
PropBasic 00.00.97

Page 1

What is PropBasic ?

PropBasic is a BASIC compiler for the Parallax(c) Propeller microcontroller. It translates program code written in the
BASIC computer language into Propeller assembly language instructions.

The Propeller microcontroller consists of eight 32-bit processors called COGs. Each cog has it's own 512 longs of
memory. This cog ram must hold the PASM code that the cog is executing, and cog variables.

In a PropBasic program, the main code is run in one cog. And any TASKs define will be run in their own cog.

Inside the propeller is also 32K of ram that can be accessed by all cogs via the HUB. The HUB gives each cog access to
the hub ram in sequence. Any time one cog needs to exchange information with another cog, it needs to use hub ram.

In PropBasic hub ram variables are accessed using RDxxxx and WRxxx to read and write to hub ram. xxxx may be BYTE,
WORD or LONG.

It is important to keep straight the difference between COG memory and HUB memory. Variables declared with VAR exist
in the COG memory and are directly addressable from any command. Variables declared with HUB or DATA exist in the
HUB memory and are only accessible from specific commands. In other words you cannot perform math on HUB variables
unless you first read them into VAR (cog) variables.

PropBasic 00.00.97

Page 2

Blink an LED

Usually to introduce any microcontroller language it is customary to show how to blink an LED. For this program we will
assume you are using the Propeller demo board with LEDs connected to pins P16 through P23.

DEVICE P8X32A

LED PIN 16 OUTPUT

PROGRAM Start

Start:
 TOGGLE LED
 PAUSE 1000
 GOTO Start

Let's go over each line. First we have:

DEVICE P8X32A

The device directive tells the compiler what controller we are using.

LED PIN 16 OUTPUT

LED is a pin definition. It is a handy way to reference a pin number without having to remember what pin number you used
though out the program. The OUTPUT modifier also tells the compiler that the pin is to be made an output at the start of
the program. Normally all pins are inputs at startup.

PROGRAM Start

The program directive tells the compiler where your program is supposed to start executing.

Start:

The is a program label (program labels MUST have a colon after them). Labels define locations within a program.

TOGGLE LED

The toggle command will change the state of a pin. If the pin is high, the toggle command will make it low. If the pin is low,
the toggle command will make it high.

PAUSE 1000

The pause command just waits for the specified number of milliseconds. So here we are waiting for 1000 milliseconds or 1
second.

GOTO Start

The goto command simple jumps to a new location in the program. Here we go back to the toggle command.

That's it. That is the whole program. If you run this program the LED will light for 1 seconds, then turn off for 1 second,
then repeat over and over.

PropBasic 00.00.97

Page 3

Type of variables:

In the propeller chip there are two types of RAM. There is COG RAM and HUB RAM.

COG RAM:
 496 LONGs
 Can only be accessed in LONG format (not WORD or BYTE)

Holds the program code (except for LMM code)
Cannot be read or written of other COGs.
Can perform operation on data directly.

HUB RAM:
 32K Bytes
 Can be read as BYTE, WORD or LONG format
 Holds code until it is loaded into a COG, or executed using LMM.
 Is shared by all COGs.
 Data must be read into COG RAM before any operation can be performed.

Variables are allocated in COG RAM by using the VAR keyword. For example:

value VAR LONG

 The only type of VAR variable is a LONG. An array can be created by specifying the size

many VAR LONG (10)

VAR arrays are not recommended because they use valuable code space.

Variables are allocated in HUB RAM byte using HUB or DATA. For example:

name HUB STRING(30)
age HUB BYTE
Message DATA “Hello There.”, 0

Since “age” is a HUB variable, if we wanted to add 1 to it, we would have to read it into a VAR variable, add 1 to the VAR
variable, then write it back to the HUB variable.

RDBYTE age, value
value = value + 1
WRBYTE age, value

Strings and data labels are passed to subroutines as there HUB address.

Data labels may be used as a string parameter. Data is really just a string that is preset.

Pin variables are names assigned to the propeller I/O pins. For example if you had an LED connected to pin 16 you might
define

LED PIN 16 OUTPUT

The "output" modifier tell the compiler to make the pin an output when your code starts. Value options are "INPUT",
"OUTPUT", "HIGH" and "LOW".

Pin variables may encompass multiple pins. If you have LEDs on pins 16 thru 23 (like the Propeller demo board) you
might define

LEDs PIN 23..16 OUTPUT

PropBasic 00.00.97

Page 4

Notice how we specified the higher pin number first. This is because in binary the more significant digits are on the left. If
you define the pin variable with the lower pin number first, any values assigned to the pin variable will have their bit order
reversed (this may be exactly what you want).

Native versus LMM programs:

PropBasic can generate two different type of code. Native or LMM.

Native code is generated by default. When a native code program is started the code is loaded into a COGs RAM and is
executed directly.

LMM code is generated by appending the word LMM to the PROGRAM command or the TASK command. When a LMM
program is started a small “execution” program is loaded into the COG RAM with a pointer to the LMM code. The LMM
code is read from HUB RAM one instruction at a time. That instruction is executed, then the next instruction is fetched and
executed and so on.

Native code has the advantage of being about 5 times faster than LMM code. But it is limited to 496 PASM instruction.

LMM code has the advantage of allowing large programs to be created. Although they run about 5 times slower.

LMM code is also larger for a given set of PropBasic commands. This is because some instructions need extra data. For
example a jump instruction uses 2 LONGs, a call instruction uses 3 LONGs.

A single PropBasic program can have some TASKs that are native code and some that are LMM. It is fairly typical for the
main program to be LMM, and the TASKs to be native code. Since TASK code tends to be smaller and in some cases
needs to run fast (like video drivers).

PropBasic 00.00.97

Page 5

Math Operators:

Unary Operators:
ABS Returns the absolute value value1 = ABS value2 8

LEN Returns the length of a string value1 = LEN string1 9

VAL Returns the value of a string value1 = VAL string1 10

GETADDR Returns the address of a hub variable value1 = GETADDR string1 11

SGN Returns the sign of value 1, 0, -1 value1 = SGN value2 12

~ Returns the NOT of value value1 = ~value2 13

- Returns the negative of value value1 = -value2 14

Binary Operators:
+ Addition value1 = value2 + value3 15

- Subtraction value1 = value2 – value3 16

* Multiplication value1 = value2 * value3 17

*/ Multiply, shift 16-bits value1 = value2 */ value3 18

** Multiply, shift 32-bits value1 = value2 ** value3 19

/ Division value1 = value2 / value3 20

// Remainder value1 = value2 // value3 21

& AND Bitwise AND value1 = value2 & value3 22
 value1 = value2 AND value3

| OR Bitwise OR value1 = value2 | value3 23
 value1 = value2 OR value3

^ XOR Bitwise XOR value1 = value2 ^ value3 24
 value1 = value2 XOR value3

&~ ANDN Bitwise AND NOT value1 = value2 &~ value3 25
 value1 = value2 ANDN value3

MIN Minimum of two values value1 = value2 MIN value3 26

MAX Maximum of two values value1 = value2 MAX value3 27

>> SHR Shift right value1 = value2 >> value3 28
 value1 = value2 SHR value3

<< SHL Shift left value1 = value2 << value3 29
 value1 = value2 SHL value3

String Operators:

LEFT Returns the left section of a string string1 = LEFT string2, count 30
RIGHT Returns the right section of a string string1 = RIGHT string2, count 31
MID Returns the middle of a string string1 = MID string2, start, count 32
STR Converts a value to a string string1 = STR value1,digits{,option}33
+ Concatenate two strings string1 = string2 + string3 34

* Note that operators are ONLY allowed in assignment operation.
 You may need to use temporary variables to hold calculation needed for other commands.

* To deference a string use the system array __STRING(var). Note there are two underscores.
Strings are passed to subroutines as the location of the string in HUB RAM. Using __STRING(__paramx) allows
subroutines to access the strings that were passed.

PropBasic 00.00.97

Page 6

 PropBasic Commands:

Command Description Page
\ Creates a single line of propeller assembly code. 35
' Anything after is a comment. 36
{ } Creates a multi-line comment. 37
_FREQ Long Constant that holds the initially assigned clock frequency. . . . 38
ASM...ENDASM Creates a block of propeller assembly code. 39
BRANCH Variable determines what label to jump to. 40
BREAK Sets a break-point when using a debugger. 41
COGID Gets the cog ID of the cog running this command. 42
COGINIT Initializes a cog with a task. The cog ID must be provided . . . 42
COGSTART Starts a task in a new cog. The next available cog is used. . . . 42
COGSTOP Stops a cog. If no cogid is provided, the current cog is stopped. . . . 42
CON Creates a named constant, with a value or a string. 43
COUNTERA Setup hardware counter parameters. 44
COUNTERB Setup hardware counter parameters. 44
DATA Creates byte (8 bit) data values in HUB ram. 45
 WDATA Creates word (16 bit) data values in HUB ram.
 LDATA Creates long (32 bit) data values in HUB ram.
DEC Subtract 1 (or any value) from a variable. 46
DEVICE Sets device type and parameters. 47
DJNZ Decrease variable and jump to label if not zero. 48
DO...LOOP Creates a repeating program loop. 49
END Ends program execution. Puts cog in low-power mode. 50
EXIT Ends the current DO...LOOP or FOR...NEXT loop. 51
FILE Loads a binary data file. The contents are read like DATA. . . . 52
FOR Creates a loop. 53
 TO
 STEP
 NEXT
FREQ Sets device frequency after pll multiplier. 54
FUNC Creates a named function. Returns 1 LONG value. 55
 ENDFUNC

GOSUB Jump to a subroutine. 56
GOTO Jump to a label. 57
HIGH Makes a pin an output and high. 58
HUB Creates HUB variables. 59
I2CREAD Reads a byte from the I2C bus. 60
I2CSTART Sends an I2C start condition. 60
I2CSTOP Sends an I2C stop condition. 60
I2CWRITE Writes a byte to the I2C bus. 60
IF Creates conditional code. 61
 OR|AND
 ELSE|ELSEIF
 ENDIF
INC Adds 1 (or any value) to a variable. 62
INCLUDE Includes propeller assembly code from a separate file. 63
INPUT Makes a pin an input. 64

LET Variable assignment (Optional). 65
LOAD Load PropBasic code from a separate file. 66
LOCKCLR Clears a lock ID. 67
LOCKNEW Retrieves a new lock ID. 67
LOCKRET Returns a lock ID. 67
LOCKSET Sets a lock ID. 67

PropBasic 00.00.97

Page 7

LOW Makes a pin an output and low. 68
NOP No operation. Does nothing. Uses 1 instruction. 69
ON 70
 GOTO|GOSUB Jump to label based on value of a variable.
OUTPUT Makes a pin an output. 71
OWREAD Reads a byte from the 1-wire bus. 72
OWRESET Sends a reset on the 1-wire bus. 72
OWWRITE Writes a byte to the 1-wire bus. 72
PAUSE Pauses for milliseconds. Can use fractional values. 73
PAUSEUS Pauses for microseconds. Can use fractional values. 73
PIN Creates a pin variable. #name = pin number, @name = pin mask. . . 74
PROGRAM Sets program start label. 75
PULSIN Measure incoming pulse width in microseconds. 76
PULSOUT Create a pulse of specified width. Duration is in microseconds. . . . 77
RANDOM Creates a random number from a seed variable. 78
RCTIME Measures time for pin to change state (in microseconds). . . . 79
RDBYTE Reads the value of a BYTE hub variable or DATA. 80
RDSBYTE Reads the value of a signed BYTE hub variable or DATA 80
RDLONG Reads the value of a LONG hub variable or LDATA. 80
RDWORD Reads the value of a WORD hub variable or WDATA. 80
RDSWORD Reads the value of a signed WORD hub variable or DATA. . . . 80
RETURN Return from a subroutine. 81
REVERSE Reverse pin direction (input / output). 82
SERIN Serial input. 83
SEROUT Serial output. 84
SHIFTIN SPI input. 85
SHIFTOUT SPI output. 86
SUB Creates a named subroutine with parameters. 87
 ENDSUB

TASK Creates code that runs in a separate cog. 88
 ENDTASK

TOGGLE Toggles pin state (high / low). 89
VAR Creates a variable. 90
WAITCNT Waits for the system counter to reach the target value. 91
WAITPEQ Waits for a pin (or set of pins) state to equal a mask value. . . . 92
WAITPNE Waits for a pin (or set of pins) state to NOT equal a mask value. . . . 92
WAITVID Waits for the video serializer to be able to accept new data. . . . 93
WATCH Updates variables when using a debugger 93
WRBYTE Writes a new value into a BYTE hub variable. 94
WRLONG Writes a new value into a LONG hub variable. 94
WRWORD Writes a new value into a WORD hub variable. 94
XIN Crystal frequency before PLL multiplier. 95

PropBasic 00.00.97

Page 8

ABS

Returns the absolute value.

value1 = ABS value2

PropBasic 00.00.97

Page 9

LEN

Returns the length of a string. The length of a string is the number of characters until a zero byte is found.
The zero byte is NOT counted as part of the length. The string parameter may be a HUB STRING or a data label.

value1 = LEN string1

Related commands: LEFT, RIGHT, MID

PropBasic 00.00.97

Page 10

VAL

Returns the value of a string.
If the string is a negative number, the minus sign MUST be the first character in the string.
The string may contain spaces. Spaces are evaluated as zero.
If the string contain non-digit character, the value will not be valid.

value1 = VAL string1

Related commands: STR

PropBasic 00.00.97

Page 11

GETADDR

 Returns the address of a hub variable.

Var = GetAddr hubVar{(offset)}

sharedValues HUB LONG(8)

valueAdr VAR LONG
index VAR LONG
temp VAR LONG

valueAdr = GetAddr sharedValues(index)
RDLONG valueAdr, temp

Related commands: HUB, DATA, RDxxxx, WRxxxx

PropBasic 00.00.97

Page 12

SGN

Returns the sign of value 1, 0, -1.

value1 = SGN value2

PropBasic 00.00.97

Page 13

~

Returns the bitwise NOT of value. The ~ operator works on VAR variables as well as PIN variables.

value1 = ~value2

PropBasic 00.00.97

Page 14

-

Returns the negative of value.

value1 = -value2

PropBasic 00.00.97

Page 15

+

Addition

value1 = value2 + value3

Related commands: -

PropBasic 00.00.97

Page 16

-

Subtraction

value1 = value2 – value3

Related commands: +

PropBasic 00.00.97

Page 17

*

Multiplication.

Multiplication is performed with a 64 bit result. The lowest 32-bits of the result are assigned.

value1 = value2 * value3

Related commands: */, **

PropBasic 00.00.97

Page 18

*/

Multiply, shift 16-bits

Multiplication is performed with a 64 bit result. The middle 32-bits of the result are assigned.

The */ operator is useful when you want to multiply by a fractional value greater than 1.
For example if you wanted to multiply a value by 1.5, you would use result = value */ 98304.
98304 is 1.5 * 65536

value1 = value2 */ value3

Related commands: *, **

PropBasic 00.00.97

Page 19

**

Multiply, shift 32-bits

Multiplication is performed with a 64 bit result. The highest 32-bits of the result are assigned.

The ** operator is useful when you want to multiply by a fractional value less than 1.
For example if you wanted to multiply a value by 0.125, you would use result = value ** 536870912
536870912 is 0.125 * 65536 * 65536

value1 = value2 ** value3

Related commands: *, */

PropBasic 00.00.97

Page 20

/

Division

value1 = value2 / value3

* Note: immediately after a division operation the remainder is available in the __Remainder variable.

Related commands: //

PropBasic 00.00.97

Page 21

//

Remainder

value1 = value2 // value3

* Note: immediately after a division operation the remainder is available in the __Remainder variable.

Related commands: /

PropBasic 00.00.97

Page 22

& AND

Bitwise AND.

value1 = value2 & value3

value1 = value2 AND value3

Related commands: OR, XOR, ANDN

PropBasic 00.00.97

Page 23

| OR

Bitwise OR.

value1 = value2 | value3

 value1 = value2 OR value3

Related commands: AND, XOR, ANDN

PropBasic 00.00.97

Page 24

^ XOR

Bitwise XOR.

value1 = value2 ^ value3

value1 = value2 XOR value3

Related commands: AND, OR, ANDN

PropBasic 00.00.97

Page 25

&~ ANDN

Bitwise AND NOT.

value1 = value2 &~ value3

value1 = value2 ANDN value3

Related commands: AND, OR, XOR

PropBasic 00.00.97

Page 26

MIN

Returns the maximum of two values. Yes that's right the MAXIMUM of the two values. It makes more sense

grammatically than it does mathmatically. "result = value MIN 5" means that result will always be at least 5.

value1 = value2 MIN value3

Related commands: MAX

PropBasic 00.00.97

Page 27

MAX

Manimum of two values. Yes that's right the MINIMUM of the two values. It makes more sense grammatically than

it does mathmatically. "result = value MAX 100" means that result will always be less than or equal to 100.

value1 = value2 MAX value3

Related commands: MIN

PropBasic 00.00.97

Page 28

>> SHR

Shift right. Each bit shifted right has the effect of dividing by 2.

value1 = value2 >> value3

value1 = value2 SHR value3

Related commands: << SHL

PropBasic 00.00.97

Page 29

<< SHL

Shift left. Each bit shifted left has the effect of multiplying by 2.

value1 = value2 << value3

value1 = value2 SHL value3

Related commands: >> SHR

PropBasic 00.00.97

Page 30

LEFT

Returns the left section of a string.

string1 = LEFT string2, count

Related commands: RIGHT, MID, LEN

PropBasic 00.00.97

Page 31

RIGHT

Returns the right section of a string.

string1 = RIGHT string2, count

Related commands: LEFT, MID, LEN

PropBasic 00.00.97

Page 32

MID

Returns the middle of a string. "count" characters are returned starting with character "start".

string1 = MID string2, start, count

Related commands: LEFT, RIGHT, LEN

PropBasic 00.00.97

Page 33

STR

Converts a value to a string. If a signed option is used, the first character will be a "-" or a space.
If the value is larger than the number of digits specified, the first character will be corrupt.
Options 0 thru 3 will append a zero byte after the digits to form a single string, options 4 thru 7 do not.

string1 = STR value1,digits{,option}

 Option:
 0 - Unsigned leading zeros, z-string
 1 - (default) Unsigned leading spaces, z-string
 2 - Signed leading zeros, z-string
 3 - Signed leading spaces, z-string
 4 - Unsigned leading zeros, no terminating zero
 5 - Unsigned leading spaces, no terminating zero
 6 - Signed leading zeros, no terminating zero
 7 - Signed leading spaces, no terminating zero

Related commands: VAL

PropBasic 00.00.97

Page 34

+

Concatenate two strings.

string1 = string2 + string3

* Note: string1 = string2 + string1 is not allowed.

PropBasic 00.00.97

Page 35

\ Creates a single line of propeller assembly code.

 \ pasm command

\ ROR myVar,#1

Related commands: ASM...ENDASM

PropBasic 00.00.97

Page 36

'

 Anything after an apostrophe is a comment and is ignored by the compiler.
 Except directives that start with '{$

 ' comment

 ' This is a comment
 temp = 100 ' This is a comment

Related commands: { }

PropBasic 00.00.97

Page 37

{ }

 Creates a multi-line comment

 { multi

 line

 comment }

 { This is a
 multi-line
 comment }

Related commands: '

PropBasic 00.00.97

Page 38

_FREQ

 Long Constant that holds the initially assigned clock frequency.

Rate VAR LONG

Rate = _FREQ / 8000

Related commands: FREQ

PropBasic 00.00.97

Page 39

ASM...ENDASM

 Creates a block of propeller assembly code.

ASM

 pasm instructions

ENDASM

ASM
 ROL value,#16
 RAR value,#16
ENDASM

Related commands: \

PropBasic 00.00.97

Page 40

BREAK

 Sets a break-point when using a debugger.

BREAK

Related commands: PROGRAM

PropBasic 00.00.97

Page 41

BRANCH

Variable determines what label to jump to.

BRANCH var, label0, label1, label2[, label3[,etc]]

 value VAR LONG

 BRANCH value, Forward, Backward, Left, Right

 Forward:
 ' Forward code
 GOTO Done

 Backward:
 ' Backward code
 GOTO Done

 Left:
 ' Left code
 GOTO Done

 Right:
 ' Right code
 GOTO Done

 Done:

Related commands: ON...GOTO

PropBasic 00.00.97

Page 42

COGID

 Gets the cog ID of the cog running this command.

 COGID var

 value VAR LONG

 COGID value ' Get this cog's ID
 COGSTOP value ' Stop this cog

COGINIT

 Initializes a cog with a task. The cog ID must be provided.

 COGINIT taskname, value

 FlashLED TASK

 PROGRAM START

 Start:
 COGINIT FlashLED, 1 ' Start task in COG 1
 PAUSE 10_000 ' Let task run for 10 seconds
 COGSTOP 1 ' Stop the task
 END

 TASK FlashLED
 LED PIN 16 LOW
 DO
 TOGGLE LED
 PAUSE 100
 LOOP

COGSTART

 Starts a task in a new cog. The next available cog is used.
 If a var is given it will be set to the cogID that was used, or 8 if no cog was free.

 COGSTART taskname{,var}

COGSTOP

 Stops a cog. If no cogid is provided, the current cog is stopped.

 COGSTOP {value}

* COGINIT differs from COGSTART in that COGSTART uses the next available cog. With COGINIT
you must specify what cog to use.

PropBasic 00.00.97

Page 43

CON

 Creates a named constant, with a value or a string.

name CON value

MyCon CON 1000
Grade CON "F"
Baud CON "T115200"

PropBasic 00.00.97

Page 44

COUNTERA / COUNTERB

 Setup hardware counter parameters.

 COUNTERA mode{, apin {, bpin{, frqx{, phsx}}}}

 COUNTERA 40, 0, 1, 80_000

Mode:
 0 = Counter Disabled
 8 = PLL Internal (Video) *
 16 = PLL Single-Ended *
 24 = PLL Differential *
 32 = NCO/PWM Single Ended
 40 = NCO/PWM Differential
 48 = DUTY Single-Ended
 56 = DUTY Differential
 64 = POS detector
 72 = POS detector with feedback
 80 = POSEDGE detector
 88 = POSEDGE detector with feedback
 96 = NEG detector
 104 = NEG detector with feedback
 112 = NEGEDGE detector
 120 = NEGEDGE detector with feedback
 128 = LOGIC never
 136 = LOGIC !A & !B
 144 = LOGIC A & !B
 152 = LOGIC !B
 160 = LOGIC !A & B
 168 = LOGIC !A
 176 = LOGIC A <> B
 184 = LOGIC !A | !B
 192 = LOGIC A & B
 200 = LOGIC A = B
 208 = LOGIC A
 216 = LOGIC A | !B
 224 = LOGIC B
 232 = LOGIC !A | B
 240 = LOGIC A | B
 248 = LOGIC always

 * For PLL modes add:
 0 = VCO / 128 (/8)
 1 = VCO / 64 (/4)
 2 = VCO / 32 (/2)
 3 = VCO / 16 (x1)
 4 = VCO / 8 (x2)
 5 = VCO / 4 (x4)
 6 = VCO / 2 (x8)
 7 = VCO / 1 (x16)

* Even if "bpin" is not used it still must be specified. You may use zero.

PropBasic 00.00.97

Page 45

DATA,WDATA,LDATA Creates data values in HUB ram. DATA = BYTE, WDATA=WORD, LDATA=LONG

[label] DATA value1[,value2[,value3[,etc]]]]

BitMask DATA 1,2,4,8,16

 Message DATA "This is a message.", 0

 Data labels MUST be on the same line as the DATA command. And there is no colon after a data label.
 Data labels may be used in place of a string for command and functions.

Related commands: FILE

PropBasic 00.00.97

Page 46

DEC

 Subtract 1 (or any value) from a variable.

DEC varname{, value}

cntr VAR LONG
DEC cntr
DEC cntr, 4

Related commands: INC, DJNZ

PropBasic 00.00.97

Page 47

DEVICE

 Sets device type and parameters.

DEVICE deviceID, {settings{,settings}}

DEVICE P8X32A, XTAL1, PLL16X

 deviceID: only P8X32A is supported

 settings: RCSLOW, RCFAST, XINPUT, XTAL1..3, PLLX2, PLLX4, PLLX8, PLLX16

Related commands: FREQ, XIN

PropBasic 00.00.97

Page 48

DJNZ

 Decrease variable and jump to label if not zero.

DJNZ var, label

 LED PIN 16 LOW
 value VAR LONG

 value = 100

 Again:
 HIGH LED
 PAUSE 100
 LOW LED
 PAUSE 100
 DJNZ value, Again

Related commands: DEC, DO...LOOP

PropBasic 00.00.97

Page 49

DO...LOOP

DO WHILE var cond value
LOOP

DO
LOOP UNTIL var cond value

DO
LOOP ' always loops

DO
LOOP var ' Loops var times, var = 0 when finished

PropBasic 00.00.97

Page 50

END

 Ends program execution. Puts cog in low-power mode.

END

 END

PropBasic 00.00.97

Page 51

EXIT

 Ends the current DO...LOOP or FOR...NEXT loop.

EXIT

IF var cond value THEN EXIT

PropBasic 00.00.97

Page 52

FILE

 Loads a binary data file. The contents are read like DATA.

 {label} FILE "MyFile.bin"

 Message FILE "MyFile.TXT" ' file contains the text HELLO

Related commands: DATA

PropBasic 00.00.97

Page 53

FOR...TO...STEP...NEXT

FOR var = startvalue TO endvalue
 ' Code
NEXT

FOR var = startvalue TO endvalue STEP deltavalue
 ' Code
NEXT

Related commands: DJNZ

PropBasic 00.00.97

Page 54

FREQ

 Sets device frequency after pll multiplier.

FREQ freq

FREQ 80_000_000

Do not use FREQ and XIN together, use one or the other

Related commands: _FREQ

PropBasic 00.00.97

Page 55

FUNC...ENDFUNC

 Creates a named function. Returns 1 LONG value.

name FUNC [minParams[,maxParams]]

FUNC name

 ...

ENDFUNC

Parameters are passed in __paramx variables.

 If a variable number of parameters is specified, the parameter count is
 given in the __paramcnt variable.

 If a hub variable/label is used as a parameter, it’s ADDRESS is passed.

 If a pin variable is used as a parameter, the pin NUMBER is passed.

Calc FUNC 1

myVar = Calc 1

FUNC Calc
 __param1 = __param1 + 1

 RETURN __param1
ENDFUNC

Related commands: SUB...ENDSUB

PropBasic 00.00.97

Page 56

 GOSUB

 Jump to a subroutine.

GOSUB subroutine

Calc SUB

GOSUB Calc

SUB Calc
 ' Code
 RETURN value
ENDSUB

ONLY named subroutines can be used with GOSUB, GOSUB is optional.

Related commands: SUB...ENDSUB

PropBasic 00.00.97

Page 57

GOTO

 Jump to a label.

GOTO label

GOTO Start

PropBasic 00.00.97

Page 58

HIGH

 Makes a pin an output and high.

HIGH pinname | const

LED PIN 0 OUTPUT

HIGH LED
HIGH 3

Related commands: LOW, TOGGLE, INPUT, OUTPUT

PropBasic 00.00.97

Page 59

HUB

 Creates HUB variables. Access via GETADDR, RDBYTE, RDWORD, RDLONG, WRBYTE,
 WRWORD, WRLONG

name HUB type [= value]

name HUB type(elements) [= value]

myVar HUB LONG = 100_000
myVars HUB LONG(8) = 0

type: BYTE, WORD, LONG, STRING(length)

Use RDBYTE, RDWORD, RDLONG to read value from HUB variables.
Use WRBYTE, WRWORD, RDLONG to write value to HUB variables.

For an array, all elements are pre-initialized to the same value.
If you need the elements to contain different values, then use DATA instead.

myVar HUB LONG(4) = 0 ' All elements are set to zero
myVars LDATA 0, 1, 2, 3 ' Elements have unique values

Related commands: DATA

PropBasic 00.00.97

Page 60

I2CREAD

 Reads a byte from the I2C bus.

I2CREAD SDAPin, SCLPin, var[, ackbitvalue]

I2CSTART

 Sends an I2C start condition.

I2CSTART SDAPin, SCLPin

I2CSTOP

 Sends an I2C stop condition.

I2CSTOP SDAPin, SCLPin

I2CWRITE

 Writes a byte to the I2C bus.

I2CWRITE SDAPin, SCLPin, value[, ackbitvar]

PropBasic 00.00.97

Page 61

IF...ELSE|ELSEIF...ENDIF

IF var cond value THEN label

IF var cond value THEN
 ' code
ENDIF

IF var cond value THEN
 ' code
ELSE
 ' code
ENDIF

IF var cond value THEN
 ' code
ELSEIF var cond value THEN
 ' code
ELSE
 ' code
ENDIF

IF...OR|AND

IF var cond value OR
 var cond value THEN
 ' Code
ELSE
 ' Code
ENDIF

IF var cond value OR
 var cond value AND
 var cond value THEN
 ' Code
ELSE
 ' Code
ENDIF

PropBasic 00.00.97

Page 62

INC

 Adds 1 (or any value) to a variable.

INC varname{,value}

cntr VAR LONG

INC cntr
INC cntr, 4

Related commands: DEC

PropBasic 00.00.97

Page 63

INCLUDE

 Includes propeller assembly code from a separate file.

 INCLUDE "MyFile.spin"

Related commands: LOAD, FILE

PropBasic 00.00.97

Page 64

INPUT

 Makes a pin an input.

INPUT pinname | const

switch PIN 1 INPUT

INPUT switch
INPUT 0

Related commands: OUTPUT, LOW, HIGH, TOGGLE

PropBasic 00.00.97

Page 65

LET

 Optional

PropBasic 00.00.97

Page 66

LOAD

 Load PropBasic code from a separate file.

 LOAD "MyFile.pbas"

Related commands: INCLUDE

PropBasic 00.00.97

Page 67

LOCKCLR

 Clears a lock ID.
 If a second parameter is given, it will hold the previous lock state.

 LOCKCLR value{,var}

LOCKNEW

 Retreives a new lock ID.

 LOCKNEW var

LOCKRET

 Returns a lock ID.

 LOCKRET var

LOCKSET

 Sets a lock ID.
 If a second parameter is given, it will hold the previous lock state.

 LOCKSET value{,var}

PropBasic 00.00.97

Page 68

LOW

 Makes a pin an output and low.

LOW pinname | const

LED PIN 16 OUTPUT

LOW LED
LOW 4

PropBasic 00.00.97

Page 69

NOP

 No operation. Does nothing. Uses 1 instruction.

NOP

PropBasic 00.00.97

Page 70

ON...GOTO

 Jump to label based on value of a variable.

ON var GOTO label1, label2 [, label3, [, etc]]

ON var = value1, value2, value3 GOTO label1, label2, label3

ON...GOSUB

 Same as ON...GOTO except does a subroutine jump.

ON var GOSUB label1, label2 [, label3, [, etc]]

ON var = value1, value2, value3 GOSUB label1, label2, label3

PropBasic 00.00.97

Page 71

OUTPUT

 Makes a pin an output.

OUTPUT pinname | const

LED PIN 1 OUTPUT

OUTPUT LED
OUTPUT 1

PropBasic 00.00.97

Page 72

OWREAD

 Reads a byte from the 1-wire buss.

OWREAD DQPin, var{\bits}

OWRESET

 Sends a reset on the 1-wire buss.

OWRESET DQPin{,statusVar}

OWWRITE

 Writes a byte to the 1-wire buss.

OWWRITE DQPin, value{\bits}

PropBasic 00.00.97

Page 73

PAUSE

 Pauses for milliseconds. Can use fractional values.

PAUSE value

PAUSE 1000
PAUSE 27.6

PAUSEUS

 Pauses for microseconds. Can use fractional values.

PAUSEUS value

PAUSEUS 1000
PAUSEUS 4.7

PropBasic 00.00.97

Page 74

PIN

 Creates a pin variable. #name = pin number, @name = pin mask

name PIN pinnumber [modifier]

LED PIN 0 LOW

name PIN MSBpin..LSBpin [modifier]

LEDS PIN 23..16 LOW 'Normal bit order #LEDS gives LSBpin (16)

LEDSR PIN 16..23 LOW 'Reverse bit order #LEDS gives MSBpin (16)

modifiers: INPUT, OUTPUT, HIGH, LOW

modifier is only used for the task that defines the pin.
A pin with an output modifier (OUTPUT, HIGH, LOW) will be an input in all other tasks.

PropBasic 00.00.97

Page 75

PROGRAM

 Sets program start label and main code options.

PROGRAM Start {LMM|PASD}

The LMM parameter causes the compiler to generate LMM code instead of native PASM
code. LMM code runs slower, but allows much larger programs.

The PASD parameter enables use of the PASD debugger.

PropBasic 00.00.97

Page 76

PULSIN

 Measure incoming pulse width in microseconds.

PULSIN pin, state, resultVar

PropBasic 00.00.97

Page 77

PULSOUT

 Create a pulse of specified width. Duration is in microseconds.

PULSOUT pin, duration

PropBasic 00.00.97

Page 78

RANDOM

 Creates a random number from a seed variable.

RANDOM seedvar[, copyvar]

PropBasic 00.00.97

Page 79

RCTIME

 Measures time for pin to change state (in microseconds).

RCTIME pin, state, resultvar

PropBasic 00.00.97

Page 80

RDBYTE

 Reads the value of a BYTE hub variable or DATA.

RDBYTE bytehubvar{(offset)}, var{,var{,var{,etc}}}

RDSBYTE

 Reads the value of a signed BYTE hub variable or DATA.

RDSBYTE bytehubvar{(offset)}, var{,var{,var{,etc}}}

RDLONG

 Reads the value of a LONG hub variable or LDATA.

RDLONG longhubvar{(offset)}, var{,var{,var{,etc}}}
Note: longhubvar lowest two bits must be zero (long aligned)

RDWORD

 Reads the value of a WORD hub variable or WDATA.

RDWORD wordhubvar{(offset)}, var{,var{,var{,etc}}}
 Note: wordhubvar lowest bit must be zero (word aligned)

RDSWORD

 Reads the value of a signed WORD hub variable or WDATA.

RDSWORD wordhubvar{(offset)}, var{,var{,var{,etc}}}
 Note: wordhubvar lowest bit must be zero (word aligned)

Problems can arise if you use RDWORD to read byte data. Or use RDLONG to read word or byte data. The problem is
that the data may not be aligned properly.

In the Propeller chip WORD data is word aligned (lowest bit of the address must be zero), and LONG data is long aligned
(lowest two bits of the address must be zero).

label1 LDATA 1000
label2 DATA 100
label3 LDATA 2000

There will be three bytes not used between label2 and label3 to make sure that "label3 LDATA" is long aligned.

PropBasic 00.00.97

Page 81

RETURN

 Return from a subroutine.

RETURN value{,value{,value{,value}}}

RETURN 1

PropBasic 00.00.97

Page 82

REVERSE

 Reverse pin direction (input / output)

REVERSE pinname | const

sensor PIN 1

REVERSE sensor
REVERSE 2

PropBasic 00.00.97

Page 83

SERIN

 Serial input. Prefix baud value "T" for true mode, "N" for inverted mode.

 If SERIN times-out var is not changed. If label is not specified execution continues with the next line of code.
 If "var" is a string, characters are stored until a carrage return is received.

SERIN pin, baud, var {, timeoutms{, label}}

PropBasic 00.00.97

Page 84

SEROUT

 Serial output. "T" for true mode, "N" for inverted mode. "O" = OPEN

SEROUT pin, [T | N | OT | ON]baud, char | string | hublabel | var\STR

PropBasic 00.00.97

Page 85

SHIFTIN

 SPI input.

SHIFTIN datapin, clockpin, mode, var[\bits][,speed]

mode: LSBPRE, LSBPOST, MSBPRE, MSBPOST

Related commands: SHIFTOUT

PropBasic 00.00.97

Page 86

SHIFTOUT

 SPI output.

SHIFTOUT datapin, clockpin, mode, value[\bits][,speed]

mode: LSBFIRST, MSBFIRST

Related commands: SHIFTIN

PropBasic 00.00.97

Page 87

SUB...ENDSUB

 Creates a named subroutine with parameters.

name SUB [minParams[,maxParams]]

Parameters are passed in __paramx variables.

 If a variable number of parameters is specified, the parameter count is given in the __paramcnt variable.

 If a hub variable/label is used as a parameter, it’s ADDRESS is passed.

 If a pin variable is used as a parameter, the pin NUMBER is passed.

SUB name
 ...
ENDSUB

SetDAC SUB 1

SetDAC 1

SUB SetDAC
 ' code to set DAC
ENDSUB

PropBasic 00.00.97

Page 88

TASK...ENDTASK

 Creates code that runs in a separate cog.

name TASK {LMM} {AUTO}

TASK name
 ...
ENDTASK

If LMM is specified the compiler will generate LMM code instead of native PASM code. LMM code runs slower, but
allows much larger programs.

If AUTO is specified, the TASK is automatically launched at startup

Task code runs in a separate cogs.

VAR variables are not shared between cogs.

SUBs and FUNCs are not shared between cogs.

HUB variables, PINs and DATA are shared between cogs.

Use COGSTART or COGINIT to start tasks.

PropBasic 00.00.97

Page 89

TOGGLE

 Toggles pin state (high / low)

TOGGLE pinname | const

LED PIN 1 OUTPUT

TOGGLE LED
TOGGLE 5

PropBasic 00.00.97

Page 90

VAR

 Creates a variable. Only LONG types are supported. Arrays are supported.

name VAR LONG
name VAR LONG(elements)

myVar VAR LONG
myVar2 VAR LONG(8)

Note: Since VAR arrays are stored in COG ram, they use up valuable code space.
Consider using HUB arrays when possible.

PropBasic 00.00.97

Page 91

WAITCNT

 Waits for the system counter to reach the target value. Then adds the delta value to the variable.

WAITCNT target, delta

PropBasic 00.00.97

Page 92

WAITPEQ

 Waits for a pin (or set of pins) state to equal a mask value.

WAITPEQ state, mask

 INA is anded with “mask” then compared to “state”.

WAITPNE

 Waits for a pin (or set of pins) state to NOT equal a mask value.

WAITPNE state, mask

INA is anded with “mask” then compared to “state”.

PropBasic 00.00.97

Page 93

WAITVID

 Waits for the video serializer to be able to accept new data.

 WAITVID colors, pixels

PropBasic 00.00.97

Page 94

WATCH

 When using a debugger, this updates the variables in the debugger.

 WATCH

PropBasic 00.00.97

Page 95

WRBYTE

 Writes a new value into a BYTE hub variable.

WRBYTE bytehubvar{(offset)}, value{, value{,value{, etc}}}

WRLONG

 Writes a new value into a LONG hub variable.

WRLONG longhubvar{(offset)}, value{, value{,value{, etc}}}

WRWORD

 Writes a new value into a WORD hub variable.

WRWORD wordhubvar{(offset)}, value{, value{,value{, etc}}}

PropBasic 00.00.97

Page 96

XIN

 Crystal frequency before pll multiplier

XIN freq

XIN 5_000_000

Do not use FREQ and XIN together, use one or the other

PropBasic 00.00.97

Page 97

General

Literal values are assumed decimal, but can be prefixed to indicate a different base:
 $ Hexidecimal 0..9, A..F
 %% Quaternary 0..3
 % Binary 0..1
 "x" Ascii character

Math operators can only be used when assigning values to a variable.

Math operators cannot be used in commands.

Only 1 math operator can be used per line.

Only LONG vars are supported. LONG arrays are also supported.

Using a variable as an array index generates alot more code. Try to avoid this if possible.

HUB vars can be BYTE, WORD or LONG. Arrays are supported.

HUB vars can ONLY be accessed with RDBYTE, WRBYTE, RDWORD, WRWORD, RDLONG, WRLONG commands.

Be aware that HUB vars must be address aligned by the size. So if you declare a BYTE then a LONG, there will be three
wasted address location between them.

PINs, HUB vars and DATA are global to all COGs (tasks).

VARs, SUBs and FUNCs are local only to the TASK they are declared in.

TASK code generates a separate .spin file.

DATA must be declared before the program code. You cannot put the DATA after the program code.

The main code runs in COG 0.

PropBasic 00.00.97

Page 98

Compiler Directives
--
Compiler directives are available for conditional compilation.
By default the device name is defined.

'{$DEF name}
'{$UNDEF name}
'{$IFDEF name}
'{$IFNDEF name}
'{$ELSE}
'{$ENDIF}
'{$IFFREQ condition value}

The IFUSED directive tells the compiler if a subroutine or function has been used.

The USES directive tells the compiler that a pin or long constant is used in a task and that it should not be stripped out.
Usually this is used when you have some embedded PASM code that uses a pin or long constant. USES is not needed in
normal PropBasic code because the compiler automatically marks the subroutine as used if it is called.

'{$USES subName}

'{$IFUSED subName}
SUB subName
' put code for subroutine here
ENDSUB
'{$ENDIF}

'{$WARNING message}
'{$ERROR message}

Example:
'{$IFNDEF P8X32A}
'{$ERROR This program requires a P8X32A chip}
'{$ENDIF}

PropBasic 00.00.97

Page 99

Tips and Tricks

Using shifts for multiply and divide

Understanding the */ and ** operators:

When performing multiplication PropBasic performs 32-bit * 32-bit = 64-bit math. Normally only the lower 32-bits of the
result are used with the normal multiply operator (*). However, if you want you can access the 32 middle bits (bits 16 to 48)
using the */ operator. Or the 32 highest bits using the ** operator. So basically the */ operator does a multiply by the value
given, then does a divide by 65536. The ** operator does the multiply by the value given, then does a divide by
4294967296.

value1 = value2 */ 81920 ' 81920 = 1.25 * 65536
value1 = value2 */ 205887 ' 205887 = Pi * 65536

Alignment of different data sizes:

In the propeller data stored in the hub must be aligned according to it's length. WORD data must be word aligned, and
LONG data must be long aligned. This can cause problems if you use (for example) RDLONG to read byte data.

__RAM Virtual array:

