F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

PROPELLER 2 MEMORY

"In the Propeller 2, there are two primary types of memory:
HUB MEMORY
128K bytes of main memory shared by all cogs
- cogs launch from this memory
- cogs can access this memory as bytes, words, longs, and quads (4 longs)

" - $00000..$00E7F is ROM - contains Booter, SHA-256/HMAC, and Monitor
" - $00E80..$1FFFF is RAM - for application usage

COG MEMORY (8 sets)
512 longs of register RAM for code and data usage

- simultaneous instruction, source, and destination reading, plus writing
256 longs of push/pop RAM for data and video usage

- pushes are 1-clock
- pops are 2-clock
- video circuit can read data simultaneously and asynchronously

"HUB MEMORY INSTRUCTIONS

"These instructions read and write hub memory.

"All instructions use D as the data conduit, except WRQUAD/RDQUAD/RDQUADC, which use the four QUAD
"registers. The QUADs can be mapped into cog register space using the SETQUAD instruction or kept
"hidden, in which case they are still useful as data conduit and as a read cache. If mapped, the QUADs
"overlay four contiguous cog registers which can begin at any double-even address (%xxxxxxx00). These
"overlaid registers can be read and written as any other registers, as well as executed.

-1-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

"The cached reads RDBYTEC/RDWORDC/RDLONGC/RDQUADC will do a RDQUAD if the current read address is
"outside of the 4-long window of the prior RDQUAD. Otherwise, they will immediately return cached

"data. The CACHEX instruction invalidates the cache, forcing a fresh RDQUAD next time a cached read
"executes.

"Hub memory instructions must wait for their cog”s hub cycle, which comes once every 8 clocks.

"The timing relationship between a cog”s instruction stream and its hub cycle is generally indeterminant,
"causing these instructions to take varying numbers of clocks. Timing can be made determinant, though,
"by intentionally spacing these instructions apart so that after the first in a series executes, the
"subsequent hub memory instructions fall on hub cycles, making them take the minimal numbers of

"clocks. The trick is to write useful code to go in between them.

WRBYTE/WRWORD/WRLONG/WRQUAD/RDQUAD "complete on the hub cycle, making them take 1..8 clocks.
RDBYTE/RDWORD/RDLONG “complete on the 2nd clock after the hub cycle, making them take 3..10 clocks.
RDBYTEC/RDWORDC/RDLONGC "take only 1 clock if data is cached, otherwise 3..10 clocks.

RDQUADC “takes only 1 clock if data is cached, otherwise 1..8 clocks.

"After a RDQUAD, the QUAD registers are accessible via D and S on the 3rd clock and executable on the
"5th clock.

instructions clocks
000000 000 O CCcCC DDDDDDDDD SSSSSSSSS WRBYTE D,S "write lower byte in D at S 1..8
000000 000 1 CcccCC DDDDDDDDD SUPNNNNNN WRBYTE D,PTR "write lower byte in D at PTR 1..8
000000 z01 0 CCCC DDDDDDDDD SSSSSSSSS RDBYTE D,S "read byte at S into D 3..10
000000 Z01 1 CcccC DDDDDDDDD SUPNNNNNN RDBYTE D,PTR "read byte at PTR into D 3..10
000000 Z11 O CCCC DDDDDDDDD SSSSSSSSS RDBYTEC D,S "read cached byte at S into D 1, 3..10
000000 Z11 1 CccCCC DDDDDDDDD SUPNNNNNN RDBYTEC D,PTR "read cached byte at PTR into D 1, 3..10
000001 000 O CCCC DDDDDDDDD SSSSSSSSS WRWORD D,S "write lower word in D at S ..8
000001 000 1 cccc DDDDDDDDD SUPNNNNNN WRWORD D,PTR "write lower word in D at PTR ..8
000001 z01 O CCCC DDDDDDDDD SSSSSSSSS RDWORD D,S "read word at S into D 3..10
000001 Zz01 1 cccC DDDDDDDDD SUPNNNNNN RDWORD D,PTR "read word at PTR into D 3..10
000001 Z11 O CCCC DDDDDDDDD SSSSSSSSS RDWORDC D, S "read cached word at S into D 1, 3..10

2



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

000001 Z11 1 CCCC DDDDDDDDD SUPNNNNNN

000010
000010
000010
000010
000010
000010

000011
000011
000011
000011
000011
000011

000
000
Z01
Z01
Z11
Z11

CcccC
Ccccc
Ccccc
CcccC
CcccC
Ccccc

P OFr OFr O

000 0 cccc

001 1 CCCC

000 0 cccc
1 CccC
0 CcccC
1

CCCC

001
010
011

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
SUPNNNNNN
DDDDDDDDD
SUPNNNNNN
DDDDDDDDD
SUPNNNNNN

SSSSSSSSS
SUPNNNNNN
SSSSSSSSS
SUPNNNNNN
SSSSSSSSS
SUPNNNNNN

010110000
010110000
010110001
010110001
010110001
010110001

RDWORDC

WRLONG
WRLONG
RDLONG
RDLONG
RDLONGC
RDLONGC

WRQUAD
WRQUAD
RDQUAD
RDQUAD
RDQUADC
RDQUADC

D,PTR

D,S
D,PTR
D,S
D,PTR
D,S
D,PTR

"read cached word at PTR into D
"write D at S

"write D at PTR

"read long at S into D

"read long at PTR into D

"read cached long at S into D
"read cached long at PTR into D

"write QUADs at D

"write QUADs at PTR

"read quad at D into QUADs

"read quad at PTR into QUADs

"read cached quad at D into QUADs
"read cached quad at PTR into QUADs

.-.10

.10
.10
.10
..10

"PTR ex

" IN
" SC

S
U
P =
NNN

pressions:

DEX
ALE

0 for PTRA, 1 for PTRB
0 to keep PTRx same, 1 to update PTRx
0 to use PTRx + INDEX*SCALE, 1 to use PTRx (post-modify)

NNN =

INDEX

nnnnnn = -INDEX

SUP

NNNNNN

PTR expression

-32..+31 for simple offsets, 0..31 for ++s, or 0..32 for --"s
1 for byte, 2 for word, 4 for long, or 16 for quad

000000
000000
000001
000001
111111
111111
000001

PTRB

PTRA++
PTRB++
PTRA--
PTRB--
++PTRA

PTRA + SCALE,

PTRA += SCALE
PTRB += SCALE
PTRA -= SCALE
PTRB -= SCALE
PTRA += SCALE

-3-

den 4 december 2012 03:55



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

110
010
110

000
100
011
111
011
111
010
110
010
110

000001
111111
111111

NNNNNN
NNNNNN
NNNNNN
NNNNNN
nnnnnn
nnnnnn
NNNNNN
NNNNNN
nnnnnn
nnnnnn

++PTRB
--PTRA
--PTRB

PTRA[INDEX]

PTRBLINDEX]

PTRA++[ INDEX]
PTRB++[ INDEX]
PTRA--[INDEX]
PTRB--[INDEX]
++PTRA[INDEX]
++PTRB[INDEX]
——PTRA[INDEX]
~—PTRBLINDEX]

"Examples:

000000
000001
000010
000011
000000

Z01
000
Z01
001
000

000001
000010
000011
000000
000001

000
Z11
001
000
Z01

Bytes, words,

for
for
for
for

address

N

PR R R R

CCcC
Cccc
CCcC
CCcCC
CCCC

CCCC
CccC
CcccC
CCcC
CCCC

longs, and quads

byte word

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
110000001
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
111111101
DDDDDDDDD
DDDDDDDDD

WRBYTE/RDBYTE/RDBYTEC,
WRWORD/RDWORD/RDWORDC,
WRLONG/RDLONG/RDLONGC,
WRQUAD/RDQUAD/RDQUADC,

long

000000000
111000001
011111111
010110001
010111111

100000111
011001111
010110000
010000110
110110110

use
use
use

use
use
use
use
use
use
“use
"use
"use
use

address =
address =
address =
address =

quad

in D at PTRB,

"read quad at PTRB+16 into QUADs,
"write lower byte in D at PTRA-1,

in D to PTRB+7*2

"read cached long at PTRA into D,

"write lower byte in D to PTRA+6*1,

PTRB + SCALE, PTRB += SCALE

PTRA - SCALE, PTRA -= SCALE

PTRB - SCALE, PTRB -= SCALE

PTRA + INDEX*SCALE

PTRB + INDEX*SCALE

PTRA, PTRA += INDEX*SCALE
PTRB, PTRB += INDEX*SCALE
PTRA, PTRA -= INDEX*SCALE
PTRB, PTRB -= INDEX*SCALE
PTRA + INDEX*SCALE, PTRA += INDEX*SCALE
PTRB + INDEX*SCALE, PTRB += INDEX*SCALE
PTRA - INDEX*SCALE, PTRA -= INDEX*SCALE
PTRB - INDEX*SCALE, PTRB -= INDEX*SCALE
RDBYTE D,PTRA "read byte at PTRA into D
WRWORD D,PTRB++ "write lower word
RDLONG D,PTRA-- "read long at PTRA into D,
RDQUAD ++PTRB

WRBYTE D,--PTRA

WRWORD D,PTRB[7] "write lower word
RDLONGC D,PTRA++[15]

WRQUAD PTRB--[3] "write QUADs at PTRB,
WRBYTE D,++PTRA[6]

RDWORD D,--PTRB[10]

are addressed as follows:

FOXXAXXXKXXKKXXKXXXX
PIXXXXXXXXXXXXX XXX~
£0,9.9,0,:0.9.0.9,0.09.0.0.0.0.CE

(bits
(bits
(bits
PXXXXXXXXXXXXX-=-— (bits

"read word at PTRB-10*2 into D,

16.
16.
16.
16.

.0 are
.1 are
.2 are
.4 are

used)
used)
used)
used)

PTRB
PTRA
PTRB
PTRA

PTRA
PTRB
PTRA
PTRB




F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

00000- 50
00001- 72
00002- 6F
00003- 70
00004- 32
00005- 2E
00006~ 30
00007- 20
00008- 00
00009- 20
OO000A- 7C
0000B- oC
0000C- 03
0000D- cC
OOO0OE- 7C
OOO0OF- oC
00010- 45
00011- FE
00012- C1
00013- oD
00014- E3
00015- B6
00016- FC
00017- oC
00018- 01
00019- C6
0001A- 7C
0001B- oC
0001C- 01
0001D- C6
0001E- 7C
0001F- oD

* new word/long/quad

*7250
7250
*706F
706F
*2E32
2E32
*2030
2030
*2000
2000
*0C7C
0c7C
*CCO03
CCo3
*0C7C
0c7C
*FEA45
FE45
*0DC1
0DC1
*B6E3
B6E3
*0CFC
OCFC
*C601
C601
*0C7C
0c7C
*C601
C601
*0D7C
0D7C

*706F7250
706F7250
706F7250
706F7250

*20302E32
20302E32
20302E32
20302E32

*0C7C2000
0C7C2000
0C7C2000
0C7C2000

*0C7CCCO3
0C7CCCO03
0C7CCCO03
0C7CCCO03

*ODC1FE45
ODC1FE45
ODC1FE45
ODC1FE45

*0OCFCB6ES3
OCFCB6E3
OCFCB6E3
OCFCB6E3

*0C7CC601
0C7CC601
0C7CC601
0C7CC601

*0D7CC601
0D7CC601
0D7CC601
0D7CC601

*0C7CCCO30C7C200020302E32706F7250

0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250
0C7CCCO30C7C200020302E32706F7250

*0D7CC6010C7CC6010CFCB6E30DC1FEA4S

0OD7CC6010C7CC6010CFCBG6E30DC1FE4S
0D7CC6010C7CC6010CFCB6E30DC1FE4S
0D7CC6010C7CC6010CFCB6E30ODC1FEAS
0OD7CC6010C7CC6010CFCB6E30DC1FE45S
0D7CC6010C7CC6010CFCBGE30DC1FE4S
0OD7CC6010C7CC6010CFCB6E30DC1FE4S
0D7CC6010C7CC6010CFCB6E30DC1FEAS
0OD7CC6010C7CC6010CFCB6E30DC1FE45S
0OD7CC6010C7CC6010CFCBGE30DC1FE4S
0D7CC6010C7CC6010CFCB6E30DC1FE4S
0D7CC6010C7CC6010CFCB6E30DC1FEAS
0OD7CC6010C7CC6010CFCB6E30DC1FE45S
0D7CC6010C7CC6010CFCBGE30DC1FE4S
0D7CC6010C7CC6010CFCB6E30DC1FE4S
0D7CC6010C7CC6010CFCB6E30ODC1FEAS

-5-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

"PTRA/PTRB

"Each cog has two 17-bit pointers, PTRA and PTRB, which can be read, written, modified,

INSTRUCTIONS

"and used to access hub memory.

"On cog startup, the PTRA and PTRB registers are initialized as follows:

PTRA
PTRB

%X XXXXXXXX_XXXXXXXX, data from launching cog, usually a pointer

YoX_ XXXXXXXX_XXXXXX00,

instructions

long address in hub where cog code was loaded from

clocks

000011 ZCR 1
000011 ZCR 1

000011
000011
000011
000011

000011
000011
000011
000011

000011
000011
000011
000011

000
001
000
001

000
001
000
001

000
001
000
001

[ = ==

S N = =

DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
nnnnnnnnn
DDDDDDDDD
nnnnnnnnn

DDDDDDDDD
nnnnnnnnn
DDDDDDDDD
nnnnnnnnn

DDDDDDDDD
nnnnnnnnn
DDDDDDDDD
nnnnnnnnn

000010010
000010011

010110010
010110010
010110011
010110011

010110100
010110100
010110101
010110101

010110110
010110110
010110111
010110111

GETPTRA D
GETPTRB D

SETPTRA D
SETPTRA #n
SETPTRB D
SETPTRB #n

ADDPTRA D
ADDPTRA #n
ADDPTRB D
ADDPTRB #n

SUBPTRA D
SUBPTRA #n
SUBPTRB D
SUBPTRB #n

"set PTRB to 0..511

"add D into PTRA
"add 0..511 into
"add D into PTRB
"add 0..511 into

"subtract D from
"subtract 0..511
"subtract D from
"subtract 0..511

PTRA

PTRB

PTRA
from
PTRB
from

= PTRA[16]
= PTRB[16]

PTRA

N

N

"Each cog has four QUAD registers which form a 128-bit conduit between the hub memory and the cog.

-6-

den 4 december 2012 03:55



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

"This conduit can transfer four longs every 8 clocks via the WRQUAD/RDQUAD instructions. It can
"also be used as a 4-long/8-word/16-byte read cache, utilized by RDBYTEC/RDWORDC/RDLONGC/RDQUADC.

"Initially hidden, these QUAD registers are mappable into cog register space by using the SETQUAD
"instruction to set a double-even address (%xxxxxxx00) where the base register is to appear, with
"the other three registers following. To hide the QUAD registers, use SETQUAD to set an address
"which is not double-even.

instructions clocks
000011 000 1 CcCC 000000000 000001000 CACHEX "invalidate cache 1
000011 z01 1 cccC DDDDDDDDD 000010001 GETTOPS D "get top bytes of QUADs into D 1
000011 000 1 cccc DDbDDDDDDD 011100010 SETQUAD D "set QUAD base address to D 1
000011 001 1 CCCC nnnnnnnnn 011100010 SETQUAD #n "set QUAD base address to 0..511 1

"HUB INSTRUCTIONS

"These instructions are used to control hub circuits and cogs.

"Hub instructions must wait for their cog” s hub cycle, which comes once every 8 clocks. In cases where
"there is no result to wait for (ZCR = %000), these instructions complete on the hub cycle, making
"them take 1..8 clocks, depending on where the hub cycle is in relation to the instruction. In cases
"where a result is anticipated (ZCR <> %000), these instructions complete on the 1st clock after the
"hub cycle, making them take 2..9 clocks.

COGINIT D,s

COGINIT "is used to start cogs. Any cog can be (re)started, whether it is idle or running. A cog
"can even execute a COGINIT to restart itself with a new program.

COGINIT uses D to specify a long address in hub memory “that is the start of the program that is to be
"loaded into a cog, while S is a 17-bit parameter (usually an address) that will be conveyed to PTRA

-7-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

"of the started cog. PTRB of the started cog will be set to the start address of its program that was
"loaded from hub memory.

SETCOG "must be executed before® COGINIT *"to set the number of the cog to be started (0..7). ITf SETCOG
"sets a value with bit 3 set (%1xxx), this will cause the next idle cog to be started when COGINIT is
"executed, with the number of the cog started being returned in D, and the C flag returning 0 if okay,
"or 1 if no idle cog was available. Upon cog startup, SETCOG is initialized to %0000.

"When a cog is started, $1F8 contiguous longs are read from hub memory and written to cog registers
"$000..%$1F7. The cog will then begin execution at $000. This process takes 1,016 clocks.

Example:

COGID  COGNuM "what cog am 17

SETCOG COGNUM "set my cog number

COGINIT COGPGM,COGPTR "restart me with the ROM Monitor
COGPGM LONG $0070C "address of the ROM Monitor
COGPTR LONG 90<<9 + 91 "tx = P90, rx = P9l
COGNUM  RES 1
CLKSET D

CLKSET "writes the lower 9 bits of D to the hub clock register:
%R_MMMM_XX_SS
R = 1 for hardware reset, 0 for continued operation
MMMM = PLL multiplying factor for X1 pin input:
%0000 for PLL disabled
%0001..%1111 for 2..16 multiply (XX must be set for Xl input or XI1/XO crystal oscillator)
XX = X1/X0 pin mode:

00 for XI reads low, XO floats
01 for XI input, XO floats

8-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin den 4 december 2012 03:55

10 for XI1/X0 crystal oscillator with 15pF internal loading and 1M-ohm feedback
11 for X1/X0 crystal oscillator with 30pF internal loading and 1M-ohm feedback

SS = Clock selector:
00 for RCFAST (~20MHZz)
01 for RCSLOW (~20KHZz)
10 for XTAL (10MHz-20MHZz)
11 for PLL

"Because the the clock register is cleared to %0 0000 00 00 on reset, the chip starts up in RCFAST mode
"with both the crystal oscillator and the PLL disabled. Before switching to XTAL or PLL mode from RCFAST
"or RCSLOW, the crystal oscillator must be enabled and given 10ms to stabilize. The PLL stabilizes within
"10us, so i1t can be enbled at the sime time as the crystal oscillator. Once the crystal is stabilized, you
"can switch between XTAL and RCFAST/RCSLOW without any stability concerns. If the PLL is also enabled, you
"can switch freely among PLL, XTAL, and RCFAST/RCSLOW modes. You can change the PLL multiplier while being
"in PLL mode, but beware that some frequency overshoot and undershoot will occur as the PLL settles to its
"new frequency. This only poses a hardware problem if you are switching upwards and the resulting overshoot
"might exceed the speed limit of the chip.

COGID “returns the number of the cog (0..7) into D.

COGSTOP D

COGSTOP “stops the cog specified in D (0..7).

LOCKNEW D
LOCKRET D
LOCKSET D
LOCKCLR D

There are eight semaphore locks available in the chip which can be borrowed with LOCKNEW, returned with

-0-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

den 4 december 2012 03:55

LOCKRET, set with LOCKSET, and cleared with LOCKCLR.

While any cog can set or clear any lock without using LOCKNEW or LOCKRET, LOCKNEW and LOCKRET are provided
so that cog programs have a dynamic and simple means of acquiring and relinquishing the locks at run-time.

When a lock is set with LOCKSET, its state is set to 1 and its prior state is returned in C. LOCKCLR works
the same way, but clears the lock's state to 0. By having the hub perform the atomic operation of setting/
clearing and reporting the prior state, cogs can utilize locks to insure that only one cog has permission
to do something at once. If a lock starts out cleared and multiple cogs vie for the lock by doing a
'LOCKSET locknum wc', the cog to get C=0 back 'wins' and he can have exclusive access to some shared
resource while the other cogs get C=1 back. When the winning cog is done, he can do a 'LOCKCLR locknum' to
clear the lock and give another cog the opportunity to get C=0 back.

LOCKNEW returns the next available lock into D, with C=1 if no lock was free.
LOCKRET frees the lock in D so that it can be checked out again by LOCKNEW.
LOCKSET sets the lock in D and returns its prior state in C.

LOCKCLR clears the lock in D and returns its prior state in C.

instructions clocks
000011 ZCR O CCCC DDDDDDDDD SSSSSSSSS COGINIT D,S "launch cog at D, cog PTRA = S 1..9
000011 000 1 cccc DDDDDDDDD 000000000 CLKSET D "set clock to D 1..8
000011 001 1 cccc DDDDDDDDD 000000001 CoGID D "get cog number into D 2..9
000011 000 1 cccc DbDDDDDDD 000000011 COGSTOP D "stop cog in D 1..8
000011 zC1 1 ccccC DDDDDDDDD 000000100 LOCKNEW D "get new lock into D, C = busy 2..9
000011 000 1 cccc DDDDDDDDD 000000101 LOCKRET D "return lock in D 1..8
000011 0OCO 1 cccc DDDDDDDDD 000000110 LOCKSET D "set lock in D, C = prev state 1..9
000011 0OCO 1 cccc DbDDDDDDD 000000111 LOCKCLR D "clear lock in D, C = prev state 1..9

"Each cog has two indirect registers:

INDA and INDB. They are located at $1F6 and $1F7, respectively.

-10-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin den 4 december 2012 03:55

INDA and INDB "each have three hidden 9-bit registers associated with them: the current pointer, the bottom
"limit, and the top limit. The top and bottom limits are inclusive values which set automatic wrapping for
"the current pointer. This way, limited circular buffers can be established within cog RAM.

SETINDA/SETINDB/SETINDS "is used to set or adjust the current pointer value(s) while forcing the associated
"bottom limit(s) to $000 and the top limit(s) to $1FF.

FIXINDA/FIXINDB/FIXINDS "sets the current pointer(s) to an inital value, while setting the bottom limit(s)
"to the lower of the initial and terminal values and the top limit(s) to the higher.

By using INDA or INDB for D or s, "the register pointed at by INDA"s or INDB"s current pointer is addressed.

"Because indirect addressing occurs very early in the pipeline and indirect pointers are affected earlier than

"the last stage, where the conditional bit field (CCCC) normally comes into use, the CCCC field is repurposed
*for indirect operations. The top two bits of CCCC are used for indirect D and the bottom two bits are used
*for indirect S. All instructions which use indirect registers will execute unconditionally.
Here is the INDA/INDB “usage scheme which repurposes the CCCC field:

000000 ZCR 1 CCCC DDDDDDDDD SSSSSSSSS

XXXXXX XXX X 00xx 111110110 XXXXXXXXX D = INDA “use INDA

XXXXXX XXX X 00xx 111110111 XXXXXXXXX D = INDB “"use INDB

XXXXXX XXX X 01xx 111110110 XXXXXXXXX D = INDA++ “use INDA, INDA += 1
XXXXXX XXX X 01xx 111110111 XXXXXXXXX D = INDB++ "use INDB, INDB += 1
XXXXXX XXX X 10xX 111110110 XXXXXXXXX D = INDA-- “"use INDA, INDA -= 1
XXXXXX XXX X 10xx 111110111 XXXXXXXXX D = INDB-- “"use INDB INDB -= 1
XXXXXX XXX X 11Ixx 111110110 XXXXXXXXX D = ++INDA "use INDA+1, INDA += 1
XXXXXX XXX X 1Ixx 111110111 XXXXXXXXX D = ++INDB "use INDB+1, INDB += 1
XXXXXX XXX 0 XX00 Xxxxxxxxx 111110110 S = INDA “use INDA

XXXXXX XXX 0 XX00 XXXXXXxXxxX 111110111 S = INDB “use INDB

XXXXXX XXX 0 XX01 XxXxXxXxxxxx 111110110 S = INDA++ "use INDA, INDA += 1
XXXXXX XXX 0 XXO01 XXxXxXxXxxxx 111110111 S INDB++ “"use INDB, INDB += 1
XXXXXX XXX 0 XX10 Xxxxxxxxx 111110110 S = INDA-- "use INDA, INDA -= 1
XXXXXX XXX 0 XX10 XXXXXXXxXX 111110111 S = INDB-- “use INDB INDB -= 1
XXXXXX XXX 0 XX11 XXXXXXxXxXX 111110110 S = ++INDA “"use INDA+1, INDA += 1
XXXXXX XXX 0 XX11 XXXXXXXXX 111110111 S = ++INDB "use INDB+1, INDB += 1

-11-



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin

"If both D and S are the same indirect register,

"post-modifier effect:

101000 001 O 0011 111110110 111110110
100000 001 O 1100 111110111 111110111

“Note that only *7++INDx, INDx" and " INDx,++INDx"

MOV INDA, ++INDA
++INDB, INDB

ADD

"Move @INDA+1 into @INDA,
"Add @INDB into @INDB+1,

INDA += 1
INDB += 1

"Here are the instructions which are used to establish the current pointer, top limit, and bottom limit
values for INDA and INDB:

instructions *

111000 000 O

111000

111000
111000

111000
111000
111000
111000

111001
111001
111001

000

000
000

000
000
000
000

000
000
000

0]

000000000
000000000

BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

TTTTTTTTT
TTTTTTTTT
TTTTTTTTT

AAAAAAAAA

000000000
000000000

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

SETINDA
SETINDA

SETINDB
SETINDB

SETINDS
SETINDS
SETINDS
SETINDS

FIXINDA
FIXINDB
FIXINDS

clocks
CUrrA 1
deltA 1
currB 1
deltB 1
currB,currA 1
currB,deltA 1
deltB,currA 1
deltB,deltA 1
terminal, initial 1
terminal, initial 1
terminal, initial 1

* currA/currB/terminal/initial =

Examples:

111000 000 O 0001 OOOOOOO0O 000000101
111000 000 O 0011 OOOOOOOOO 000000011
111000 000 O 1100 111111100 OOOOO0OO00O
111000 000 O 0111 000000111 000001000

register (O..

SETINDA
SETINDA
SETINDB
SETINDS

deltA/deltB = signed value (-$100..$FF)

5 "INDA = 5, bottom = 0, top = $1FF
+3 "INDA += 3, bottom = 0, top = $1FF
-4 "INDB -= 4, bottom = 0, top = $1FF
7,+8 "INDB = 7, INDA += 8, bottoms = 0, tops

the two 2-bit fields in CCCC are OR"d together to get the

combinations provide different registers from the same INDXx.

$1FF

-12-

den 4 december 2012 03:55



F:\-Morph-Temp\_NANO_\Emulator\Production\PROPELLER 2 MEMORY Instructions.spin den 4 december 2012 03:55

111001 000 O 0001 000001111 000001000 FIXINDB 15,8 "INDA = 8, bottom = 8, top = 15
111001 000 O 0100 000010000 000011111 FIXINDB 16,31 " INDB 31, bottom = 16, top = 31
111001 000 O 0101 001100011 000110010 FIXINDS 99,50 'INDA/INDB = 50, bottoms = 50, tops = 99

-13-





