
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
345 E. 47 St., New York, N.Y. 10017

C The Society shall not be responsible for statements or opinions advanced in papers or in
li discussion at meetings of the Society or of its Divisions or Sections, or printed In Its

publications, Discussion Is printed only if the paper is published In an ASME Journal.
]^L Released for general publication upon presentation. Full credit should be given to ASME,

the Technical Division, and the author(s). Papers are available from ASME for nine months
after the meeting.
Printed in USA.

82-GT-251

An Approach to Software for High
W.C. Dolman Integrity Applications

Assistant Performance Manager

J. P. Parkes
This paper outlines one approach taken in designing a software system for the
production of high quality software for use in gas turbine control applications.

Performance Project Engineer Central to the approach is a special control language with its inherent features of

Lucas Aerospace Limited,
visibility, reliability and testability, leading to a software system which can be
applied to applications in which the integrity of the units is of prime importance.

York Road,
Birmingham, England The structure of the language is described together with the method of application

in theield of aircraft.1^	 f	 f gas turbine control. The provision of documentation
automatically is an integral part of the system together with the testing procedures
and test documentation. A description of how these features are combined into the
total software system is also given.

simplicity of application, visibility, controllability
and modification capability.

Control Language Concepts
However the control program is written, it needs

to be converted into a series of instructions capable
of being "understood" by the particular microprocessor
in use. This series of instructions, known as the
runnable program, is held in the store of the micro-
processor system in binary form.

The diagram, Fig 1, shows the various means by
which the source program can be converted into a
runnable program. The simplest of these is where the
programmer produces the program directly in the binary
form required by the microprocessor. Although
effective and efficient programs can be produced in
this way, the difficulty in meeting the Quality
requirements outlined above prevents the method from
being viable, especially if the software is to be of
a standard for use in a civil aircraft application.

ASSEMBLER I ILINKER

INTRODUCTION

This paper describes the software system
designed and developed by the Engine Electronics
group of Lucas Aerospace Limited to provide high
integrity software for its digital control units.

OBJECTIVES OF A HIGH INTEGRITY SOFTWARE SYSTEM

No matter how well designed the hardware of a
microprocessor based control system may be, the
success of the project hinges on the quality of the
software used. Quality, in this context,
encompassing;

TRANSLATOR
SOURCE 	 RUNNABLE
'ROGRAf1	 PROGRAM

COE1PILER 	 LIBRARY

INTERPRETER

FIG 10 SOURCE PROGRAM CONVERSION METHODS

Contributed by the Gas Turbine Division of the ASME.

Copyright © 1982 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Some of the disadvantages of the direct approach
can be mitigated by writing the programs in assembler
language and this method has been used, successfully,
in some of our earlier projects. Some quite serious
disadvantages relating to the quality of the software,
however, still remain.

High level language, where the source program is
written in a form near to normal English, allows most
of the disadvantages of the previous approaches to
be reduced to an acceptable level. These high level
languages can be converted into a runnable program by
one of three approaches, by means of a translator, a
compiler or an interpreter. The translator approach
confers most advantages for the type of application
being considered, because it removes from the soft-
ware approval loop the use of complex compilers which
are intrinsically error prone.

When considering the needs of a suitable high
level language for control system applications, six
objectives of such a language were identified, these
being:

1. The language to be, as far as the control
engineer is concerned, independant of the micro-
processor being used.

2. The control engineer to be relieved of the
need to have an extensive knowledge of the micro-
processor being used.

3. The user interface to be tailored to produce
an application-oriented programming system so that
the control engineer can transcribe his control system
design into runnable software accurately and rapidly.

4. The software stages to have full visibility
so that traceability of the software from the original
control system to the runnable code in the system
store is ensured.

5. The software system to be so structured that
good design practices are enforced and that rigorous
testing and cross checking can be applied.

6. The software system to be structured so that
the raising of high quality documentation becomes a
natural and integral part of the software writing
process.

With these six objectives in mind, together with
a knowledge of the technical needs of the control
engineer, the Engine Electronics Group of Lucas
Aerospace developed a high level language known as
LUCOL- (LUcas COntrol Language) as part of a total
software system package. The language enables control
engineers to program directly from their control
diagrams, so that they and other engineers can have
full software visibility in a form traditional to
engineering disciplines.

LUCOL

The basis of the system is a series of modules
representing commonly used analogue type control
system blocks as well as sequential logic operations.
The control engineer solves his problem by specifying
an appropriately ordered network of modules. These

I LUCOL is a registered trade mark of Lucas
Aerospace Limited.

modules are drawn from a library of rigorously tested
assembler language programs which also includes input-
output and safety routines.

Each module has assigned to it a mnemonic
identifier and a standard functional diagram. The
control engineer draws his system block diagram using
the LUCOL elements - this block diagram then forms a
pictorial representation of the software.

The basic control source program is generated
simply by producing a calling sequence listing the
modules, in mnemonic form, and their associated
parameters. These parameters specify 1. the data flow
between modules (analogous to the signal flow on a
conventional block diagram) and 2. the direct
parameters such as gains, time constants etc.

A feature of LUCOL is that a module may use the
output of the previous module as an input auto-
matically. This method of transference, termed
"implicit flow" is employed by those modules which
are closely coupled and results in an improvement in
the efficiency and clarity of the resultant control
program. Explicit flow, where the input and/or
output is defined in the calling sequence, is used
for example, with input modules where several parallel
operations are likely. This, again, is to optimise
overall efficiency.

LUCOL LANGUAGE AND CONCEPTS

The LUCOL system aims to provide an integrated
approach to the production of high quality software.
The LUCOL language provides the centrepiece of the
system around which software production, testing and
documentation facilities have evolved.

Modularity
LUCOL program code is strictly modular. Thus

expressions of the form:

(1) A = SQRT (B * C/D),

are deliberately avoided. The LUCOL approach is:

(2) MULDIV (B,C,D) ; Fetch B into implicit
register
Multiply by C, Divide
by D

ROOT	 ; Take square root of
implicit register
contents

PUT 	 (A)	 , Store in location A

The convenience of being able to perform
multiple operations via a single expression is there-
fore foregone, but two significant advantages out-
weigh the tedium of explicit coding. Construct (1)
requires a bug-free parser (which is impossible to
guarantee, and even if the translator/compiler enjoys
a large amount of user confidence, non-users will not
share such convictions), and requires close inspection
of the code generated from each compound expression.
Construct (2) on the other hand lends itself to direct
and immediately visible translation into a series of
calls with parameters to the modules MULDIV etc.
These modules are termed LUCOL MODULES and the
rigorous testing procedure of the LUCOL modules
ensures that such a strictly modular program as LUCOL
is founded only upon solid, reliable building blocks.

2

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Single Accumulator Concept
As may be inferred from the above example, a

LUCOL program appears as if coded for a single
accumulator machine. The accumulator is referred to
as the "implicit register". This feature was
incorporated for reasons of efficiency and to provide
a natural signal flow through the program. The basic
modules used to load and store the implicit register
are GET and PUT, and most other modules operate upon
the implicit with ancillary inputs and outputs. In
addition a certain class of modules will perform a
GET prior to performing any computations. Thus for
instance:

MULDIV (B, C, D)

fetches the contents of location B into the implicit
register prior to performing the multiplication and
division. In all such cases it is permissible to
enter an asterisk in place of the appropriate
parameter which causes the preliminary fetch to be
omitted:

MULDIV (*, C, D) ; Multiply contents of Implicit
Register

; by C/D

An asterisk is used throughout to indicate the
current contents of the implicit register.

This shows a proportional plus integral control
loop for variable T6 which, when passed through a
lowest wins with a function of P3, generates a fuel
demand signal. The first step is then to convert this
to a LUCOL flow chart as shown in Fig.3.

As can be seen, Fig.3 is easy to compare with
Fig.2 and does not require extensive training to
understand. From the LUCOL flowchart, the correspond-
ing listing is produced (Fig.4). This is done simply
by listing the module mnemonics and adding the
parametric information. Comments may be added by
using a semicolon separator. The listing for Fig.3
would be:-

GET	 (T6D) 	 ;Read T6D INTO IMPLICIT REGISTER
SUB 	 (T6A) 	 ;SUBTRACT T6A TO FORM ERROR SIGNAL
PUT	 (T6E) 	 ;SAVE ERROR SIGNAL
MULDIV (*,60,100) 	 ;SCALE ERROR BY 0.6
INTR	 (GAIN,STORE) ;INTEGRATE RESULT
PUT	 (INTGRL) 	 ;SAVE RESULT
MULDIV (T6E,20,100) ;SCALE T6E BY 0.2
ADD 	 (INTGRL) 	 ;ADD INTEGRAL TERM
PUT	 (T6LOW) 	 ;SAVE RESULT
GET 	 (P3) 	 ;READ P3 INTO IMPLICIT REGISTER
FGEN1 (TABLE) 	 ;LOOK UP P3 SCHEDULE
LWINS (T6LOW) 	 ;LOWEST WINS WITH T6 LOOP ERROR
PUT	 (FUEL) 	 ;SAVE FUEL DEMAND

To illustrate the above procedure, take the
requirements defined by the system diagram in Fig.2.

SECTION OF A CONTROL DIAGRAIM
PROPORTIONAL PLUS INTEGRAL CONTROL LOOP

FIG 20 CONTROL SYSTEM EXAMPLE

T

FIG 3o TYPICAL LUCOL FLOW CHART

3

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

LUCOL Program Structure
The system is designed so that a program can be

run with a minimal executive. Thus all aspects of
program execution may be inferred from the LUCOL
source code without foreknowledge of the scheduling
algorithms, input/output queues and other appurten-
ances normally associated with an executive. In any
event, such executives are impossible to debug and
test fully as is evidenced by the number of patches
supplied to users of such systems for some consider-
able time after the system becomes commercially
available. The LLTOL approach is again simplistic
involving direct connection to interrupts and self-
linking code.

A LUCOL program is divided into logical sub-
units known as segments:

SEGMENT CONTRL 	 ;DECLARE A SEGMENT NAMED
"CONTRL"

LUCOL MODULE CALLS

ENDSEG	 ;DECLARE END OF SEGMENT

Segments are grouped into "Levels" numbered
from zero upwards. Level 0 corresponds to the base
level program which executes cyclically whilst no
interrupts are being serviced. Higher numbered levels
correspond tc the various interrupts to be serviced
on a particular hardware configuration. Level
declarations consist of two statements: a level and
a call to either of the modules EXEC or PWRUP. PWRUP
is specific to Level 0 whilst EXEC must be used at
all other levels. A typical declaration of the levels
to be serviced might be:

LEVEL 0 	 ;INITIALISATION AND BASE
LEVEL SEGMENTS

PWRUP (INIT,BASE)
LEVEL 8
EXEC (WDT) 	 ;SERVICE WATCHDOG TIMER
LEVEL 14 	 ;SAMPLE RATE CLOCK INTERRUPT
EXEC (INOUT,VALID,

CNTRL,SAFETY);CONTROL SEGMENTS

At level 0 the first segment in the call to
PWRUP is the "initialisation segment" which is
executed whenever a power up/reset occurs. Subsequent
segments make up the base level program. At higher
levels the priority of interrupt decreases with
increasing level number. The segment WDT which
services the watchdog timer executes at a higher
priority than the control. The control segments
(Input/output, Data validation, Control calculations
and safety) execute sequentially in response to an
interrupt from the sample rate clock.

Program Flow
Logical decisions are incorporated in a LUCOL

program via IF-THEN-ELSE and CASE constructs.

DOIF (FLAG)
;EXECUTE THIS SECTION IF
"FLAG" IS TRUE

ELSE

ENDIF

CASE (INDEX,CASE1,
CASE2,CASE3)

4

;THIS SECTION EXECUTED IF
"FLAG" IS FALSE

BEGIN (CASEI) 	 ;EXECUTE IF INDEX = 0

BEGIN (CASE2) 	 ;EXECUTE IF INDEX = 1

BEGIN (CASE3) 	 ;EXECUTE IF INDEX = 2

OTHERWISE 	 ;EXECUTE IF INDEX<O OR INDEX>2

END CASE

LUCOL procedures may be invoked via the CALL
module; and may be called as many times as required
from any segment.

CALL (SUBA)

A procedure differs from a segment only in that
it is preceded by a PROCEDURE declaration and
terminated by a RETURN statement:

PROCEDURE SUBA 	 ;DECLARE PROCEDURE "SUBA"

LUCOL Module calls

RETURN 	 ;RETURN FROM PROCEDURE

The WHILE-ENDWHILE and GOTO statements are considered
too dangerous to incorporate in flight-standard soft-
ware and are not recognised by the LUCOL translator.
Both may lead to infinite loops, whilst the arguments
against GOTO and in favour of block-structured logical
flow are well rehearsed.

LUCOL Data Types
All data storaged used by a LUCOL program must be
declared as either constant, variable, logical or
text. Constants and text occupy read-only memory
whilst variables and logicals occupy read/write memory,
the latter taking only the two values TRUE and FALSE.
Example data declarations are:

VARIABLE VARI 	 ;RESERVES A 1 WORD VARIABLE
VARIABLE VAR2 [10] ;RESERVES A 10 WORD VARIABLE
LOGICAL FLAG1 ;RESERVES A 1 WORD VARIABLE
VARIABLE VA3
(VAR1, VAR2) 	 ;RESERVES 11 WORDS

;lst IS ADDRESSABLE AS VAR1,
:SUBSEQUENT TABLE OF 10
:ELEMENTS AS VAR2

CONSTANT Cl(999) 	 ;1 WORD CONSTANT CONTAINING
DECIMAL 999

CONSTANT C2(>FFFF,O);2 WORD CONSTANT CONTAINING
:HEXADECIMAL FFFF AND 0

Translation
The essential function of the LUCOL translator

(that of translation) is simple. Thus the LUCOL
module call:

MULDIV (B, C, D)

translates to four words of assembler code, for example
in Macro assembly notation for the Digital Equipment
Corporation's PDP 211 series of computers,

.WORD MULDIV, B, C, D

2 PDP is a trademark of DEC.

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Subsidiary but vital functions are error 	 documentation package for the modules.
detection and the creation of internal symbol tables
and bit maps to interface with the LUCOL symbolic 	 DOCUMENTATION
debugging aids.

Flight-standard software is bound to impose a
Primary error detection involves the inspection 	 heavy requirement on the supplier for documentation.

of module calls to ensure that: 	 Much effort has been expended to produce documentation
automatically and so reduce the work-load on the

(1) The module is recognised by the LUCOL system. control designer.

(ii) All named parameters have been defined within 	 An integral part of the LUCOL language is an
the program. 	 "automatic" documentation system. This system will,

by automatically scanning the inter-connected source
(iii) Each parameter is of the appropriate type 	 files, produce a unique build standard for the LUCOL

(variable, logical, constant, etc). 	 program.

(iv) The module is called with the correct number
of parameters.

Input to the translator consists of a definitions
file and any number of segment/procedure files. The
definitions file contains all Level and storage
declarations. Symbols defined by the user are global
to all segments and procedures appearing in sub-
sequent files. Input files are grouped together via
filename in the primary input known as the "Group
File".

Output from the translator consists of a program
listing and a threaded-code assembler file. An
optional symbolic cross-reference of the LUCOL
program may be appended to the listing.

LUCOL MODULES

The function of a module must be sufficiently
simple to enable it to be tested automatically by
setting inputs and reading outputs without resorting
to breakpoints or checking intermediate calculations.
Modules are written in the native assembler language
of the target microprocessor, and are cross-assembled
to form the object libraries with which the trans-
lated LUCOL program is linked. The cross-assembler
which was designed to be easily re-configured to
support different microprocessors was also designed
and written by the Engine Electronics Group of Lucas
Aerospace. As already stated, modules are self-
linking. A register is reserved for threading the
LUCOL code. At entry to each module this register
is pointing to the address of the first of that
module's parameters. The module accesses its
parameters via this register (preferably via auto-
increment if available) and exits via a jump to the
following module whose first parameter should now be
pointed at by the register.

A further requirement is that modules be re-
entrant. Although a module may be called from
various levels and therefore from different
interrupts, only one copy of that module is linked
in with the LUCOL program. Re-entrancy is assured
by avoiding the use of any scatch-pad memory within
a module and checked when the module is tested. If
a module needs to maintain, for instance, historic
values (e.g. an integrator), then a read/write
memory location for that historic value is provided
explicitly in the module call. The modules are
fully tested automatically using a program termed
LMTP (LUCOL Module Test Program) which accepts as
input a test schedule and outputs a test report on
the results of the testing. This report together
with the module source listing forms a comprehensive

Certain data are required by the system, e.g.
author's name, date, project name, functional
description, input-output requirements, modification
history, etc. These data, together with the LUCOL
list, are then automatically compiled into a report
defining the software standard of the control system.
This automatic report generating system ensures that
all relevant data are provided in a standard format
and that a complete record of the software standard
of a control system and its modification status are
maintained.

Timings of LUCOL programs by Level and Segment
down to contributions by individual modules are
produced by program. Data structures such as carpets
and function generation data are verified, again
automatically.

The most onerous burden that has so far been
removed from the designer is the production of the
LUCOL diagrams (flow charts).

LUCOL Diagrams
The overall aims of the LUCOL Diagram are:-

1. To document the software in a visible format
which is understandable by everyone involved
in a project whether familiar with LUCOL or
not.

2. To provide a link between control diagram
and the detailed software.

3. To provide information on both signal and
program flow.

General Format. Within these aims the most
difficult problem to solve is visibility since the
link between the written specification and the program
code - can be biased towards either signal or program
flow, the choice being mainly subjective.

In practice most of the decisions hinge on
whether signal flow or program flow is chosen as the
major feature of the diagrams. In either case the
requirements of the other can be catered for by means
of identifiers, i.e. all signals labelled on the
program flow diagram; order of execution labelled on
the signal flow diagram.

For LUCOL Diagrams the normal convention is to
show signal flow as the primary parameter for the
following principal reasons:

5

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

1. It is required to be written in advance of
the program by people who, although probably
familiar with software are not required to be
expert programmers.

2. The signal flow is relatively well defined in
advance of the program flow, enabling the
LUCOL Diagram to be written at the earliest
stage, with less need for continuous updating

3. A signal flow diagram is a more suitable
vehicle for the detailed specification of
modifications by control engineers and other
non-specialist programmers associated with a
project.

4. Program flow charts can readily be produced
retrospectively if required for documentation
purposes. This could also be performed
automatically.

Wherever possible the following conventions when
drawing LUCOL diagrams should be applied.

(i)Every connection on the left of a module
diagram is a signal entering.

(ii)Every connection on the right of a module
diagram is a signal leaving.

(iii)Every connection on the top or bottom of a
module connection is a stored constant or
variable used by the module.

If the above conventions cannot be applied, then
deviations from the conventions must be explicitly
stated by the judicial use of arrows.

LUCOL Plotter Interface
LUPIN (LUcol Plotter INterface) is a program

which will accept as input a LUCOL segment or pro-
cedure file and produce as output a diagram of the
segment procedure on a drum plotter without further
intervention by the operator.

An example of the output is shown in Fig.4, and
the output for the example used in Figs. 2 and 3 is
shown in Fig.5. Figs. 4 and 5 are on the following
pages.

DEBUGGING AIDS

Three symbolic debugging aids are available: the
Multi-Module Test program (MMTP), the Full Change
Program (FCP) and the On-line Display Program (ODP).

MMTP
This is an emulator which runs on either the host

computer system or the target microprocessor develop-
ment system. Breakpoints may be set, variables
inspected and modified and individual instruction
steps within modules may be traced. The LUCOL
interrupt structure is catered for in that an
interrupt to a higher priority level may be set to
occur anywhere within the program. The program does
not run in real time however and does not interfere
with the control hardware.

FCP
The FCP monitor is linked in with the LUCOL

program. The ROM's produced are inserted in a RAM-
based development system and downloaded into RAM.

FCP provides the ability to monitor and modify LUCOL
programs. Modifications are implemented via patches
to the RAM copy of the program. To make successful
patches permanent the engineer must return to his
LUCOL program source code, make the necessary edits
and rebuild. This provides an essential check on the
chaos likely to ensue from a succession of undocument-
ed patches. Since the system has the ability to make
quite significant changes to the control program, it
is used with engine simulation rather than on live
engine tests. The LUCOL program runs in real time.

ODP
This program resides in a monitor box which is

independant from the control which is to be tested.
A full symbol table of the control is made available
via a plug-in ROM. Communication with the unit under
test is established via a test highway. ODP is an
attenuated version of FCP in that it allows the
control to be run and monitored, but has no facilities
for making patches to the LUCOL program. It has the
advantage that it may be used to monitor the operation
of a control program, whilst the control is running
on an engine test, without allowing the possibility of
an inadvertent change being made to the program.

PDP 11/70 SYSTEM

One of the major benefits of the system so far
described is that it runs completely on the PDP 11/70
Engineering Computer System. This means we can go
from the LUCOL source program right through to the
prommable code and then into the actual proms without
the use of any microprocessor software development.
This gives us a great advantage when implementing
another microprocessor as we do not necessarily
require to purchase the relevant microprocessor soft-
ware development system or need to learn a new
operating system associated with the equipment. A
brief block diagram of the PDP 11/70 system is shown
in Fig. 6. The broken lines indicate the areas where
documentation is automatically produced.

LUCOL 	 1 I POP 11I I 	LUCOL 	i r
SOURCE ASSEMBLE ISOURCE LISTINGSOURCE SOURCE

_T-
't '- 	 - -r 	 I -I 	 BUILD 	 I PDP 11

LISTING I
CROSS

r --k-

ASSEIMBL E ASSEMBLE ^LOWCHART4DEFINITIOAJI

-Ic _
r POP 11 	 I POP 11 r TEST 	 I
kOWCHART OBJECT 	 I OBJECT REPORTS

OBJECT
LINKER	 LIBRART

PROM
CODE 	 PROMS

Fig. 6 PDP 11/70 LUCOL Software System

6

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

H•

CD

ro

0lb
0

ro
fi

0

cF

m

0
C

0
cF
c+

H

r•

cF
N
Ii

LUCAS 	 LUCOL PROCEDURE 	 I	 FILE NAME 	 I 	ISSUE:- 1
AEROSPACE 	

CONTRL 	 CNTRLT DLUC 	 PACE 1 OF 1

rr^cnoATI

assn

SY[T
RIDAM IL

1

0

DIFF

1000

Umfl

INTMS

IIF

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

n
0r
b
0
0

CD
m

0
CD
m
Cn
CD
m
0

G
H-

0O

H.
H .

C)

N

OD

LUCAS 	 LUCOL SEGMENT 	 I	 FILE NAME 	 ISSUE:— 1
AEROSPACE 	 EXAMPL	 EXAMPLoLUC 	 PAGE 1 OF 1

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

As the 11/70 is a multi-user multi-tasking
system many individual users can create and develop
LUCOL control programs at the same time, giving a
distinct advantage over using microprocessor software
development systems.

maintained.

Before a module can be introduced into the LUCOL
library or an existing module modified, a defined
sequence of operations have to be carried out:-

BUILD STANDARD CONTROL

The build standard of a particular control soft-
ware is automatically governed by the issue numbers
of the individual constituent software modules that
are linked together to form the runnable program.
The included constituent modules, both LUCOL modules
and segments, have their issue number embedded in
their file name so that the different issues of the
same modules and segments are in fact held in
completely different files on the PDP 11/70 discs.
The build standard of a particular project LUCOL
module library is defined as consisting of various
LUCOL modules each of a particular issue, the library
name itself having the library issue embedded in its
name. If the library has a LUCOL module deleted from
it, added to it, or replaced by another issue of the
same LUCOL module then the library issue itself is
updated, The instructions for amendment of the
library are issued and controlled by the well known
and approved company procedure for build standard
amendment of hardware and delivered units. The input
to the LUCOL translator is what is known as a 'GROUP'
file which itself is controlled by an issue number
embedded in its name and the name is in fact the
identity given to the control software built from the
group file. The group file contains the file names
of the LUCOL segments and procedures, consequently
their issue number, that make up that particular issue
of the build standard. The contents of the group file,
segments and procedures are strictly controlled by the
same method as that described for the LUCOL module
library.

The method of implementing an approved change is
strictly controlled and documented as part of the
company's Quality procedures, to make sure that the
appropriate documentation changes are made to ensure
as much as possible maximum visibility.

SOFTWARE QUALITY CONTROL

An integral part of the LUCOL system, as already
stated, is an automatic documentation system. This
system will, by automatically scanning the inter-
connected source files, produce a unique build
standard for the LUCOL program.

Certain data are required by the system, e.g.
author's name, date, project name, functional
description, input/output requirements, modification
history, etc. These data, together with the LUCOL
list, are then automatically compiled into a report
defining the software standard of the control system
This automatic report generating system ensures that
all relevant data are provided in a standard format
and that a complete report of the software standard
of a control system and its modification status are

1. The control engineer recognises a requirement
for a new module.

2. A definition of the functional requirements is
generated together with a test procedure.

3. The functional requirements and test procedure
are examined to ensure that:-

a) the inclusion of the module into the library
is justified; i.e. the requirements cannot
be met by an existing module or by a
combination of existing modules.

b) the performance and test requirements are
adequately defined.

4. Detail software for the module is then written
and tested and the resultant documentation
checked by means of a software technical
committee. The software technical committee
consists of suitably qualified engineers drawn
from the various engineering departments
involved in digital design.

5. The documentation package is then submitted to
the GEM for formal approval. The GEM (General
Engineering Meeting) has the responsibility to
control and maintain the company's engineering
standards of design.

6. Having received approval, the module is issued
for use.

This procedure ensures that the modules available
for use are fully defined, specified and tested and
that the information relating to these is presented
to the user in a consistent form. The documentation
package for a module includes:

1. Definition of the module function and
application including the symbolic and mnemonic
representations to be used.

2. Test specification.

3. Program listing.

4. Test results.

The LUCOL lists defining a given control system
are subject to a procedure similar to that shown
above for modules. Again, formal approval at the
GEM is required before the control software can be
issued. Any modifications carried out in the field,
i.e. during engine tests, have to be incorporated
into the standard of software previously agreed and
resubmitted to the GEM for approval. Note that
modifications to the software relating to a specific
module cannot be carried out in the field.

9

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

CONCLUSIONS

This paper has attempted to describe a flexible
software system for the design and development of
control software for use in high integrity applic-
ations. Flexible in providing control engineers with
a high level language and debugging aids, allowing
the creation of software to be less time consuming
than traditional methods. Combined with this flex-
ibility are the automatic restrictions and documen-
tation procedures embedded in the system to produce
software of high integrity and engineering visibility.

ACKNOWLEDGMENTS

The authors would like to thank the Directors of
Lucas Aerospace Limited for permission to publish
this paper. They would also like to acknowledge the
skill and hard work contributed by their colleagues,
both in the U.S.A. initially and England, in the
design and development of the software system
described in this paper.

10

Downloaded From: https://proceedings.asmedigitalcollection.asme.org/ on 01/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

