary storage. The data
pushed on the return stack must be popped off before EXIT is executed. Otherwise, EXIT will get the
wrong address to return to, and the system generally will crash.

CODE RP@ (-- a) \ Push current RP to data stack.
PUSH BP \ copy address to return stack
SNEXT \ pointer register BP

CODE RP! (a--) \ Set the return stack pointer.
POP BP \ copy (BP) to tos
SNEXT

CODE R> (-- w) \ Pop return stack to data stack.
PUSH O[BP] \ copy wto data stack

ADD BP, 2 \ adjust RP for popping

SNEXT

CODE R@ (--w) \ Copy top of return stack to data stack.
PUSH O[BP] \ copy wto data stack
SNEXT
CODE >R (w--) \ Push data stack to return stack.
SUB BP,2 \ adjust RP for pushing
POP 0O[BP] \ push wto return stack

SNEXT

Data Stack

The data stack is the centralized location where al numerical data are processed, and where parameters
are passed from one word to another. The stack items has to be arranged properly so that they can be
retrieved properly in the Last-In-First-Out (LIFO) manner. When stack items are out of order, they can
be rearranged by the stack words DUP, SWAP, OVER and DROP. There are other stack words useful in
manipulating stack items, but these four are considered to be the minimum set.

Data stack isinitialized by SP!. The depth of data stack can be examined by SP@. These words, as RP@
and RP! are only used by the system and very rarely used in applications. These words are necessary in
the Forth kernel because you cannot operate a stack-based computer without these instructions.

CODE DROP (w--) \ Discard top stack item
ADD SP, 2 \ adjust SP to pop
SNEXT
CODE DUP (w-- ww) \ Duplicate the top stack item
MOV BX, SP \ use BX to index the stack
PUSH O[BX]
SNEXT
CODE SWAP (wl w2 -- w2 wl) \ Exchange top two stack itens.
POP BX \ get w2
POP AX \ get wl
PUSH BX \' push w2
PUSH AX \' push wi1
SNEXT

CODE OVER (wl w2 -- wl w2 wl) \ Copy second stack itemto top.
MOV BX, SP \ use BX to index the stack

PUSH 2[BX] \ get wl and push on stack

SNEXT

CODE SP@ (-- a) \ Push the current data stack pointer.
MOV BX, SP \ use BX to index the stack
PUSH BX \ push SP back
SNEXT
CODE SP! (a--) \ Set the data stack pointer.
POP SP \ safety

SNEXT

Logical Words

The only primitive word which cares about logic is *?branch’. It tests the top item on the stack. If itis
zero, ?Zoranch will branch to the following address. If it isnot zero, ?branch will ignore the address and
execute the word after the branch address. Thus we distinguish two classes of numbers, zero for ‘false
and non-zero for 'true’. Numbers used thisway are called logic flags which can be either true or false.
The only primitive word which generates flags is '0<', which examines the top item on the data stack for
its negativeness. If it isnegative, '0<' will return a-1 for true. If itisO or positive, '0<' will return a0 for
false.

The three logic words AND, OR and XOR are bitwise logic operators over the width of acell. They can
be used to operate on real flags (0 and -1) for logic purposes. The user must be aware of the distinct
behaviors between the real flags and the generalized flags.

CODE 0< (n--1) \ Return true if n is negative.
POP AX
@) \ sign extend AX into DX
PUSH DX \ push 0 or -1

SNEXT

CODE AND (ww-- w) \ Bitwi se AND.
POP BX
POP AX
AND BX, AX
PUSH BX

SNEXT

CODE OR (ww-- w) \ Bitwise inclusive OR
POP BX
POP AX
R BX, AX

PUSH BX

SNEXT

CODE XOR (ww-- w) \ Bitwi se exclusive OR
POP BX
POP AX
XOR BX, AX
PUSH BX

SNEXT

Primitive Arithmetic

The only primitive arithmetic word in the eForth kernel isUM+. All other arithmetic words, like +, -, *
and / are derived from UM+ as colon definitions. This design emphasize portability over performance,
because it greatly reduces the efforts in moving eForth into CPU's which do not have native multiply and
divideinstructions. Once eForth isimplemented on a new CPU, the more complicated arithmetic words
are the first ones to be optimized to enhance the performance.

UM+ adds two unsigned number on the top of the data stack and returns to the data stack the sum of these
two numbers and the carry as one number on top of the sum. To handle the carry thisway isvery
inefficient, because most CPU's have carry as a bit in the status register, and the carry can be accessed by
many machine instructions. It is thus more convenient to use carry in machine code programming.

eForth provides the user a handle on the carry in high level, making it easier for the user to deal with it
directly.

CODE UMk (ww-- wcey)

\ Add two nunbers, return the sumand carry flag.
XOR CX, CX \ CX=0 initial carry flag
POP BX
POP AX
ADD AX, BX
RCL CX 1 \ get carry
PUSH AX \' push sum
PUSH CX \ push carry

SNEXT

High Level Forth Words

Following are the eForth words defined as high level colon definitions. They are built from the primitive
eForth words and other high level eForth words, including data structures and control structures. Since
eForth source is coded in Microsoft MASM assembler, the word lists in the colon definitions are
constructed as datain MASM, using the DW directive. Thisform of representation, though very
effective, isvery difficult to read. The original model of eForth as provided by Bill Muench wasin the
form of a Forth source listing. Thislisting is much ssmpler and easy to read, assuming that the reader has
some knowledge of the Forth syntax. Thislisting is aso avery good source to learn a good coding style
of Forth. | therefore think it is better to present the high level Forth colon definitionsin thisform. Asthe
8086 eForth implementation deviates slightly from the original Forth model, | tried to translate the 8086
implementation faithfully back to the Forth style for our discussion here.

The sequence of words is exactly the same as that in the MASM assembly source listing. The reader is
encouraged to read the MASM source listing along with the text in this book. Reading two descriptions
of the same subject often enable better comprehension and understanding.

Variables and User Variables

The term user variable was codified in earlier Forth systems on the mini-computers in which multitasking
was an integral part of the Forth operating system. In a multitasking system, many user share CPU and
other resources in the computing system. Each user has a private memory area to store essential
information about its own task so that the system can leave atask temporarily to serve other users and
return to this task continuing the unfinished work. In asingle user environment, the user variables have
the same functionality as system variables.

In eForth, all variables used by the system are merged together and are implemented uniformly as user
variables. A special memory areain the high memory is alocated for all these variables, and they are all
initialized by copying atable of initial values stored in the cold boot area. A significant benefit of this
schemeisthat it allows the eForth system to operate in ROM memory naturally. It isvery convenient for
embedded system applications which preclude mass storage and file downloading.

In an application, the user can choose to implement variables in the forms of user variables or regular
variables when running in RAM memory. To run thingsin ROM, variables must be defined as user
variables. Although eForth in the original model allows only a small number of user variable to be
defined in an application, the user area can be enlarged at will by changing a few assembly constants and

equates.

In eForth only one vocabulary isused. The name of thisvocabulary is FORTH. When FORTH is
executed, the address of the pointer to the top of the dictionary is written into the first cell in the
CONTEXT array. When the text interpreter searches the dictionary for awords, it picks up the pointer in
CONTEXT and follow the thread through the name dictionary. |If the name dictionary is exhausted, the
text interpreter will pick up the next cell in the CONTEXT array and do the search. Thefirst cell in
CONTEXT array containing a 0 stops the searching. There are 8 cellsin the CONTEXT array. Since the
last cell must be zero, eForth allows up to 8 context vocabul aries to be searched.

There are two empty cellsin the code field of FORTH. Thefirst cell stores the pointer to the last name
field in the name dictionary. The second field must be a 0, which serves to terminate a vocabulary link
when many vocabularies are created. Vocabularies are useful in reducing the number of words the text
interpreter must search to locate a word, and allowing related words to be grouped together as logic
modules. Although the eForth itself only uses one vocabulary, the mechanism is provided to define
multiple vocabularies in large applications.

The CONTEXT arraysis designed as a vocabulary stack to implement the ONLY - ALSO concept of
vocabulary search order first proposed by Bill Ragsdale in the Forth 83 Standard.

CURRENT pointsto a vocabulary thread to which new definitions are to be added.

:doVAR (--a)R>;

VARI ABLE UP (-- a, Pointer to the user area.)

: doUSER (-- a, Run tinme routine for user variables.)
R @ \ retrieve user area offset
P @+ ; \ add to user area base addr

: doVOC (--) R> CONTEXT ! ;

: FORTH (--)doVOC[0,0,

:doUSER (--a)R>@ UP @ +;

eForth provides many functionsin the vectored form to allow the behavior the these functions to be
changed dynamically at run time. A vectored function stores a code addressin a user variable.
@EXECUTE is used to execute the function, given the address of the user variable. Following isthelist
of user variables defined in eForth:

SPO (-- a, pointer to bottomof the data stack.)

RPO (-- a, pointer to bottomof the return stack.)

' ?KEY (-- a, execution vector of ?KEY. Default to ?rx.)

"EM T (-- a, execution vector of EMT. Default to tx!)

" EXPECT (-- a, execution vector of EXPECT. Default to 'accept'.)

' TAP (-- a, execution vector of TAP. Defulat the KTAP.)

" ECHO (-- a, execution vector of ECHO. Default to tx!.)

" PROVPT (-- a, execution vector of PROWT. Default to '.ok'.)

BASE (-- a,.radix base for nunmeric I/O Default to 10.)

tmp (-- a, atenporary storage location used in parse and find.)
SPAN (-- a, hold character count received by EXPECT.)

> N (-- a, hold the character pointer while parsing input stream)
#TI B (-- a, hold the current count and address of the termnal input

buffer. Term nal Ihput Buffer used one cell after #TIB.)

CsP (-- a, hold the stack pointer for error checking.)

" EVAL (-- a, execution vector of EVAL. Default to EVAL.)

" NUMBER (-- a, address of number conversion. Default to NUMBER?.)
HLD (-- a, hold a pointer in building a numeric output string.)
HANDL ER (-- a, hold the return stack pointer for error handling.)
CONTEXT (-- a, a area to specify vocabulary search order. Default to

FORTH. Vocabul ary stack, 8 cells follw ng CONTEXT.)

CURRENT (-- a, point to the vocabulary to be extended. Default to FORTH.

Vocabul ary link uses one cell after CURRENT.)
cP (-- a, point to the top of the code dictionary.)
NP (-- a, point to the bottom of the nanme dictionary.)

LAST (-- a, point to the last nane in the nanme dictionary.)

Common Functions

This group of Forth words are commonly used in writing Forth applications. They are coded in high level
to enhance the portability of eForth. In most Forth implementations, they are coded in machine language
to increase the execute speed. After an eForth system is ported to a new CPU, this word set should be
recoded in assembly to improve the run time performance of the system.

?DUP, ROT, 2DROP, and 2DUP are stack operators supplementing the four classic stack operators DUP,
SWAP, OVER and DROP.

ROT isuniquein that it accesses the third item on the data stack. All other stack operators can only
access one or two stack items. In Forth programming, it is generally accepted that one should not try to
access stack items deeper than the third item. When you have to access deeper into the data stack, it isa
good time to re-evaluate your algorithm. Most often, you can avoid this situation by factoring your code
into smaller parts which do not reach so deep.

+, - and D+ are simple extensions from the primitive word UM+. [t isinteresting to see how the more
commonly used arithmetic operators are derived. + is UM+ with the carry discarded. NOT returns the
ones compliment of anumber, and NEGATE returns the two's compliment. Because UM+ preserves the
carry, it can be used to form multiple precision operators like D+. Later we will see how UM+ is used to
do multiplication and division.

: ?DUP (w -- w w | 0) DUP IF DUP THEN ;

:ROT (w1l w2 w3 --w2w3wl)>R SWAP R>SWAP;
: 2DROP (ww --) DROP DROP ;

: 2DUP (w1l w2 -- wl w2 wl w2) OVER OVER;
:+(ww--w) UM+ DROP;

:NOT (w--w)-1XOR;

: NEGATE (n---n)NOT 1 +;

: DNEGATE (d---d) NOT >R NOT 1 UM+ R> +;
:D+(dd--d)>R SWAP >R UM+ R>R> + +;

:-(ww--w)NEGATE +;

: ABS (n-- +n) DUP 0< IF NEGATE THEN ;

Comparison

The primitive comparison word in eForth is ?branch and 0<. However, Zbranch is at such alow level that
it can not be readily used in high level Forth code. ?branch is secretly compiled into the high level Forth
words by IF as an address literal. For al intentions and purposes, we can consider |F the equivalent of ?
branch. When IF is encountered, the top item on the data stack is considered alogic flag. If itistrue
(non-zero), the execution continues until EL SE, then jump to THEN, or to THEN directly if thereisno
EL SE clause.

The following logic words are constructed using the IF...EL SE...THEN structure with 0< and XOR.
XOR isused as 'not equal’ operator, because if the top two items on the data stack are not equal, the XOR
operator will return anon-zero number, which is considered to be 'true'.

U< isused to compared two unsigned numbers. This operator is very important, especialy in comparing
addresses, as we assume that the addresses are unsigned numbers pointing to unigue memory locations.
The arithmetic comparison operator < cannot be used to determine whether one address is higher or lower
than the other. Using < for address comparison had been the single cause of many failuresin the annals
of Forth.

MAX retains the larger of the top two items on the data stack. Both numbers are assumed to be signed
integers.

MIN retains the smaller of the top two items on the data stack. Both numbers are assumed to be signed
integers.

WITHIN checks whether the third item on the data stack is within the range as specified by the top two
numbers on the data stack. The rangeisinclusive asto the lower limit and exclusive to the upper limit. If
the third item iswithin range, atrue flag is returned on the data stack. Otherwise, afalse flag is returned.
All numbers are assumed to be unsigned integers.

:=(ww--t)XORIF 0 EXIT THEN -1 ;

: U< (uu--t)2DUP XOR 0< IF SWAP DROP 0< EXIT THEN - 0< ;
. <(nn--t)2DUP XOR 0<IF DROP 0< EXIT THEN - 0<;
:MAX (nn--n)2DUP < IF SWAP THEN DROP;

: MIN (nn--n)2DUP SWAP < IF SWAP THEN DROP ;

: WITHIN (uuluh --t)\ul <=u<uh

OVER - >R - R> U<;

Divide

This group of words provide avariety of multiplication and division functions. The most interesting
feature of thisword set isthat they are all based on the primitive UM+ operator in the kernel. Building
thisword set in high level has the penalty that all math operations will be slow. However, since eForth
needs these functions only in numeric I/O conversions, the performance of eForth itself is not
substantially affected by them. Nevertheless, if an application requires lots of numeric computations, a
few critical wordsin thisword set should be recoded in assembly. The primary candidates for
optimization are UM/MOD and UM*, because al other multiply and divide operators are derived from
these two words,

UM/MOD and UM* are the most complicated and comprehensive division and multiplication operators.
Once they are coded, all other division and multiplication operators can be derived easily. It has been a
tradition in Forth coding that one solves the most difficult problem first, and all other problems are solved
by themselves.

UM/MOD divides an unsigned double integer by an unsigned signal integer. It returns the unsigned
remainder and unsigned quotient on the data stack.

M/MOD divides asigned double integer by asigned signal integer. It returns the signed remainder and
signed quotient on the data stack. The signed division is floored towards negative infinity.

/MOD divides asigned single integer by asigned integer. It returns the signed remainder and quotient.
MOD issimilar to /MOD, except that only the signed remainder is returned. /isalso similar to/MOD,
except that only the signed quotient is returned.

In most advanced microprocessors like 8086, al these division operations can be performed by the CPU
as native machine instructions. The user can take advantage of these machine instructions by recoding
these Forth words in machine code.

: UM/MOD (ud u -- uruq)
2DUP U<
IF NEGATE 15
FOR >R DUP UM+ >R >R DUP UM+ R> + DUP
R>R@ SWAP >R UM+ R> OR

IF >R DROP 1 + R> ELSE DROP THEN R>

NEXT DROP SWAP EXIT

THEN DROP 2DROP -1 DUP ;

: M/MOD (dn--rq)\ floored division

DUP 0< DUP >R

IF NEGATE >R DNEGATE R>

THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>

IF SWAP NEGATE SWAP THEN ;

:/MOD (nn--rq) OVER 0< SWAP M/MOD ;
:MOD (nn--r)/MOD DROP ;

:/(nn--q)/MOD SWAP DROP ;

Ml ti ply

UM* isthe most complicated multiplication operation. Onceit is coded, all other multiplication words
can be derived from it.

UM* multiplies two unsigned single integers and returns the unsigned doubl e integer product on the data
stack. M* multiplies two signed single integers and returns the signed double integer product on the data
stack. * multiplies two signed single integers and returns the signed single integer product on the data
stack.

Again, advanced CPU's generally have these multiplication operations as native machine instructions.
The user should take advantage of these resources to enhance the eForth system.

Forth is very close to the machine language that it generally only handles integer numbers. There are
floating point extensions on many more sophisticated Forth systems, but they are more exceptions than
rules. The reason that Forth has traditionally been an integer language is that integers are handled faster
and more efficiently in the computers, and most technical problems can be solved satisfactorily using
integersonly. A 16-bit integer has the dynamic range of 110 dB which is far more than enough for most
engineering problems. The precision of a 16-bit integer representation is limited to one part in 65535,
which could be inadequate for small numbers. However, the precision can be greatly improved by
scaling; i.e., taking the ratio of two integers. It was demonstrated that pi, or any other irrational numbers,
can be represented accurately to 1 part in 100,000,000 by aratio of two 16-bit integers.

The scaling operators */MOD and */ are useful in scaling number nl by the ratio of n2/n3. When n2 and
n3 are properly chosen, the scaling operation can preserve precision similar to the floating point
operations at a much higher speed. Notice aso that in these scaling operations, the intermediate product
of n1 and n2 is adouble precision integer so that the precision of scaling is maintai ned.

*/MOD multiplies the signed integers n1 and n2, and then divides the double integer product by n3. Itin
fact isratioing nl by n2/n3. It returns both the remainder and the quotient. */issimilar to */MOD except
that it only returns the quotient.

:UM* (uu--ud)
0 SWAP (ul0u2) 15
FOR DUP UM+ >R >R DUP UM+ R> + R>
IF >R OVER UM+ R> + THEN

NEXT ROT DROP ;

:*(nn--n)UM* DROP;

:M*(nn--d)

2DUP XOR 0< >R ABS SWAP ABS UM* R>IF DNEGATE THEN ;

:*/MOD (nnn--rq)>R M*R>M/MOD ;

:*/(nnn--q)*MOD SWAP DROP ;

Memory Alignment

The most serious problem in porting system from one computer to another isthat different computers
have different sizes for their addresses and data. We generally classify computersas 8, 16, 32, ... , bit
machines, because they operate on data of these various sizes. It isthus difficult to port asingle
programming model as eForth to all these computers. In eForth, a set of memory alignment words helps
to make it easier to port the eForth model to different machines.

We assume that the target computer can address it memory in 8 bit chunks (bytes). The natural width of
data best handled by the computer is thus a multiple of bytes. A unit of such dataisacell. An 16 bit
machine handles datain 2 byte cells, and a 32 bit machine handles datain 4 byte cells.

CELL+ increments the memory address by the cell size in bytes, and CELL- decrements the memory
address by the cell size. CELLS multipliesthe cell number on the stack by the cell sizein bytes. These
words are very useful in converting a cell offset into a byte offset, in order to access integersin adata

array.

ALIGNED converts an address on the stack to the next cell boundary, to help accessing memory by cells.

The blank character (ASCII 32) is special in eForth because it isthe most often used character to delimit
words in the input stream and the most often used character to format the output strings. It is used so
often that it is advantageous to define an unique word for it. BL simply returns the number 32 on the data
stack.

>CHAR isvery important in converting a non-printable character to a harmless 'underscare’
character(ASCII 95). As eForth is designed to communicate with a host computer through the serial 1/0
device, it isimportant that eForth will not emit control charactersto the host and causes unexpected
behavior on the host computer. >CHAR thus filters the characters before they are sent out by EMIT.

DEPTH returns the number of items currently on the data stack to the top of the stack. PICK takesa
number n off the data stack and replaces it with the n'th item on the data stack. The number n isO-
based; i.e., the top item is number O, the next item is number 1, etc. Therefore, 0 PICK isequivalent to
DUP, and 1 PICK is equivalent to OVER.

:CELL-(a--a)-2+;
:CELL+ (a--a) 2+;

:CELLS(n--n) 2%*;

: ALIGNED (b--a)
DUP 0 2 UM/MOD DROP DUP

IF 2 SWAP - THEN +;

:BL (--32)32;

:>CHAR (c--c)

$7F AND DUP 127 BL WITHIN IF DROP 95 THEN ;

: DEPTH (--n) SP@ SPO @ SWAP -2 /;

:PICK(+n--w)1+ CELLS SP@ + @ ;

Memory Access

Here are three useful memory operators. +! increments the contents of a memory location by an integer
on the stack. 2! and 2@ store and fetch double integers to and from memory.

There are three buffer areas used often in the eForth system. HERE returns the address of the first free
location above the code dictionary, where new words are compiled. PAD returns the address of the text
buffer where numbers are constructed and text strings are stored temporarily. TIB isthe terminal input
buffer where input text string is held.

@EXECUTE is aspecial word supporting the vectored execution words in eForth. It takes the word
address stored in amemory location and executes the word. It is used extensively to execute the vectored
words in the user area.

A memory array is generally specified by a starting address and its length in bytes. In astring, the first
byte is a count byte, specifying the number of bytesin the following string. Thisis called a counted
string. String literals in the colon definitions and the name strings in the name dictionary are al

represented by counted strings. Following are special words which handles memory arrays and strings.

COUNT converts a string array address to the address-length representation of a counted string.
CMOVE copies amemory array from one location to another. FILL fillsamemory array with the same
byte.

Arrays and strings are generally specified by the address of the first byte in the array or string, and the
byte length. This specification of course is the consequence that the memory is byte addressable. In a
CPU which address memory in cells, these words must be defined in terms of an artificial byte space.

-TRAILING removes the trailing white space characters from the end of a string. White space characters
include al the non-printable characters below ASCII 32. Thisword allows eForth to processtext linesin
files downloaded from a host computer. It conveniently eliminates carriage-returns, life-feeds, tabs and
spaces at the end of the text lines.

PACKS$ isan important string handling word used by the text interpreter. It copies atext string from on
location to another. Inthetarget area, the string is converted to a counted string by adding a count byte
before the text of the string. Thisword is used to build the name field of a new word at the bottom of the
name dictionary. PACK$ is designed so that it can pack bytesinto cellsin a cell addressable machine.

A cheap way to implement eForth on a cell addressable machineisto equate cell addresses to byte
addresses, and to store one bytein acell. This scheme isworkable, but very inefficient in the memory
utilization. PACK$ isatool which helps the implementor to bridge the gap.

:+1(na--) SWAP OVER @ + SWAP ! ;

:21(da--) SWAP OVER ! CELL+!;

:2@ (a--d)DUP CELL+ @ SWAP @ ;

: COUNT (b--b+n)DUP 1+ SWAP C@ ;

:HERE (--a)CP @ ;

. PAD (--a) HERE 80 +;

. TIB (--a) #TIB CELL+ @ ;

: @EXECUTE (a--) @ ?DUP IF EXECUTE THEN ;

:CMOVE (bbu--)

FOR AFT>RDUP C@ R@ C!1+R>1+ THEN NEXT 2DROP ;

:FILL (buc--)

SWAP FOR SWAP AFT 2DUP C! 1 + THEN NEXT 2DROP ;

. -TRAILING (bu--bu)
FOR AFT BL OVER R@ + C@ <
IF R> 1 + EXIT THEN THEN

NEXT 0 ;

: PACK$ (bua--a)\null fill
ALIGNED DUP >R OVER
DUP 0 2 UM/MOD DROP

-OVER + 0 SWAP! 2DUP C! 1+ SWAP CMOVE R>;

Text Interpreter

Thetext interpreter is also called the outer interpreter in Forth. It isfunctionally equivalent to an
operating system in a conventional computer. It accepts command similar to English entered by a user,
and carries out the tasks specified by the commands. As an operating system, the text interpreter must be
complicated, because of al the thingsit hasto do. However, because Forth employs very simple syntax
rules, and has very ssimple internal structures, the Forth text interpreter is much simpler that conventional
operating systems. It is simple enough that we can discuss it completely in a single chapter, admitted that
thisisalong chapter.

Let us summarize what atext interpreter must do:

Accept text input from aterminal
Parse out commands from input text
Search dictionary

Execute commands

Trandate numbersinto binary
Display numbersin text form

Handle errors gracefully

Forth allows us to build and integrate these required functions gradually in modules. All the modules
finally fall into their placesin the word QUIT, which is the text interpreter itself.

Y ou might want to look up the code of QUIT first and see how the modules fit together. A good feeling
about the big picture will help you in the study of the smaller modules. Nevertheless, we will doggedly
follow the loading order of the source code, and hope that you will not get lost too far in the progress.

Numeric Output

Forth isinteresting in its specia capabilities in handling numbers across the man-machine interface. It
recognizes that the machine and the human prefer very different representations of numbers. The
machine prefers the binary representation, but the human prefers decimal Arabic digital representations.
However, depending on circumstances, the human may want numbers to be represented in other radices,
like hexadecimal, octal, and sometimes binary.

Forth solves this problem of internal (machine) versus external (human) number representations by
insisting that all numbers are represented in the binary form in the CPU and in memory. Only when
numbers are imported or exported for human consumption are they converted to the external ASCI|
representation. The radix of external representation is controlled by the radix value stored in the user
variable BASE.

Since BASE isauser variable, the user can select any reasonable radix for entering numbers into the
computer and format ting numbers to be shown to the user. Most programming languages can handle a
small set of radices, like decimal, octal, hexadecimal and binary.

DIGIT converts an integer to adigit. EXTRACT extracts the least significan digit from anumber n. nis
divided by the radix in BASE and returned on the stack.

The output number string is built below the PAD buffer. The least significant digit is extracted from the
integer on the top of the data stack by dividing it by the current radix in BASE. The digit thus extracted
are added to the output string backwards from PAD to the low memory. The conversion isterminated
when the integer is divided to zero. The address and length of the number string are made available by #>
for outputting.

An output number conversion isinitiated by <# and terminated by #>. Between them, # converts one
digit at atime, #S converts all the digits, while HOLD and SIGN inserts special charactersinto the string
under construction. This set of wordsis very versatile and can handle many different output formats.

: DIGIT (u--c)90OVER <7 AND +48 +;

: EXTRACT (nbase--nc)0SWAP UM/MOD SWAP DIGIT ;

. <# (-)PADHLD!;

:HOLD (c--)HLD @ 1 - DUPHLD ! C! ;

:#(u--u) BASE @ EXTRACT HOLD ;

:#S (u--0) BEGIN # DUP WHILE REPEAT ;

: SIGN (n--) 0<IF 45 HOLD THEN ;

:#>(w--bu)DROP HLD @ PAD OVER -;

:str (n--bu) DUP >R ABS <# #S R> SIGN #> ;

: HEX (--) 16 BASE ! ;

: DECIMAL (--) 10 BASE !;

Number Output

With the number formatting word set as shown above, one can format numbers for output in any form
desired. The free output format is a number string preceded by a single space. The fix column format
displays a number right-justified in a column of pre-determined width. Thewords ., U., and ? use the free
format. Thewords.R and U.R use the fix format.

str (n--bu)

(Convert a signed integer to a numeric string.)

DUP >R (save a copy for sign)

ABS ('use absolute of n)

<# #S (convert all digits)

R> SIGN ('add sign from n)

#>; (return number string addr and length)
HEX (--)

(Use radix 16 as base for nuneric conversions.)

16 BASE !

DECIMAL (--)
(Use radix 10 as base for numeric conversions.)

10 BASE !

.R (n +n --)

(Display an integer in a field of n colums, right justified.)

>R str (convert n to a number string)
R> OVER - SPACES (print leading spaces)
TYPE ; (print number in +n column format)

UR(u +n --)

(Display an unsigned integer in n colum, right justified.)

>R (' save column number)

<# #S #> R> (convert unsigned number)

OVER - SPACES (print leading spaces)

TYPE ; (print number in +n columns)
Uu (u--)

(Display an unsigned integer in free format.)

<# #S #> (convert unsigned number)
SPACE (print one leading space)
TYPE ; (print number)

(w--)

(Display an integer in free format, preceeded by a space.)

BASE @ 10 XOR (if not in decimal mode)

IF U. EXIT THEN (print unsigned number)

str SPACE TYPE ; (print signed number if decimal)
? (a--)

(Display the contents in a nenory cell.)

@. ; (very sinple but useful command)

Numeric Input

The Forth text interpreter also handles the number input to the system. It parses words out of the input
stream and try to execute the words in sequence. When the text interpreter encounters aword which is
not the name of aword in the dictionary, it then assumes that the word must be a number and attempts to
convert the ASCII string to a number according to the current radix. When the text interpreter succeeds
in converting the string to a number, the number is pushed on the data stack for future use if the text
interpreter isin the interpreting mode. If it isin the compiling mode, the text interpreter will compile the
number to the code dictionary as an integer literal so that when the word under construction is later
executed, thisliteral integer will be pushed on the data stack.

If the text interpreter fails to convert the word to a number, there is an error condition which will cause
the text interpreter to abort, posting an error message to the user, and then wait for the user's next line of
commands.

Only two words are needed in eForth to handle input of single precision integer numbers.

DIGIT? converts adigit to its numeric value according to the current base, and NUMBER? converts a
number string to asingle integer. NUMBER? is vectored through 'NUMBER to convert numbers.

NUMBER? converts astring of digitsto asingle integer. If the first character isa $ sign, the number is
assumed to be in hexadecimal. Otherwise, the number will be converted using the radix value stored in
BASE. For negative numbers, the first character should be a- sign. No other characters are allowed in
the string. If anon-digit character is encountered, the address of the string and a false flag are returned.
Successful conversion returns the integer value and atrue flag. If the number islarger than 2**n, wheren
isthe bit width of the single integer, only the modulus to 2**n will be kept.

: DIGIT? (cbase --ut)
>R 48 - 9 OVER <

IF 7 - DUP 10 < OR THEN DUP R> U<

:NUMBER? (a--nT|aF)
BASE @ >R 0 OVER COUNT (a0bn)
OVER C@ 36 =

IF HEX SWAP 1 + SWAP 1-THEN (a0b'n")

OVERC@45=>R(a0bn)
SWAP R@ - SWAPR@ + (a0b"n") ?DUP
IF1-(a0Obn)
FOR DUP >R C@ BASE @ DIGIT?
WHILE SWAPBASE @ *+ R>1+
NEXT DROP R@ (b ?sign) I[F NEGATE THEN SWAP
ELSE R> R> (b index) 2DROP (digit number) 2DROP 0
THEN DUP

THEN R> ('n ?sign) 2DROP R> BASE ! ;

Basic /O

The eForth system assumes that the system will communicate with its environment only through a serial
I/O interface. To support the serial 1/0, only three words are needed:

?KEY returnsafaseflagif no character is pending on the receiver. If acharacter isreceived, the
character and atrue flag are returned. Thisword is more powerful than that usually defined in most Forth
systems because it consolidate the functionality of KEY into ?KEY . It simplifiesthe coding of the
machine dependent 1/0 interface.

KEY will execute ?KEY continually until avalid character is received and the character is returned.
EMIT sends a character out throughout the transmit line.

?KEY and EMIT are vectored through “?2KEY and 'EMIT, so that their function can be changed
dynamically at runtime. Normally ?KEY executes ?RX and EMIT executes TX!. ?RX and TX! are
machine dependent kernel words. Vectoring the I/0O words allows the eForth system to changes its I/0O
channels dynamically and still uses all the existing tools to handle input and output transactions.

All 1/0 words are derived from ?KEY, KEY and EMIT. The following set defined in eForth is
particularly useful in normal programming:

SPA CE outputs a blank space character. SPACES output n blank space characters. CR outputs a
carriage-return and aline-feed. PACE outputs an ASCII 11 character to acknowledge lines received
during file downloading.

NUF?returns afalse flag if no character is pending in the input buffer. After receiving a character, pause
and wait for another character. If thischaracter is CR, return atrue flag; otherwise, return false. This
word is very useful in user interruptable routines.

TY PE outputs n characters from a string in memory.

With the number formatting word set as shown above, one can format numbers for output in any form
desired. The free output format is a number string preceded by asingle space. The fix column format
displays anumber right-justified in a column of pre-determined width. Thewords ., U., and ? use the free
format. Thewords.R and U.R use the fix format.

String literals are data structures compiled in colon definitions, in-line with the words. A string literal
must start with a string word which knows how to handle the following string at the run time. Let us
show two examples of the string literals:

IXXX ... " A compiledstring” ... ;

(yyy ... Anoutput string” ...

In xxx, " isan immediate word which compiles the following string asa string literal preceded by a
specia word $'|. When $"| is executed at the run time, it returns the address of this string on the data
stack. Inyyy, ." compilesastring literal preceded by another word ."|, which prints the compiled string
to the output device.

Both $'| and ."| use the word do$, which retrieve the address of a string stored as the second item on the
return stack. do$ isabit difficult to understand, because the starting address of the following string is the
second item on the return stack. This addressis pushed on the data stack so that the string can be
accessed. This address must be changed so that the address interpreter will return to the word right after
the compiled string. This address will allow the address interpreter to skip over the string literal and
continue to execute the word list as intended.

:?KEY (--cT|F)"?KEY @EXECUTE ;

: KEY (-- ¢) BEGIN ?KEY UNTIL ;

: EMIT (c --) 'EMIT @EXECUTE ;

: NUF? (--f) ?KEY DUP IF 2DROP KEY 13 = THEN ;

. PACE (-) 11 EMIT ;

: SPACE (--) BL EMIT ;

: CHARS (+n c --)\ ???ANS conflict

SWAP 0 MAX FOR AFT DUP EMIT THEN NEXT DROP ;

: SPACES (+n --) BL CHARS ;

: TYPE (bu--) FOR AFT DUP C@ EMIT 1 + THEN NEXT DROP ;

:CR (--) 13 EMIT 10 EMIT ;

:do$ (--a)

R>R@ R> COUNT + ALIGNED >R SWAP >R ;

:$"] (~-a) do$;

:."| (--) do$ COUNT TYPE ; COMPILE-ONLY

: .R(n+n--)>Rstr R>OVER-SPACESTYPE;

:UR(u+n--)>R <##S #> R>OVER - SPACES TYPE ;

- U. (u--) <##S #> SPACE TYPE ;

: .(n--) BASE @ 10 XOR IF U. EXIT THEN str SPACE TYPE ;

?(a-)@.;

Parsing

Parsing is always thought of as a very advanced topic in computer sciences. However, because Forth uses
very simple syntax rules, parsing is easy. Forth source code consists of words, which are ASCII strings
separated by spaces and other white space characters like tabs, carriage returns, and line feeds. The text
interpreter scans the source code, isolates words and interprets them in sequence. After aword is parsed
out of the input text stream, the text interpreter will 'interpret’ it--execute it if it isaword, compileit if the
text interpreter isin the compiling mode, and convert it to a number if the word is not a Forth word.

PARSE scans the source string in the terminal input buffer from where >IN pointsto till the end of the
buffer, for aword delimited by character c. It returns the address and length of the word parsed out.
PARSE calls 'parse’ to do the detailed works. PARSE is used to implement many specialized parsing
words to perform different source code handling functions. These words, including (, \, CHAR, WORD,
and WORD are discussed in the next section.

'parse’ (blulc--b2u2n) istheeementary command to do text parsing. From the source string
starting at b1 and of ul characters long, parse out the first word delimited by character c. Return the
address b2 and length u2 of the word just parsed out and the difference n between b1 and b2. Leading
delimiters are skipped over. 'parse’ isused by PARSE.

.(typesthefollowing string till the next). It isused to output text to the terminal. (ignoresthe
following string till the next). It isused to place commentsin source text. \ ignores all characterstill
end of input buffer. It isused to insert comment linesin text.

CHAR parsesthe next word but only return the first character in thisword. Get an ASCII character from
the input stream. WORD parses out the next word delimited by the ASCII character c. Copy the word to
the top of the code dictionary and return the address of this counted string. WORD parses the next word
from the input buffer and copy the counted string to the top of the name dictionary. Return the address of
this counted string.

: parse (bu c --budelta ; <string>)
tmp! OVER >R DUP\buu
IF1- tmp @ BL =
IF\bu'\ 'skip'
FOR BL OVER C@ - 0< NOT WHILE 1 +
NEXT (b) R> DROP 0 DUP EXIT \ all delim

THEN R>

THEN OVER SWAP \b'b' u'\ 'scan’
FOR tmp @ OVER C@ - tmp @ BL =
IF 0< THEN WHILE 1 +
NEXT DUP >R ELSE R> DROP DUP 1 + >R
THEN OVER - R> R>- EXIT

THEN (b u) OVER R> - ;

: PARSE (c--bu; <string>)

>R TIB >IN @ + #TIB @ >IN @ - R> parse >IN +! ;

:.((--)41 PARSE TYPE ; IMMEDIATE

: ((--) 41 PARSE 2DROP ; IMMEDIATE

:\(--)#TIB @ >IN ! ; IMMEDIATE

: CHAR (-- ¢) BL PARSE DROP C@ ;

: TOKEN (-- a ; <string>)

BL PARSE 31 MIN NP @ OVER - CELL- PACKS ;

: WORD (c -- a ; <string>) PARSE HERE PACKS$;

Dictionary Search

In eForth, headers of word definitions are linked into a name dictionary which is separated from the code
dictionary. A header contains threefields: aword field holding the code address of the word, alink field
holding the name field address of the previous header and a name field holding the name as a counted
string. The name dictionary isalist linked through the link fields and the name fields. The basic
searching function is performed by the word 'find'. ‘find' follows the linked list of namesto find a name
which matches a text string, and returns the address of the executable word and the name field address, if
amatch isfound.

eForth allows multiple vocabularies in the name dictionary. A dictionary can be divided into a number of
independently linked sublists through some hashing mechanism. A sublist is called avocabulary.
Although eForth itself contains only one vocabulary, it has the provision to build many vocabularies and
allows many vocabularies to be searched in a prioritized order. The CONTEXT array in the user area has
8 cells and allows up to 8 vocabularies to be searched in sequence. A null entry in the CONTEXT array
terminates the vocabulary search.

find (ava-- cana aF) A counted string at aisthe name of aword to be looked up in the dictionary. The
last name field address of the vocabulary is stored in location va. If the string is found, both the word
(code address) and the name field address are returned. If the string is not the name aword, the string
address and afalse flag are returned.

To located aword, one could follow the linked list and compare the names of defined words to the string
to be searched. If the string matches the name of aword in the name dictionary, the word and the address
of the namefield are returned. If the string is not a defined word, the search will lead to either anull link
or anull namefield. In either case, the search will be terminated and afalse flag returned. The falseflag
thus indicates that the word searched is not in this vocabulary.

'find' runs through the name dictionary very quickly because it first compares the length and the first
character in the namefield asacell. In most cases of mismatch, this comparison would fail and the next
name can be reached through the link field. If the first two characters match, then SAME? isinvoked to
compare the rest of the name field, one cell at atime. Since both the target text string and the name field
are null filled to the cell boundary, the comparison can be performed quickly across the entire name field
without worrying about the end conditions.

NAME? (a--cana aF) Searchall thevocabulariesinthe CONTEXT array for aname at address a.
Return the word and a name address if a matched word isfound. Otherwise, return the string address and
afalseflag. The CONTEXT array can hold up to 8 vocabulary links. However, a0 whichisnot avalid
vocabulary link in thisarray will terminate the searching. Changing the vocabulary linksin this array and
the order of these links will alter the searching order and hence the searching priority among the
vocabularies.

: NAME> (a--xt) CELL- CELL- @ ;

:SAME? (aau--aaf\-0+)
FOR AFT OVER R@ CELLS + @
OVER R@ CELLS + @ - ?DUP
IF R> DROP EXIT THEN THEN

NEXT O ;

:find(ava--xtnalaF)
SWAP \vaa
DUPC@ 2/tmp! \vaa \ get cell count
DUP @ >R \'va a \ count byte & 1st char
CELL+ SWAP \a'va
BEGIN @ DUP \'a'na na
IF DUP @ [=MASK] LITERAL AND R@ XOR \ ignore lexicon bits
IF CELL+ -1 ELSE CELL+ tmp @ SAME? THEN
ELSE R> DROP EXIT
THEN
WHILE CELL- CELL-\a'la

REPEAT R> DROP SWAP DROP CELL- DUP NAME> SWAP ;

: NAME? (a--xtna|aF)

CONTEXT DUP 2@ XOR IF CELL- THEN >R \ context<>also
BEGIN R> CELL+ DUP >R @ ?DUP

WHILE find ?DUP

UNTIL R> DROP EXIT THEN R> DROP 0

Terminal

The text interpreter interprets source text stored in the terminal input buffer. To process characters from
the input device, we need three special words to deal with backspaces and carriage return from the input
device:

KTAP processes a character c received from terminal. bl isthe starting address of the input buffer. b2is
the end of the input buffer. b3 is the currently available address in the input buffer. cisnormally stored
into b3, which is bumped by 1 and becomes b5. In thiscase, b4 isthe sameasb2. If cisacarriage-
return, echo a space and make b4=b5=Db3. If cisaback-space, erase the last character and make b4=b2,
b5=b3-1. TAP echoes c to output device, store c in b3, and bump b3.

"H processes the back-space character. Erase the last character and decrement b3. If b3=b1, do nothing
because you cannot backup beyond the beginning of the input buffer.

QUERY isthe word which accepts text input, up to 80 characters, from the input device and copies the
text characters to the terminal input buffer. It also prepares the terminal input buffer for parsing by
setting #T1B to the character count and clearing >IN.

EXPECT accepts u characters to amemory buffer starting at b. The input is terminated upon receiving a
carriage-return. The number of characters actually received is stored in SPAN. EXPECT iscalled by
QUERY to put charactersinto the terminal input buffer. However, EXPECT is useful by itself because
one can use it to place input text anywhere in the memory. QUERY and EXPECT are the two words
most useful in accepting text from the terminal.

‘accept’ accepts ul charactersto b. u2 returned isthe actual count of characters received.

:"AH(bbb--bbb)\backspace
>R OVER R> SWAP OVER XOR
IF 8 'ECHO @EXECUTE
32 'ECHO @EXECUTE \ distructive
8 'ECHO @EXECUTE \ backspace

THEN ;

: TAP (bot eot cur c -- bot eot cur)

DUP 'ECHO @EXECUTE OVERC! 1 +;

: KTAP (' bot eot cur c -- bot eot cur)
DUP 13 XOR
IF 8 XOR IF BL TAP ELSE AH THEN EXIT

THEN DROP SWAP DROP DUP ;

:accept (bu--bu)
OVER + OVER
BEGIN 2DUP XOR
WHILE KEY DUP BL - 95 U<
IF TAP ELSE 'TAP @EXECUTE THEN

REPEAT DROP OVER -;

: EXPECT (b u--) 'EXPECT @EXECUTE SPAN ! DROP ;

: QUERY (--)

TIB 80 'EXPECT @EXECUTE #TIB! DROP 0 >IN ! ;

Error Handling

This error handling mechanism was first developed by Mitch Bradley in his ForthMacs and then adopted
by the ANS Forth Standard. It is very simple yet very powerful in customizing system responses to many
different error conditions.

CATCH setupsaloca error frame and execute the word referenced by the execution word ca. It returns a
non-zero error code or azero if no error occurred. Asthe assigned word at cais executing, any error
condition will execute THROW, which pushes an error code on the data stack, restore the return stack to
the state before CATCH was executed, and execute the error handler stored in HANDLER. Since the

error handler frame is saved on the return stack, many layers of safety nets can be laid down nested.

CATCH pushes SP and HANDLER on the return stack, saves RP in HANDLER, and then execute the
word at ca. If no error occurred, HANDLER and SP are restored from the return stack and a 0 is pushed
on the data stack.

THROW throws the system back to CATCH so that the error condition can be processed. CATCH is
backtracked by restoring the return stack from the pointer stored in HANDLER and popping the old
handler and SP off the error frame on the return stack.

: CATCH (ca -- err#/0)

(Execute word at ca and set up an error frame for it.)
SP@ >R (save current stack pointer on return stack)
HANDLER @ >R (save the handler pointer on return stack)
RP@ HANDLER ! (save the handler frame pointer in HANDLER)
(ca) EXECUTE (execute the assigned word over this safety net)
R>HANDLER! (normal return from the executed word)

(restore HANDLER from the return stack)
R> DROP (discard the saved data stack pointer)

0; (push a no-error flag on data stack)

: THROW (err# -- errt#)
(Reset systemto current |ocal error franme an update error flag.)
HANDLER @ RP! (expose latest error handler frame on return stack)
R>HANDLER ! (restore previously saved error handler frame)
R>SWAP >R (retrieve the data stack pointer saved)
SP! (restore the data stack)
DROP

R>; (retrived err#)

NULLS$ isthe address of a string with azero count. This addressisused by ABORT and abort" to
terminate the interpreting of the current command line. QUIT tests the address reported by CATCH. If
this address is NULLS$, the termination is normal and no error message will beissued. If CATCH reports
adifferent address, QUIT will display the contents of the string at that address.

ABORT" is used only within a definition to compile an inline packed string terminated by the " double
quote character. At run-time, if the flag is false, execute the sequence of words following the string.
Otherwise, the string is displayed on the current output device, and execution is then passed to an error
handling routine.

You have to study the code in QUIT carefully with this section to get a better understanding of the
CATCH-THROW error handling mechanism.

: CATCH (xt-- 0| err#)
SP@ >R HANDLER @ >R RP@ HANDLER !
EXECUTE

R>HANDLER! R>DROP 0;

: THROW (err# -- ert#)

HANDLER @ RP! R>HANDLER ! R>SWAP >R SP! DROP R>;

CREATE NULL$ 0, $," coyote"

: ABORT (-) NULL$ THROW ;

: abort" (f --) IF do$ THROW THEN do$ DROP ;

Let'slook at how the CATCH-THROW pair isused. In QUIT, there is thisindefinite loop:

BEG N QUERY [' EVAL] LITERAL CATCH

?DUP UNTI L

QUERY get aline of text and CATCH causes EVAL to interpret the line. CATCH also sets up an error
handling frame on the return stack and saves the return stack pointer in the user variable HANDLER.
The error handling frame contains the current data stack pointer and the current contentsin HANDLER.
If no error occurred during EVAL, the error frame is popped off the return stack and afalseflagis
returned on the data stack. ?DUP UNTIL will loop back to QUERY and the interpretive process will
continue.

While EVAL interprets the text, any word which decided that it detects an error condition and needs
attention, it will execute THROW. THROW restores the return stack from the pointer stored in
HANDLER, making the error handling frame available. THROW then restores HANDLER from the one
saved in the error frame so that the error handling can be nested. The data stack pointer is also restored
from the error frame. Now THROW passes the address of a error processing routine to the CATCH
which built the error frame.

$INTERPRET, ?STACK and abort" pass string addresses to THROW. The strings contains appropriate
error messages to be displayed by the text interpreter. In QUIT, the words between UNTIL and AGAIN
deal with the error conditions and then re-initialize the text interpreter.

Here are some of the examples which generate error conditions:

;. ABORT NULL$ THROW ;
: abort" | F do$ THROW THEN do$ DROP ;
;. ?STACK DEPTH O< I F $" underfl ow' THROW THEN ;

: $I NTERPRET ... "NUMBER @XECUTE |F EXIT THEN THROW ;

Text Interpreter

Text interpreter in Forth is like the operating system of a computer. It isthe primary interface a user goes
through to get the computer to do work. Since Forth uses very simple syntax rules--words are separated
by spaces, the text interpreter is also very smple. It accepts aline of text from the terminal, parses out a
word delimited by spaces, locates the word of thisword in the dictionary and then executesit. The
process is repeated until the source text is exhausted. Then the text interpreter waits for another line of
text and interpretsit again. This cycle repeats until the user is exhausted and turns off the computer.

In eForth, the text interpreter is encoded in the word QUIT. QUIT contains an infinite loop which repeats

the QUERY EVAL phrase. QUERY accepts aline of text from the terminal and copies the text into the
Terminal Input Buffer (TIB). EVAL interprets the text one word at atimetill the end of the text line.

One of the unique features in eForth isits error handling mechanism. While EVAL isinterpreting aline
of text, there could exist many error conditions; aword is not found in the dictionary and it isnot a
number, a compile-only word is accidentally executed interpretively, and the interpretive process may bee
interrupted by the words ABORT or abort". Wherever the error occurs, the text interpreter must be made
aware of it so that it can recover gracefully from the error condition and continue on about the
interpreting business.

$INTERPRET executes aword whose string addressis on the stack. If the string is not aword, convert it
to a number.

[activatesthetext interpreter by storing the execution address of SINTERPRET into the variable 'EVAL,
which is executed in EVAL while the text interpreter isin the interpretive mode.

.OK prints the familiar 'ok’ prompt after executing to the end of aline. 'ok' is printed only when the text
interpreter isin the interpretive mode. While compiling, the prompt is suppressed.

?STACK checks for stack underflow. Abort if the stack depth is negative.

EVAL istheinterpreter loop which parses words from the input stream and invokes whatever isin
'EVAL to handle that word, either execute it with SINTERPRET or compile it with SCOMPILE.

: SINTERPRET (a --)
NAME? ?DUP
IF @ $40 AND
ABORT" compile ONLY" EXECUTE EXIT

THEN 'NUMBER @EXECUTE IF EXIT THEN THROW ;

:[(--) doLIT $SINTERPRET 'EVAL ! ; IMMEDIATE

: .OK (--) doLIT SINTERPRET 'EVAL @ =IF ." ok" THEN CR ;

: ?STACK (--) DEPTH 0< ABORT" underflow" ;

: EVAL (--)
BEGIN TOKEN DUP C@
WHILE 'EVAL @EXECUTE ?STACK

REPEAT DROP 'PROMPT @EXECUTE ;

Shell

Source code can be downloaded to eForth through the serial input device. The only precaution we have
to takeisthat during file downloading, characters are not echoed back to the host computer. However,
whenever an error occurred during downloading, it is more useful to resume echoing so that error
messages can be displayed on the terminal. It isalso convenient to send special pacing characters to the
host to tell the host that aline of source code was received and processed correctly. The following words
configure the eForth 1/0O vectors to have the proper behavior in normal terminal interaction and also
during file downloading:

FILE turns off character echoing. After oneline of text is processed correctly, a pacing character ASCII
11 issent to the host. If an error occurred, send an ESC (ASCII 26) character. An error will also restore
the 1/0O vectorsinto the terminal mode. HAND resumes terminal interaction. Turn on character echoing,
and send normal prompt message after aline is processed correctly. CONSOLE initializes the serial 1/0
device for terminal interaction. ?KEY isvectored to ?RX and EMIT is vectored to TX!.

QUIT isthe operating system, or a shell, of the eForth system. It isan infinite loop eForth will never get
out. It uses QUERY to accept aline of commands from the terminal and then let EVAL parse out the
words and execute them. After alineis processed, it displays 'ok' and wait for the next line of
commands. When an error occurred during execution, it displays the command which caused the error
with an error message. After the error isreported, it re-initializes the system using PRESET and comes
back to receive the next line of commands.

Because the behavior of EVAL can be changed by storing either SINTERPRET or $COMPILE into
'EVAL, QUIT exhibits the dual nature of atext interpreter and a compiler.

: PRESET (--) SPO @ SP! TIB #TIB CELL+!;

:xio (aaa--)\reset 'EXPECT 'TAP 'ECHO 'PROMPT

doLIT accept 'EXPECT 2! '/ECHO 2! ; COMPILE-ONLY

. FILE (--)

doLIT PACE doLIT DROP doLIT kTAP xio ;

: HAND (--)

doLIT .OK doLIT EMIT [kTAP xio;

CREATE I/O '?RX,"'TX!, \ defaults

: CONSOLE (--) I/O 2@ "?KEY 2! HAND ;

: QUIT (--)
RPO @ RP!
BEGIN [COMPILE] [
BEGIN QUERY doLIT EVAL CATCH ?DUP
UNTIL 'PROMPT @ SWAP CONSOLE NULL$ OVER XOR
IF CR #TIB 2@ TYPE
CR >IN @ 94 CHARS
CR COUNT TYPE." ? "
THEN doLIT .OK XOR
IF $1B EMIT THEN
PRESET

AGAIN ;

eForth Compiler

After wading through the text interpreter, the Forth compiler will be an easy piece of cake, because the
compiler uses amost al the modules used by the text interpreter. What the compile does, over and above
the text interpreter, isto build various structures required by the new words we want to add to the existing
system. Hereisalist of these structures:

Name headers
Colon definitions
Constants,
Variables

User variables
Integer literals
String literals
Address literals

Control structures

A special concept of immediate wordsis difficult to grasp at first. Itisrequired in the compiler because
of the needs in building different data and control structuresin a colon definition. To understand the
Forth compiler fully, you have to be able to differential and relate the actions during compile time and
actions taken during executing time. Once these concepts are clear, the whole Forth system will become
transparent.

This set stage for enlightenment to strike.

Interpreter and Compiler

The Forth compiler isthe twin brother of the Forth text interpreter. They share many common properties
and use lots of common code. In eForth, the implementation of the compiler clearly reflects this special
duality. Two interesting words [and] causes the text interpreter to switch back and forth between the
compiler mode and interpreter mode of operation.

Since'EVAL @EXECUTE isused in EVAL to process aword parsed out of aline of text, the contentsin
'EVAL determines the behavior of the text interpreter. If INTERPRET isstored in 'EVAL, as|[does, the
words are executed or interpreted. If weinvoked] to store $COMPILE into 'EVAL, the word will not be
executed, but added to the top of the code dictionary. Thisis exactly the behavior desired by the colon
definition compiler in building alist of wordsin the code field of a new colon definition on the top of the
code dictionary.

$COMPILE normally adds aword to the code dictionary. However, there are two exceptions it must
handle. If the word parsed out of the input stream does not exist in the dictionary, the string will be
converted to anumber. If the string can be converted to an integer, the integer is then compiled into the
code dictionary as an integer literal. The integer number is compiled into the code dictionary following
theword doLIT. The other exception isthat aword found in the dictionary could be an immediate word,
which must be executed immediately, not compiled to the code dictionary. |mmediate words are used to
compile specia structures in colon definitions.

HL(-)
[' $INTERPRET | LITERAL

'EVAL ! (vector EVAL to SINTERPRET)

; IMMEDIATE ('enter into text interpreter mode)

1(-)
[$COMPILE] LITERAL

'EVAL ! (vector EVAL to SCOMPILE)

Primitive Compiler Words

Hereis agroup of words which support the compiler to build new words in the code dictionary.

' (tick) searches the next word in the input stream for aword in the dictionary. It returns the execution
address of the word if successful. Otherwise, it displays an error message.

ALLOT allocates n bytes of memory on the top of the code dictionary. Once allocated, the compiler will
not touch the memory locations.

, (comma) adds the execution address of aword on the top of the data stack to the code dictionary, and
thus compiles aword to the growing word list of the word currently under construction.

COMPILE isused in acolon definition. It causes the next word after COMPILE to be added to the top of
the code dictionary. It therefore forces the compilation of aword at the run time.

[COMPILE] acts similarly, except that it compiles the next word immediately. It causes the following
word to be compiled, even if the following word is an immediate word which would otherwise be
executed.

LITERAL compiles an integer literal to the current colon definition under construction. The integer
literal istaken from the data stack, and is preceded by the word doLIT. When this colon definition is
executed, doLIT will extract the integer from the word list and push it back on the data stack. LITERAL
compiles an address literal if the compiled integer happens to be an execution address of aword. The
address will be pushed on the data stack at the run time by doLIT.

$," compilesastring literal. The string is taken from the input stream and is terminated by the double
quote character. $," only copies the counted string to the code dictionary. A word which makes use of
the counted string at the run time must be compiled before the string. 1t isused by ." and $".

RECURSE is an interesting word which allows eForth to compile recursive definitions. In arecursive
definition, the execution address of the word under construction is compiled into its own word list. This
is not allowed normally because the name field of the current word under construction is not yet linked to
the current vocabulary and it cannot be referenced inside its own colon definition. RECURSE stores the
address of the name field of the current word into CURRENT, thus enable it to be referenced inside its
own definition. Recursive words are not used in everyday programming. RECURSE is defined here in
efForth merely as ateaser to wet your appetite. It isnot used in eForth.

' (--xt) TOKEN NAME? IF EXIT THEN THROW ;

:ALLOT (n--)CP +!;

:, (w--)HERE DUP CELL+ CP ! I ;\ ???ALIGNED

: [COMPILE] (--; <string>) "', ; IMMEDIATE

: COMPILE (--)R>DUP @, CELL+ >R ;

: LITERAL (w --) COMPILE doLIT, ; IMMEDIATE

:$," (--) 34 WORD COUNT ALIGNED CP ! ;

: RECURSE (--) LAST @ NAME> , ; IMMEDIATE

Structures

A set of immediate words are defined in eForth to help building control structuresin colon definitions.
The control structures used in eFForth are the following:

Conditional branch IF ... THEN
IF...ELSE ... THEN
Finite loop FOR ... NEXT
FOR ... AFT ... THEN... NEXT

Infinite loop BEGIN ... AGAIN

Indefiniteloop BEGIN ... UNTIL

BEGIN ... WHILE ... REPEAT

This set of words is more powerful than the ones in figForth model because they permit multiple exits
from aloop. Many examples are provide in the source code of eForth like NUMBER?, parse, find and
>NAME.

A control structure contains one or more address literals, which causes execution to branch out of the
normal sequence. The control structure words are immediate words which compile the address literals
and resolve the branch address.

One should note that BEGIN and THEN do not compile any code. They executes during compilation to
set up and to resolve the branch addresses in the address literals. |F, ELSE, WHILE, UNTIL, and
AGAIN do compile address literals with branching words. Here are many excellent examples on the
usage of COMPILE and [COMPILE], and they are worthy of careful study.

Character strings are very important devices for the program to communicate with the user. Error
messages, appropriate warnings and suggestions must be displayed to help the use to use the systemin a
friendly way. Character strings are compiled in the colon definitions as string literals. Each string literal
consists of a string word which will use the compiled string to do things, and a counted string. The first
byte in a counted string is the length of the string. Thus a string may have 0 to 255 charactersinit. A
string is always null-filled to the cell boundary.

ABORT" compiles an error message. This error message is display when the top item on the stack is
non-zero. Therest of the words in the definition is skipped and eForth re-enters the interpreter loop. This
isthe universal response to an error condition. More sophisticated programmer can use the CATCH-
THROW mechanism to customize the responses to special error conditions.

" compiles a character string which will be printed which the word containing it is executed in the
runtime. Thisisthe best way to present messages to the user.

$' compiles a character string. When it is executed, only the address of the string is|eft on the data
stack. The programmer will use this address to access the string and individual charactersin the string as
astring array.

: <MARK (-- a) HERE ;

: <RESOLVE (a--),;

: >MARK (-- A)HERE O, ;

: > RESOLVE (A --) <MARK SWAP ! ;

: FOR (-- a) COMPILE >R <MARK ; IMMEDIATE

: BEGIN (-- a) <MARK ; IMMEDIATE

: NEXT (a--) COMPILE next <RESOLVE ; IMMEDIATE

: UNTIL (a --) COMPILE ?branch <RESOLVE ; IMMEDIATE

: AGAIN (a--) COMPILE branch <RESOLVE ; IMMEDIATE

:IF (--A) COMPILE ?branch >MARK ; IMMEDIATE

: AHEAD (-- A) COMPILE branch >MARK ; IMMEDIATE

: REPEAT (A a--) [COMPILE] AGAIN >RESOLVE ; IMMEDIATE

: THEN (A --) >RESOLVE ; IMMEDIATE

: AFT (a--aA)DROP [COMPILE] AHEAD [COMPILE] BEGIN SWAP ; IMMEDIATE
: ELSE (A -- A) [COMPILE] AHEAD SWAP [COMPILE] THEN ; IMMEDIATE
: WHEN (a A --a A a)[COMPILE] IF OVER ; IMMEDIATE

: WHILE (a--Aa) [COMPILE]IF SWAP ; IMMEDIATE

: ABORT" (-- ; <string>) COMPILE abort" $," ; IMMEDIATE

: $" (--; <string>) COMPILE $"| $," ; IMMEDIATE

:." (--; <string>) COMPILE ."| $," ; IMMEDIATE

Compiler

We had discussed how the compiler compiles words and structures into the code field of a colon
definition in the code dictionary. To build a new definition, we have to build its header in the name
dictionary also. A header has aword pointer field, alink field, and anamefield. Here are the toolsto
build thesefields.

PUNIQUE is used to display awarning message to show that the name of anew word is a duplicate to a
word already existing in the dictionary. eForth does not mind your reusing the same name for different
words. However, giving many words the same name is a potential cause of problemsin maintaining
software projects. Itisto be avoided if possible and 2UNIQUE reminds you of it.

$,n builds a new entry in the name dictionary using the name already moved to the bottom of the name
dictionary by PACKS$. It pads the word field with the address of the top of code dictionary where the new
codeisto be built, and link the link field to the current vocabulary. A new word can now be built in the
code dictionary.

$COMPILE builds the body of a new colon definition. A complete colon definition also requires a
header in the name dictionary, and its code field must start with a CALL doLIST instruction. These extra
works are performed by :. Colon definitions are the most prevailing type of wordsin eForth. In addition,
eForth has afew other defining words which create other types of new definitionsin the dictionary.

OVERT links a new definition to the current vocabulary and thus makes it available for dictionary
searches.

; terminates a colon definition. It compiles an EXIT to the end of the word list, links this new word to the
current vocabulary, and then reactivates the interpreter.

] turnsthe interpreter to a compiler.

. creates anew header and start a new colon word. It takes the following string in the input stream to be
the name of the new colon definition, by building a new header with this name in the name dictionary. It
then compilesa CALL doLIST instruction at the beginning of the code field in the code dictionary. Now,
the code dictionary isready to accept aword list.] isnow invoked to turn the text interpreter into a
compiler, which will compile the following words in the input stream to aword list in the code
dictionary. The new colon definition is terminated by ;, which compiles an EXIT to terminate the word
list, and executes [to turn the compiler back to text interpreter.

call, compilesthe CALL doLIST instruction asthe first thing in the code field of a colon definition.

IMMEDIATE sets the immediate lexicon bit in the name field of the new definition just compiled. When
the compiler encounters aword with this bit set, it will not compile this words into the word list under
construction, but execute the word immediately. This bit alows structure words to build special
structures in the colon definitions, and to process specia conditions when the compiler is running.

: ?UNIQUE (a--a)

DUP NAME? IF ." reDef " OVER COUNT TYPE THEN DROP ;

:$n(a--)

DUP C@

IF YUNIQUE
(na) DUP LAST !\ for OVERT
(na) HERE ALIGNED SWAP
(cp na) CELL-
(cp la) CURRENT @ @
(cplana’) OVER'!
(cp la) CELL- DUP NP ! (ptr) ! EXIT

THEN $" name" THROW ;

.(FORTH Compiler)

: $COMPILE (a--)
NAME? ?DUP
IF @ $80 AND
IF EXECUTE ELSE , THEN EXIT
THEN 'NUMBER @EXECUTE
IF [COMPILE] LITERAL EXIT

THEN THROW ;

: OVERT (--) LAST @ CURRENT @ !;

()

COMPILE EXIT [COMPILE] [OVERT ; IMMEDIATE

:](--) doLIT $SCOMPILE 'EVAL !;

: call, (xt--)\ DTC 8086 relative call

$E890 , HERE CELL+ -, ;

.1 (--; <string>) TOKEN $,n doLIT doLIST call,];

: IMMEDIATE (--) $80 LAST @ @ ORLAST @ ! ;

Defining Words

Defining words are molds which can be used to define many words which share the same run time
execution behavior. In eForth, we have : , USER, CREATE, and VARIABLE.

USER creates anew user variable. The user variable contains an user area offset, which is added to the
beginning address of the user area and to return the address of the user variable in the user area.
CREATE creates a new array without allocating memory. Memory is allocated using ALLOT.
VARIABLE creates a new variable, initialized to 0.

eForth does not use CONSTANT, because ainteger literal is more economical than a constant. One can
always use a variable for a constant.

: USER (n -- ; <string>)
TOKEN $,n OVERT

doLIT doLIST COMPILE doUSER, ;

: CREATE (--; <string>)

TOKEN $,n OVERT

doLIT doLIST COMPILE doVAR ;

: VARIABLE (--; <string>) CREATE 0, ;

Utilities

eForth isavery small system and only avery small set of tools are provided in the system. Nevertheless,
this set of toolsis powerful enough to help the user debug new words he adds to the system. They are
also very interesting programming examples on how to use the words in eForth to build applications.

Generally, the tools presents the information stored in different parts of the memory in the appropriate
format to let the use inspect the results as he executes words in the eForth system and words he defined
himself. The tools include memory dump, stack dump, dictionary dump, and a colon definition
decompiler.

Memory Dump

DUMP dumps u bytes starting at address b to the terminal. 1t dumps 16 bytesto aline. A line begins
with the address of the first byte, followed by 16 bytes shown in hex, 3 columns per bytes. At the end of
aline are the 16 bytes shown in characters. The character display is generated by _TYPE, which
substitutes non-printable characters by underscores. Typing akey on the keyboard halts the display.
Another CR terminates the display. Any other key resumes the display.

dm+ displaysu bytesfrom bl inoneline. It leave the address b1+u on the stack for the next dm+
command to use.

_TYPE issmilar to TYPE. It displaysu characters starting from b. Non-printable characters are
replaced by underscores.

. _TYPE (bu--)

FOR AFT DUP C@ >CHAR EMIT 1 + THEN NEXT DROP ;

:dm+ (bu--b)

OVER 4 U.R SPACE FOR AFT DUP C@ 3 U.R 1 + THEN NEXT ;

: DUMP (bu--)
BASE @ >R HEX 16/
FOR CR 16 2DUP dm+ ROT ROT 2 SPACES _TYPE NUF? NOT WHILE

NEXT ELSE R> DROP THEN DROP R> BASE!;

St ack Tool s

Data stack is the working place of the Forth computer. It iswhere words receive their parameters and
also where they left their results. In debugging a newly defined word which uses stack items and which
leaves items on the stack, the best was to check its function isto inspect the data stack. The number
output words may be used for this purpose, but they are destructive. You print out the number from the
stack and it isgone. To inspect the data stack non-destructively, a special utility word .Sis provided in
most Forth systems. It isalso implemented in eForth.

.S dumps the contents of the data stack on the screen in the free format. The bottom of the stack is
aligned to the left margin. The top item is shown towards the left and followed by the characters'<sp’. .S
does not change the data stack so it can be used to inspect the data stack non-destructively at any time.

One important discipline in learning Forth isto learn how to use the data stack effectively. All words
must consume their input parameters on the stack and leave only their intended results on the stack.
Sloppy usage of the data stack is often the cause of bugs which are very difficult to detect later as
unexpected items | eft on the stack could result in unpredictable behavior. .S should be used liberally
during Forth programming and debugging to ensure that the correct data are |eft on the data stack.

.Sisuseful in checking the stack interactively during the programming and debugging. It is not
appropriate for checking the data stack at the run time. For run time stack checking, eForth provides!
CSP and ?CSP. They are not used in the eForth system itself, but are very useful for the user in

devel oping serious applications.

To do run time stack checking, at some point the program should execute ! CSP to mark the depth of the
data stack at that point. Later, the program would execute ?2CSP to seeif the stack depth was changed.
Normally, the stack depth should be the same at these two points. If the stack depth is changed, 2CSP
would abort the execution.

One application of stack checking is to ensure compiler security. Normally, compiling a colon definition
does not change the depth of the data stack, if all the structure building immediate wordsin a colon
definition are properly paired. If they are not paired, like IF without a THEN, FOR without a NEXT,
BEGIN without an AGAIN or REPEAT, etc., the data stack will not be balanced and ?CSP is very useful
in catching these compilation errors. This stack check isavery simple but powerful tool to check the
compiler. !CSP and CSP are the words to monitor the stack depth.

ICSP stores the current data stack pointer into tan user variable CSP. The stack pointer saved will be
used by ?CSP for error checking.

?CSP compares the current stack pointer with that saved in CSP. If they are different, abort and display
the error message 'stack depth'.

:.S(--) CRDEPTH FOR AFT R@ PICK . THEN NEXT ." <sp";

: .BASE (--) BASE @ DECIMAL DUP . BASE !;

. FREE (-) CP2@ - U.;

. 1CSP (--) SP@ CSP ! ;

: ?CSP (--) SP@ CSP @ XOR ABORT" stack depth" ;

Dictionary Dump

The Forth dictionary contains al the words defined in the system, ready for execution and compilation.
WORDS allows you to examine the dictionary and to look for the correct names of words in case you are
not sure of their spellings. WORDS follows the vocabulary thread in the user variable CONTEXT and
displays the names of each entry in the name dictionary. The vocabulary thread can be traced easily
because the link field in the header of aword points to the name field of the previousword. Thelink field
of the next word is one cell below its name field.

WORDS displays all the names in the context vocabulary. The order of words is reversed from the
compiled order. The last defined wordsis shown first.

D displays the name of aword, given the word's name field address. It also replaces non-printable
characters in a name by under-scores.

Since the name fields are linked into alist in the name dictionary, it isfairly easy to locate aword by
searching its name in the name dictionary. However, finding the name of aword from the execution
address of the word is more difficult, because the execution addresses of words are not organized in any
systematic way.

It is necessary to find the name of aword from its execution address, if we wanted to decompile the
contents of aword list in the code dictionary. This reversed search is accomplished by the word >SNAME.

>NAME finds the name field address of aword from the execution address of the word. [f the word does
not exist in the CURRENT vocabulary, it returns afalse flag. It isthe mirror image of the word NAME>,
which returns the execution address of aword from its name address. Since the execution address of a
word is stored in the word field, two cells below the name, NAME> istrivia. >NAME is more
complicated because the entire name dictionary must be searched to locate the word. >NAME only
searches the CURRENT vocabulary.

Bill Muench and | spent much of our spare timein July, 1991 to build and polish the eForth Model and
the first implementation on 8086/MS-DOS. One evening he called me and told me about this smallest
and greatest Forth decompiler, only three lines of source code. | was very skeptical because | knew how
to build a Forth decompiler. If aForth colon definition contains only asimple list of execution addresses,
itisatrivial task to decompileit. However, there are many different data and control structuresin acolon
definition. To deal with all these structures, it islogically impossible to have athree line decompiler.

| told Bill that | had to seeit to believe. The next time we met, he read the source code in assembly and |

entered it into the eForth model. The decompiler had 24 words and worked the first time after we
reassembl e the source code.

SEE searches the dictionary for the next word in the input stream and returns its code field address. Then
it scans the list of execution addresses (words) in the colon definition. If the word fetched out of the list
matches the execution address of aword in the name dictionary, the name will be displayed by the
command ".ID'". If the word does not match any execution address in the name dictionary, it must be part
of astructure and it isdisplayed by 'U.". Thisway, the decompiler ignores all the data structures and
control structures in the colon definition, and only displays valid words in the word list.

: >NAME (xt--na|F)
CURRENT
BEGIN CELL+ @ ?DUP WHILE 2DUP
BEGIN @ DUP WHILE 2DUP NAME> XOR
WHILE CELL-
REPEAT THEN SWAP DROP ?DUP

UNTIL SWAP DROP SWAP DROP EXIT THEN DROP 0 ;

:ID(a--)

?DUP IF COUNT $01F AND _TYPE EXIT THEN ." {noName}" ;

: SEE (--; <string>)
"CR CELL+
BEGIN CELL+ DUP @ DUP IF >NAME THEN ?DUP
IF SPACE .ID ELSE DUP @ U. THEN NUEF?

UNTIL DROP ;

: WORDS (--)
CR CONTEXT @
BEGIN @ ?DUP

WHILE DUP SPACE .ID CELL- NUF?

UNTIL DROP THEN ;

Startup

Since we expect eForth to evolve as experience is accumulated with usage, and asit has to track the ANS
Forth Standard under devel opment, version control becomes an important issue. To assure compatibility
at different stages of development, the user can always inquire the version number of the eForth heis
running. With the version number, corrective actions can be taken to put an overlay on the system to
force it to be compatible with another eForth of a different version.

VER returns the version number of this eForth system. The version number contains two bytes: the most
significant byte is the major revision number, and the least significant byte is the minor release number.

'hi" is he default start-up routine in eForth. It initializes the serial 1/O device and then displays a sign-on
message. Thisiswhere the user can customized his application. From here one can initialize the system
to start his customized application.

Because al the system variable in eForth are implemented as user variables and the name dictionary is
separated from the code dictionary, eForth dictionary is eminently ROMmable and most suitable for
embedded applications. To be useful as a generic model for many different processors and applications, a
flexible mechanism is designed to help booting eForth up in different environments. Before falling into
the QUIT loop, the COLD routine executes a boot routine whose code addressis stored in 'BOOT. This
code address can be vectored to an application routine which defines the proper behavior of the system.

After the computer is turned on, it executes some native machine code to set up the CPU hardware so that
it emulates a virtual Forth computer. Then it jumps to COLD to initialize the eForth system. It finally
jumps to QUIT which is the operating system in eForth. COLD and QUIT are the topmost layers of an
eForth system.

'BOOT isan variable vectored to 'hi'.

COLD isahigh level word executed upon power-up. Its most important function is to initialize the user
area and execute the boot-up routine vectored through 'BOOT, and then falls into the text interpreter loop
QUIT.

: VER (--u) $101;

thi(-)

IO BASE @ HEX\ initialize IO device & sign on
CR ." eFORTH V" VER <# # # 46 HOLD # #> TYPE

CR;

: EMPTY (--)

FORTH CONTEXT @ DUP CURRENT 2! 6 CP 3 MOVE OVERT ;

CREATE 'BOOT 'hi, \ application vector

: COLD (--)
BEGIN
U0 UP 74 CMOVE
PRESET 'BOOT @EXECUTE
FORTH CONTEXT @ DUP CURRENT 2! OVERT
QUIT

AGAIN;

ColdBoot from DOS

DOS starts executing the object code at 100H. The eForth Model is configured for a DOS machine. It can
be modified to jump to any memory location from where the CPU boots up. What we haveto do hereis
to set up the 8086 CPU so that it will emulate the virtual Forth computer as we discussed before. All the
pertinent registers have to be initialized properly. Since eForth isvery small and fits comfortably in a
single 64 Kbyte code segment, we will use only one segment for code, data, as well as the two stacks.
Therefore, both the DS and SS segment registers are initialized to be the same as the CSregister. Then,
the data stack pointer SP and the return stack pointer RP (BP in 8086) are initialized. To prevent the
eForth from being forced back into DOS accidentally, the Control-C interrupt is made benign by
vectoring it to asimple IRET instruction.

Now we are ready to start the Forth computer. Simply jumping to COLD will doit. COLD iscoded asa
colon word, containing alist of words. Thisword list does more initialization in high level, including
initializing the user area, and setting up the terminal input buffer. At the end, COLD executes QUIT, the

text interpreter, which contains an infinite loop to receive commands from a user and executes them
repeatedly.

The user area contains vital information for Forth to perform its functions. It contains important pointers
specifying memory areas for various activities, such as the data stack, the return stack, the terminal input
buffer, where the code dictionary and the name dictionary end, and the execution addresses of many
vectored wordslike KEY, EMIT, ECHO, EXPECT, NUMBER, etc.

The user area must be located in the RAM memory, because the information contained in it are
continuously updated when eForth isrunning. The default values are stored in the code segment starting
at UZERO and covering an area of 74 bytes. Thisareais copied to the user areain RAM before starting
the eForth computer. The sequence of datain UZERO must match exactly the sequence of user variables.

Main entry points and COLD start data
MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N
ORG CO.DD ; begi nning of cold boot

ORIG MV AX CS

MOV DS, AX ;DS is sane as CS

CLI ;disable interrupts, old 808x CPU bug
MOV SS, AX ;SS is sane as CS

MOV SP, SPP vinitialize SP

STI ;enabl e interrupts

MoV BP, RPP ;initialize RP

MOV AL, 023H ;interrupt 23H

MOV DX, OFFSET CTRLC

MOV AH, 025H ; M5-DCS set interrupt vector
I NT 021H

CLD ;direction flag, increnent
JMP COLD ;to high level cold start

CTRLC: | RET ;control Cinterrupt routine

; COLD start noves the following to USER vari abl es.

; MUST BE I N SAME CRDER AS USER VARI ABLES.

$ALI GN

UZERO

DwW

DW 4 DUP (0)

SPP
RPP
QRX
TXSTO
ACCEP
KTAP
TXSTO
DOTOK

BASEE

T1 BB

I NTER

NUVBQ

VOCSS DUP (0)

0

croP

;align to cel

:reserved

; SPO

’

RPO

;" ?KEY

EMT

EXPECT

TAP

ECHO

PROVPT

BASE

;tnp

SPAN

> N

, #TI B

;TIB

CSsP

" EVAL

" NUMBER

HLD

HANDLER

; CONTEXT poi nter

;vocabul ary stack

; CURRENT poi nt er

boundary

;vocabul ary link pointer

; CP

Dw NTOP ; NP

DwW LASTN ; LAST

ULAST:

Some Final Thoughts

Congratulations if you reach this point the first time. Asyou can see, we have traversed a complete Forth
system from the beginning to the end, and it is not as difficult as you might have thought before you
began. But, think again what we have accomplished. It isacomplete operating system with an integrated
interpreter and an integrated compiler all together. 1f you look in the memory, the whole system isless
than 7 Kbytes. What else can you do with 7 Kbytes these days?

Forthislike Zen. Itissimple, it isaccessible, and it can be understood in its entirety without devoting
your whole lifeto it.

Isthisthe end? Not really. There are many topicsimportant in Forth but we had chose to ignore in this
simple model. They include multitasking, virtual memory, interrupt control, programming style, source
code management, and yes, metacompilation. However, these topics can be considered advanced
applications of Forth. Once the fundamental principlesin Forth are understood, these topics can be
subject for further investigations at your leisure.

Forthisnot an end to itself. Itisonly atool, asuseful asthe user intendsit to be. The most important
thing is how the user can use it to solve his problems and build useful applications. What eForth gives
you is the understanding of thistool. Itisup to you to make use of it.

