Montague PASM tutorial
Chapter 2 Subroutines

At this point we should be able to get in and out of PASM and do some math and create and
target specific array cells.

We are now going to revisit those objects and create subroutines with each one.

Let’s start with the counting program that counts up from zero.

2

5/CON

6|_clkmode = xtall + plliBx

7" _xinfreg = 6_250_00@ "MY BOARD AT 100MHZ
8|_xinfreq = 5_000_00@ "QUICKSTART 8@ MHZ

a
10|var

12 long count

[
ar

"~

obj
pst: ‘parallax serial terminal”

pub main

O o~ o en

=

pst. start (115000)
waitent (clkfreq*s +cnt) "hold two sed to open the
"gerial terminal and enable it

3 |cognew (Basm, Bcount)

Mk

repeat

pst.dec (count~) "post clear p 157
pst.newline

waitent (clkfreq +cnt

o~ O3 en

I N S R e e S
I = 2 o= 5 x

Figure 1

3t mov addr, par

35 add value,#1 “counting variable

rdlong prev, addr wz "uwhat is in par??

if nz jmp #wait "if the value in

38 ‘par is zero continue to next command

39 "if the value in par “addr” has not been cleared

L@ ‘meaning the value that was put in “value™ from

L1 " addr which has the address of par “parameter’

&7 '

L3 wrlong value, addr

(17 "row write the value to the addr which has been assigned
&5 "the same address as par and where the address of count in
4] "memory where the spin program can read it then jump back
&7 "to the top of the loop and continue after the variable

LB " called count has been cleard to zero

L9 jmp #loop

1 o0 on

:E addr long @
53|value long @

Stlprev long @

Figure 2

Now we are going to add three lines of code, the code definitions are as follows as seen on lines
44,45 and 61 on the next listing:

Montague PASM tutorial
Chapter 2 Subroutines

CALL

Instruction: Jump to address with intention to retwn to next instucton.

CALL #Symbol
Result: PC + | iz wntten to the s-field of the register indicated by the d-field.

* Symbol (5-field) 15 a 9-bit literal whose value 15 the address to jump to. This field
mmst contain a DAT symbol specified 2= a literzl (#symbel) and the comesponding
code should eventually execute 2 RET instruction labeled with the same symbel plus 2
suffix of “_ret” (Symbol_ret RET).

Explanation

CALL records the address of the next instruction (PC + 1) then jumps to Symbel. The routine
at Symbol should eventually execute a RET instruction to retwm to the recorded address
(PC+1; the instruction following the CALL). For the CALL to compue and nm properly, the
Symbol routne’s RET instruction must be labeled in the form Symbeol with *_ret” appended to
1t. The reason for this 15 explamed below.

Propeller Assembly does not use a call stack, so the retun address nmst be stored mm a
different manner. At compile fime the assembler locates the destination routine as well as its
RET mstruction (labeled Symbol and Symbol_ret, respectively) and encodes those addresses
nte the CALL instruchion’s s-fleld and d-field. This provides the CALL mstuction with the
knowledge of both where it"s going to jump to and exactly where it will retwn from.

At nm time the first thing the CALL instruction does 15 store the refun address (PC+1) mito the
location where it will retum from; the “Symbel_ret RET” mstruction location. The RET

Paga 268 - Propellar Manual w12

3: Assembly Language Reference — CALL

instruction 1s really just a JMP instuction without a hard-coded destination address, and this
mm-fime action provides it with the “retwn™ address to jump back to. After stonng the retum
address, CALL jumps to the destination address; Symbol.

The dlagram below uses a short program example to demonstrate the CALL mstuchon’s mn-
fime behavier; the store operation (left) and the jump-execute-retn operation (nght).

Figure 3-1: Run-time CALL Procedure

Store operation Jump, execute and return speration
.
{2
= -
eall #Rautine -~ eall #Routime
| <next instruction> Vi A Lnext instructien®
¥ .
Routing “pora code® Routineg <“mere coder |
Routine_ret wt PCH §
e Routine_ret

In this example, the followmsg ocours when the CALL instuction 15 reached at run time:

@ The cog stores the retum address (PC+1; that of <next instruction®) into the source
(s-field) of the remster at Routine_res (see left image).
(Z) The cog jumps to Rautine (see right mage).

Routine’s Instuctions are executed, evenmally leading to the Routine_ret lne.

&

@ Smce the Routine_ret locztion confains a RET mstuction with an updated source
(s-field), which 15 the return address wiitten by step 1, it retwms, or jumps, back to
the <next instructior lme.

CALL - Assembly Language Reference

Thes nature of the CALL mstruction dietates the following:

The referenced roufine must have only one RET mstruchion associated wath it Ifa
routine peeds more than one exit point, make one of those exit points the RET
mstruction and make all other exit points branch (e, JAP) to that RET mstruction.

* The referenced roufine can not be recurzive. Making a nested call to the routine wall
overwrite the retwrn address of the previous call

CALL 15 really a subset of the JHPRET mstmcton; in fact, 1t 15 the same opcode as JHPRET but
with the i-field set (smce CALL uses an immediate vilue only) and the d-field set by the
assembler to the zddress of the label named Symbol_rat.

The retwrn address (PC + 1} 15 written to the source (s-field) of the Symbol_ret register unless
the NR effect is specified Of cowrse, specifying NR is not recommendsd for the CALL
instuction since that fums it into a JHP_ or RET. instruction.

RET
Instruction: Fetum to previously recorded address.

RET

Montague PASM tutorial
Chapter 2 Subroutines

JMP

Instruction: Tump to address.
JHP (#) Address

* Addrece (=-fisld) iz the rasister or 3 9-hit literal whose valne i the address to jump to.

1A
5/CON
6 _clkmode = xtall + plliBx
7" _xinfreg = 6_250 00@ MY BOARD AT 100MHZ
B _xinfreg = 5_Q00_00@ "QUICKSTART 8@ MHZ
]
10\ var
12 long count
13
1L obj
15
16 pst:parallax serial terminal”
17
18/ pub main
19
20/ pst.start (115000)
21 waitent (clkfreq*s +cnt) "hold tuwo sed to open the
22 "serial terminal and enable it
23| cognew (@asm, Bcount)
24
25 repeat
26 pst.dec (count~) "post clear p 157
27 pst.newline
28 waitent (clkfreq +cnt)
29
Figure 3
3¥|dat
n {{First subroutine. we are going to add three lires. First line
32 to add is call #wait, this tells the program to go and find a set of code named
33 "wait’. at the bottom of the wait subroutine the following is added
34 " wait_ret ret 7, this signals the end of the subroutine and to jump
35 back to the next line of code after the "call”.
36 jmp #loop is added as the next line of code to execute which sends the
37 code back to execute an “add” directive.}}
38|asm org
39
L0 mov addr, par
L1 loop add value,81 “counting variable
42
g
Figure 4
Lé call #wait ~<<<ADD
L5 jmp #loop "<<<A0D
LG| walt rdlong prev, addr wz ‘what is in par??
&7 if_ nz jmp #wait "if the value in
48 ‘par is zero continue to next command
L9 "if the value in par Taddr” has not besn cleared
50 "meaning the value that was put in “valus” from
51 addr which has the address of par “parameter’”
52
53 wrlong value, addr
b4 "now write the value to the addr which has been assigned
b5 "the same address as par and where the address of count in
56 "memory where the spin program can read it then jump back
5 "to the top of the loop and continue after the variable
58 " called count has been cleard to zero
59 jmp #loop
60
fllwait_ret ret “<<<A0D
62
63
GL|addr long @
B5|value long @
GG|lprev long @

Figure 5

Montague PASM tutorial
Chapter 2 Subroutines

Adding line 44 will call the subroutine named “wait”. The routine will execute the code that is
listed there. Upon completion of the code routine the “ret” command will send the code back to
the next line of code after the “call” in this case it is a “jmp” meaning a jump to the address listed
in the jmp command, which in this case is “loop” which is where the “add” command will add 1
to the value. You should see this:

Now, let’s get a little deeper and make a couple of other changes. The above code will be
modified and will have two subroutines. Figure 7, line 41, add the “repeat_" label with
associated code through line 43. Modify lines 44 and 45 as indicated.

These modifications should result in an endless loop that is incrementing a variable. We are
going to call the loop routine that does the addition, then call the wait routine that causes a
lockstep between PASM and SPIN, then jump back to repeat the loop of calls.

5/CON
5| _clkmode = xtall + pllifx

/' _xinfreq = 6_250_000 "MY BOARD AT L10OMHZ
B _xinfreg = 5_000_000 OQUICKSTART 8@ MHZ

10|var
12 long count
14)obj

16 pst:"parallax serial terminal”

18/ pub main

20 pst.start (115000)
21 waitent (clkfreq=5 +cnt) "hold two sed to open the
22 "serial terminal and enable it
?3|cogneu (Basm, Bcount)
repeat
pst.dec (count~) post clear p 157
pst.newline
waitent (clkfreq +cnt)

Figure 6

31 {{First subroutine. we are going to add three lines. First line

32 to add is call #wait, this tells the program to go and find a set of code named
33 “wait”. at the bottom of the wait subroutine the following is added

3¢ " wait_ret ret 7, this signals the end of the subroutine and to jump

back to the next line of code after the “call”.

jmp #loop is added as the next line of code to execute which sends the
code back to execute an “add” directive.}}

§lasm org

mov addr, par
repeat_ call #loop ~<<<ADD
call #uait <<<AD0
imp #repeat_
Loop add value,#1 'counting variable
loop_ret ret ~ADD <<<<<<<<<

" call #uait “<<<ADD
" jmp #loop "<<<ADD
wait rdlong prev, addr wz ‘uwhat is in par??
if_nz jmp #wait if the value in
51 ‘par is zero continue to next command
52 "if the value in par “addr” has not been cleared
53 "meaning the value that was put in “valus” from

A ol o R I N NS o)
S D WSO

IEigurle 7

Montague PASM tutorial
Chapter 2 Subroutines

wrlong value, addr
"now write the value to the addr which has been assigned
"the same address as par and where the address of count in
"memory where the spin program can read it then jump back
"to the top of the loop and continue after the variable
" called count has been cleard to zero

" jmp #loop

tlwait_ret ret <<<A00

57|addr lang @
58|value long @
79| prev long @

Figure 8

Since we now have two subroutines you should see this as seen in figure 9:

1
3
4
5
(3]
)

Figure 9

0O.K. we are going to move on to the multiplication, addition, and subtraction code and create
subroutines. In order to do this we also have to understand a difference from the continuous
addition and doing a single multiplication etc. Thanks to the forums and David Carrier at
Parallax, who both pointed out again that we have to stop the cog otherwise the results will be
screwed up. | was wondering why | got zeros.

So, let’s look at the code. Please refer to chapter one figures 28,29 and 30 and compare with
chapters 10 through 13 in this chapter.

You will see the addition on line 62 execution of “multiply_ret ret”, line 55 multiply label and
lines 51 through 55.

We will now have a subroutine that executes and stops the cog after execution. The result will
now be ready for the spin method to print the results.

The code is presented on the next page for your review.

The next code examples will be multiplication, division and

Montague PASM tutorial
Chapter 2 Subroutines

; {{Multiplication based on the propeller manual page 380 as a subroutind}}
£coN

5|_clkmode = xtall + plllfx

E

"_xinfreq = 6_250_00@ MY BOARD AT 100MHZ DIFFERENT CRYSTAL
/| _xinfreq = 5 000 @00 'QUICKSTART 8@ MHZ NORMAL CRYSTAL

dlvar

"VARIABLE IN THE PAR ADORESS TO BE PASSED

12 long x
13 long y
14 long product

15/obj

pst: ‘parallax serial terminal”

waitent (clkfreqss +cnt) “hold five sec to open the
2L ‘serial terminal and enable it
?5|cognew (@asm, 8x) "start cog at the first variable address
waitent (clkfreqe=? +cnt) "oive pasm time to do the work
pst.str (string (“product: ™))
28 pst.dec (product)
29 pst.neuline

2 yi=§
22|pst. start (115002)

" Multiply x[15..0] by y[15..0] (y[31..16] must be @)
: on exit, product in y[31..@]

asm arg

mov temp_var, par move par to a temporary variable
mov x_var, temp_var find the x variable
rdlong x_var, temp_var read in the value from top object

add temp_var, #& "jump to next long which is the address of the
3 " next variable
Lb mov y_var, temp_var repeat assignment and read in value
45 rdlong y_var, temp_var
LB add temp_var, #& "jump again to assign the product variable address
&7 mov product_var, temp_var
L8 _ wrlong y var, product var test first part prior to subroutine call
Figure 11
50
51 call #multiply

call #uriter
cogid cogname
cogstop cogname
multiply shl x_var,#16 "get multiplicand into x[31..16]
mov t,#16 ‘ready for 16 multiplier bits
shr y_var,#l wc ‘get initial multiplier bit into ¢
:loop if ¢ add y var,x var wc "if c¢ set, add multiplicand to product
rer y_var,#1 we put next multiplier in ¢, shift prod.
dinz t.#:loop "loop until done

call #uriter " <<<<<<A0D
multiply ret ret ‘return with product in y[31..8] "this would be a subroutine
" when used in a program
" call #uriter " <ecec<ADD
writer {<<<A00} urlong y var, product var write the product from y[31..0] to the

"product variable for the top object
writer_ret ret <<<AD0

temp_var res 1
x_var res 1
y_var res 1
product_var res 1
Lt res 1

75 cogname res 1

Figure 12

oduct:3
duct:27

Figure 13

Montague PASM tutorial
Chapter 2 Subroutines

1[coN
2| _clkmode = xtall = plli6x
xinfreq = 5_000_000 "QUICKSTART 8@ MHZ NORMRL CRYSTAL
.
Long dividend "VARIAELE IN THE PAR ADDRESS TO SE PASSED

long divisor
long quotient
long remainder

1lobj
pst ¢ “parallax serial terminal”

14|pub main
dividend := 35
divisor := 3
pst.start (115200)
waitent (clkfreg*s + ent) “hold five sec to open the
“seripl terminal and snable it
cognew (Basm, @dividend) "start cog at the first variable address
waitent (clkfreq + cnt) “give top object time to catch up to pasm

pst.str (string ("quotient: ™))
pst.dec (quotient)

pst.neuline

pst.str (string ("remainder:”))
pst.dec (remainder)
pst.neuline

Figure 14

dat

{{ NOTE: I have removed three mov commands as I have been shown that they are unnessary
each "add tempvar,#4” points to the next variable. I got that from the NUTS AND VOLTS
and appears that that may not be necessary.}}

org
mov tempvar, par "get the par address into the temporary variable

rdlong x, tempvar “read the value into the dividend

add tempvar, #& "move over to the next lang to get the divisor variable
rdlong y, tempvar ‘read the value of the divisor into the variable

add tempvar, #& "move over to the next long to get the quotient address

call #divide '<<<<ADD

urlong remaindsrvar, tempyvar

cogid cogname <<<<<<A00

cogstop cogname <<<<<<A00

Divide x[31..0] by u[15..8] (4[16] must be @)

" on exit, quotient is in x[15..0] and remainder is in x[31..16]

divide shl y,#15 "get divisor into y[30@..15]

mov t,#16 ‘ready for 16 quotient bits

empsub x,y we "y =< %7 Subtract it, quotient bit in ¢
rcl x,#1 ‘rotate ¢ into quotient, shift dividend

djnz t,%:loop "loop until done

Figure 15

quotient in x[15..0], :return if used as a subroutine
remainder in x[31..16]

mov quotientvar,x

and quotientvar,andvar?2 "isolate lower 1B bits

wrlong guotientvar,tempvar "write into Spinvar "quotient’

mov remaindervar,x

shr remaindervar, #16 "isolate higher 18 bits

add tempvar, #4 "incr pointer to remainder address

divide ret ret

wrlong remaindervar, tempvar ‘write into Spinvar ‘remainder’
andvar? long Sffff
tempvar res 1
% res 1
y res 1
quotientvar res 1
remaindervar res 1
t res 1

cogname res 1

Figure 16

1o0tient:

remainder

Figure 17

Montague PASM tutorial
Chapter 2 Subroutines

1/{{basic addition in pasm using the add directive SUBROUTINE. Page P59 propeller manuall}
2

3/CON

_clkmode = xtall + pllifx

'_xinfreq = 6_250_000 "MY BOARD AT 100MHZ DIFFERENT CRYSTAL

_xinfreq = 5_000_00@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

oo e

var

9 "VARIABLE IN THE PAR ADDRESS TO BE PASSED
long x
long u
long product

obj

A
15/pst:parallax serial terminal”

pub main
x = 30
19 y = Lh
20 pst. start (115000)
1 waitent (clkfreq=5 +cnt) "hold five sec to open the
"serial terminal and enable it
cognew (8asm,@x) "start cog at the first variable address
waitent (clkfreq=2 +cnt) “give pasm time to do the work

pst. str (string ("product:”))
pst. dec (product~)
pst.newline

mov tempvar, par get the address of x from par

mov xvar, tempvar assian the address to the xvar in pasm 'DISABLE
rdlong xvar, tempvar "read the value that is in x

add tempvar, #¢ ‘move over one long to get y's address

" mov yvar, tempvar assign that address to yvar DISABLE

rdlong yvar, tempvar ‘read the value that is in y

add tempvar, #¢ 'move over one long to get the address of product

41 mov productvar, tempvar assign the address to productvar DISABLE

L2

43 call #adder " <<<<<<A00

Le call #uriter <<<<<<A00

L5 cogid cogname <<<<<<A00

48 cogstop cogname <<<<<<A00

L7 adder add xvar,yvar ‘add x and y together answer will be in x ;<<A00 LABLE

L8ladder_ret ret '<<<<A0D

writer wrlong xvar, productvar ‘write x into the product variable and print
writer_ret ret <<<<AD0

tempvar long @

xvar long @

yvar long @

productvar long @

flag long @

59 cogname res 1 “<<<<A0D

product:75

L{{{ Tutorial on how to pass a number variable and perform subtraction
Sluith the sub directive

rom spin to pasm and back, this works for numbers

rom @ to 256, bigger numbers in a later tutorial}}

10|CON

_clkmode = xtall + pllifix
_xinfreq = 6_250_000 "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5_000_000 "QUICKSTART 8@ MHZ NORMAL CRYSTAL

pst: parallax serial terminal”

"global variables
long datavar
long subvar

long answervar

Montague PASM tutorial
Chapter 2 Subroutines

23|pub main

datavar:= 30 "assign a value to datavar
subvar 1= 12
pst.start (115000) "start the serial terminal object

waitent (clkfregsS +cnt) "hold five sec to open the

cognew (Basm, @datavar) ~ open a new cog for pasm. where it starts “asm” and
" the address of the first variable

wailtent (clkfreg+cnt) " hold Flcr a second
print routine
pst.str (string(results: ™))

pst.dec (answervar)
pst.neuline

Figure 18

asm org 0] ‘This is the starting point for PASM

mov temp_var, par

mov data_var, temp var
rdlong data_var, temp_var

add temp_var, #&

mov sub_var, temp_var
rdlong sub_var, temp_var

add temp_var,#é

mov answer_var, temp_var
call #sub_tract
call Buriter
cogid cogname
cogstop cogname

Figure 19

ub_tract sub data_var,sub_var
B8 sub_tract_ret ret

writer wrlong data_var, temp_var
writer_ret ret
{{ Reserved variables reserved for PASM's use. }}
sub_var res 1
data_var res 1
answer_var res 1
temp_var res 1
cogname res 1

Figure 20

results:18

Figure 21

