

Project Report:

 Small Hardware Development and Prototyping Board for the SX28

Project Number:

PR57

1. Project Description

2. Schematic Diagram

 3. Physical Diagram

 4. Component Layout Diagram

5. Bill of Materials

6. Code Listing

Submitted By:

 Peter Van der Zee

Project Description

The purpose of this product is to provide a multi-function development platform for the
SX28 processor. In order to facilitate this, a small printed circuit board was designed with
numerous standard features that lend themselves well to the Virtual Peripheral concept.
To this end, only the most economic basic circuitry is provided, relying on the
programmer�s ingenuity to provide fast response software to effect the operation of real
world peripherals.

Although Virtual Peripheral software is not specifically part of this project, a simple task
scheduler as part of the author�s standard project launch point is included. Furthermore, a
simple dual pulse density modulation sine-wave generator is included to demonstrate the
effectiveness of the circuitry and the scheduler.

The development board measures about four inches square, and is powered by a switch
mode 5 volt regulator accepting 9 to 24 V AC/DC input from a wall-wart. The unit is
equipped with a socket for an SX28 processor, and two connectors each provide access
to all 20 port bits for further connection to other boards. One of the main conveniences is
that each of the twenty port bits is also permanently connected to a CMOS driver that in
turn drives an LED. In this manner all input and output port bit states are continuously
displayed.

The unit provides for communication by means of a 9 pin RS232 level port as well as an
RS485 port connected to a 3 pin header as well as a RJ11 telephone jack. Both channels
require software bit-banging from port A.

A serial EERAM permits power-down storage capability.

Eight input push buttons permit convenient user inputs, four each on port A and port B. A
piezo element speaker permits some sound functionality.

An analog section connected to port C provides four pulse density modulated analog
outputs (DAC) that are also selectably wired to accommodate charge balance analog to
digital conversion in software. The processor�s comparator inputs can also be connected
to two of these DACs or to two single turn voltage set point pots.

Various functional conveniences are provided. One permits isolation of all of the analog
section from port C on a bit-by-bit basis, Also, the comparator inputs can be totally isolated
to prevent leakage from its two LED drivers. Insufficient port bits exist to permit all of the
features to be available at all times, so a flexible plug selection scheme is employed to
select those non conflicting functions required for the current development task.

The standard 4 pin programming connector accepts the SX Key for programming and
debugging operations. A 3 pin socket permits convenient removal of the resonator while
debugging, and a reset button pulls MCLR to ground.

Schematics

;==
;TITLE: Sines.src
;
;PURPOSE: Demonstrate a the effectiveness of an SX development board by
; implementing a simple non-preemptive multi tasking scheduler
; operating a dual pulse density modulation sine wave generator.
;
;AUTHOR: Peter Van der Zee, Datek Industries Inc.
;
;REVISIONS: Feb 27, 2005 Original.
;
;CONNECTIONS: Port: b.0 button to lower frequency 1
; b.1 button to raise frequency 1
; b.2 button to lower frequency 2
; b.3 button to raise frequency 2
;
; Port: c.0 output as frequency 1 PWM output to RC filter 1.
; c.2 output as frequency 2 PWM output to RC filter 2.
;
;DETAILS: Each of two independent simple sine wave generators operate by
; pulse density modulating an output bit in a deterministic
; Interrupt Service Routine. A tick based task scheduler controls
; frequency selection control and sine value calculation for each
; of the generators.
;
; The scheduler demonstrates multiple independent tasks operating
; without much concern of each other with the exception of being
; non-preemptive in nature. In other words, a task that requires
; more rapid response will not interrupt a slower task already
; running or scheduled to run. For greater determinism it is
; important that no task "hogs" a lot of processor time in any
; run instance, and it is absolutely crucial that no task uses
; long delay loops. The purpose of the scheduler is to remove the
; in-line requirement for delays by letting the scheduler provide
; those instead.
;
; In the generators, the sine value resolution is purposely left
; coarse so on an oscilloscope the user can see the fixed effect
; of frequency adjustment through raise/lower buttons.
; Finer resolution can be conveniently made by expanding access
; and granularity of the sine lookup table, albeit at the expense
; of maximum frequency.
;
; It should be obvious that replacing the sine lookup table with
; a ramp value table, a sawtooth table or any random function table
; that other functions can be equally easily generated.
;
; The scheduler time ticks are set to convenient numbers, in this
; case permitting task threads to be executed at even decades of
; time from the base tick of 1 usec for the ISR, to 10 and 100 usec,
; 1, 10 and 100 msec, and 1 sec. The scheduler can be easily altered
; for more or less resolution, the major stipulation being that each
; slower tick is an integer multiple of the previous tick.
; More complicated arrangements can of course be made. Where mutiple
; tick (non-decade) delays are required in a thread, then the thread
; itself is tasked with the requirement to do so.
;==

;---------------DEVICE DIRECTIVES--

id 'Sines'

 DEVICE SX28,oschs3,stackx,turbo

 FREQ 50_000_000 ;default run speed = 50MHz
 RESET ResetEntry ;jump to start label on reset

;---------------CONSTANTS--

Dac1Bit equ rc.0 ;pulse density modulator 1 output to RC integrator
Dac2Bit equ rc.2 ;pulse density modulator 2 output to RC integrator
IntValue equ -50 ;interrupt reload value for 1 micro sec at 50 MHz
Ram1 equ $10 ;

;---------------VARIABLES--

 org 8
Flags ds 1
Intflag equ Flags.0 ;interrupt occurred flag

 org Ram1
Timer10uS ds 1 ;counter to get to 10uSec
Timer100uS ds 1 ;counter to get to 100uSec
Timer1mS ds 1 ;counter to get to 1mSec
Timer10mS ds 1 ;counter to get to 10mSec
Timer100mS ds 1 ;counter to get to 100mSec
Timer1S ds 1 ;counter to get to 1Sec

Dac1Value ds 1 ;value for the PWM 1 output
Dac1Accum ds 1 ;accumulator for PWM 1
Period1 ds 1 ;duration of one cycle of frequency 1
Period1Load ds 1 ;duration of one cycle load source for frequency 1
F1index ds 1 ;index into sine table for frequency 1
Dac2Value ds 1 ;value for the PWM 2 output
Dac2Accum ds 1 ;accumulator for PWM 2
Period2 ds 1 ;duration of one cycle of frequency 2
Period2Load ds 1 ;duration of one cycle load source for frequency 2
F2index ds 1 ;index into sine table for frequency 2

;---------------INTERRUPT ROUTINE--

 org 0
Intsvc
;For each of two one byte PWMs, calculate the rollover carry and then clear or
;set the PWM bit accordingly
;The add-with-carry option must be disabled unless carry is specifically cleared
;before the add.

 setb Intflag ;advise scheduler an interrupt has occurred
 add Dac1Accum,Dac1Value ;calculate PWM 1 overflow
 sc ;
 clrb Dac1Bit ;clear PWM 1
 snc ;
 setb Dac1Bit ;set PWM 1
 add Dac2Accum,Dac2Value ;calculate PWM 2 overflow
 sc ;
 clrb rc.2 ;clear PWM 2
 snc ;
 setb rc.2 ;set PWM 2
 mov w,#IntValue ;
 retiw ;return from interrupt and reset for 50 instr

;---------------INITIALIZATION---

ResetEntry
 ;Initialize the ports
SetLevels mov m,#$0d ;Set 0 for CMOS levels
 mov !ra,#%0000 ;
 mov !rb,#%0000_0000 ;
 mov !rc,#%0000_0000 ;
SetPullups mov m,#$0e ;Set 0 for pullups
 mov !ra,#%0000 ;port a not used
 mov !rb,#%0000_0000 ;input buttons
 mov !rc,#%1111_1111 ;
SetTris mov m,#$0f ;Set 0 for output
 clr ra ;
 mov !ra,#%1111 ;port a not used
 clr rb ;
 mov !rb,#%0000_1111 ;X,X,X,X _ F2up,F2dn,F1up,F1dn
 clr rc ;
 mov !rc,#%0000_0000 ;X,X,X,X _ X,DAC2,X,DAC1

 ;Clear memory
Clearmem mov fsr,#$10 ;point to first memory bank
Clearone setb fsr.4 ;stay in proper half
 clr ind ;clear this location
 incsz fsr ;point to next location
 jmp Clearone ;not at end so clear one more

 ;Initialize the scheduler timers
 mov w,#10 ;timer decade value
 mov Timer10uS,w ;10 microseconds
 mov Timer100uS,w ;100 microseconds
 mov Timer1mS,w ;1 millisecond
 mov Timer10mS,w ;10 milliseconds
 mov Timer100mS,w ;100 milliseconds
 mov Timer1S,w ;1 second

 ;Initialize the variables
 clr rtcc ;
 mov !option,#%1000_1000 ;internal rtcc
 clr Flags ;
 mov Dac1Value,#128 ;set initial value of dac1 half way
 mov Dac2Value,#128 ;set initial value of dac2 half way

;---------------MAIN PROGRAM---

Main
;The scheduler keeps time for the whole system and triggers sine calculations
;for both generators each 10 microseconds.
;Every 100 milliseconds it looks for raise/lower buttons being pushed, and if
;so,calls the corresponding generator's raise/lower routine.

 sb Intflag ;test for interrupt occurred
 jmp Main ;wait for interrupt
 bank Ram1 ;
Usec1 clrb Intflag ;clear that fact
 decsz Timer10uS ;scheduler 1 usec base tick
 jmp Main ;wait for occurrence of next interrupt
Usec10 mov Timer10uS,#10 ;reload 10usec timer
 call Sine1 ;determine freq 1 step
 call Sine2 ;determine freq 2 step
 decsz Timer100uS ;scheduler 10 usec tick
 jmp Main ;wait for occurrence of next interrupt
Usec100 mov Timer100uS,#10 ;reload 10usec timer
 ;put 100 uSec routines here
 decsz Timer1mS ;scheduler 100 usec tick
 jmp Main ;wait for occurrence of next interrupt
Msec1 mov Timer1mS,#10 ;reload 100usec timer
 ;put 1 mSec routines here
 decsz Timer10mS ;scheduler 1 msec tick
 jmp Main ;wait for occurrence of next interrupt
Msec10 mov Timer10mS,#10 ;reload 1msec timer
 ;put 10 mSec routines here
 decsz Timer100mS ;scheduler 1 usec base tick
 jmp Main ;wait for occurrence of next interrupt
Msec100 mov Timer100mS,#10 ;reload 10usec timer
 sb rb.0 ;test button for lower frequency 1
 call Lower1 ;decrease frequency 1
 sb rb.1 ;test button for higher frequency 1
 call Higher1 ;increase frequency 1
 sb rb.2 � �;test button for lower frequency 2
 call Lower2 ;decrease frequency 2
 sb rb.3 ;test button for higher frequency 2
 call Higher2 ;increase frequency 2
 decsz Timer1S ;scheduler 1 usec base tick
 jmp Main ;wait for occurrence of next interrupt
Sec1 mov Timer1S,#10 ;reload 10usec timer
 ;put 1 Sec routines here
 jmp Main ;wait for occurrence of next interrupt

;---------------SUBROUTINES--

Lower1 ;reduce frequency of generator 1 but not below zero
 incsz Period1Load ;increase the period of frequency 1
 skip ;
 dec Period1Load ;underflow not permitted
 retp ;

Higher1 ;increase frequency of generator 1 but not above $ff
 decsz Period1Load ;decrease the period of frequency 1
 skip ;
 inc Period1Load ;overflow not permitted
 retp ;

Lower2 ;reduce frequency of generator 2 but not below zero
 incsz Period2Load ;increase the period of frequency 2
 skip ;
 dec Period2Load ;underflow not permitted
 retp ;

Higher2 ;increase frequency of generator 2 but not above $ff
 decsz Period2Load ;decrease the period of frequency 2
 skip ;
 inc Period2Load ;overflow not permitted
 retp ;

Sine1 ;calculate lookup time for generator 1, and if so, get sine value
 decsz Period1 ;step frequency 1 period duration
 retp ;not time for lookup; return to scheduler
 mov Period1,Period1Load ;reload period 1 timer
 inc F1index ;step to next sine value in lookup table
 mov w,F1index ;
 call SineLookup ;get sine value for this index
 mov Dac1Value,w ;setup new dac 1 value for the ISR
 retp ;done freq1; return to scheduler

Sine2 ;calculate lookup time for generator 2, and if so, get sine value
 decsz Period2 ;step frequency 2 period duration
 retp ;not time for lookup; return to scheduler
 mov Period2,Period2Load ;reload period 2 timer
 inc F2index ;step to next sine value in lookup table
 mov w,F2index ;
 call SineLookup ;get sine value for this index
 mov Dac2Value,w ;setup new dac 2 value for the ISR
 retp ;done freq2; return to scheduler

SineLookup ;lookup the sine value of index in w
 and w,#%0000_1111 ;only use 16 steps in lookup table
 add pc,w ;calculate offset into lookup table
Sin0 retw 128 ;$80
Sin1 retw 177 ;$b1
Sin2 retw 218 ;$da
Sin3 retw 245 ;$f5
Sin4 retw 255 ;$ff
Sin5 retw 245 ;$f5
Sin6 retw 218 ;$da
Sin7 retw 177 ;$b1
Sin8 retw 128 ;$80
Sin9 retw 79 ;$4f

SinA retw 38 ;$26
SinB retw 11 ;$b
SinC retw 1 ;$1
SinD retw 11 ;$b
SinE retw 38 ;$26
SinF retw 79 ;$4f

