
4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 45

4: Programming for Data and XBee Configurations
Data between systems can take several forms depending on need. It may be raw bytes, which can
represent a variety of information such as characters, input/output bits, or simply a binary value.
While the XBee modules can help ensure the data arrives correctly to the controller, it is up to our
code to ensure it is accepted properly and used in the manner desired. Just because our data makes it
out of the XBee it doesn’t necessarily mean it was accepted properly by the controller.

In some cases a controller may send a value repeatedly, such as a sensor value. It may not be
important that some data is missed by the controller as long as a recent sample is obtained. In other
cases it may be more critical that each transmission is accepted and used by the controller. Sometimes
data can simply be a single byte. Other times it may be a collection of values that needs to be
accepted in the proper order.

This section will explore data reception and transmission by the BASIC Stamp and Propeller
microcontrollers and explore some ways of handling different tasks for data reception. It will also
explore configuring the XBee from the controllers using the AT Command Codes. A base XBee will
be used connected to the PC to communicate to a remote XBee interfaced to a microcontroller as
shown in Figure 4-1.

Figure 4-1: Base and Remote XBee General Setup

BASIC Stamp

Hardware & Software
For these tests a single remote BASIC Stamp will be used for communications with a base XBee
connected to the PC using USB and X-CTU software. Data will be manually entered to be transmitted
to the BASIC Stamp to investigate data reception.

Hardware:

• BASIC Stamp microcontroller and development board
• 2 XBee modules (Ensure they are restored to default configuration)
• A 5V/3.3V XBee Adapter Board, or SIP Adapter
• XBee USB Adapter Board & cable
• (2) 220 Ω resistors and (2) LEDs (optional)

Paul C Smith
Sticky Note
I'm confused. This suggests that there is a wire running from the PC to the controller on the remote setup. Is this diagram really how things are going to be set up? I'd think that there would be no wired connection between the two devices on the left and the two on the right - only the XBee RF communication.

Paul C Smith
Sticky Note
"with"

4: Programming for Data and XBee Configurations

Page 46 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Connect the BASIC Stamp to an XBee Adapter Board as shown in Figure 4-2, depending on the
style of board used. LEDs and resistors are optional but are useful. Note that the DOUT and DIN pins
are not jumpered together.

Figure 4-2: XBee 5V/3.3V Adapter Connection to BASIC Stamp (DIP and SIP version)

XBee 5V/3.3V Adapter Rev B:

The XBee 5V/3.3V Adapter Board Rev B has onboard Tx and RX LEDs, so you will not need to add the LED
circuits that are shown in the schematic above.

Software:

• BASIC Stamp Editor (www.parallax.com/basicstampsoftware)
• Digi’s X-CTU Software (www.parallax.com/go/xbee)

Simple DEBUG to Remote Terminal

Being able to monitor a remote unit is very beneficial, such as for robotics or monitoring remote
sensors. This first code example will display text strings and values back from the remote unit to the
base for monitoring.

' **
' Simple_Debug.bs2
' Sends data to remote terminal for monitoring
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

' *************** Constants & PIN Declarations ***********

Paul C Smith
Sticky Note
Okay, I'm not wild about this sentence. How about something like "It is very useful to be able to monitor a remote unit. For example, the remote could use a sensor to collect data which are sent to the base station for display and recording".

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 47

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT
Baud CON T9600

Rx PIN 15 ' XBee DOUT - Not used in this example
Tx PIN 14 ' XBee DIN
RTS PIN 11 ' XBee RTS - Not used in this example

' ************** Variable Declarations ******************
Counter VAR Byte

' ************** Main LOOP ******************************
PAUSE 500 ' 1/2 second pause to stabilize comms
SEROUT Tx, Baud, [CLS,"Program Running...",CR]

PAUSE 2000 ' Pause before counting

FOR Counter = 1 TO 20 ' Count and display remotely
 SEROUT Tx, Baud, ["Counter = ", DEC Counter, CR]
 PAUSE 100
NEXT

SEROUT Tx, Baud, ["Loop complete.",CR]
END

Code discussion:

• The SELECT-CASE structure is used to ensure a baud rate of 9600 no matter the model of
BASIC Stamp you may be using.

• DOUT and RTS are not used in this example but will be used in later examples.
• It displays a message, the value of Counter from 1 to 20, and a final message.

Terminals

While we use the X-CTU in our example, you may also a BASIC Stamp Editor Debug Terminal selected to the
correct COM port. The CLS (clear screen) only shows a dot in X-CTU, but will clear the Debug Terminal.

Test the code:

 Connect and monitor the base XBee using X-CTU or other terminal program.
 Download Simple_Debug.bs2 to the BASIC Stamp connected to the remote XBee unit.
 Monitor the debugged data in the base terminal window as shown in Figure 4-3.

4: Programming for Data and XBee Configurations

Page 48 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-3: Simple Debug to Base Testing

Accepting and Displaying Single Bytes
In this next code example, we will use the X-CTU terminal to transmit bytes to the BASIC Stamp to
accept, display locally and transmit back to the base XBee for display in X-CTU (echoed).

' **
' Simple_Byte_Receive.bs2
' Accepts, displays and echoes back incoming bytes
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

' *************** Constants & PIN Declarations ***********
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 49

Baud CON T9600

Rx PIN 15 ' XBee DIN
Tx PIN 14 ' XBee DOUT
RTS PIN 11 ' XBee RTS - Not used in this example

' ************** Variable Declarations ******************
DataIn VAR Byte

' ************** Main LOOP ******************************
PAUSE 500 ' 1/2 second pause to stabilize comms
DEBUG "Awaiting Byte Data...",CR

DO
 SERIN Rx, Baud, [DataIn] ' Accept incoming byte
 SEROUT Tx, Baud, [DataIn] ' Echo byte back
 DEBUG DataIn ' Display byte as character
LOOP

Code discussion:

 Within the DO-LOOP, SERIN waits until it receives a byte from the XBee, sends it back to the
XBee to be transmitted, and sends the character to the Debug Terminal of the BASIC Stamp
Editor.

Test the code:

 Download Simple_Byte_Receive.bs2 to the BASIC Stamp.
 From the X-CTU terminal window, manually type Hello World. Note that it displays in the

BASIC Stamp Debug Terminal and the X-CTU terminal window correctly.
 Use the Assemble Packet feature of X-CTU to send “Hello BASIC Stamp!” as a single

packet. Note that the first character may be correct, but the remaining data is mostly garbage.

Figure 4-4 is an image of our testing. The first byte was accepted by the BASIC Stamp correctly since
it was sitting idle waiting for it. Once the first byte was accepted, the program continued on. In the
mean time, data continued to be sent from the XBee even though the BASIC Stamp was not accepting
it any longer. When the BASIC Stamp looped back, it caught a byte mid-position and continued
collection from there getting garbage. When we typed the data directly in to the terminal window, we
were typing too slowly to get the data out in a single transmission and the BASIC Stamp was fast
enough to loopback for our next character.

4: Programming for Data and XBee Configurations

Page 50 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-4: Receiving Byte Test Results

Sending and receiving raw bytes is generally more difficult in ensuring data is being accepted
properly since it could be any byte value, 0 to 255 in binary. Using decimal values can aid in ensuring
data is proper.

Accepting and Displaying Decimal Values
When data is sent or received as decimal values, using PBASIC’s DEC modifier, values are sent as
characters representing the value. Using bytes, a value such as 123 is sent as a single byte with a
value of 123. When 123 is sent and accepted using DEC, the value is an ASCII character string as ‘1’,
‘2’ and ‘3’. The BASIC Stamp will ignore or use as the ‘end of string’ any non-numeric character
limiting potential garbage and helping to ensure received data is good. Next,
Simple_Decimal_Receive.BS2 demonstrates accepting, displaying and transmitting decimal values.

' **
' Simple_Decimal_Receive.bs2
' Accepts, displays and echoes back incoming Decimal Value
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

' *************** Constants & PIN Declarations ***********
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT
Baud CON T9600

Rx PIN 15 ' XBee DOUT
Tx PIN 14 ' XBee DIN
RTS PIN 11 ' XBee RTS - Not used in this example

Paul C Smith
Sticky Note
I simply don't understand what you're trying to say here. I think it's what you're trying to clarify in the next paragraph, but it's not really making sense to me. Maybe another sentence of explanation?

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 51

' ************** Variable Declarations ******************
DataIn VAR Word

' ************** Main LOOP ******************************
PAUSE 500 ' 1/2 second pause to stabilize comms
DEBUG "Awaiting Decimal Data...",CR

DO
 SERIN Rx, Baud, [DEC DataIn] ' Accept incoming Decimal Value
 SEROUT Tx, Baud, [DEC DataIn,CR] ' Echo decimal value back
 DEBUG DEC DataIn,CR ' Display value
LOOP

For testing, the X-CTU terminal is again used.

 Download Simple_Decimal_Receive.bs2.
 In the terminal window of X-CTU, type in a series of numbers, each followed by Enter

(Carriage Return), such as 10 20 30.
 Notice that only after Enter (or a non-numeric value) data is processed, displayed and sent

back. The BASIC Stamp collects data until the character is no longer numeric.
 Click Assemble Packet. Using the Send Packet window, enter a series of numbers to be sent

at once, again each followed by Enter, such as 40 50 60, etc.
 Send the packet and monitor the results. The first value is used and displayed, several are

skipped, and then another is accepted and used as show in Figure 4-5.

Figure 4-5: Simple Decimal Receive Testing

Paul C Smith
Sticky Note
In a couple of these screen shots there have been periods in front of the data. Why is that? I do see it on my own system from time to time. It's confusing.

4: Programming for Data and XBee Configurations

Page 52 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

The XBee again received your data correctly and sent it to the BASIC Stamp, but after getting the
first value, the BASIC Stamp was not available to capture much of the remaining data. Since the
BASIC Stamp does not buffer incoming serial data, that data is lost. By using flow control, such as
RTS, we can help prevent missed data.

?

Range & Negative Values?

The BASIC Stamp, using Word sized variables, can accept values up to 65535 (16-bit value). To use negative
values, use the SDEC modifier instead for a range of -32768 to +32767.

Configuring the XBee for using RTS Flow Control & Timeouts
Using the RTS (Ready-to-Send) line, we can limit lost data by having the XBee send data only when
the BASIC Stamp is ready to receive it by using the RTS line and function of the SERIN command.
Additionally, we can use the Timeout feature of SERIN so the BASIC Stamp can process other code
while waiting for data to arrive. To enable RTS on the XBee, AT Command codes will be sent by the
BASIC Stamp.

The program Using_RTS_Flow_Control_for_Bytes.bs2 demonstrates using RTS to collect buffered
data from the XBee.

' **
' Using_RTS_Flow_Control_for_Bytes.bs2
' Configures XBee to Use RTS flow control to
' prevent missed DATA
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

' *************** Constants & PIN Declarations ***********
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT
Baud CON T9600

Rx PIN 15
Tx PIN 14
RTS PIN 11

' ************** Variable Declarations ******************
DataIn VAR Word

' ************** XBee Configuration *********************
PAUSE 500
DEBUG "Configuring XBee...",CR
PAUSE 2000 ' Guard Time
SEROUT Tx,Baud,["+++"] ' Command mode sequence
PAUSE 2000 ' Guard Time

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 53

SEROUT Tx,Baud,["ATD6 1,CN",CR] ' RTS enable (D6 1)
 ' Exit Command Mode (CN)'
************** Main LOOP ******************************
PAUSE 500
DEBUG "Awaiting Multiple Byte Data...",CR

DO
 SERIN Rx\RTS,Baud,1000,TimeOut,[DataIn] ' Use Timeout to wait for byte
 SEROUT Tx, Baud, [DataIn] ' Send back to PC
 DEBUG DataIn ' Display data
 GOTO Done ' Jump to done

 Timeout: ' If no data, display
 DEBUG "."

 Done:

LOOP

Analyzing the code:

• In the XBee Configuration, the identical action we took using the terminal window is used to
configure the XBee: A short delay, sending +++, seeing "OK", another delay, sending AT
Commands and using the CN command to exit Command Mode. The Command Mode will
also terminate automatically after a period of inaction.

• The SERIN instruction uses the \RTS modifier to signal the XBee when it is available to
accept new data. The 1000 and Timeout label is used to branch if data in not received within
1 second, allowing processing to continue. (See the Timeout units note in the box below.)

• If data is not received within 1 second, the code at the Timeout: label will cause a dot to be
displayed in the Debug Terminal to indicate that and to show processing by the BASIC
Stamp is being performed.

Syntax Refresher for SEROUT and SERIN

SEROUT Tpin { \Fpin }, Baudmode, { Pace, } { Timeout, Tlabel, } [OutputData]

SERIN Rpin { \Fpin }, Baudmode, { Plabel, } { Timeout, Tlabel, } [InputData]

For full details on these and any other PBASIC commands or keywords, see the BASIC Stamp Editor Help.

Timeout units note: The units in Timeout are 1 ms for the BS2, BS2e, and BS2pe, hence a Timeout
argument of 1000 would be equivalent to 1 second. If you are using a BS2sx, BS2p, or BS2px, the Timeout
units are only 0.4 ms, so the same value of 1000 would be equivalent to 400 ms—something to keep in mind
while you read the code explanations throughout the book.

Testing:

 Download Using_RTS_Flow_Control_for_Byte.bs2.
 Using X-CTU, send a string in both the terminal window and using the Send Packet window.
 Notice, as in Figure 4-6, that when sending data as a packet, only every other byte is accepted

and processed.

4: Programming for Data and XBee Configurations

Page 54 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-6: Using RTS Flow Control for Bytes Testing

The XBee is buffering data allowing the BASIC Stamp to accept more without garbage, but every
other byte is missed. The reason for this is that after collecting one byte, the BASIC Stamp de-asserts
the RTS line to stop the XBee from sending more data, but it is too slow. The next byte has left the
XBee before it gets notification to stop sending data. This happens every cycle causing every other
byte to be missed.

Monitor LEDs

When the code starts and goes through the configuration sequence, watching the Tx & Rx LEDs blink back
and forth is a great indicator that it the XBee is accepting your command mode functions.

Using RTS and String Delimiter with Decimal Values
Using DEC for decimal values can help ensure data is received properly. One issue with receiving
multiple values is ensuring what order they are received in and where to start. For example, let’s say
we want to send two values and send data several times to be accepted and used, such as:

10 & 20
10 & 30
10 & 50

On reception, the BASIC Stamp gets out of sequence so that the data it receives is:

20 & 10
30 & 10

Because it perhaps missed one, the sequence of how it is accepting data does not match the sequence
we intended. Through the use of a start-of-string identified or delimiter we can help ensure the data is
collect starting at the correct value in the buffer. The same could be done for bytes but it can cause
issues since a byte value can be ANY value typically, 0 to 255. A unique value may not be able to be
identified for our communications. Using DEC values, only 0-9 are valid characters so anything

Paul C Smith
Sticky Note
"collected"?

Paul C Smith
Sticky Note
"We may not be able to identify a value to use as the delimiter that isn't among the possible valid data values".

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 55

outside of that range would be unique from our data. Using_RTS_Flow_Control_for_Decimals.bs2
demonstrates using RTS and a string start delimiter.

' **
' Using_RTS_Flow_Control_for_Decimals.bs2
' Configures XBee to Use RTS flow control to
' prevent missed data using start delimiter
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

' *************** Constants & PIN Declarations ***********
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT
Baud CON T9600

Rx PIN 15
Tx PIN 14
RTS PIN 11

' ************** Variable Declarations ******************
DataIn VAR Byte
Val1 VAR Word
Val2 VAR Word

' ************** XBee Configuration *********************
PAUSE 500
DEBUG "Configuring XBee...",CR
PAUSE 2000 ' Guard Time
SEROUT Tx,Baud,["+++"] ' Command mode sequence
PAUSE 2000 ' Guard Time
SEROUT Tx,Baud,["ATD6 1,CN",CR] ' RTS enable (D6 1)
 ' Exit Command Mode (CN)
' ************** Main LOOP ******************************
DEBUG "Awaiting Delimiter and Multiple Decimal Data...",CR

DO
 SERIN Rx\RTS,Baud,500,TimeOut,[DataIn] ' Briefly wait for delimiter

 IF DataIn = "!" THEN ' If delimiter, get data
 SERIN Rx\RTS,Baud,3000,Timeout,[DEC Val1] ' Accept first value
 SERIN Rx\RTS,Baud,3000,Timeout,[DEC Val2] ' Accept next value

 ' Display remotely and locally
 SEROUT Tx, Baud, [CR,"Values = ", DEC Val1," ", DEC Val2,CR]
 DEBUG CR,"Values = ", DEC Val1," ", DEC Val2,CR
 ENDIF

Paul C Smith
Sticky Note
That is, if we receive a "!", we know that is not part of our data.

4: Programming for Data and XBee Configurations

Page 56 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

 GOTO Done ' Jump to Done
 Timeout: ' If no data, display dots
 DEBUG "."
 Done:
LOOP

Analyzing the code:

• Again, RTS flow configured for the XBee using AT Commands.
• A SERIN with a 500 ms timeout starts the loop. If no data within this time, the timeout dot is

shown.
• Next, the code checks to see if the character was the exclamation point “!” and if not, the

code is done.
• If it was a !, two decimal values are collected again using timeouts to ensure the code does

not lock up waiting.
• The data values are displayed locally and remotely.

Testing the code:

 Download Using_RTS_Flow_Control_for_Decimals.bs2.
 Enter several values, the ! with an Enter, then several more values. After entering !, the next

two values should be accepted and displayed.
 Use the Send Packet window to make a series of numbers and !’s to be sent and test. Notice

in Figure 4-7 each set of data following the delimiter was correctly processed.

The decimal values were adequately buffered so that no data was lost. What about those missed bytes
when RTS de-asserts? Our Enter or carriage return was at the end of each string of characters so that
the lost bytes corresponded to those Enter/carriage return characters.

Paul C Smith
Sticky Note
How about "If it was a "!", two decimal values..."? (and again below in "Testing the code", checkitem 2 and 3)

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 57

Figure 4-7: Using RTS for Decimal Values Testing

Reading Data from the XBee – Displaying RSSI Level
The BASIC Stamp can read settings and values from the XBee as well as configuring it. Just as we
had done through the X-CTU terminal window in Chapter 3, values can be requested, though it can
cause a few issues. Going into Command Mode and performing various AT commands, an “OK”
along with data was returned. This “OK” can sometimes cause problems since it will also be sent to
the BASIC Stamp. Another problem is to ensure the buffer is empty of other data, especially when
using RTS, so that when the value is returned, it is accepted correctly. Finally, when going into AT
Command Mode the guard times make this a slow process. By lowering the guard times we can
greatly speed up the process of entering Command Mode.

Getting_dB_Level.bs2 is optimized to accept values, to request the RSSI dBm level, and display
data.

' **
' Getting_dB_Level.bs2
' Receive multiple decimal data and report dBm level
' **

' {$STAMP BS2}
' {$PBASIC 2.5}

4: Programming for Data and XBee Configurations

Page 58 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

' *************** Constants & PIN Declarations ***********
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T9600 CON 84
 #CASE BS2SX, BS2P
 T9600 CON 240
 #CASE BS2PX
 T9600 CON 396
#ENDSELECT
Baud CON T9600

Rx PIN 15
Tx PIN 14
RTS PIN 11

' ************** Variable Declarations ******************
DataIn VAR Byte
Val1 VAR Word
Val2 VAR Word
' ************** XBee Configuration *********************
PAUSE 500
DEBUG "Configuring XBee...",CR
PAUSE 2000 ' Guard Time
SEROUT Tx,Baud,["+++"] ' Command mode sequence
PAUSE 2000 ' Guard Time
SEROUT Tx,Baud,["ATD6 1,GT3,CN",CR] ' RTS enable (D6 1)
 ' Very low Guard Time (GT 3)
 ' Exit Command Mode (CN)
' ************** Main LOOP ******************************
PAUSE 500
DEBUG "Awaiting Delimiter and Multiple Decimal Data...",CR

DO

 SERIN Rx\RTS,Baud,5,Timeout,[DataIn] ' Briefly wait for delimiter

 IF DataIn = "!" THEN ' If delimiter, get data
 SERIN Rx\RTS,Baud,3000,Timeout,[DEC Val1] ' Accept first value
 SERIN Rx\RTS,Baud,3000,Timeout,[DEC Val2] ' Accept next value
 ' Display remotely and locally
 SEROUT Tx, Baud, [CR,"Values = ", DEC Val1," ", DEC Val2,CR]
 DEBUG CR,"Values = ", DEC Val1," ", DEC Val2,CR

 GOSUB Get_dBm ' Retrieve RSSI level
 ENDIF

 GOTO Done ' Jump to done
 Timeout:
 DEBUG "." ' If no data, display dots
 Done:
LOOP

' ************** Subroutines ***************************
Get_dBm:

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 59

 GOSUB Empty_Buffer ' Ensure no data left in XBee
 PAUSE 5 ' Short guard time
 SEROUT Tx,Baud,["+++"] ' Command Mode
 PAUSE 5 ' Short guard time
 SEROUT Tx,Baud,["ATDB,CN",CR] ' Request dBm Level (ATDB)& Exit
 ' Accept returning HEX data with timeout
 SERIN Rx\RTS,Baud,50,TimeOut_dB,[HEX DataIn]
 SEROUT Tx,Baud,[CR,"RSSI = -",DEC DataIn,CR] ' Display remotely
 DEBUG "RSSI = -",DEC DataIn,CR ' Display locally
 TimeOut_dB:
RETURN

Empty_Buffer: ' Loop until no more data
 SERIN Rx\RTS,Baud,5,Empty,[DataIn] ' Accept, when no data exit
 GOTO Empty_Buffer ' Keep accepting until empty
 Empty:
RETURN

Code analysis:

• In the XBee Configuration, GT 3 (ATGT 3) is used to lower the guard time down to 3 ms.
• After accepting data, the Get_dBm subroutine is executed, which branches to

Empty_Buffer to loop accepting data until the buffer is empty.
• Get_dBm then sends the +++ command sequence with very short delays.
• ATDB is sent to request the RSSI level, which the XBee returns and is accepted using SERIN

as a hexadecimal value. It is then displayed locally and remotely.
• Note that any buffered data will be lost.
• The use of the string delimiter, !, will act also to filter out any unwanted data from being

processed as well.

Testing:

 Download Getting_dB_Level.bs2.
 Enter several values, the ! with Enter, then several more values. After entering !, the next two

values should be accepted and displayed along with the RSSI value as shown in Figure 4-8.
 Use the X-CTU Send Packet window to make a series of numbers and !’s to be sent and test.

Notice that data is lost in this instance.

4: Programming for Data and XBee Configurations

Page 60 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-8: Getting dB Level Test

General BASIC Stamp Notes of Interest
• The X-CTU terminal window is useful for sending data both as individual characters and as

an assembled packet, but the BASIC Stamp Editor may also be used to interface to the XBee
via USB. Simply open a new Debug Terminal and select the correct COM port, though it
only supports individual character entry.

• Most any BASIC Stamp program that uses the Debug Terminal, for display or interaction,
may be modified to use a remote Debug Terminal across the XBee transparent link. Replace
any DEBUG’s with SEROUT structures and DEBUGIN’s with SERIN structures.

• A second BASIC Stamp and XBee may be used to send the data without worrying about
receiving the data for display since the remote XBee/BASIC Stamp will display in data in the
Debug Terminal. Use the code structure from the sample for baud rate and pins and send data
with code such as:

DO
 SEROUT Tx,Baud,[“!”,CR, ' Send string of data
 DEC 100,CR,
 DEC 200,CR]
 PAUSE 1000 ' Short delay
LOOP

Paul C Smith
Sticky Note
"(that is, you can't send a complete packet, as you can in X-CTU)"

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 61

• Receiving serial data can be tricky and may require unique ‘tweaks’ to get the data received
properly. An option may be to slow down the data by using a slower data rate from the XBee.
For example, using ATDB 0 will set the baud rate to 1200 allowing the BASIC Stamp more
time to process incoming data. The best means is to use X-CTU to manually change the baud
rate of the XBee and modify your code accordingly. If done solely in code you will need to
start at 9600, change the XBee configuration to the new baud rate, then use the slower baud
rate from then on. Also, see the next note…

• While configuring the XBee in code is nice, it can lead to issues. Let’s say you add code to
change the baud rate and it begins to communicate at 1200 after configuration code. When
you download new code, the XBee will still be at 1200 baud and your configuration
information at 9600 will not be understood (especially an issue if you changed the
configuration!). Either manually cycling power on the board to reset or using the XBee Reset
line (brought LOW to reset before configuring) to return to default configurations may be
needed. While the BASIC Stamp resets with a code download, the XBee does not!

• The SERIN instruction has a WAIT modifier to idle until a character is received and allows
multiple values to be accepted, such as:

SERIN Rx\RTS,BAUD [WAIT ("!"), DEC Val1, DEC val2].

We found that complex structure was worse at collecting data correctly than our 3-line
method. Also, timeouts cannot be used with the WAIT modified. The SERIN instruction has
many options. Please see the BASIC Stamp Help files for more information on SERIN.

Propeller Chip
The Propeller Chip is an excellent microcontroller for handling communications. Between the
Propeller’s speed, multi-core processing, and available objects, serial data communications is nearly
effortless.

Hardware & Software
For these tests a single Propeller chip will be used for communications with an XBee connected to the
PC using USB and X-CTU software as the base node. Data will be manually entered to be transmitted
to the controller to investigate data reception.

Hardware:

• Propeller chip and development board, using a 5 MHz external crystal oscillator
• 2 XBee modules (Ensure they are restored to default configuration)
• An XBee Adapter Board
• XBee USB Adapter Board & Cable
• (2) 220 Ω resistors and (2) LEDs (optional)

Alternative to USB Adapter

Instead of an XBee on a USB Adapter, a Propeller & XBee using Serial_Pass_Through.spin discussed in this
section or the PropPlug as discussed in Chapter 2 may be used for X-CTU communications and configuration.
These configurations cannot be used for firmware updates for the XBee.

 Connect the Propeller to an XBee Adapter Board as shown in Figure 4-9. LEDs and resistors

are optional but are useful.

Paul C Smith
Sticky Note
This should be "ATBD 0", not "ATDB 0".

4: Programming for Data and XBee Configurations

Page 62 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-9: Propeller to XBee Adapter Board Interface with Optional LEDs

Software

• Propeller Tool Software (from the Downloads link at www.parallax.com/propeller)
• Digi’s X-CTU software (www.parallax.com/go/xbee)

Receiving Byte Values & Chat
The ability to use multiple cogs in multitasking allows the Propeller to accept and process data in one
cog while performing operations in another cog. In this example, the Propeller is being used for
passing serial data between the PC and XBee. Data from the XBee is accepted and passed to the PC
in one cog, and accepted from the PC and passed to the XBee in another cog as illustrated in Figure
4-10.

Figure 4-10: Cogs Passing Serial Data

{{

 * Serial_Pass_Through *

 * See end of file for terms of use. *

 Provides serial pass through for XBee (or other devices)
 from the PC to the device via the Propeller. Baud rate
 may differ between units though FullDuplexSerial can

Paul C Smith
Sticky Note
As earlier, you have 220 Ohm resistors in the parts list but 100 Ohm resistors in the diagram.

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 63

 buffer only 16 bytes.

}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 ' Set pins and Baud rate for XBee comms
 XB_Rx = 0 ' XBee DOUT
 XB_Tx = 1 ' XBee DIN
 XB_Baud = 9600

 ' Set pins and baud rate for PC comms
 PC_Rx = 31
 PC_Tx = 30
 PC_Baud = 9600

Var
 long stack[50] ' stack space for second cog

OBJ
 PC : "FullDuplexSerial"
 XB : "FullDuplexSerial"

Pub Start

 PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC
 XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee
 cognew(XB_to_PC,@stack) ' Start cog for XBee--> PC comms

 PC.rxFlush ' Empty buffer for data from PC
 repeat
 XB.tx(PC.rx) ' Accept data from PC and send to XBee

Pub XB_to_PC

 XB.rxFlush ' Empty buffer for data from XB
 repeat
 PC.tx(XB.rx) ' Accept data from XBee and send to PC

Analyzing the code:

• As mentioned, two cogs are used with one running the Start method, and one running the
XB_to_PC method.

• The FullDuplexSerial.spin object is used for serial communications. This object buffers 16
bytes allowing it to receive data before being passed to the code when requested with the .rx
method. Using this method, execution will wait until a byte is available and returned before
continuing.

• In Start, a byte from the PC is requested and passed to the XBee using XB.tx(PC.rx). This is
equivalent to accepting a byte to a variable, then sending the byte:

DataIn := PC.Rx
XB.Tx(DataIn)

The benefit in not storing it before transmission is the lower processing time needed
increasing the execution speed.

• In the XB_to_PC method, data is accepted from the XBee and passed to the PC, allowing data
to flow in both directions at the same time using two cogs—full duplex communications.

Paul C Smith
Sticky Note
How about this?

"is the lower processing time needed, which increases the execution speed".

4: Programming for Data and XBee Configurations

Page 64 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Testing:

 You may use:
o One XBee on a USB Adapter and one connected to the Propeller running

Serial_Pass_Through.spin.
—OR—

o 2 Propellers connected to XBee modules running Serial_Pass_Through.spin.
 Download the code to controller(s).
 Open two instances of X-CTU; one using the COM port of the base unit, and one connected

to the remote XBee (separate PC’s may be used).
 Type in each window to send data to the other.
 Test using the Send Packet window as well as shown in Figure 4-11.

Figure 4-11: Serial Pass Through Chatting

 Using a Propeller connected XBee, open the Modem Configuration tab and verify that you

can load and save configuration settings via the Propeller.

COM Port Use: Only one device can use the Com Port at any time. When programming the Propeller, the X-
CTU software must be disconnected by using Close Com Port. The Propeller Serial Terminal (PST) program
may also be used.

Propeller Resets: When using the terminal window to interface to the Propeller, it is recommended that you
use F11 to download instead of F10. This will ensure your code is in memory if the Propeller cycles on
terminal window connections.

Note that the serial speed of the XBee and PC do not need to be the same. Different speeds may be
used between each side of the Propeller. Communications with the XBee can be handled by the code
up to its maximum speed.

Of course, in this example we are simply passing bytes, though code may be written to use the byte
values, or as data for processing based on its value:

DataIn := XB.rx
If DataIn == "p"
 ' Code to be processed

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 65

Debugging Back to Base Unit
Using the XBee is a great way to simply monitor your remote unit for robotics or sensor data. In this
example we will use the .str and .dec methods of the FullDuplexSerial object in
Simple_Debug.spin to send information back to the base for monitoring.

{{

 * Simple_Debug *

 * See end of file for terms of use. *

 Demonstrates debugging to remote terminal

}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 ' Set pins and Baud rate for XBee comms
 XB_Rx = 0 ' XBee DOUT
 XB_Tx = 1 ' XBee DIN
 XB_Baud = 9600
 CR = 13 ' Carriage Return value

Var
 word stack[50]

OBJ
 XB : "FullDuplexSerial"

Pub Start | Counter
XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee

Delay (1000) ' one second delay
repeat Counter from 1 to 20 ' count up to 20

 ' Send to Base
 XB.str(string("Count is:")) ' send string
 XB.dec(Counter) ' send decimal value
 XB.Tx(CR) ' send Carriage Return

 Delay(250) ' Short delay

Pub Delay(ms) ' Delay in milliseconds
 waitcnt(clkfreq / 1000 * ms + cnt)

Analyzing the code:

• The FullDuplexSerial object is once again used to interface to the XBee, but in this case the
local interfacing to the PC in not performed.

• The value of Counter is incremented from 1 to 20, a string is sent to the base using XB.str
method, and the Counter value is sent using XB.dec method.

• The line is terminated by sending the byte value of 13 for a carriage return (CR).

Paul C Smith
Sticky Note
How about this?

"...is a great, simple way to monitor your remote unit..."

Paul C Smith
Sticky Note
"is not performed".

4: Programming for Data and XBee Configurations

Page 66 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Testing:

 Connect the base XBee to the PC using USB Adapter board, or a Propeller with
Serial_Pass_Through.spin, and X-CTU terminal window.

 Set up the remote XBee with a Propeller running Simple_Debug.spin.
 Download and run the program, monitor the base terminal window as shown in Figure 4-12.

Figure 4-12: Simple Debug Monitoring

Receiving Simple Decimal Values
The FullDuplexSerial object can also receive decimal values (as well as hexadecimal) that are
terminated with a carriage return. In this section we will look at code to accept and return decimal
values using Simple_Decimal_Receieve.spin. This code requires the XBee_Object.spin object by
Martin Hebel which is available from the Propeller Object Exchange (http://obex.parallax.com) or in
the distributed files for this tutorial. The XBee_Object uses FullDuplexSerial, but greatly extends it
with functions, many specific to XBee interfacing.

{{

 * Simple_Decimal_Receive *

 * See end of file for terms of use. *

 Demonstrates receiving and echoing decimal value

}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 67

 ' Set pins and Baud rate for XBee comms
 XB_Rx = 0 ' XBee DOUT
 XB_Tx = 1 ' XBee DIN
 XB_Baud = 9600

OBJ
 XB : "XBee_Object"

Pub Start | Value
XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee

XB.Delay(1000) ' One second delay

XB.str(string("Awaiting Data...")) ' Notify base
XB.CR

Repeat
 Value := XB.RxDec ' Wait for and accept decimal value
 XB.Dec(Value) ' Send value back to base
 XB.CR ' Send carriage return

Analyzing the Code:

• In this example, only one terminal window is needed – the one with the base XBee using a
USB Adapter or Propeller running Serial_Pass_Through.spin for PC communications.

• The XBee_Object is used for XBee communications and interfacing providing additional
functionality.

• In the Start method, the base XBee is informed the remote is awaiting data and waits for a
decimal value to arrive using the XB.RxDec method. The decimal value needs to be terminated
with a carriage return (enter key) or by a comma to separate values.

• Once a decimal value is received and stored in Value, it is sent back to the base XBee as a
decimal value with XB.Dec(Value) along with a carriage return.

• Note that the XBee_Object has methods for both .Delay and .CR to minimize coding for
normal needs.

Testing:

 Base XBee connected to PC using USB adapter or Propeller with Serial_Pass_Through.spin
and X-CTU terminal Window.

 Remote XBee with Propeller running Simple_Byte_Receive.spin.
 Test sending decimal value in the X-CTU terminal window and the Send Packet window

using carriage returns between values as shown in Figure 4-13. Note that no data is lost due
to the speed of the Propeller and the buffering of the drivers.

Paul C Smith
Sticky Note
How about "Note that due to the speed of the Propeller and the buffering of the drivers, no data is lost"?

4: Programming for Data and XBee Configurations

Page 68 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Figure 4-13: Receiving Simple Decimal Values

Receiving Multiple Decimal Values with Delimiter
In many instances you may need to send multiple values to the Propeller for various operations, such
as the speed of both motors on a robot. While the Propeller is great at buffering and receiving the
data, it may require some extra code to ensure the data is sent in the correct sequence, just as with the
BASIC Stamp. If we send 2 values for val1 and val2, such as:

10 & 20
10 & 30
10 & 50

On reception, the Propeller gets out of sequence so that the data it receives is:

20 & 10
30 & 10

Because it perhaps missed one, the sequence of how it is accepting data does not match the sequence
we intended. Through the use of a start-of-string identifier or delimiter we can help ensure the data is
collected starting at the correct value in the buffer. The same could be done for bytes but it can cause
issues since a byte value can be ANY value typically, 0 to 255. A unique value may not be able to be
identified for our communications. Using DEC values, only 0–9 are valid characters so anything
outside of that range would be unique from our data. The program Multiple_Data_Receive.spin
illustrates this as well as some other features.

{{

 * Mulitple_Decimal_Receive *

 * See end of file for terms of use. *

Paul C Smith
Sticky Note
"...such as setting the speeds of both motors on a robot".

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 69

 Demonstrates receiving multiple decimal
 value with start delimiter

}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 ' Set pins and Baud rate for XBee comms
 XB_Rx = 0 ' XBee DOUT
 XB_Tx = 1 ' XBee DIN
 XB_Baud = 9600

 ' Carriage return value
 CR = 13

OBJ
 XB : "XBee_Object"

Pub Start | DataIn, Val1,Val2
XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee

XB.Delay(1000) ' One second delay

XB.str(string("Awaiting Data...")) ' Notify base
XB.CR

Repeat
 DataIn := XB.RxTime(100) ' Wait for byte with timeout
 If DataIn == "!" ' Check if delimiter
 Val1 := XB.RxDecTime(3000) ' Wait for 1st decimal value with timeout
 Val2 := XB.RxDecTime(3000) ' Wait for next decimal value with timeout
 If Val2 <> -1 ' If value not received value is -1
 XB.CR
 XB.Str(string(CR,"Value 1 = ")) ' Display remotely with string
 XB.Dec(Val1) ' Decimal value
 XB.Str(string(CR,"Value 2 = ")) ' Display remotely
 XB.Dec(Val2) ' Decimal value
 XB.CR
 Else
 XB.Tx(".") ' Send dot to show actively waiting

Analyzing the code:

• The XBee_Object is used for communications and interfacing.
• In this example, DataIn := XB.RxTime(100) reads a byte from the buffer, but only waits

100 ms for data arrive before continuing processing – a receive with timeout. If no data is
received, the value in DataIn will be -1.

• Upon reception or timeout, the value of DataIn is check to see if it the string delimiter, !. If it
is, 2 decimal values, with 3 second timeouts, are accepted into Val1 and Val2.

• Identifying strings and decimal values are sent back to the base unit for display.
• Upon timeout with a value of -1, a dot is sent to the remote terminal to indicate processing is

continuing.

4: Programming for Data and XBee Configurations

Page 70 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Value Delimiter

The XBee_Object can use carriage returns or commas as delimiters between values, so data may be sent as
30,40 instead of using the enter key between each.

Testing:

 Base XBee connected to PC using USB adapter or Propeller with Serial_Pass_Through.spin
and X-CTU terminal window.

 Remote XBee with Propeller running Multiple_Decimal_Receive.spin.
 Test by sending decimal value in the terminal window by entering some values, using !, then

entering a few more values—DO not press Enter after !. Test using commas as well.
 Use the Send Packet window to build a packet of values and using the ! delimiter. Again, test

the use of carriage returns and commas between values as shown in Figure 4-14.

Figure 4-14: Multiple Decimal Receive Testing

Notice that there was some lost data—the !300, 400 was not displayed. The buffer of the object may
have been exceeded while processing. When dealing with serial communications, testing and work-
arounds are always needed, but we have a high probability of getting simple packets through
successfully at normal update speeds.

Setting and Reading XBee Configurations
Just as we can configure the XBee through the serial terminal, the Propeller can send and receive data
for configuration changes and reading values in the same fashion. Config_Getting_dB_Level.spin

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 71

demonstrates a simple configuration of the XBee and requesting and accepting dB level for RSSI.
Since we don’t need to set RTS with the Propeller and we are not ready for address changes yet, we
will use a configuration to turn off the association indicator on the XBee.

{{

 * Config_Getting_dB_Level *

 * See end of file for terms of use. *

 Demonstrates receiving multiple decimal
 value with start delimiter

}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 ' Set pins and Baud rate for XBee comms
 XB_Rx = 0 ' XBee DOUT
 XB_Tx = 1 ' XBee DIN
 XB_Baud = 9600

 ' Carriage return value
 CR = 13

OBJ
 XB : "XBee_Object"

Pub Start | DataIn, Val1,Val2
XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee
XB.Delay(1000) ' One second delay

' Configure XBee module
XB.Str(String("Configuring XBee...",13))
XB.AT_Init ' Configure for fast AT Command mode

XB.AT_Config(string("ATD5 4")) ' Send AT command turn off Association LED

XB.str(string("Awaiting Data...")) ' Notify base
XB.CR

Repeat
 DataIn := XB.RxTime(100) ' Wait for byte with timeout
 If DataIn == "!" ' Check if delimiter
 Val1 := XB.RxDecTime(3000) ' Wait for 1st value with timeout
 Val2 := XB.RxDecTime(3000) ' Wait for next value with timeout
 If Val2 <> -1 ' If value not received value is -1
 XB.CR
 XB.Str(string(CR,"Value 1 = ")) ' Display remotely with string
 XB.Dec(Val1) ' Decimal value
 XB.Str(string(CR,"Value 2 = ")) ' Display remotely
 XB.Dec(Val2) ' Decimal value

 XB.RxFlush ' Clear buffer
 XB.AT_Config(string("ATDB")) ' Request dB Level
 DataIn := XB.RxHexTime(200) ' Accept returning hex value
 XB.Str(string(13,"dB level = "))' Display remotely
 XB.Dec(-DataIn) ' Value as negative decimal
 XB.CR
 Else
 XB.Tx(".") ' Send dot to show actively waiting

4: Programming for Data and XBee Configurations

Page 72 · Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010

Code Analysis:

• Just as when we manually configure the XBee, it requires a 2-second delay since last data
sent, the +++ sequence, and a 2-second delay. This delay may be reduced by setting the guard
time lower (ATGT). The XBee object has a method called .AT_Init which will perform this
sequence while lowering guard time to allow fast configurations. Looking at the
XBee_Object code, we can see the actions taken. The .rxFlush method is used to clear data
from the object buffer along with the OK’s that are returned.

Pub AT_Init
{{
 Configure for low guard time for AT mode.
 Requires 5 seconds. Required if AT_Config used.
}}

 delay(3000)
 str(string("+++"))
 delay(2000)
 rxflush
 str(string("ATGT 3,CN"))
 tx(13)
 delay(500)
 rxFlush

• After AT_Config, the ASSOC indicator LED on the XBee Adapter (if connected) is disabled
using XB.AT_Config(string("ATD5 4")). Using fast guard times, the configuration of the
XBee is quickly updated for D5 to be 4, setting the DIO5 output low.

• After receiving the delimiter and 2 decimal values, the code requests and shows the dB level.
XB.AT_Config(string("ATDB")) is used to place the XBee into Configuration Mode and
sendthe ATDB command (it also sends the CN to exit Command Mode). The returned
hexadecimal value is returned and saved using

DataIn := XB.RxHexTime(200)

• The dBm level is displayed by sending it back to the base unit.
• Note that RxFlush is used to clear out the buffer when using the command mode to prevent

buffered data from interfering. This means that not all of our burst data will be processed.

Testing:

 Base XBee connected to PC using USB adapter or Propeller with Serial_Pass_Through.spin
and X-CTU terminal Window.

 Remote XBee with Propeller running Config_Getting_dB_Level.spin.
 Test using the ! delimiter and values. Note that the dBm level is returned after a good set of

data and remaining data is lost as shown in

Paul C Smith
Sticky Note
We're really just using this to turn off the Association indicator, right? We don't care that it's set to a default low output, we just care that it's no longer an Association Indicator, right? Setting it to 5 (output high) would work just as well.

The reader may be confused about that, and wonder why we're concerned that it be "output low".

Paul C Smith
Sticky Note
Something got screwed up here. I think the rest of the text is behind the next graphic box.

4: Programming for Data and XBee Configurations

DRAFT. COPYRIGHT © PARALLAX INC 2010 Getting Started with XBee RF Modules · Page 73

Figure 4-15: Configuring and Reading dBm Level Test

Config with Variables:

Using AT_Config, a complete string is required. If a variable value is needed, use AT_ConfigVal method
where a string and value are passed: XB.AT_ConfigVal(string("ATDL"), DL_Val).

Monitor LEDs:

When the code starts and goes through the configuration sequence, watching the Tx & Rx LEDs blink back
and forth is a great indicator that it the XBee is accepting your command mode functions.

While configuring the XBee in code is nice, it can lead to issues. Let’s say you add code to change
the baud rate and it begins to communicate at 1200 after configuration code. When you download
new code, the XBee will still be at 1200 baud and your configuration information at 9600 will not be
understood (especially an issue if you changed the configuration!). Either manually cycling power on
the board to reset or using the XBee Reset line (brought LOW to reset before configuring) to return to
default configurations may be needed. While the Propeller resets with a code download, the XBee
does not!

Summary
The BASIC Stamp and Propeller can both be programmed to receive data, bytes or decimal values.
With the BASIC Stamp, the use of RTS can help ensure data is not missed. With both controllers,
XBee configuration may be performed by both controllers using the XBee’s AT Command Mode to
change settings or to request data such as dBm level for RSSI. While an XBee and terminal window
were used, in upcoming chapters two controllers will be used to interact with one another using
XBees.

Paul C Smith
Sticky Note
How about something like this instead?

"The AT_Config method can be used to send configuration commands when you know the complete command, including parameters in advance. For example, you could send "ATBD 0" if you knew you wanted to set the interface rate to 1200 baud. But if you want to send a configuration command with a parameter that is determined by your code, use the AT_ConfigVal method. This allows you to send a string and a value: XB.AT_ConfigVal(string("ATBD"), BD_Val).

