
Multi-Language Programming on 
the P2 with fastspin

Basic Overview

July 1, 2020



FlexGUI vs fastspin

●Flexgui: simple interface to fastspin compiler

– Basic editing and running functions, nothing 
particularly special

– Could be replaced by SpinEdit, VS Code, or 
whatever

●The magic all happens in the command line tools: 
fastspin and loadp2.

●Fastspin is the compiler that turns BASIC, C, or 
Spin into P2 (or P1!) machine code



Why fastspin for P2?

●Multi-language: C, BASIC, Spin1, Spin2

– Spin2 because that’s the official P2 language

– Spin1 to help you port your code from P1

– Incorporate C or BASIC code from 3rd parties

●Supports both P1 and P2

– Can make same program run on both

● (if you avoid hardware specific things like 
PASM, and/or use #ifdef)

●Cross platform

– Windows, macOS, Linux



Why fastspin? (part 2)

●Features

– Built in preprocessor

– Listing files

●Performance

– Produces native code

– Optimizations:

● “a++”, “a += 1”, “a = a+1” all produce the 
same code

● Write the way you want, let the compiler 
worry about producing good code



Optimization Example

// add an array of integers to another
void addarray(int N, int *a, int *b)
{

int i;
for (i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

}

_addarray
cmps arg01, #0 wcz

if_be jmp #LR__0003
mov _var01, arg01
rep @LR__0002, _var01

LR__0001
rdlong _var02, arg02
rdlong _var03, arg03
add _var02, _var03
wrlong _var02, arg02
add arg02, #4
add arg03, #4

LR__0002
LR__0003
_addarray_ret

reta



Why NOT fastspin?

●Not completely Spin2 compatible yet

– Actively working on this still

●C compiler not completely standard compliant

– Libraries are incomplete

– No linker, must compile whole program at 
once

– Lax about order of declarations (accepts non-
standard C)

●Code is machine code rather than bytecode

– So needs more memory, about twice as much



Let’s get started

●Start up FlexGUI

– Editor options menu (e.g. make font bigger)

– Documentation menu

– Specials for P2

– Built in terminal

●“Hello world” in BASIC

●“Hello world” in Spin

– Can use the C library for this!



PASM Programming

●Preprocessor

– #define for debugging and portability

– #ifdef / #error for checking code

●Warnings for some common assembler mistakes

– Missing # in jumps

– Missing wcz in cmp

●Address relocation when mixed with high level 
languages



Spin Programming

●Default is Spin1

– Works for P2 too, as long as assembly is 
P2ASM rather than PASM

– Can use this as a stepping stone for porting 
P1 to P2

●If file extension is “.spin2”, Spin2 compatible 
mode

●Many extensions; the fastspin dialects of Spin1 
and Spin2 have a big overlap



Pure PASM

●Normally pure assembly code is wrapped up in a 
.spin2 file with just CON and DAT sections

●You could also wrap it in C or BASIC

– Or, more likely, put in assembly in the C or 
BASIC file which is intended to be run in 
another COG

●See pure_pasm.spin2 or pure_pasm.c

●Useful fastspin features for PASM

– Preprocessor

– Warnings



C language support

●Most of C99 language implemented

●Some C++ features as extensions

– Simple classes

– References, default parameter values

●TODO:

– Mostly libraries

– 64 bit integers and doubles would be nice

– Need some kind of linker or something



C Language Demo

●Mandelbrot

●Main code is in C, video driver in Spin

●Inline assembly for performance



BASIC programming

●Simple syntax (very easy to get going)

●Built in I/O, floating point, other nice features

●Mostly MS-BASIC compatible for portability

– Even really old school code with line numbers 
accepted!

●Like Spin, can have PASM blocks

●e.g. see LED_interactive.bas



Mixing BASIC, C, and Spin/Spin2

●Can call C from Spin, Spin from BASIC, Spin 
from C... any combination

●Turtle graphics demo

– rogloh’s video driver

– Turtle.c from web

– My own BASIC glue code

●Note host file system I/O



Thanks!

●Questions? (if we have time)


