
1

I have been trying to learn PASM off and on for a while. After reviewing many tutorials and

much of the Parallax forums, I found it not easy to get basic information about just simply

communicating with PASM. Everybody wants to blink a light. That is great but how does one do

simple math, an array and other tasks that are relatively simple in SPIN or Prop C.

My project involves GPS and other sensors. I decided that I would tackle the project in PASM.

So, while attempting to learn to code in assembly I got some jump starts from David and Jeff at

parallax which was a great help, scoured the forums and despite finding many broken links and

digging through some older tutorials, I found some information. Still everyone wants to blink a

light.

I wrote a version of the tutorial that is in the LEARN section for creating Prop C libraries and

was encouraged by the compliments, Thank you all.

My approach to that rewrite was from the aspect of a teacher not an engineer as I am a flight

instructor and an aircraft mechanic instructor at a college in the Los Angeles area. So, I

attempted to not be too geeky with the tutorial so as to appeal to the inexperienced and those who

are really techy.

So here is my attempt at a PASM tutorial.

No Blinky lights in the beginning!!!!

The first thing one will need is a copy of the propeller manual that is in the propeller tool and can

be found here: https://www.parallax.com/product/122-32000.

Here is a link to Jeff Martin’s webinar I uploaded to YouTube:

https://www.youtube.com/watch?v=OZHuWYW3o1A

The first exercise will encompass passing variables from a spin method to a pasm method and

back.

This the first piece of code that I came up with. There may be better ways to do this so bear with

me.

I setup two global variables one for the spin method and the other for the pasm method. A five

second waitcnt is used so as to have time to open the serial terminal when launching the code.

In order to launch the pasm code into a new cog this command is needed:

cognew(@asm,@datavar). The cognew means open the next cog, the @asm is the beginning of

the assembly routine and the @datavar is the address of the first global variable.

https://www.parallax.com/product/122-32000

2

The next steps are to start the serial terminal wait five seconds to allow one to open the serial

terminal and then launch the cog. The code will then take the value in data var and print on the

terminal. Now to the PASM method:

The datavar is assigned a value, in this case 256 which is the maximum pasm will handle without

extra work. I will tackle that at a later time. We want to keep it simple at this time. This is also

because many of the other tutorials I have seen get really complicated very quickly and do not

take it in baby steps. I want to make sure that everybody can grasp the concept before getting

into complicated code and get lost.

3

The pasm code starts in a “dat” section of spin. The “asm” “org” “0” indicates the beginning of

the pasm code. In the cognew there is also an @datavar expression. This tells the pasm code the

address of the first variable and that address will be stored in the “par” value. “par” from what I

have found means parameter.

There is a very nice webinar done by Jeff Martin in 2009 that explains a lot of information

regarding pasm code. I uploaded it to YouTube:

https://www.youtube.com/watch?v=OZHuWYW3o1A.

Starting at:

 mov temp_var, par

This is the mov instruction description:

MOV
Instruction: Set a register to a value.

MOV Destination, # Value

Result: Value is stored in Destination.

Destination (d-field) is the register in which to store Value.

Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.

Explanation

4

MOV copies, or stores, the number in Value into Destination.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is specified, the C

flag is set to Value’s MSB. The result is written to Destination unless the NR effect is specified.

So, our first instruction directive will take the address of the spin code datavar variable in the

registers and pass it to a temporary variable that we can manipulate. The code is commented so

as to follow the progression and I am using full words instead of abbreviations so as one could

more easily follow the progression.

Now we have the address of the data_var which corresponds to datavar in the spin method.

As you can see, we move over and get the address of the spin code answervar variable and assign

it’s address to the pasm code answer_var variable. This is done by adding 4 to the temporary

variable. Adding 4 moves to the next adjacent long where the answer var is located in the hub.

We are next going to use the rdlong and wrlong directives. The rdlong directive will read from a

location and copy the value into a destination field as is shown in the propeller manual listing.

RDLONG Value, # Address

Result: Long is stored in Value.

Value (d-field) is the register to store the long value into.

Address (s-field) is a register or a 9-bit literal whose value is the main memory address to read from.

The rdlong goes from right to left. We are reading the value that is in the par register which has the

location of datavar and it’s contents.

5

Lastly, we are going to write the value to the answer_var location that corresponds with

answervar in the spin method and then print the results in a new variable. Note: wrlong works

from left to right.

You should get a value on the serial terminal. I used 256 as this is the largest value for a single

long, which is four bytes in size.

Changing the value of datavar to 25 in the spin method to verify.

RES: We need to reserve space for the pasm variables this is self-explanatory.

Now we can manipulate two variables and print them in succession. This is the new code:

BEFORE

AFTER

6

7

We have added a couple of items. First a new datavar named datavar2 and a new answervar

named answervar2 as well as their counterparts in the pasm method. In the print area answervar2

has been added also.

Note the order of the global variables. This will make it easy to find them in the pasm method.

The pasm routine begins just like before and we get the location of datavar from par into the

temporary variable and assign the location to data_var and read the value from par to data_var.

Now we have to move over a couple of longs to get the new variables and values:

Now we can write the value to the second answer_var. Remember wrlong is from left to right as

opposed to rdlong and other directives which are right to left.

8

This is what you should see on the serial terminal:

Changing the two datavar’s values:

It works.

Now that we can get in and out of spin and pasm, I will present some examples of simple math.

I am trying to avoid the jump to really complicated programs with the assumption that the reader

has a total comprehension of coding in assembly language of any type. I have found many

tutorials do that.

These tutorials were good but confusing when they jump ahead and get very complex. Since I

am a teacher, I teach flying and aircraft mechanics, I have to assess the background of each

student. Academic learning can be difficult and painful, so if the instructor keeps it simple and

explains the concept with easy examples that build up slowly, the student has a better chance of

understanding and correlating the subject matter.

That results in a much better outcome. First addition, note the global variable name change. We

are going to repeat the above code and make some changes:

9

10

Subtraction:

11

What we have done is simply, at lines 60 and 61, added a new variable as well at line 71, these

will be the subtraction variables. Next perform the subtraction and then write to our answer

variable.

You should get this:

25-10=15

Change subtraction variable to 12.

25-12=13

12

Multiplication this is from the propeller manual page 380:

13

3*27=81

Change 27 to 9.

3*9=27

Basically, we are doing multiplication by addition:

 27+27+27=81

3+3+3+3+3+3+3+3+3=27

The first operation is to shift left, the multiplicand into x[31..16], line 48.

Next because this is 16 bit multiplication, so we are going to load a variable with the number 16,

line 49: mov t,#16 'ready for 16 multiplier bits.

We are going to shift the carry into y by 1 each time we add the variables. So, on line 50 the first

iteration will be loaded. This is done by shifting y right by one to get the carry flag set with the

first number that will eventually be the result of the multiplication.

SHR: There is a shift right and shift left these are self-explanatory in the propeller manual as

shown. The code will shift left or right by the number specified.

Line 50: shr y_var,#1 wc 'get initial multiplier bit into c

14

Now we are going to ask if the carry flag is set when we add x and y. this will loop until the

carry flag is not set an we will loop back and perform the operation again. Each addition will be

counted until finished. When completed the carry will be the result of the multiplication. The

carry will be discussed in the “if” conditional in the next paragraphs.

Now the loop:

If the carry flag is set, we will loop back and perform an add instruction and check the carry flag

after each iteration. This conditional jump will be performed by the DJNZ directive what will

evaluate the carry. If the carry in this case is set it will jump back to the beginning of the loop

where the RCR instruction will rotate the carry flag, RCR, over into y at the end the value in y

will be the answer. Basically, it adds up the carry bits. . If the carry is not set it will NOP, NO

OPERATION, and drop out of the loop and go to the next instruction which in this case is to

write the results to the variable, product_var and will be printed.

Which in the end of the loop, would be the answer if one did multiplication via the addition

process.

RCR:

15

CONDITIONAL STATEMENTS:

DJNZ:

This directive allows for repetition while decrementing a particular value of choice and when the

result is not zero jump to a particular point in the code until the result is zero. At that point the

code will drop down to the next instruction in line.

16

We run the loop until the carry flag is empty. This is repeated addition. Jeff and Dave at Parallax

told me that there are many ways to do this. I am working on this myself. Basically, it is

repetitive addition and that can be done in a loop until the number of iterations required are

completed.

Division:

17

The division will be a continued subtraction algorithm that will subtract the divisor from the

dividend until the divisor is either zero or there is a remainder less than the divisor. The answer

will now be in the quotient the low bits, with the remainder in the high bits.

On line 47 we are going to shift left the divisor by 15 bits to get it into the high end of y. Then

move the number 16 into t because t will be our iterations for the DNJZ directive which will

perform the loop function 16 iterations. Now the compare and subtract, cmpsub, will subtract y

from x and see if it is zero, the carry flag will answer the condition. At each iteration we will

rotate carry left, RCL, by one. At the end of all operations x will have the quotient and y will

have the remainder.

18

The AND operation takes $FFFF and masks off high bits so as to get the quotient, we later shift

the naked remainder by 16 to get the remainder.

Counting up and down:

19

Since spin is much slower than pasm, we have to interrupt pasm so spin can keep up. With that

in mind we are going to look at line 27 and 37 to 51.

Line 27:

pst.dec(count~)'post clear p 157.

Y := X~ + 2
The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing its current

value for the next operation. In this example if X started out as 5, X~ would provide the current value for

the expression (5 + 2) to be evaluated later, then would store 0 in X. The expression 5 + 2 is then evaluated

and the result, 7, is stored into Y. After this statement, X equals 0 and Y equals 7.

Since Sign-Extend 7 and Post-Clear are always assignment operators, the rules of Intermediate

Assignments apply to them (see page 147).

So, if the line 27 instruction has not cleared, pasm will jump back to the loop until it is cleared

then pasm will perform the operation again.

Change line: 36 add to sub and you will have a continuous loop of subtraction.

20

Arrays:

We are now able to add, subtract, multiply and divide. Basic math skills that we will now take to

a next level but in a slow process. Next let’s create an array and do some math while learning to

populate the array and print selected arrays cells.

Simple array.

21

We are going to start as before and this time have two global variables. One is the data to be

passed with a value from spin to pasm. The other is an array that is 10 cells long. That means that

each cell will be a long in size.

As you can see in the spin method and the pasm method both are declared. Standard entry to get

the addresses and values entered.

The line 56, read in the value to the datavar variable.

Line 62 write it to the first array cell, array[0].

Now to access the second array cell, array[1], we have to move over to the next long, line 64 by

adding 4 bytes. Now for a little math to make it interesting we are going to add the littoral

number 10 to the variable that is stored in the datavar which is 16. So 16+10=26.

The spin method is going to print them in reverse order which shows that we can manipulate the

array.

