| have been trying to learn PASM off and on for a while. After reviewing many tutorials and
much of the Parallax forums, | found it not easy to get basic information about just simply
communicating with PASM. Everybody wants to blink a light. That is great but how does one do
simple math, an array and other tasks that are relatively simple in SPIN or Prop C.

My project involves GPS and other sensors. | decided that | would tackle the project in PASM.
So, while attempting to learn to code in assembly | got some jump starts from David and Jeff at
parallax which was a great help, scoured the forums and despite finding many broken links and
digging through some older tutorials, I found some information. Still everyone wants to blink a
light.

| wrote a version of the tutorial that is in the LEARN section for creating Prop C libraries and
was encouraged by the compliments, Thank you all.

My approach to that rewrite was from the aspect of a teacher not an engineer as | am a flight
instructor and an aircraft mechanic instructor at a college in the Los Angeles area. So, |
attempted to not be too geeky with the tutorial so as to appeal to the inexperienced and those who
are really techy.

So here is my attempt at a PASM tutorial.
No Blinky lights in the beginning!!!!

The first thing one will need is a copy of the propeller manual that is in the propeller tool and can
be found here: https://www.parallax.com/product/122-32000.

Here is a link to Jeff Martin’s webinar | uploaded to YouTube:
https://www.youtube.com/watch?v=0ZHuWYWa301A

The first exercise will encompass passing variables from a spin method to a pasm method and
back.

This the first piece of code that | came up with. There may be better ways to do this so bear with
me.

| setup two global variables one for the spin method and the other for the pasm method. A five
second waitcnt is used so as to have time to open the serial terminal when launching the code.

In order to launch the pasm code into a new cog this command is needed:

cognew(@asm,@datavar). The cognew means open the next cog, the @asm is the beginning of
the assembly routine and the @datavar is the address of the first global variable.

https://www.parallax.com/product/122-32000

{{ Tutorial 1 how to pass a number variable from spin to pasm and back, this works for numbers
from @ to 256, bigger numbers in a later tutoriall}}

CON
8 _clkmode = xtall + plliBx
g "_xinfreq = 6_250 00@ MY BOARD AT 100MHZ DIFFERENT CRYSTAL
1@ _xinfreq = 5_000_000 "QUICKSTART 8@ MHZ NORMAL CRYSTAL
12
Z; obj

16 pst: parallax serial terminal”

war

long datavar
long answervar

M [Pl = |
i R=r]

M |

The next steps are to start the serial terminal wait five seconds to allow one to open the serial
terminal and then launch the cog. The code will then take the value in data var and print on the
terminal. Now to the PASM method:

23 |pub main

§

24 datavar:= 25 "assign a value to datavar

25

26

27 pst.start (115000) "start the serial terminal chject
28

29 waitent (clkfreg*d +cnt) hold five sec to open the

cogrew (Rasm,@datavar) open a new cog for pasm. where it starts “asm’ and
32 " the address of the first variable
33 waitent (clkfreg+cnt) " hold for a second
35 " oprint routine

pst.str(string("an5ued:")}
38 pst.newline

pst.dec (answervar)

Lp pst.newline

The datavar is assigned a value, in this case 256 which is the maximum pasm will handle without
extra work. | will tackle that at a later time. We want to keep it simple at this time. This is also
because many of the other tutorials | have seen get really complicated very quickly and do not
take it in baby steps. | want to make sure that everybody can grasp the concept before getting
into complicated code and get lost.

SEOR

The pasm code starts in a “dat” section of spin. The “asm”

asm

org 1] "This is the starting point for PASM

{{ The first item is to move the address of the parameter register "PAR” into

a temporary variable and assigre it to the variable in which we will read the in
this case the value of datavar in the spin method. }}

mov temp_wvar, par

{{ Now we are going to assign the pasm variable, data_var, the address of datavar in
the spin method. }}

mov data_var, temp_var

{{ Now we have to move over to the next long to get the address of answervar in the
spin object and assign it to answer var in the pasm code.}}

add temp_var, #&

{{ Now assign this address to answer var. }}

mov answer_var,temp_var

{{ Next read the value of datavar (spin object) into the pasm data_var. }}

rdlong data_var, par

{{ Finaly write it to the answer var which is spin’'s answervar for printing. }}
wrlong data_var, answer_var

58|{{ Reserved variables reserved for PASM s use. }}

data_var res 1
answer_var res 1
temp_var res 1

(13

org” “0” indicates the beginning of

the pasm code. In the cognew there is also an @datavar expression. This tells the pasm code the
address of the first variable and that address will be stored in the “par” value. “par” from what I
have found means parameter.

There is a very nice webinar done by Jeff Martin in 2009 that explains a lot of information
regarding pasm code. | uploaded it to YouTube:
https://www.youtube.com/watch?v=0ZHuWYWa301A.

Starting at:

mov temp_var, par

This is the mov instruction description:

MOV

Instruction: Set a register to a value.
MOV Destination, [1#[1 Value
Result: Value is stored in Destination.

Destination (d-field) is the register in which to store Value.

Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.

Explanation

MOV copies, or stores, the number in Value into Destination.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is specified, the C
flag is set to Value’s MSB. The result is written to Destination unless the NR effect is specified.

So, our first instruction directive will take the address of the spin code datavar variable in the
registers and pass it to a temporary variable that we can manipulate. The code is commented so
as to follow the progression and | am using full words instead of abbreviations so as one could
more easily follow the progression.

5 asm org 5] "This is the starting point for PASM

{{ The first item is to move the address of the parameter register "PAR” into
8 a temporary variable and assigrne it to the variable in which we will read the in
this case the value of datavar in the spin metheod. }}
mov temp_var, par

{{ Now we are going to assign the pasm variable, data var, the address of datavar in
52 the spin method. }}

3 mov data_var, temp_var

Now we have the address of the data_var which corresponds to datavar in the spin method.

{{ Now we have to move over to the next long to get the address of answervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #4

58 {{ Now assign this address to answer_var. }}

mov answer_wvar,temp_var

As you can see, we move over and get the address of the spin code answervar variable and assign
it’s address to the pasm code answer_var variable. This is done by adding 4 to the temporary
variable. Adding 4 moves to the next adjacent long where the answer var is located in the hub.

We are next going to use the rdlong and wrlong directives. The rdlong directive will read from a
location and copy the value into a destination field as is shown in the propeller manual listing.

RDLONG Value, [1#[] Address
Result: Long is stored in Value.

Value (d-field) is the register to store the long value into.
Address (s-field) is a register or a 9-bit literal whose value is the main memory address to read from.

The rdlong goes from right to left. We are reading the value that is in the par register which has the
location of datavar and it’s contents.

61 {{ Next read the value of datavar (spin object) into the pasm data var. }}
rdlong data var, par

fLad a3

Lastly, we are going to write the value to the answer_var location that corresponds with
answervar in the spin method and then print the results in a new variable. Note: wrlong works

from left to right.

{{ Finaly write it to the ansuwer_var which is spin’s answervar for printing. }}
wrlong data var, answer wvar

You should get a value on the serial terminal. | used 256 as this is the largest value for a single
long, which is four bytes in size.

BEFORE

RES

Directive: Reserve next long(s) for symbol.

(Symbol) RES (Count)
e Symbol is an optional name for the reserved long in Cog RAM.

e Count is the optional number of longs to reserve for Symbaol. If not specified, RES
reserves one long.

RES: We need to reserve space for the pasm variables this is self-explanatory.

Now we can manipulate two variables and print them in succession. This is the new code:

3/{{ Tutorial 2 houw to pass two number variables from spin to pasm and back, this works for numbers
Lifrom @ to 256, bigger numbers in a later tutoriall}}

5(coN
7 _clkmode = xtall + plli6x
B "_xinfreq = 6_250_000 MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5_000_0@@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL
:; obj

pst: parallax serial terminal”

so as to access them}}
long ansuwervar
long datavar?

16 long datavar {{each of these are one long apart. Have to move over ore long
2 long ansuervar?

27 |pub main

23 datavar:= 21 "assign a value to datavar

2k datavarZ := 29

25

26 pst.start (115000) "start the serial terminal object

21

28 waitcnt (clkfregq*d +cnt) "hold five sec to open the serial terminal

29

30 cognew (Basm, Bdatavar) * open a new cog for pasm. where it starts “asm” and
K | " the address of the first variable

32 waitcnt (clkfreg+ont) " hold for a second

33

34 print routine

35

36 pst.str (string (answer:™))

37 pst.newline

38 pst.dec (answervar)

39 pst.newline

L0 pst.str (string (answer:™))

&1 pst.newline

L7 pst.dec (answervar?)

43 pst.newline

L

&5

LB

47 |dat

48

49 asm org f "This is the starting point for PASH

50

51 {{ The first item is to move the address of the parameter register "PAR” into
Y a temporary variable and assigne it to the variable in which we will read the in
53 this case the value of datavar in the spin method. }}

;1A mov temp_wvar, par

55 {{ Now we are going to assign the pasm variable, data var, the address of datavar in
56 the spin method. }}

5 mov data_wvar, temp_var

58 rdlong data_var, temp_var

59 {{ Now we have to move over to the next long to get the address of answervar in the
50 spin object and assign it to answer_var in the pasm code.}}

1 add temp var, #4

2 {{ Now assign this address to answer var. }}

63 moy answer_var,temp_var

B4 {{urite the value to the answervar in spin}}

5 wrlong data_var, answer_var

66 {{go back and get the par address to access the next variable}}

67 mov temp_var, par

69 {{jump over two longs to get the address of datavar? in the spin method}}
70 add temp_wvar, #8

1 {{assign the address}}

12 mov data_var2, temp_var

3 {{read the value}}

rdlong data_varZ, temp_var

{{skip over one long to get answervar in spin}}
16 add temp_wvar, #4

{{assign the address}}

8 mov answer_varZ,temp_var

J {{now write the value to answervar? in spin}t}
80 wrlong data_var2, answer_var?d

85 data var res 1

86 data_var? res 1
87 answer_var res 1
88 ansuwer_varZ res 1
89 temp_var res 1

We have added a couple of items. First a new datavar named datavar2 and a new answervar
named answervar2 as well as their counterparts in the pasm method. In the print area answervar2
has been added also.

15|var

16 long datavar {{each of these are one long apart. Have to move over one long
17 50 as to access them}}

18 long answervar

19 long datavar?

28 long answervar?

Note the order of the global variables. This will make it easy to find them in the pasm method.

The pasm routine begins just like before and we get the location of datavar from par into the
temporary variable and assign the location to data_var and read the value from par to data_var.

Now we have to move over a couple of longs to get the new variables and values:

68 mov temp_war, par

69 {{jump over two lorngs to get the address of datavar? in the spin method}}
78 add temp_wvar, #8

il {{assign the address}}

12 mov data_var?, temp_var

3 {{read the value}}

14 rdlong data_var?, temp_var

Now we can write the value to the second answer_var. Remember wrlong is from left to right as
opposed to rdlong and other directives which are right to left.

{{move over one long to get answervar in spin}})
add temp_var, #&

{{assign the address}}
mov answer varZ,temp var
50 {{row write the value to answervar? in spin}}
] wrlong data vard, answer varZ

This is what you should see on the serial terminal:

It works.

Now that we can get in and out of spin and pasm, | will present some examples of simple math.

| am trying to avoid the jump to really complicated programs with the assumption that the reader
has a total comprehension of coding in assembly language of any type. | have found many
tutorials do that.

These tutorials were good but confusing when they jump ahead and get very complex. Since |
am a teacher, | teach flying and aircraft mechanics, | have to assess the background of each
student. Academic learning can be difficult and painful, so if the instructor keeps it simple and
explains the concept with easy examples that build up slowly, the student has a better chance of
understanding and correlating the subject matter.

That results in a much better outcome. First addition, note the global variable name change. We
are going to repeat the above code and make some changes:

ADD

Instruction: Add two unsigned values.

ADD Valuet, (#) Value2
Result: Sum of unsigned Valuel and unsigned Value? 1s stored in Valuel.

e Value1 (d-field) is the register containing the value to add to Value2? and is the
destination in which to write the result.
o Value2 (s-field) is a register or a 9-bit literal whose value 1s added into Valuel.

1|{{basic addition in pasm using the add directive. Page?59 propeller manuall}}

3|CON

L) clkmode = xtall + pllifx

5" _xinfreg = 6_250_00@ "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
5| _xinfreq = 5_000_@0@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

g|var
g "VARIABLE IM THE PAR AOORESS TO BE PASSED
10 long x
11 long y
12 long product
13|obj

15|pst: "parallax serial terminal”

17 pub main

18 x = 30

19 Yy = £5

20 |pst.start (115000)

21 waitcnt (clkfreg*s +cnt) "hold five sec to open the

22 "serizl terminal and enable it

23|cognew (Basm, @x) "start cog at the first variable address

2k waitent (clkfreq*2 +cnt) “give pasm time to do the work

25

26 pst.str (string (product:™))

217 pst.dec (product~)

28 pst.newline

24

30 dat

31

32 asm org

33

34 mov tempwvar, par get the address of x from par

35 mow xwvar, tempwvar assign the address to the xvar in pasm
36 rdlong xvar, tempvar read the value that is in x

37 add tempvar, #4& “move over one long to get y £ address
38 mov yvar, tempvar assign that address to yvar

39 rdlong yvar, tempvar read the value that is in y

L0 add tempvar, #& “move over one long to get the address of product
£1 mov productvar, tempvar assign the address to productvar
&2 add xvar,yvar ‘add x and y together answer will ke in x
&3 wrlong xvar, productvar ‘write x into the product variable and print
L

45

LB tempvar long @

LT xvar long @

LB yvar long @

L8 productvar long @

S0 flag long @

—
|

product:75

Subtraction:

2
3
LI {{ Tutorial on how to pass a number variable and perform subtraction
Slwith the sub directive
G|from spin to pasm and back, this works for numbers
T|from @ to 256, bigger numbers in a later tutoriall}}
8
9
10|CON
11 _clkmode = xtall + plll6x
12 " xinfreq = 6_250 000 ‘MY BOARD AT 100MHZ DIFFERENT CRYSTAL
13 _xinfreq = 5_000_0P00 "QUICKSTART 8@ MHZ NORMAL CRYSTAL
14|obj
16 pst: ‘parallax serial terminal”
17
18|var "global wariables
19 long datavar
20 long answervar
21 long subvar
22

print routine

pst.str(string ((results: ™))
pst.newline

pst.dec (answervar)
pst.newline

23 |pub main

24 datavar:= 25 "assign a value to datavar

25 subvar 1= 10

26

27 pst.start (115000) "start the serial terminal object
26

29 waitent (clkfregq*s +cnt) "hold five sec to open the

30

31 cognew (Basm, @datavar) ~ open a new cog for pasm. where it starts Tasm” and
3 " the address of the first variable
3 waitent (clkfreq+cnt) " hold for a second

3

3

3

3

3

3

i

[I e e I e e o I P B N

10

org 5] "This is the starting point for PASM

{{ The first item is to move the address of the parameter register "PAR” into

a temporary variable and assigne it to the wariable in which we will read the in
this case the value of datavar in the spin method. }}

mov temp_var, par

{{ Now we are going to assign the pasm variable, data var, the address of datavar in
the spin method. }}

mov data_var, temp_var

{{ Now we have to move over to the next long to get the address of answervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #&

58 {{ Now assign this address to ansuer_wvar. }}

mov answer_var,temp_var

add temp_var,#4¢ 'move over to the next long and get the subtraction variable address
mov sub_var, temp_var "assign the address to the variable

rdlong sub_var,temp_var ‘read the value in that address

{{ Next read the value of datavar (spin object) into the pasm data_var. }}

rdlong data_var, par "go back and get the wvalue from the data variable that is in the par register
sub data_var,sub_var ' perform the subtraction data-subvar= xxx

Ca P |

{{ Finaly write it to the answer_var which is spin’s answervar for printing. }}
68 wrlong data_var, answer_var

70/{{ Reserved variables ressrved for PRASM s use. }}

71 sub_var res 1

72 data_var res 1
13 answer_var res 1
T4 temp_var res 1

What we have done is simply, at lines 60 and 61, added a new variable as well at line 71, these
will be the subtraction variables. Next perform the subtraction and then write to our answer
variable.

You should get this:

25-10=15

Change subtraction variable to 12.

25-12=13

11

Multiplication this is from the propeller manual page 380:

{{Multiplication based on the propeller manual page 380}}

M =

2| CON
Ll clkmode = xtall = pllifx
5" xinfreq = 6_250 000 "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
6| xinfreg = 5 000 _A0@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL
7
Blvar
g
10 "VARIABLE IN THE FAR ADDRESS TO BE PASSED
11 long x
17 long y
13 long product
1%|obj

16|pst: ‘parallax serial terminal”

17

18|pub main

19 ¥ =3
=217

ol

y
pst.start (115000)
waitcnt (clkfregq*S +cnt) "hold five sec to open the
"gerial terminal and enable it
cognew (Basm,@x) "start cog at the first variable address |
waitent (clkfreq=? +cnt) "give pasm time to do the work

R F L Mk

(3]

pst.str (string ("product: ™))
pst.dec (product~)
pst.newline

[O e T e T T T L L e Y e) e

(e [e = R |

K14

3

32|dat

3377 Multiply x[15..07 by u[15..07 (u[31..167 must be @)

3417 on exit, product in y[31..0]

35|

36|asm arg

37

38 mov temp_var, par move par to a temporary variable

39 mov x_var, temp_var find the x variable

A rdlong x_var, temp_var read in the value from top object

&1 add temp_var, B4 "jump to next long which is the address of the
47 " next variable

£3 mov y_var, temp_var repeat assignment and read in value

b6 rdlong y_var, temp_var

&5 add temp_var, B4 "jump again to assign the product variable address
LB mov product wvar, temp var

12

multiply shl x_var,#16 "get multiplicand into x[31..16]
mov t,816 “ready for 16 multiplier bits
i shr y var,#1 wc "get initial multiplier bit into c
1|t loop if ¢ add y var,x _var wc "if c set, add multiplicand te product
2 rcr y_var,81 wc “put next multiplier in ¢, shift prod.
dinz t,#:loop loop until done
wrlong y var, product var ‘write the product from y[31..0] to the
"product variable for the top object

"multiply_ret ret ‘return with product in y[31..0] "this would be a subroutine
" when used in a program

59|temp_var res 1

0| x_var res 1

51y_var res 1

3Z|product_var res 1

53|t res 1

product:8]1 [EEaAC

Change 27 to 9.

product:27 EEkE

Basically, we are doing multiplication by addition:

27+27+27=81

3+3+3+3+3+3+3+3+3=27

The first operation is to shift left, the multiplicand into x[31..16], line 48.

SHL

Instruction: Shift value left by specified number of bits.

SHL Value, (#) Bits
Result: Value 1s shifted left by Bits.

e Value (d-field) is the register to shift left.
e Bits (s-field) 1s a register or a 5-bit literal whose value 1s the number of bits to shift
left.

Next because this is 16 bit multiplication, so we are going to load a variable with the number 16,
line 49: mov t,#16 'ready for 16 multiplier bits.

We are going to shift the carry into y by 1 each time we add the variables. So, on line 50 the first
iteration will be loaded. This is done by shifting y right by one to get the carry flag set with the
first number that will eventually be the result of the multiplication.

SHR: There is a shift right and shift left these are self-explanatory in the propeller manual as
shown. The code will shift left or right by the number specified.

Line 50: shry_var #1 wc 'get initial multiplier bit into ¢

13

SHR

Instruction: Shift value right by specified number of bits.

SHR Value, (%) Bits
Result: Value 1s shifted right by Bits.

Value (d-field) is the register to shift right.
e Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift
right.

Now we are going to ask if the carry flag is set when we add x and y. this will loop until the
carry flag is not set an we will loop back and perform the operation again. Each addition will be
counted until finished. When completed the carry will be the result of the multiplication. The
carry will be discussed in the “if” conditional in the next paragraphs.

Now the loop:

If the carry flag is set, we will loop back and perform an add instruction and check the carry flag
after each iteration. This conditional jJump will be performed by the DINZ directive what will
evaluate the carry. If the carry in this case is set it will jump back to the beginning of the loop
where the RCR instruction will rotate the carry flag, RCR, over into y at the end the value iny
will be the answer. Basically, it adds up the carry bits. . If the carry is not set it will NOP, NO
OPERATION, and drop out of the loop and go to the next instruction which in this case is to
write the results to the variable, product_var and will be printed.

Which in the end of the loop, would be the answer if one did multiplication via the addition
process.

RCR:

RCR

Instruction: Rotate C right into value by specified number of bits.

RCR Value, (#) Bits
Result: Value has Bits copies of C rotated right into it.

Value (d-field) is the register in which to rotate C rightwards.
e Bits (s-field) 1s a register or a 5-bit literal whose value 1s the number of bits of Value

to rotate C rightwards into.

14

CONDITIONAL STATEMENTS:

IF_x (Conditions)

Every Propeller Assembly instruction has an optional “condition” field that is used to
dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

(Label)y (Condition) Instruction Operands (Effects)

The optional Condition field can contain one of 32 conditions (see Table 3-3) and defaults to
IF_ALWAYS when no condition is specified. The 4-bit Value shown for each condition is the
value used for the -CON- field in the instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field, makes Propeller
Assembly very powerful. Flags can be affected at will and later instructions can be
conditionally executed based on the results. Here’s an example:

test _pins, #s20 we
and _pins, #s38
shl t1l, _pins
shr _pins, #3
movd vefg, _pins
if_nc mov dira, tl
if_nc mov dirb, #0
if_c mov dira, #0
if_c mov dirb, tl

The first instruction, test _pins, #$20 wc, performs ifs operation and adjusts the state of
the C flag because the WC effect was specified. The next four instructions perform operations
that could affect the C flag, but they do not affect it because no WC effect was specified. This
means that the state of the C flag 1s preserved since it was last modified by the first
mstruction. The last four mstructions are conditionally executed based on the state of the C
flag that was set five instructions prior. Among the last four instructions, the first two mov
mstructions have if_nc conditions, causing them to execute only “if not C” (if C = 0). The
last two mov instructions have if_c conditions. causing them to execute only “if C” if C = 1).
In this case, the two pairs of mov instructions are executed in a mutually exclusive fashion.

When an instruction’s condition evaluates to FALSE, the instruction dynamically becomes a
NOP, elapsing 4 clock cycles but affecting no flags or registers. This makes the timing of
multi-decision code very deterministic.

DINZ: DJNZ

Instruction: Decrement value and jump to address if not zero.

DJNZ Value, (#) Address
Result: Value-1 is written to Value.

Value (d-field) is the register to decrement and test.
o Address (s-field) is the register or a 9-bit literal whose value is the address to jump to
when the decremented Value is not zero.

This directive allows for repetition while decrementing a particular value of choice and when the

result is not zero jump to a particular point in the code until the result is zero. At that point the

code will drop down to the next instruction in line.

15

We run the loop until the carry flag is empty. This is repeated addition. Jeff and Dave at Parallax
told me that there are many ways to do this. I am working on this myself. Basically, it is

repetitive addition and that can be done in a loop until the number of iterations required are

completed.
Division:
Z|CON
2 _clkmode = xtall + plll6x
3| _xinfreq = 5_000_P00 "QUICKSTART 8@ MHZ NORMAL CRYSTAL
S|var
g long dividend "VARIABLE IN THE PAR ADDRESS TO BE PASSED

long divisor
8 long gquotient
9 long remainder

11/obj

12| pst : “parallax serial terminal”

14 pub main

15 dividend := 211

16 divisor := B

17 pst.start (115200)

18 waitent (clkfreg=s + cnt)

=R

"hold five sec to open the

"serial terminal and enable it

"start cog at the first variable address
"give top object time to catch up to pasm

)

"get the par address into the temporary variable

‘read the value into the dividend

"move over to the next long to get the divisor variable
"read the value of the divisor into the variable

‘move over to the next long to get the quotient address

2 cognew (Basm, 8dividend)
21 waitent (clkfreg + cnt)
s
23
24 pst.str (string ("quotient:
25 pst.dec{QuotientH
26 pst.newline
27 pst.str(string("remainder:™))
28 pst.dec (remainder)
29 pst.newline

3@

Zldat

35|asm org

o

37 mov tempvar, par
38 rdlong %, tempvar
39 add tempvar, #&
L0 rdlong y, tempvar
L1 add tempvar, #&
L2
43

44| Divide x[31..0] by y[15..2] (4[16] must be B)

LE[" on exit, guotient is in x[15..0] and remainder is in x[31..16]

divide shl y,#15

Cf =] T

dinz t,#:loop

A el

€M cn o en cn en e B
=

e

remainder in x[31..16]

"get divisor into y[3@..15]

mov t,#16 "ready for 16 guotient bits
9):1loop cmpsub %,y We "y =< x? Subtract it, gquotient bit in ¢
rel x, Bl ‘rotate ¢ into gquotient, shift dividend

"loop until dore

quotient in x[15..0], ;return if used as a subroutine

16

mov guotientvar,x

i and quotientvar,andvare "izolate lower 16 bits

5 wrlong quotientwvar, tempvar "write into Spinvar ‘quotient’

G moy remaindervar, x

51 shr remaindervar, #16 "izolate higher 16 bits

52 add tempvar, #4 "incr pointer to remainder address
3 wrlong remaindervar, tempvar "write into Spinvar ‘remainder’
oandvar? long STfff
5| tempvar res 1
7| res 1

68|y res 1

79 guotientvar res 1

/0 remaindervar res 1

7 1

I1(t res

quotient:35

remainder:1

The division will be a continued subtraction algorithm that will subtract the divisor from the
dividend until the divisor is either zero or there is a remainder less than the divisor. The answer
will now be in the quotient the low bits, with the remainder in the high bits.

On line 47 we are going to shift left the divisor by 15 bits to get it into the high end of y. Then
move the number 16 into t because t will be our iterations for the DNJZ directive which will
perform the loop function 16 iterations. Now the compare and subtract, cmpsub, will subtract y
from x and see if it is zero, the carry flag will answer the condition. At each iteration we will
rotate carry left, RCL, by one. At the end of all operations x will have the quotient and y will
have the remainder.

CMPSUB

Instruction: Compare two unsigned values and subtract the second if 1t 1s lesser or equal.

CMPSUB Valuet, (#) Value2

Result: Optionally, Valuel = Valuel — Value2, and Z and C flags = comparison results.

e Valuet (d-field) is the register containing the value to compare with that of Value? and
1s the destination in which to write the result if a subtraction is performed.

e Value? (s-field) 1s a register or a 9-bit literal whose value i1s compared with and
possibly subtracted from Valuel.

17

RCL

Instruction: Rotate C left into value by specified number of bits.

RCL Value, (#) Bits
Result: Value has Bits copies of C rotated left into it.

e Value (d-field) 1s the register in which to rotate C leftwards.
e Bits (s-field) 1s a register or a 5-bit literal whose value 1s the number of bits of Value
to rotate C leftwards nto.

The AND operation takes $FFFF and masks off high bits so as to get the quotient, we later shift
the naked remainder by 16 to get the remainder.

AND - Assembly Language Reference

AND

Instruction: Bitwise AND two values.

AND Valuel, (#) Value2
Result: Valuel AND Value?2 is stored in Valuel.

o Valuet (d-field) is the register containing the value to bitwise AND with Falwre2 and is
the destination in which to write the result.

o Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with
Valuel.

Counting up and down:

1|{{counting up example, have to slow pasm. Introducing conditionals
2|and jmp command}}]

CON

_clkmode = xtall + pllifix

8" _xinfreq = 6_250_ 000 "MY BOARD AT 100MHZ
9|_xinfreq = 5_000_00@ "QUICKSTART 8@ MHZ

10

11l|var

~ L

13 long count
15|obj
17|pst: "parallax serial terminagl”

9pub main

=

pst.start (115000)

waitent (clkfreq*S +cnt) hold two sed to open the
g "serial terminal and enable it
L|cognew (Basm, Bcount)

L

MI M MBI Ma Pk

18

repeat

pst.dec (count~) "post clear p 157
pst.newline

waitent (clkfreq +cnt)

L [M3 M3 [d
= O ob - 5]

3lldat

Jlasm org

5 mov addr, par

5| loop add value,#1 'counting variable

7| wait rdlong prev, addr wz "what is in par??
38 if nz jmp #wait "if the value in

i "par is zero continue to next command
&0 "if the value in par Taddr” has not been cleared
L1 "meaning the value that was put in “value” from
L2 " addr which has the address of par “parameter’”
L wrlong value, addr
L5 "now write the value to the addr which has been assigned
LB "the same address as par and where the address of count in
&7 "memory where the spin program can read it then jump back
L8 "to the top of the loop and contirue after the variable
LG " called count has been cleard to zero

5@ jmp #loop
He
53laddr long @

S5&|value long @
55|prev long @

Since spin is much slower than pasm, we have to interrupt pasm so spin can keep up. With that
in mind we are going to look at line 27 and 37 to 51.

Line 27:
pst.dec(count~)'post clear p 157.

Y =X~+2

The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing its current
value for the next operation. In this example if X started out as 5, X~ would provide the current value for
the expression (5 + 2) to be evaluated later, then would store 0 in X. The expression 5 + 2 is then evaluated
and the result, 7, is stored into Y. After this statement, X equals 0 and Y equals 7.

Since Sign-Extend 7 and Post-Clear are always assignment operators, the rules of Intermediate
Assignments apply to them (see page 147).

walt rdlong prev, addr wz
38 if nz jmp #wait |

So, if the line 27 instruction has not cleared, pasm will jump back to the loop until it is cleared
then pasm will perform the operation again.

Change line: 36 add to sub and you will have a continuous loop of subtraction.
36| loop add value,#1 “counting variable 36 1099 Sub value, #1 ‘Iclounting ‘var.*igblg

19

Arrays:

We are now able to add, subtract, multiply and divide. Basic math skills that we will now take to
a next level but in a slow process. Next let’s create an array and do some math while learning to
populate the array and print selected arrays cells.

Simple array.

{{basic array populate the array do some simple math }}

e

CON

_clkmode = xtall + pllifx

" xinfreq = 6_250_000 "MY BORARD AT 100MHZ DIFFERENT CRYSTAL
8| xinfreg = 5 000 Q@@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

.EI

10|var

-] T e L

13| long data
14 long array[1@] "global variable array 10 cells long arrayl@]..arrag[9]

17|obj

9|pst:"parallax serial terminal”

20

21

22 pub main

23 data := 1B

34

25|pst. start (115000)

26 waitent (clkfreg=s +cnt) "hold five sec to open the
21 "serial terminal and enable it

28 cognew (Basm,@data) ‘start cog at the first variable address
29

30

32 pst.str (string(Tarray: "))

33 pst.dec (array[1]) “print the second cell first
35 pst.newline

-

37 pst.str (string (Tarray: ™))

38 pst.dec (arrayl@]) “print the first cell second
39

LA pst.rnewline

20

5@ asm orag a

2 moyv tempvar,par "get the par address into a temporary variable

mov datvar,tempvar assign the address to the datvar in pasm

rdlong datvar,tempvar ‘read in the value of the data variable from spin
add tempvar, #4 "move over and get the beginning of the array

mov arrayvar,tempvar ~assign the beginmning of the array

?% wrlong datvar,arrauyvar ‘uwrite the value from spin to arrau[@]

%L add arrauvar,#4 ‘move over to the next array cell

56 add datvar, #1@ “add 10 to the value in in the data variaable from spin
57 "in this case 16 + 10 = 26

wrlong datvar,arragvar “write the product to the second arrau cell array[l]

15/ tempvar long @
/6|datvar long @

78|arrayvar long 1@ “global variable array 10 cells long arrayl@]. . arragl9]

We are going to start as before and this time have two global variables. One is the data to be
passed with a value from spin to pasm. The other is an array that is 10 cells long. That means that
each cell will be a long in size.

As you can see in the spin method and the pasm method both are declared. Standard entry to get
the addresses and values entered.

The line 56, read in the value to the datavar variable.
Line 62 write it to the first array cell, array[0].

Now to access the second array cell, array[1], we have to move over to the next long, line 64 by
adding 4 bytes. Now for a little math to make it interesting we are going to add the littoral
number 10 to the variable that is stored in the datavar which is 16. So 16+10=26.

The spin method is going to print them in reverse order which shows that we can manipulate the
array.

array:2e

array:1le

21

