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PE Kit Tools: Measure Resistance and Capacitance 
Propeller microcontroller applications that need to measure resistors or capacitors can use the RC 
Time object and a resistor capacitor (RC) circuit.  Since there’s a myriad of resistive and capacitive 
sensors that respond to physical properties such as light, rotation, humidity and force (to name a few), 
the simple, inexpensive circuits and the easy-to-use RC Time object featured in this PE Kit Tools 
article open up a world of measurement possibilities. 
 
Web version: PE Kit Tools: Measure Resistance and Capacitance 
Full PDF & source code: PE Kit Tools - Measure Resistance and Capacitance.zip   
More info: PE Kit Labs, Tools, and Applications 

Platform: Propeller Education Kit 
 
In this Tool Chapter: 
 

• RC Time Parts and Circuit 
• How RC Time Measurements Work 
• Simple Test Code  
• RC Time object features 

o Timeout Setting 
o Charge Time Setting 
o Sequential vs. parallel measurements 
o Establishing Sampling Rates 

• More PE Kit Sensor Examples 
o Ambient and Infrared Phototransistors 
o Direct Sunlight with LEDs 
o Proximate Flame with an Infrared LED 

• Application Example: RC Resistance Meter  
• Application Example: 200 kHz Sampling Rate 

RC Time Parts and Circuit 
One of the most common variable resistance sensors is the potentiometer, a.k.a “pot”.  As the knob on 
the pot is turned, its resistance varies.  The Propeller microcontroller can use the RC Time object to 
measure the variable resistors (labeled POT) in Figure 1, which can in turn give the application 
accurate information about how far each potentiometer knob has been turned.  The potentiometer can 
also be replaced by any number of other resistive sensors.  For example, if the pot is replaced with a 
photoresistor, the circuit can instead be used to measure light intensity.  If the pot is replaced with a 
fixed resistor, variable capacitor sensors that measure pressure or humidity can be measured.  The 
examples in this chapter will use a couple of potentiometers to explore the RC Time object’s features, 
and then demonstrate how other PE Kit parts like phototransistors and LEDs can be used with RC 
Time to measure a variety of physical properties.   
 

 Build the circuits shown in Figure 1. 
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Figure 1: RC Test Circuits and Parts List  

 

How RC Time Measurements Work 
The RC Time object can be used to determine a variable resistor value by treating the capacitor in the 
circuit like a small battery.  It charges up this capacitor (left side of Figure 2) by sending an output-
high signal to the I/O pin.  Then, it changes the pin to input and measures the time it takes the 
capacitor’s voltage to decay as it looses its charge through the variable resistor (right side of Figure 
2).  The decay measurement time (Δt) starts at 3.3 V, and stops when the voltage to decays below the 
Propeller I/O pin’s 1.65 V logic threshold.  For larger resistances, it takes more time for the capacitor 
to lose its charge.  For smaller the resistances, it takes less time for the capacitor to lose its charge.   
 
Figure 2: Microcontroller RC Decay Measurement(1)  

  
(1) Excerpt from Propeller Education Kit Labs: Fundamentals 
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The equation that describes the time it takes for the voltage to decay from 3.3 to 1.65 V is: 
 

Δt = 0.693 × C × R 
 

With a little algebra, the terms can be rearranged to solve for the value of R.  This is great if the 
project is to make a simple resistance meter.  On the other hand, if the application needs a sensor 
measurement, it may just scale the time measurement and compare it to some benchmark values.  
Other sensor applications need to compare the sensor measurement to complex equations, and others 
still use points from a graph in the sensors datasheet.  The application can then check to find out 
which value in the list is closest to the measured value and so determine the value of the property the 
sensor measures. 
 

! 

Use the extra 100 Ω series resistor with the pot!    

Figure 1 shows a 100 Ω series resistor in series with the potentiometer, but it is missing from Figure 2 for the 
sake of simplicity.  When the potentiometer in the PE Kit is turned all the way in one direction, its resistance 
is 0 Ω.  Without the 100 Ω resistor, what you have on the left side of Figure 2 is a short circuit to ground 
during the period of time that the Propeller I/O pin is charges the capacitor by applying 3.3 V.  While this brief 
short circuit should not damage the Propeller chip or its I/O pin, it could cause a brief dip in the supply 
voltage, which could potentially cause problems with other circuits in an application.  For example, if another 
cog is using that supply voltage as an A/D conversion voltage reference, the supply voltage dip might throw 
off the measurements.   

Not all resistive elements can create short circuit’s to ground.  If you replace the potentiometer with a 
resistive element that never drops below 100 Ω, the extra resistor in Figure 1 is not necessary.   

Although a series resistor between the I/O pin would provide the same protection, the math to provide a 
correction factor using the voltage divider equation is more complicated and would take more program 
memory.  The 100 Ω resistor simply adds a constant offset to any measurement, but the relationship 
between R (or C) and decay time remains directly proportional (y = mx + b).  At the time of this writing, the 
affect of initial current to the capacitor when the I/O pin switches high is not known.  It might also affect 
circuits that are referencing the Propeller chip’s supply voltage.   

Simple Test Code 
The RC Time object has lots of tools for measuring RC voltage growth and decay in circuits.  In its 
simplest form, code that measures the circuits in Figure 1 resembles PBASIC RCTIME commands 
for the Parallax BASIC Stamp microcontroller.  After declaring the RC Time object, the code passes 
the pin, voltage state of the circuit at the start of the measurement, and the address of the variable 
where the Time method should store the result.  The RC Time object uses these parameters to charge 
the circuit, measure the growth/decay, and store the results in the appointed variables: tGrowth in the 
first method call, and tDecay in the second.  
 
  'Test Simple RCTIME.spin 
  '... 
  OBJ 
    rc : "RC Time" 
    '... 
  PUB Go | tGrowth, tDecay 
    rc.time(27, 0, @tGrowth) 
    rc.time(17, 1, @tDecay) 
    '... 
 
The “PE Kit Tools – Measure Resistance and Capacitance.zip” file has both Spin and ASM versions 
of the RC Time object along with several test code examples.  The first code example to try is “Test 
Simple RCTIME.spin”.  This object use the PST Debug LITE object to display the measurements in 
the Parallax Serial Terminal.  For a primer on how to use this object to display variable names and 
their values, see Debug LITE for the Parallax Serial Terminal topic. 
 

 Download and unzip “PE Kit Tools – Measure Resistance or Capacitance.zip”. 
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 Open “Test Simple RCTIME.spin” with the Propeller Tool software. 
 Open the Parallax Serial Terminal, and set the COM Port to the Propeller chip’s 

programming port.  (You can use F7 in the Propeller Tool to find out which port that is.) 
 Set the Parallax Serial Terminal’s Baud Rate to 115200. 
 In the Propeller Tool, load the Test Simple RCTIME object into the Propeller chip with F11 
 Wait just long enough for the Propeller Tool software’s Communication window to report 

“Loading…” before clicking the Parallax Serial Terminal’s Enable button.  The Parallax 
Serial Terminal will wait for the Propeller Tool software to finish loading code into the 
Propeller chip before it connects to the COM port. 

 
Figure 3 shows an example of how “Test Simple RCTIME.spin” displays decay and growth time 
measurements in the Parallax Serial Terminal.  These growth and decay times are in terms of 12.5 ns 
units.  That’s because this program has the Propeller chip’s system clock set to 80 MHz, and if the 
clock is ticking at 80 million times per second, the time between each tick is 12.5 ns.   
 

 
 
The range of decay times should be about ten times the range of growth times since the decay circuit 
has a capacitor that’s ten times as large as the one in the growth circuit.  Since the decay circuit’s 
capacitor can store ten times the charge, the voltage will take ten times as long to decay through the 
same size resistor.  This can be verified by setting the potentiometers to roughly the same position.  
The tDecay value should be about ten times the tGrowth value.  There will be some variation, 
especially since the threshold voltage is not likely to be exactly 1.65 V.  For example, if the threshold 
voltage instead 1.63 V, the decay time will be longer and the growth time will be shorter.  Reason 
being, the decay will have to drop from 3.3 V down to 1.63 V, which is a 1.67 V decay.  Meanwhile, 
measuring the growth will only be a 1.1.63 V voltage rise, and a different growth time measurement. 
 

! 
Since threshold voltage can vary between I/O pins and Propeller chips, some 
calibration may be necessary if you use this technique to make a resistance or 
capacitance meter.  A resistance meter application example that demonstrates 
calibration is included later in this chapter. 

RC Time Object Features 
The RC Time object has a number of built-in features to make measurements simple and easy.  For 
example, it has a built-in timeout that stops waiting for the decay (or growth) to cross the Propeller 
I/O pin’s logic threshold after 0.01 seconds.  It also has a charge time of 0.1 ms before it starts the 
measurement.  The RC Time object has methods that allow you to adjust these values.  
 

Figure 3: RC Decay and 
Growth Measurements 
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The RC Time object also defaults to taking measurements sequentially.  In this mode, the cog that 
calls the object’s Time method has to wait for the measurement to complete.  There is also a method 
for configuring the RC Time object to take its measurements in parallel, without halting execution in 
the cog that called its Time method.  Additionially, the RC Time object has Start and Stop methods 
for taking repeated measurements and storing the latest measurements in certain variables and 
specified intervals. 

Timeout Setting 
Let’s say a circuit will decay under most circumstances, but not always.  What happens then?  Some 
objects that measure RC decay will wait indefinitely.  In contrast, the RC Time object has a 
configurable timeout that defaults to 10 ms to prevent this problem.  This configurable timeout also 
prevents the application from having to wait an unnecessarily long time for circuits that are 
responding slowly due to a large resistance or capacitance value.  In many cases, a slow RC response 
indicates a throw-away measurement anyhow.  A photoresistor in complete darkness is an example.  
It can really slow down an RC measurement due to large resistance values, but maybe the application 
only cares that it’s beyond a certain level of darkness.  At that point, the application might chose to 
hibernate until morning, or maybe turn on the lights! 
 
Both the RC Time and RC Time.ASM objects have default timeout values of 10 ms.  For RC 
Time.ASM, the timeout value is just as accurate as the decay measurement itself, good to the nearest 
clock tick.  This is possible because RC Time.ASM uses assembly language to take the growth and 
decay measurements; whereas, RC Time takes its decay measurements in Spin.  Since Spin is an 
interpreted language, it does not provide the same degree of control over timing that assembly 
language does.  Keep in mind that both objects’ growth and decay measurements are good to the 
nearest clock tick.  The difference between the two objects is that the Spin language RC Time 
object’s timeout value is approximate; whereas, assembly language RC Time.ASM’s timeout value is 
exact. 
 
Changing either object’s timeout value involves a simple method call to its TimeOut method.  The 
examples below impose a 0.5 ms timeout on RC measurements for the Figure 1 circuits by passing 
clkfreq/2000 to the RC Time object’s TimeOut method.  This value is the number of clock ticks in 
half a millisecond, because clkfreq is the number of clock ticks in one second, and dividing 2000 into 
this value gives us the number of clock ticks in half a millisecond.  It’s equivalent to 
(clkfrreq/1000)/2.   
 
   
  OBJ 
    rc : "RC Time" 
 
  PUB Go | tGrowth, tDecay  
    rc.TimeOut(clkfreq/2000) 
    repeat 
      rc.Time(27, 0, @tGrowth) 
      rc.Time(17, 1, @tDecay) 
      '... 
 

 
OBJ 
    rc : "RC Time.ASM" 
 
  PUB Go | tGrowth, tDecay  
    rc.TimeOut(clkfreq/2000) 
    repeat 
      rc.Time(27, 0, @tGrowth) 
      rc.Time(17, 1, @tDecay) 
      '... 
 

 
Figure 4 shows how the Spin RC Time object’s tDecay timeout is approximate while the assembly 
language version is accurate to the clock tick.  The code above configures both versions of the object 
to time out at 40_000 clock ticks (0.5 ms at 80 MHz).  Keep in mind that for most applications, the 
actual decay measurement is the important part, and that both objects will return the exact same 
value, provided when the measurement is below the timeout.   
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Figure 4: Timeout Display for Spin (left) and Assembly Language (right) 

         
 

 Try both “Test RCTIME Timeout.spin” and “Test RCTIME Timeout.ASM.spin”objects, and 
verify that they take the same measurements when the timeout values are below the 0.5 ms 
threshold.   

 Set the potentiometer connected to P17 so that it causes each object to time out and verify 
that the assembly language version of the object can enforce the timeout more precisely.   

Charge Time Setting 
The RC Time object’s default charge time is 0.1 ms, which works fine for the small RC values we are 
using in this chapter.  However, larger capacitors may take longer to charge.  To adjust the charge 
time, simply pass the object’s ChargeTime method the number of clock ticks to wait and charge.  For 
example, if you want to change the charge time from the default 0.1 ms to 5 ms, use this method call: 
 
  Rc.ChargeTime(clkfreq/200) 

Sequential vs. Parallel RC Measurements 
The RC Time objects default to sequential measurements.  In sequential mode, the RC Time object 
does not return from the Time method call until either the measurement is complete or timeout is 
reached.   Figure 5 shows what happens when the RC Time object’s Time method gets called twice in 
immediate succession like it does in “Test Simple RCTIME.spin”.  On the left, the first measurement 
takes just over 1 ms to complete, and the second measurement does not start until the first 
measurement finishes.  On the right, the first measurement takes less than 250 µs to complete, so the 
application moves on to the second measurement more quickly.   
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Figure 5: Sequential Measurements 

     
 
The RC Time object can be configured to launch multiple measurements in parallel.  For parallel 
measurements, a copy of the RC Time object has to be created for each simultaneous measurement, 
and then each copy of the object has to be configured to return immediately after starting its RC 
measurement.   
 
Here is an excerpt from “Test Parallel RCTIME.spin”.  It declares two copies of the RC Time object 
and then configures each copy for taking parallel measurements by passing rc#PARALLEL to its 
SetMode method.   
 
OBJ                                
  rc[2] : "RC Time"          
 
PUB Go | tGrowth, tdecay, i          
  repeat i from 0 to 1             
    rc[i].SetMode(rc#PARALLEL) 
  '... 
  rc[1].Time(27, 0, @tGrowth) 
  rc[0].Time(17, 1, @tdecay)     
  'Code here can work on other tasks while  
  'waiting for the measurements complete...                                 
 
With two copies of the RC Time object configured to take parallel measurements, Figure 6 shows 
how the second measurement starts immediately after the first one does, so the duration of the first 
measurement no longer affects when the second measurement starts.  This approach can be useful for 
making sure measurements start at approximately the same time, and it can also be useful for saving 
time by taking multiple measurements in parallel.  The drawback is that each measurement launches a 
separate cog for the duration of the measurement.  This drawback is not severe because the RC Time 
object also shuts down a given cog immediately after the measurement is complete.  Keep in mind 
that if your application launches four simultaneous RC decay measurements, there will four cogs 
occupied with simultaneous measurements for a brief period of time.   
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Figure 6: Parallel Measurements 
The second measurement does not wait for the first measurement to finish. 

     
 
If you have an oscilloscope: 
 

 Examine how the duration of the first measurement can delay the start of the second 
measurement in “Test Simple RCTIME.spin” while the second measurement in “Test Parallel 
RCTIME.Spin” starts a brief, fixed time after the first measurement starts.   

 

 Assembly code optimization: The RC Time.ASM object is in its 0.70 revision and is currently a lot longer 
than it needs to be because it has not undergone any optimizations.  Before it gets to v1.0, it will undergo 
additional testing and several iterations of assembly code optimization.   

Establishing Sampling Rates 
The RC Time object also has Start and Stop methods.  The Start method makes it possible to make 
one or more copies of the RC Time object take growth/decay measurements at one or more different 
rates.  When the application doesn’t need any more measurements, the Stop method can be used to 
shut down the code and make it available for other tasks.  
 
The RC Time object’s Start method requires three additional parameters, charge time, timeout, and 
sample interval.  The sample interval is the time between measurements, and it establishes the 
sampling rate.  In the example code below, rc[0] is configured with a 0.1 ms charge time, a 1.0 ms 
timeout, and a 2 ms sample interval (clkfreq/500).  rc[1] also has a 0.1 ms charge time, but its timeout 
is 0.5 ms and its sample interval is 1 ms (clkfreq/1000). 
 
  ... 
 
OBJ 
 
  rc[2]      : "RC Time"                     ' RC Time.ASM is also an option 
  debug      : "PST Debug LITE"              ' Variable & I/O display tool 
  ... 
                                              
PUB Go | tGrowth, tdecay 
 
  debug.Start(115_200, debug#LIST)           ' 115.2 kbps, list display 
  debug.Title(String("Time Measurements", debug#NL, "(units = 12.5 ns)")) 
  debug.TitleAppend(String(debug#NL, "-----------------", debug#NL)) 
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  ' Set up cogs to repeatedly take measurements and update tDecay & tGrowth. 
  rc[1].start(27, 0, clkfreq/1_0000, clkfreq/2000, clkfreq/1000, @tGrowth) 
  rc[0].start(17, 1, clkfreq/1_0000, clkfreq/1000, clkfreq/500, @tDecay) 
 
  repeat 
    debug.VarsHome(@tDecay, String("| tDecay, tGrowth")) 
    waitcnt(clkfreq/10 + cnt)                 
 
After the Start method for each RC Time instance gets called, the repeat loop can just send the latest 
measurement stored in each variable (tDecay and tGrowth) to PST Debug LITE for viewing in the 
Parallax Serial Terminal.  One of the parameters in the start method is the address of the variable that 
the RC Time object should store its result in.  Since both instances are taking repeated measurements, 
the tDecay and tGrowth measurements both store the latest value.  tDecay gets updated at 500 Hz, 
and tGrowth gets updated at 1 kHz.   
 
Figure 7 shows how the two instances of the RC Time object, configured to independent sampling 
rates, and both repeatedly take RC measurements.  The upper trace shows rc[0], which repeats its 
measurements at a T = 2 ms sampling interval.  Since sampling frequency is the inverse of sampling 
interval, (f = 1/T), f = 1/(2 ms) = 500 Hz.  The lower trace shows the measurements rc[1] takes and 
stores in tGrowth at a sample interval of 1 ms and a sampling frequency (or sampling rate) of 1 kHz. 
 
Figure 7: Two Different Sampling Rates and the Parallax Serial Terminal Results  

     
 

 Open “Test Repeated RCTIME.spin” with the Propeller Tool software. 
 Open the RC Time object and examine the minimum times allowed for the start method’s 

chargeTimeTicks, timeOutTicks, and sampleTicks parameters. 
 Try a variety of sampling rates, and if you have an oscilloscope, use it to examine the 

repeated RC measurements. 

More PE Kit Sensor Examples 
The RC decay technique can be used with a variety of sensors.  Examples of parts in the PE Kit that 
can be used as RC Time compatible sensors include:  
 

• Rotational position with a potentiometer 
• Ambient light with a phototransistor or photoresistor* 
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• Infrared light with an infrared phototransistor 
• Lightly filtered ambient light with LEDs 
• Infrared light and flame with an infrared LED 

 
* Whether your PE kit has a photoresistor or a phototransistor depends on its vintage.  Older PE Kits 
have photoresistors.  The newer RoHS compliant kits use phototransistors for light detection instead. 
 
As we’ve already seen, the potentiometer’s resistance varies with rotational position, i.e. where the 
knob is turned.  Next, phototransistors regulate current passing through based on light intensity, 
which can also be measured with RC Time.  LEDs that are reverse biased in a modified RC decay 
circuit behave like tiny solar cells that discharge their own junction capacitance and can also be 
measured with RC Time. 
 

 

More RC Time Compatible Sensors at the Parallax web site   

As mentioned earlier, there are lots of different sensors that are compatible with RC Time measurements.  
Here are a few examples from www.parallax.com:  

• AD592 Temperature Probe 
• Flexiforce Sensor 
• HS1101 Capacitive Humidity Sensor 
• QTI Sensor (for close-up line detection, but can also detect shades of gray) 
• Blue Enhanced Photodiode 

Nix the series resistor! 

The documentation for these sensors typically includes a small resistor connected between the I/O pin and the 
capacitor.  This series resistor protects a BASIC Stamp module’s I/O pin from any brief current spike at the 
instant when the I/O pin starts charging the capacitor.  Propeller I/O pins do not need these series resistors.  
Furthermore, if you remove the series resistor, sensors that vary linearly with the physical property they 
measure will yield linear RC Time measurement results.  The series resistor changes it to a nonlinear function.  
If it’s a resistive sensor that could drop below 100 Ω, make sure to add a resistor between the element and 
ground, like in Figure 1. 

Ambient and Infrared Phototransistors 
Newer PE kits have two phototransistors, shown in Figure 8 on the left and right.  The ambient 
phototransistor has a clear plastic case and is sensitive to wavelengths from green to infrared, and is 
sometimes used in products to replace photoresistors for ambient light detection.  The cadmium 
sulfide photoresistor in the center of Figure 8 is no longer included in the PE Kit due to recent RoHS 
(Restrictions on certain Hazardous Substances) rules.  Its use in commercial products is also dropping 
off for the same reason.  The infrared phototransistor looks like a smaller LED with a black coating.  
That coating filters for infrared.  Strong sources of infrared include the sun, and the clear infrared 
LEDs included in the Propeller Education Kit.  
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Figure 8: Ambient Phototransistor, Photoresistor, Infrared Phototransistor 

            
Phototransistors allow more current to pass with more light.  Similarly, a photoresistor’s resistance 
drops with more light.  The result with either device is the same –more light leads to smaller decay 
times.  The quickest way to test these parts is to remove the potentiometer and replace it with either 
the phototransistor or the photoresistor.  Figure 9 shows RC Time circuit schematics for the 
phototransistors and also for the photoresistor.  If you are using the ambient phototransistor, connect 
the longer pin to the I/O pin.  If you are using the infrared phototransistor, the longer pin connects to 
ground.  With the photoresistor, direction doesn’t matter. 
 
Figure 9: Phototransistor and Photoresistor Light Sensor Schematics 

    
 
The photoresistor and ambient light phototransistor both work well with Test Simple RCTIME.spin.  
The infrared phototransistor needs a timeout that’s longer than the default, so if you test that part, 
make sure to use Test RCTIME Timeout.spin, and set the timeout to something generous, like a fifth 
of a second (clkfreq/5). 
 

 Substitute your light sensor of choice in place of the potentiometer. 
 Run Test Simple RCTIME.spin (or a modified Test RCTIME Timeout.spin for the infrared 

phototransistor.) 
 Examine tDecay under a variety of lighting conditions. 

Measure Light with LEDs 
LEDs as light sensors can sometimes serve as an inexpensive substitution for photodiodes, and have 
the advantage over phototransistors of an output that’s linearly proportional to light level.  They also 
respond well to direct sunlight, which tends to saturate phototransistors.  Each color of LED also has 
some inherent filtering, and responds most the color of light it emits when it’s forward biased.  LEDs 
also have inherent capacitance across the junction of the two silicon materials with different 
impurities that electrons have to cross to emit photons.  The capacitance across this junction is not 
surprisingly called junction capacitance.  The LED’s junction capacitance, along with the capacitance 
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inherent to the metal clips in your breadboard make it possible to use the Figure 10 circuit for LED 
light measurements, with no external capacitor. 
 

! 
CAUTION – double check your LED connection before reconnecting power!  

The LED in Figure 10 needs to be reverse biased, with the longer anode pin connected 
to ground and the shorter cathode pin connected to I/O pin P4. 

 
Figure 10: LED Light Sensor Schematic 

 
 

 Build the circuit shown in Figure 10.  Make sure that the LED’s longer anode pin connects to 
ground. 

 Save Test RCTIME Timeout.spin as Test LED Light Sensor.spin 
 Change the Timeout method call’s parameter to half a second (clkfreq/2). 
 Change rc.time(17, 1, @tDecay) to rc.time(4, 1, @tDecay). 
 Load the program into the Propeller chip. 
 Examine tDecay under a variety of lighting conditions. 

Proximate Flame Detection with Infrared LEDs 
You can replace one of the colored LEDs in Figure 10 with the clear infrared LED to detect nearby 
flames.  For best results, point the dome on the top of the infrared led directly at the flame.  Provided 
the detector is kept out of direct sunlight, a range of half a meter or more is feasible. 

Application Example: Resistance Meter 
The “RC Resistance Meter.spin” application circuit and Parallax Serial Terminal display are shown in 
Figure 11.  The RC circuit is simply the P17 connection we have been using.  The approach to taking 
measurements is somewhat different from a simple RC decay measurement.  First, the RC Resistance 
object that the RC Resistance Meter application uses for measurements takes an average of 200 decay 
measurements to eliminate the effect of electrical noise.  Second, the application needs to be 
calibrated.  The calibration procedure is very simple, and corrects the cumulative effects of the 
various sources of error in the circuit, which include: actual capacitance value different from nominal 
(named) value, I/O pin threshold not exactly 1.65 V, stray resistances and capacitances in the circuit 
and prototyping board, and any deviation from nominal in the 100 Ω series resistor value.  Since each 
of these errors contributes to one of the terms in ∆t = 0.693 × C × R, they can all be corrected with the 
scalar and offset from our old algebraic friend y = mx + b. 
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Figure 11: Resistance Meter Circuit and Display (1.829 kΩ) 

    
 
Table 1 shows errors before and after calibration.  Note that calibration can reduce 50% errors down 
to below 1%.  A minimal calibration can be accomplished by comparing two measurements against 
known resistor values.  This will give you two (x, y) data points, where x is the measured value, and y 
is the known value.  By solving for m and b in y = mx + b, you will get the scale factor and offset 
values that can be declared as constants in the example program.   
 
Table 1: Plotted Points and Resistor Values before and after Calibration 

 
 
A better calibration procedure is to take more (x, y) data points and then use a spreadsheet to calculate 
the average of m and b.  For example, the seven x and y measurements in Table 1 are graphed with a 
Microsoft Excel as shown in Figure 12.  Spreadsheets also have tools that can display a trend line and 
an equation that yields the average values of m and b for all the points in the graph.  For the 
measurements in table 1, Figure 12 shows that m = 0.894 and b = –60.944 for the test circuit.  Keep in 
mind that your test circuit will almost certainly have different m and b values.  
 



PE Kit Tools 

Copyright © Parallax Inc.  ●  PE Kit Tools: RC Measurements v0.91  ●  2/2/2010   ●  Page 14 of 17 

Figure 12: Actual Vs. RC Measured Resistances Before Calibration 

 
 
The application relies on the RC Resistance Meter.spin object for both calibration and testing.  Before 
calibration, this object has its scalar constant set to 1.0 and its offset constant set to 0.0.  The RC 
Resistance Meter.spin object passes these values, along with CAP = 0.1e-6 to the RC Resistance 
object.  The RC Resistance object in turn uses this equation to calculate the resistance based on the 
time measurement along with the scalar, offset, and CAP values it received: 
 
                                   
            δt × Scalar             
  rVar =  ─────────────── - Offset  
            0.693 × CAP           
                                   
 

 ∆t is seconds, not ticks.  The Resistance Meter.spin object also converts the RC Time measurement from 
clock ticks to a floating point representation of seconds before multiplying by scalar in the rVar calculation.   

 
Before calibration, the measured resistance values will be linearly related to the actual values.  You 
can then use the spreadsheet included with the example programs to calculate the new values for 
scalar (m) and offset (b).  Or, for a quick and lower precision calibration, simply use a couple of data 
points,  (like resistance measurements for1 kΩ and 10 kΩ) and y = mx + b for a rough calibration.  
Here is the procedure for more precise calibration with the spreadsheet: 
 

 Open “RC Resistance Meter Calibration Example.xls”.  It’s included in the “PE Kit Lab 
Tools – Measure Resistance or Capacitance.zip” file. 

 Use a known good ohmmeter to measure the PE Kit resistors listed in Table 1’s Nominal 
Values column.  Record your measurements in the y-axis values column. 

 Open “RC Resistance Meter.spin” with the Propeller Tool software.  
 In the CON block, make sure that the scalar = 1.0 and offset = 0.0. 
 Remove the Pot from the P17 RC decay circuit you built from Figure 1.  Each test resistor 

should be plugged in where the pot’s wiper and B terminal were in the RC Decay circuit in 
Figure 1. 
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 Run the program, and measure each resistor in the RC circuit, and record each measurement 
in the x-axis values column. 

 Copy the updated trend line values for m and b that appear in the graph above the trend line 
into the scalar and offset CON block declarations.   

 Load the modified program into the Propeller chip, and measure the resistors in the RC 
circuit again, this time, using the results to populate the Measured After Calibration column.   

Application Example: 200 kHz Sampling Rate  
If you need a sampling rate that’s faster than what RC Time.spin can provide, use RC 
Time.ASM.spin.  It can support sampling intervals as short as a few hundred clock ticks, as opposed 
to the several thousand minimum in the RC Time.spin object’s documentation.  Let’s say that your 
application requires a 200 kHz sampling rate.  The sampling interval is T = 1/f = 1/200 kHz = 5 µs.  
Assuming the Propeller chip’s system clock is running at 80 MHz, the number of clock ticks in the 
sampling interval would be:  

 
sample interval clock ticks = ticks in 1 second × sample interval 
                            = 80 MHz × 5 µs 
                            = 400 clock ticks 
 

Figure 13 shows an RC growth circuit that responds 100 times more quickly than the circuit in Figure 
1.  That’s because the capacitor is 1/100 the size of the one in Figure 1.  Instead of growth times in 
the 0 to 5000 clock tick range, the measurements will be in the 0 to 50 clock tick neighborhood. 
 

 Modify the RC growth circuit connected to P27 according to Figure 13. 
 
Figure 13: A Faster RC Circuit  

 
 
These excerpts from “200 kHz Sampling rate.spin” configure the RC Time.ASM object to charge the 
circuit’s capacitor for 50 clock ticks, and allow 125 clock ticks for the decay before timeout, 
repeating every 400 clock ticks.   
 
  ... 
 
OBJ 
  rc        : "RC Time.ASM"                  ' RC Time.spin is also an option 
  debug     : "PST Debug LITE"               ' Variable & I/O display tool   
  ... 
                                              
PUB Go | tGrowth, repsAddr 
 
  debug.Start(115_200, debug#LIST) 
  ... 
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  repsAddr := rc.start(27, 0, 50, 125, 400, @tgrowth) 
 
  repeat 
    debug.VarsHome(@tgrowth, String("| tgrowth")) 
    debug.Vars(repsAddr, String("| @repsAddr")) 
    waitcnt(clkfreq/10 + cnt)                 
 
According to the RC Time.ASM object’s documentation, its Start method returns the address of the 
object’s repsAddr variable, which stores the number of samples the object has taken.  (Unless all cogs 
were busy, in which case the Start method returns zero.)  Example code in the “200 kHz Sampling 
Rate.spin” object uses this variable address along with a modified versions of the Display object to 
list the number of measurements (reps) that RC Time.ASM has taken.  Every second, the repetitions 
display increments by 200,000.  Figure 14 shows the display at about the 10 second mark. 
 

 
 
Figure 15 shows the RC measurements on a 100 MHz oscilloscope set to 1 µs/division.  Note that the 
I/O pin switches to output-low to recharge the circuit every 5 µs demonstrating the 200 kHz sampling 
rate. 
 
Figure 15: Oscilloscope View of 200 kHz Sampling Rate.Spin  

 
 

 Open “200 kHz Sampling Rate.spin” with the Propeller Tool software. 
 Open the RC Time ASM.spin object, and view it in Documentation mode.  Read the Start 

method’s documentation, and pay special attention to how many more clock ticks than the 
timeout the sample interval has to have.   

Figure 14: RC Decay and 
Growth Measurements 
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 Try a variety of sampling rates, and if you have an oscilloscope, use it to examine the 
repeated RC measurements. 

 


