Project Report:

Small Hardware Development and Prototyping Board for the SX28

Project Number:

PR57

- 1. Project Description
- 2. Schematic Diagram
- 3. Physical Diagram
- 4. Component Layout Diagram
- 5. Bill of Materials
- 6. Code Listing

Submitted By:

Peter Van der Zee

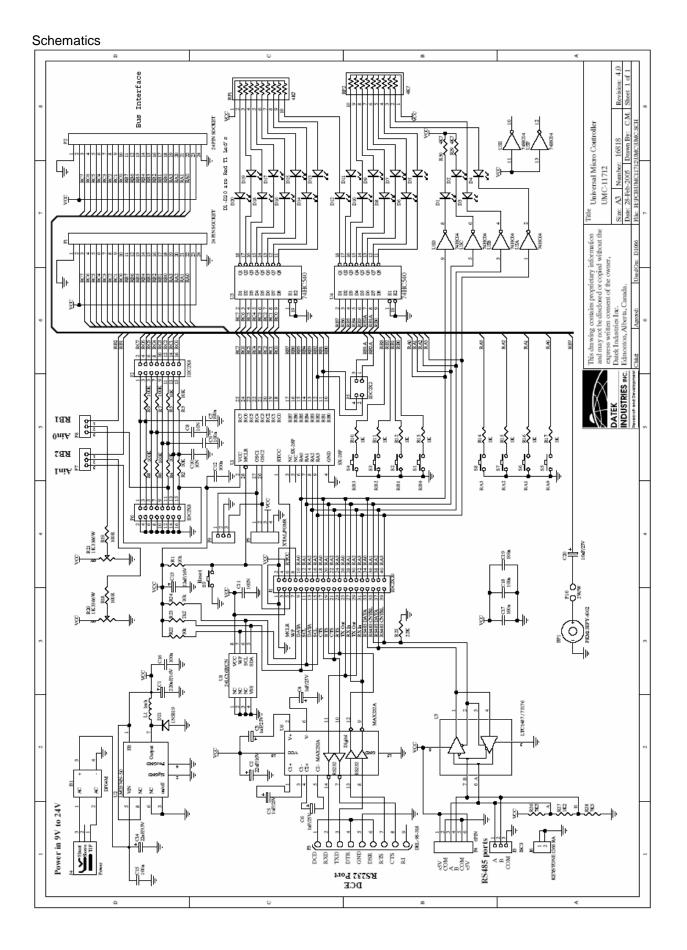
Project Description

The purpose of this product is to provide a multi-function development platform for the SX28 processor. In order to facilitate this, a small printed circuit board was designed with numerous standard features that lend themselves well to the Virtual Peripheral concept. To this end, only the most economic basic circuitry is provided, relying on the programmer's ingenuity to provide fast response software to effect the operation of real world peripherals.

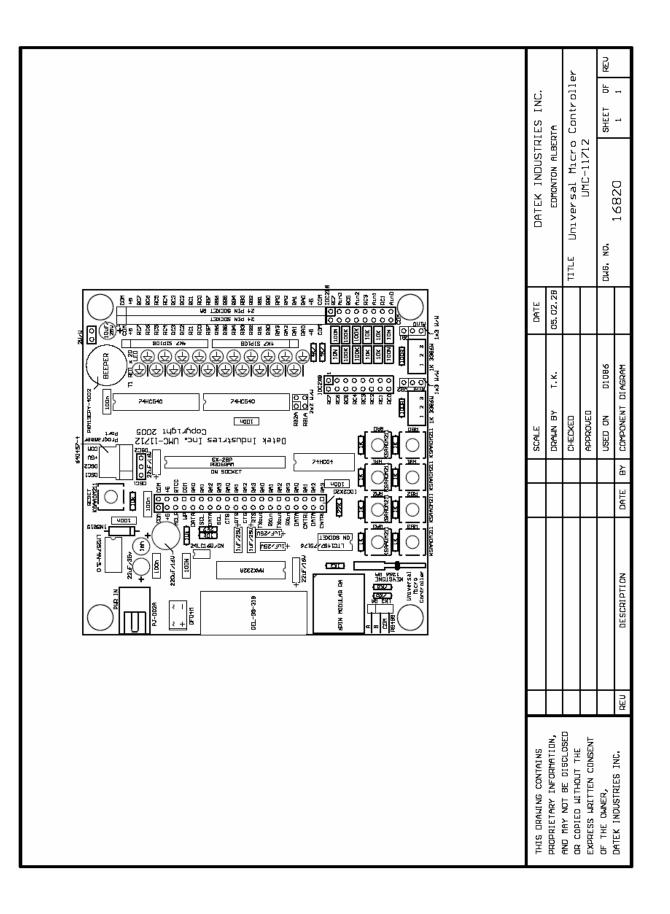
Although Virtual Peripheral software is not specifically part of this project, a simple task scheduler as part of the author's standard project launch point is included. Furthermore, a simple dual pulse density modulation sine-wave generator is included to demonstrate the effectiveness of the circuitry and the scheduler.

The development board measures about four inches square, and is powered by a switch mode 5 volt regulator accepting 9 to 24 V AC/DC input from a wall-wart. The unit is equipped with a socket for an SX28 processor, and two connectors each provide access to all 20 port bits for further connection to other boards. One of the main conveniences is that each of the twenty port bits is also permanently connected to a CMOS driver that in turn drives an LED. In this manner all input and output port bit states are continuously displayed.

The unit provides for communication by means of a 9 pin RS232 level port as well as an RS485 port connected to a 3 pin header as well as a RJ11 telephone jack. Both channels require software bit-banging from port A.


A serial EERAM permits power-down storage capability.

Eight input push buttons permit convenient user inputs, four each on port A and port B. A piezo element speaker permits some sound functionality.


An analog section connected to port C provides four pulse density modulated analog outputs (DAC) that are also selectably wired to accommodate charge balance analog to digital conversion in software. The processor's comparator inputs can also be connected to two of these DACs or to two single turn voltage set point pots.

Various functional conveniences are provided. One permits isolation of all of the analog section from port C on a bit-by-bit basis, Also, the comparator inputs can be totally isolated to prevent leakage from its two LED drivers. Insufficient port bits exist to permit all of the features to be available at all times, so a flexible plug selection scheme is employed to select those non conflicting functions required for the current development task.

The standard 4 pin programming connector accepts the SX Key for programming and debugging operations. A 3 pin socket permits convenient removal of the resonator while debugging, and a reset button pulls MCLR to ground.

	DATEK INDUSTRIES INC.	EDMONTON ALBERTA	TITLE Universal Micro Controller	UMC-11712	SHEET	16819 1 1
0 0 <th>DATE</th> <th>05.02.28</th> <th></th> <th></th> <th></th> <th></th>	DATE	05.02.28				
	SCALE	DRALIN BY T.K.	CHECKED	APPROVED	USED DN DIDBE	DESCRIPTION DATE BY PHYSICAL DIAGRAM
						REU
	THIS DRAWING CONTAINS	PROPRIETARY INFORMATION,	AND MAY NOT BE DISCLOSED	EXPRESS WRITTEN CONSENT	OF THE DWNER,	DATEK INDUSTRIES INC.

printed on 2005/02/28 at 3:13 PM

Page 1 of 2 Except where noted, equivalent parts may be substituted.

Card UMC-11712, Rev 0, Feb 28/2005, Universal Micro Controller Option 0 (SCL0100): No Selected components.

Parts List

land of		them Otr Designate (c) DDN h	NOC	Asher	Dott 4	Dachage	Decelation	Comonto
	÷.	Drawing #16820	13796.	AP Circuits	PCB UMC-11712		2 Sided: 1 oz. 2 Solder Masks. 1 Overlav, PTH PCB	COMMENTS
~ ~	-	U8	8176.		24LC16B/CN	ø-	Serial EEPROM. 16K. Low Power, CMOS	
°	÷	US	2162.	Texas Instruments	SN74HC04N	PDIP-14	Hex Inverter	
4	¢i	U3, U4	2164.	Texas Instruments	SN74HC540N	PDIP-20	Octal 3-State Inverting Buffer/Line Driver/Line Receiver	
ŝ	÷	U1	13304.	Ubicom (Scenix)	SX28AC75/DP	PDIP-28(0.3")	Microcontroller, 75MHz, 8-Bit CMOS, High-Performance with EE/Flash Program Memory	(On socket). Program with
9	÷	U7	13012.	Linear Technology	LTC1487CN8	PDIP-8	Ultra-Low Power RS485 Transceiver with Low EMI, Shutdown and High Input Impedance	Or 75176. (On socket)
2	÷	90	3971.21	Intersil	ICL232CPE	PDIP-16	+5V Powered RS-232 Driven/Receiver, 2 Drivers, 2 Receivers	
œ	÷	U2	13144.	National	LM2574N-5.0	PDIP-8	0.5A Step-Down Switching Regulator, 50kHz	
6	÷	81	8163.	General Instrument	DF 04M	PDIP-6(with 2 middle pins missing)	PDIP-6(with 2 middle Bridge Rectifier, Miniature, Glass Passivated, pins missing) Single-Phase, Silicon 400V 1A	
9	÷	D21	3740.	Motorola	1N5819	59-04	Schottky Diode, 1A 40V, 0.6Vf	
7	20.	D1, D2, D3, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20.	1853.	Lite-On	LTL-4221N	T-1, 0.1" pitch	T-1 Red Diffused LED, 3mm dia, (small shoulder 3.2mm)	Use LEDs from Southern Tel. stock.
12	÷	R27	2758.	Sanyo OHM	RD 1/4WP 1K2J	Axial 6x2.3mm	1K2 ±5% 1/4W 300V Carbon Film Resistor	Need 1k2 1/8W
13	4	R2, R3, R4, R5.	2762.	Sanyo OHM	RD 1/4WP 10KJ	Axial 6x2.3mm	10K ±5% 1/4W 300V Carbon Film Resistor	Stand up on board vertically.
14	Ť	R6, R7, R8, R9.	2763.	Sanyo OHM	RD 1/4WP 100KJ	Axial 6x2.3mm	100K ±5% 1/4W 300V Carbon Film Resistor	Stand up on board vertically.
15	~i	R18, R19	2906.	Sanyo OHM	RD1/8WP 100RJ	Axial 3.2x1.9mm	100R ±5% 1/8W 200V Metal Film Resistor	
16	σ	R10, R11, R12, R13, R14, R15, R16, R17,	2875.	Sanyo OHM	RD1/8WP 1KJ	Axial 3.2x1.9mm	1K ±5% 1/8W 200V Metal Film Resistor	
17	÷	R23	2885.	Sanyo OHM	RD1/8WP 2K2J	Axial 3.2x1.9mm	2K2 ±5% 1/8W 200V Metal Film Resistor	
18	ci	R29, R30	2896.	Sanyo OHM	RD1/8WP 4K7J		4K7 ±5% 1/8W 200V Metal Film Resistor	
19	¢i	R26, R28	2623.	Sanyo OHM	RD1/8WP 7K5J	Axial 3.2x1.9mm	7K5 ±5% 1/8W 200V Metal Film Resistor	
20	ė	R1, R22, R24	2878.	Sanyo OHM	RD1/8WP 10KJ	Axial 3.2x1.9mm	10K ±5% 1/8W 200V Metal Film Resistor	
21	÷	R25	2888.	Sanyo OHM	RD1/8WP 22KJ	Axial 3.2x1.9mm	22K ±5% 1/8W 200V Metal Film Resistor	
22	5	RP1, RP2	3188.	Bourns	4610X-101-472	SIP-10	Resistor Network, 4K7, Bussed, 10 Pin SIP	
23	6	R20, R21	13010.	Bourns	3386W-1-102	n/a	Potentiometer, 1K, 3/8" Square, Single-Turn, Cermet, Industrial, Sealed, Side Adjust	
24	¢i	C8, C10	8518.		K103K15X7RF53L2	Radial 0.1"	10nF ±10%, 50V, X7R Ceramic Capacitor, 0.1"L.S.	
25	ci	C7, C9	8507.		K104K15X7RF53L2	Radial 0.1"	100nF ± 10%, 50V, X7R Ceramic Capacitor, 0.1" L.S.	
26	7.	C11, C12, C15, C16, C17, C18, C19.	1119.	AVX	SR215C104MAA	Radial 0.2"	100nF ±20%, 50V, X7R Ceramic Capacitor	
27	Ť	C3, C4, C5, C6	8799.	ш	TAP1M25SP	Radial 0.1	1µF, 25V, ±20%, Tantalum Capacitor, 0.1" L.S.	Bend leads to 0.2".
28	~i	C2, C13	1223.	ΤΤΙ	TAP22M16	Radial 0.2"	22µF, 16V, ±20%, Tantalum Capacitor, 0.2" Lead Soacing	
29	÷	C20	1064.	Marcon	CEUSM1E100	5x11mm, Radial 2mm Lead Pitch	5x11mm, Radial 2mm/10pF, 25V, Radial Leaded Electrolytic Capacitor, 2mm Lead Pitch L.S	
30	÷	C14	1084.	Marcon	CEUSM1V220	6.3x11mm, Radial 2.5mm Lead Pitch	22µF, 35V, Radial Leaded Electrolytic Capacitor, 2.5mm L.S	
31	÷	c1	1088.	United Chemi-Con KME25VB221M8X	(ME25VB221M8X1	8x11mm, Radial 3.5mm Lead Pitch	220µF, 25V, Radial Leaded Electrolytic Capacitor, -40°C to +105°C Temperature Rating, 3.5mm L.S	

printed on 2005/02/28 at 3:13 PM

Page 2 of 2 Except where noted, equivalent parts may be substituted.

Parts List

Uption U	ot <u>y</u> .	Uption U (SCLU1UU): No Selected components. Item Qty. Designator(s) DPN N	DPN	Manufacturer	Part #	Package	Description	Comments
	-	BP1	13550.	muRata ERiE	PKM13EPY-4002	n/a	Encased Piezo Alarm, 4 kHz 70dB@10cm@3V	
33	÷	2	8223.	Head Strong Industries Ltd.	Hmt	0.25" (dia) x 0.34" (H) Radial Leaded 0.125" Spacing	0.25" (dia) x 0.34" (H) Inductor, 1mH (Choke Coil) Radial Leaded 0.125" Spacing	
34	÷	U7	4599.	Robinson Nugent	ICT-083-S-TG	n/a	DIP Socket, 8 Pin, 0.3" Wide, Solder Tail, Machined Pin	
35	÷	11	8706.	Robinson Nugent	ICE-283-STG	n/a	DIP Socket, 28 Pin, 0.3" Wide, Solder Tail, Machined Pin	
36	.15	64	8742.	Samtec	SS-120-T-2	n/a	Socket Strip, Single Row, 20 Pin, Tin Shell	Cut to 1x3 pins
37	ы	P7, P8, P10	1393.	AMP	4-103185-0	n/a	Breakaway Header, Unshrouded, Single Row, 0.100" Centers, 0.025" Square Straight Posts, 0.230" Tops, 0.120" Bottoms, 40 Position	Cut to 1x2 pins for P10 and 1x3 pins for P7 and P8.
38	35	J1, J2, J5, P6	1402.	AMP	4-103186-0	n/a	Breakaway Header, Unshrouded, Double Row, 0.100"x0.100" Centers, 0.025" Square Straight Posts, 0.230" Tops, 0.120" Bottoms, 80 Position	Cut to 2x2 pins for J5, 2x8 pins for J2 and P6 and 2x20 pins for J1.
39	.075	13	1398.	AMP	4-102974-0	n/a	Breakaway Header, Unshrouded, Single Row, 0.100" Centers, 0.025" Square Right-Angle Posts, 0.318" Tops, 0.110" Bottoms, 40 Position	Cut to 1x3 pins
40	÷	P1	13797.	Samtec	SSW-126-02-G-S-F	n/a	Socket Strip, 0.025" SQ, Solder Tail, 0.100" Centers, 26 Pins Per Row, Standard Insertion Force, Gold Contacts, Single Row, Right Angle	Cut to 1x24 pins socket. Can use DPN 8287 and bend.
41	÷	P2	8287.	Samtec	SSW-126-21-G-S	n/a	Socket Strip, 0.025" SQ, Solder Tail Pin, 0.100" Centers, 26 Pins Per Row, Low Insertion Force, Gold Contacts, Single Row, Straight	Cut to 1x24 pins socket. Can use DPN 8287.
42	÷	P5	1462.	AMP	640457-4	n/a	MTA-100 Post Header, 0.100" Centers, 4 Position, Right Angle 0.025" Square Post, Friction Lock Header with Polarizing Notches	Can use DPN 9834 and cut to length.
43	÷	53	5978.	Taicon	DBL-09S-318	n/a	DE-95, D-Sub, Size E, 9 Position, Sockets, Gold, Right-Angle PC Mount, 0.318" Panel to First Pin Row, Metal Shell, Fork Lock Board Mounting, Removable Hex Screwlock Face Mounting Connector	
44	÷	P4	8866.	Thomas & Betts	020.000.186 (Virginia Plastics)	n/a	Modular Female Connector, PC Mourt, Right Angle, Low Profile, DT Series, 6 Position, 6 Contact	
45	÷	J6	4696.	Keystone	1266	n/a	PC Quick-Fit, 0.250" Wide, 0.312" Deep, Right Angle, Male Terminal	
46	÷	74	12944.	CUI Stack	PJ-002A (Digikey CP-002A-ND)	n/a	Power Receptacle Connector, 2.1 mm Center Pin, PCB Mount RA	
47	1 0.		1503.	AMP	531220-2	n/a	2 Position, Low Profile, 0.100" Centerline with Slot, Post Shunts, "Midgie"	Qty. to be confirmed
48	க்	S1, S2, S3, S4, S5, S6, S7 S8 S9	7256.	ITT Schadow	KSA0M211	DIP-4 pin	Key Switch, Uttra Miniature, Standard Actuator, PCB DIP	Sub. DPN 13076

;TITLE: Sines.src ; PURPOSE: Demonstrate a the effectiveness of an SX development board by ; implementing a simple non-preemptive multi tasking scheduler operating a dual pulse density modulation sine wave generator. ;AUTHOR: Peter Van der Zee, Datek Industries Inc. ;REVISIONS: Feb 27, 2005 Original. ; ; CONNECTIONS: Port: b.0 button to lower frequency 1 b.1 button to raise frequency 1 ; b.2 button to lower frequency 2 ; b.3 button to raise frequency 2 ; ; Port: c.0 output as frequency 1 PWM output to RC filter 1. ; c.2 output as frequency 2 PWM output to RC filter 2. ; ; Each of two independent simple sine wave generators operate by ;DETAILS: pulse density modulating an output bit in a deterministic ; Interrupt Service Routine. A tick based task scheduler controls ; ; frequency selection control and sine value calculation for each of the generators. ; ; The scheduler demonstrates multiple independent tasks operating ; without much concern of each other with the exception of being ; non-preemptive in nature. In other words, a task that requires ; more rapid response will not interrupt a slower task already ; running or scheduled to run. For greater determinism it is ; important that no task "hogs" a lot of processor time in any ; run instance, and it is absolutely crucial that no task uses ; long delay loops. The purpose of the scheduler is to remove the ; in-line requirement for delays by letting the scheduler provide ; those instead. ; ; In the generators, the sine value resolution is purposely left ; coarse so on an oscilloscope the user can see the fixed effect ; of frequency adjustment through raise/lower buttons. ; ; Finer resolution can be conveniently made by expanding access ; and granularity of the sine lookup table, albeit at the expense of maximum frequency. ; ; It should be obvious that replacing the sine lookup table with ; a ramp value table, a sawtooth table or any random function table ; that other functions can be equally easily generated. ; ; The scheduler time ticks are set to convenient numbers, in this ; case permitting task threads to be executed at even decades of ; time from the base tick of 1 usec for the ISR, to 10 and 100 usec, ; 1, 10 and 100 msec, and 1 sec. The scheduler can be easily altered ; for more or less resolution, the major stipulation being that each ; slower tick is an integer multiple of the previous tick. ; ; More complicated arrangements can of course be made. Where mutiple ; tick (non-decade) delays are required in a thread, then the thread ; itself is tasked with the requirement to do so.

;	D	EVICE :	DIRECT	IVES
id	'Sine	s '		
	DEVIC	E	SX28,	oschs3,stackx,turbo
				;default run speed = 50MHz ;jump to start label on reset
;	C	ONSTAN	TS	
DaclBit Dac2Bit IntValue Raml		equ -50	rc.2	;pulse density modulator 1 output to RC integrator ;pulse density modulator 2 output to RC integrator ;interrupt reload value for 1 micro sec at 50 MHz ;
;	V.	ARIABL	ES	
Flags Intflag	org ds equ		.0	;interrupt occurred flag
TimerlOuS TimerlOOuS TimerlmS TimerlOmS TimerlOOmS TimerlS	org ds ds ds ds ds ds ds	Ram1 1 1 1 1 1		<pre>;counter to get to 10uSec ;counter to get to 100uSec ;counter to get to 1mSec ;counter to get to 10mSec ;counter to get to 100mSec ;counter to get to 1Sec</pre>
DaclValue DaclAccum Period1 Period1Load Flindex Dac2Value Dac2Accum Period2 Period2Load F2index	ds ds ds ds ds ds ds ds ds	1 1 1 1 1 1 1 1 1		<pre>;value for the PWM 1 output ;accumulator for PWM 1 ;duration of one cycle of frequency 1 ;duration of one cycle load source for frequency 1 ;index into sine table for frequency 1 ;value for the PWM 2 output ;accumulator for PWM 2 ;duration of one cycle of frequency 2 ;duration of one cycle load source for frequency 2 ;index into sine table for frequency 2</pre>

;-----INTERRUPT ROUTINE----org 0 Intsvc ;For each of two one byte PWMs, calculate the rollover carry and then clear or ;set the PWM bit accordingly ;The add-with-carry option must be disabled unless carry is specifically cleared ; before the add. setb Intflag ; advise scheduler an interrupt has occurred add DaclAccum, DaclValue ;calculate PWM 1 overflow SC ; clrb Dac1Bit ;clear PWM 1 snc setb Dac1Bit ;set PWM 1 add Dac2Accum,Dac2Value ;calculate PWM 2 overflow SC ; ;clear PWM 2 clrb rc.2 snc ; setb rc.2 ;set PWM 2 mov w,#IntValue ; ;return from interrupt and reset for 50 instr retiw ;-----INITIALIZATION------ResetEntry ;Initialize the ports mov m,#\$0d ;Set 0 for CMOS levels SetLevels !ra,#%0000 mov ; mov !rb,#%0000_0000 ; mov !rc,#%0000_0000 ; mov m,#\$0e ;Set 0 for pullups SetPullups mov !ra,#%0000 ;port a not used mov !rb,#%0000_0000 ; input buttons mov !rc,#%1111_1111 ; mov m,#\$0f SetTris ;Set 0 for output clr ra ; mov !ra,#%1111 ;port a not used clr rb mov !rb, #%0000 1111 ;X,X,X,X F2up, F2dn, F1up, F1dn clr rc !rc,#%0000_0000 ;X,X,X,X _ X,DAC2,X,DAC1 mov ;Clear memory Clearmem mov fsr,#\$10 ;point to first memory bank Clearone setb fsr.4 ;stay in proper half clr ind ;clear this location incsz fsr ;point to next location jmp Clearone ;not at end so clear one more ;Initialize the scheduler timers ;timer decade value
w ;10 microseconds
,w ;100 microseconds mov w,#10 Timer10uS,w mov mov Timer100uS,w mov Timer1mS,w Timer10mS,w ;10 milliseconds Timer100mS,w ;100 milliseconds Timer1S,w ;1 second ;1 millisecond Timer10mS,w mov mov mov Timer1S,w

;Ini	tialize the variab	les						
clr	rtcc	;						
mov	!option,#%1000_1	000 ;ir	nternal i	rtcc				
clr	Flags	;						
mov	Dac1Value,#128	;set	initial	value	of	dac1	half	way
mov	Dac2Value,#128	;set	initial	value	of	dac2	half	way

;-----MAIN PROGRAM------

Main

;The scheduler keeps time for the whole system and triggers sine calculations ;for both generators each 10 microseconds. ;Every 100 milliseconds it looks for raise/lower buttons being pushed, and if

;so,calls the corresponding generator's raise/lower routine.

sb Intflag ;test for interrupt occurred jmp Main ;wait for interrupt bank Raml ; Usec1 clrb Intflag ;clear that fact decsz Timer10uS ;scheduler 1 usec base tick ;wait for occurrence of next interrupt Main jmp Timer10uS,#10 Usec10 ;reload 10usec timer mov call Sinel ;determine freq 1 step call Sine2 ;determine freq 2 step decsz Timer100uS ;scheduler 10 usec tick jmp Main ;wait for occurrence of next interrupt Timer100uS,#10 Usec100 mov ;reload 10usec timer ;put 100 uSec routines here decsz Timer1mS ;scheduler 100 usec tick Main ;wait for occurrence of next interrupt jmp ;reload 100usec timer Msec1 mov Timer1mS,#10 ;put 1 mSec routines here decsz Timer10mS ;scheduler 1 msec tick jmp Main ;wait for occurrence of next interrupt Msec10 Timer10mS,#10 ;reload 1msec timer mov ;put 10 mSec routines here decsz Timer100mS ;scheduler 1 usec base tick jmp ;wait for occurrence of next interrupt Main Msec100 mov Timer100mS, #10 ; reload 10usec timer sb rb.0 ;test button for lower frequency 1 call Lower1 ;decrease frequency 1 ;test button for higher frequency 1 sb rb.1 call Higher1 ; increase frequency 1 sb rb.2 ;test button for lower frequency 2 call Lower2 ;decrease frequency 2 ;test button for higher frequency 2 sb rb.3 call Higher2 ; increase frequency 2 decsz Timer1S ;scheduler 1 usec base tick ;wait for occurrence of next interrupt jmp Main Sec1 mov Timer1S,#10 ;reload 10usec timer ;put 1 Sec routines here jmp Main ;wait for occurrence of next interrupt

;	SUBROUTINES	
Lowerl	;reduce frequency of ger incsz PeriodlLoad skip dec PeriodlLoad retp	nerator 1 but not below zero ;increase the period of frequency 1 ; ;underflow not permitted ;
Higherl		generator 1 but not above \$ff ;decrease the period of frequency 1 ; ;overflow not permitted ;
Lower2	;reduce frequency of ger incsz Period2Load skip dec Period2Load retp	nerator 2 but not below zero ;increase the period of frequency 2 ; ;underflow not permitted ;
Higher2	decsz Period2Load skip	generator 2 but not above \$ff ;decrease the period of frequency 2 ; ;overflow not permitted ;
Sinel	decsz Periodl retp mov Periodl,PeriodlLoa inc Flindex mov w,Flindex	For generator 1, and if so, get sine value ;step frequency 1 period duration ;not time for lookup; return to scheduler ad ;reload period 1 timer ;step to next sine value in lookup table ; ;get sine value for this index ;setup new dac 1 value for the ISR ;done freq1; return to scheduler
Sine2	decsz Period2 retp	For generator 2, and if so, get sine value ;step frequency 2 period duration ;not time for lookup; return to scheduler ad ;reload period 2 timer ;step to next sine value in lookup table ; ;get sine value for this index ;setup new dac 2 value for the ISR ;done freq2; return to scheduler
SineLookup Sin1 Sin2 Sin3 Sin4 Sin5 Sin6 Sin7 Sin8 Sin9	<pre>;lookup the sine value c and w,#%0000_1111 add pc,w retw 128 retw 177 retw 218 retw 245 retw 245 retw 245 retw 245 retw 218 retw 177 retw 128 retw 177 retw 128 retw 79</pre>	of index in w ;only use 16 steps in lookup table ;calculate offset into lookup table ;\$80 ;\$b1 ;\$da ;\$f5 ;\$ff ;\$f5 ;\$f5 ;\$da ;\$b1 ;\$da ;\$f5 ;\$f5 ;\$f5 ;\$f5 ;\$f5 ;\$f5 ;\$f6 ;\$f5 ;\$f6 ;\$f5 ;\$f7

SinA		38	;\$26
SinB		11	;\$b
SinC		1	;\$1
SinD	retw	11	;\$b
SinE	retw	38	;\$26
SinF	retw	79	;\$4f