
HomeHomeHomeHome

RTCC InterruptsRTCC InterruptsRTCC InterruptsRTCC Interrupts
What is an Interrupt?What is an Interrupt?What is an Interrupt?What is an Interrupt?

An interrupt is a defined condition that causes the microcontroller (MCU) to suspend what it is doing
and go to a known memory location to execute a special block of code. The condition could be that a
certain time has elapsed (Timed Interval) or a port (or ports) has changed state (Port Trigger
Interrupt). Interrupts are used in computers to ensure that a specific task is done a certain number of
times or that an alarm condition is handled IMMEDIATELY.

This chapter covers Timed Interrupts. For a discussion of interrupts that are generated based on an
external event (i.e. an alarm is tripped), please see the chapter on Port Trigger Interrupts.

OverviewOverviewOverviewOverview

How fast is your car traveling? The standard way to determine that is to measure the distance
traveled by some time constant. Thus, we state that a car is traveling "thirty miles per hour".

To a computer, time means nothing, it only knows clock cycles. You can fool a computer into thinking
time is traveling faster or slower by simply changing the clock speed. Accurate time keeping is done
by attaching a crystal or resonator to a chip and having the chip count the number of cycles. Yes, you
can connect a resistor and a capacitor together and estimate elapsed time but it will not be nearly as
accurate as a crystal or resonator. In fact, some microcontrollers in projects that are not time critical,
use an internal RC circuit to estimate the passage of time.

The goal for this chapter is to demonstrate how to create an interrupt on the microcontroller that will
accurately blink an LED once per second. Not a rocket science type project by my philosophy is to
give you small programs that can be used as a shell around your larger programs.

Demonstration programs typically involve WAY too much code and forget that most programmers do
not read a book from start to finish but rather JUMP INTO a chapter that they have some interest in.
(yea, admit that you opened this chapter before you read the previous material!). In light of that (pun
intented), I will demonstrate how to blink an LED. If you can get that working, they you can add your
complex code later.

Blink an LEDBlink an LEDBlink an LEDBlink an LED

� Let's start with a simple program that just blinks an LED using a 4mHz resonator. Connect RC.0
to a 220 ohm resistor thence to an LED thence to ground. The following program will blink an
LED about once a second which is pretty easy to see.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

Page 1 of 5File ./sx/RTCCInterrupts.mkd

4/4/2010 18:30:50 PMhttp://wis17/ref/index.php?action=file&file=./sx/RTCCInterrupts.mkd

 PROGRAM Start

 Start:

 tris_C=%00000000 ' Set port direction (0=output, 1=input)

 Main:

 RC = NOT RC

 pause 500

 goto main

Using an RTCCUsing an RTCCUsing an RTCCUsing an RTCC

Most programs start with an initialization routine and then go into some sort of main loop. The main
loop controls the execution of the program and by way of IF statements and subroutines, carries on
its normal work. Occationally, however you need a program that will do something IMMEDIATELY
upon an outside event (i.e. an alarm is tripped) or PRECISELY on a schedule (i.e. so many times per
second, guaranteed). That trick is implemented in something called an "interrupt".

In the SX processor, the interrupt is implemented with either the Real Time Clock Counter (RTCC) or
the Watchdog Timer. In this chapter we will cover the RTCC.

The RTCC monitors the number of clock "cycles". With a 4mHz resonator, that means that one clock
cycle happens every 0.0000002 seconds. When the RTCC is running, it increments once for each
clock cycle. The RTCC register can only hold a number up to 255 and then it overflows to zero again.
So when the RTCC overflows, it triggers an interrupt. Even at that rate the LED would blink over
15,000 times a second. We can only see an LED "blink" when it is slower than 50 times a second.
This means we need to either slow down the processor or "scale" the timing. We are going to do the
latter by using a technique called "pre-scaling". This is done using the OPTION register.

To get started, we want to tell the compiler that we want to use the RTCC. On page 174 of the SX-
Key/Blitz Development System Manual 2.0 is a chart showing the various things the OPTION register
controls, one of them is the RTCC.

For our purposes we want to set the RTW bit which is the left most bit. If this bit is a 0 then it means
we want to use the Watchdog Timer. If it is a "1" then we want to use the RTCC. Here we are telling
the compiler that we want to use the RTCC.

OPTION = %10000000 ' or we can use OPTION=$80

PrePrePrePre----ScalingScalingScalingScaling

Ok, some quick math. Let's say we tell the MCU that we want to blink the LED once every clock
cycle. Using a 4mHz resonator, it would blink 4,000,000 times per second! We need to get it down so
that we can even see a glimmer of a blink! If we turn on the RTCC, it will count up to 255 and then

Option RegisterOption RegisterOption RegisterOption Register
7 6 5 4 3 2 1 0

RTW RTI RTS RTE PSA PS2 PS1 PS0

Page 2 of 5File ./sx/RTCCInterrupts.mkd

4/4/2010 18:30:50 PMhttp://wis17/ref/index.php?action=file&file=./sx/RTCCInterrupts.mkd

overflow (go back to zero) causing the interrupt to fire. That brings it down to about 15,000 times a
second. Next we can "scale" the RTCC so that it after a certain number of times of overflowing it will
fire the interrupt. For example, we can tell the MCU that we want to fire the interrupt only after it
overflows 128 times. Now let's do the math again.

 4,000,000 resonator (4mHz)

 The RTCC increments on each clock cycle. When it

 overflows (goes from 255 to 00) it triggers an interrupt.

 4,000,000 resonator freq / 256 clock cycles = 15625

 (an interrupt is triggered this many times per second)

 Still too fast. Let's try dividing (scalling) that by 128).

 15625 / 128 = 122.07 (thus, about 122 times a second)

The maximum blink rate you can discern is about 50 times a second. So even this is a little fast. Let's
go one more step and use the scale of 256 instead of 128.

 15625 / 256 = 61.035

This is close enough to try. Remember in our experiment at the beginning of this chapter, we blinked
the LED once a second. We are going to try it at sixty times faster than that!

To set the "pre-scaller" we need to set bits PS2, PS1 and PS0 in our OPTION register. These are the
right most bits in the OPTION register and we set them at the same time we tell the compiler we want
to use the RTCC timer. We need to use a value of %10000111 meaning to use the RTCC (left most
bit) and a maximum value for the pre-scaller (the right most bits). We do this by using the command:

 OPTION = %10000111 ' Set RTCC with 1:256 pre-scaller

Sometimes programmers use hexadecimal and it would look like:

 OPTION = $87

Blink an LED using an InterruptBlink an LED using an InterruptBlink an LED using an InterruptBlink an LED using an Interrupt

Now let's create the program. Most of the action happens after the FREQ command and before the
PROGRAM START.

� First we add a command called IRC_CAL. This calibrates the internal RC Oscillator to the
external crystal or resonator on your board and helps you to calcalate precise interrupt timing. If
you don't do this, the interrupt will not be in perfect sync with the resonator.

 IRC_CAL IRC_SLOW

� Next we add the INTERRUPT code. Here we simply set the LED to the opposite of what it was.
If it was on, we turn it off, if it was off, we turn it on.

Page 3 of 5File ./sx/RTCCInterrupts.mkd

4/4/2010 18:30:50 PMhttp://wis17/ref/index.php?action=file&file=./sx/RTCCInterrupts.mkd

 INTERRUPT

 ' toggle the LED on or off

 RC = NOT RC

 RETURNINT

� Inside our main program, we set the OPTION register to %10000111 (or $87) to indicate that
we want to use the RTCC and that we want to scale it to 1:256.

� Finally, we do not need anything in the main loop because the toggling is going to be done in
the interrupt.

� The code is below and will toggle the LED about 61 times per second. I don't know about you
but the LED is blinking faster that I can recognize. This is due to a phenomenon called
"Persistence of Vision""Persistence of Vision""Persistence of Vision""Persistence of Vision" which basically states that when something happens too fast it is invisible (a
very un-scientific description, but it gets the idea across). Thus, type in the program and debug
it. Remember, we still have a little ways to go.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 IRC_CAL IRC_SLOW ' Calibrate internal RC Oscilator to Resonator

 INTERRUPT

 ISR_Start:

 ' This interrupt is called once for every 256*256 clock cycles

 ' or about 61 times a second and still too fast to see

 RC = NOT RC

 ISR_Exit:

 RETURNINT ' {cycles}

 Program Start

 Start:

 ' initialization code here

 tris_C=%00000000 ' Set port direction (0=output, 1=input)

 option = %10000111 ' Set the RTCC scale to 1:256

 rc = $FF ' Set an initial value to RC

 Main:

 ' Later we will put additional code here

 ' For now we just want to loop forever

 goto main

Slow it Down More!Slow it Down More!Slow it Down More!Slow it Down More!

We have already set the pre-scaller at its maximum value of 256 so what do we do now? Well, in the
interrupt we can add code that will only act on every third call. Set up a BYTE variable called
MyCounter. Change the interrupt code as follows and in the initialization part of your program, set
MyCounter equal to zero.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 IRC_CAL IRC_SLOW ' Calibrate internal RC Oscilator to Resonator

 MyCounter VAR BYTE

 INTERRUPT

 ISR_Start:

Page 4 of 5File ./sx/RTCCInterrupts.mkd

4/4/2010 18:30:50 PMhttp://wis17/ref/index.php?action=file&file=./sx/RTCCInterrupts.mkd

 ' This interrupt is called once for every 256*256 clock cycles

 MyCounter = MyCounter + 1

 IF MyCounter = 3 THEN

 MyCounter = 0

 RC = NOT RC

 ENDIF

 ISR_Exit:

 RETURNINT ' {cycles}

 Program Start

 Start:

 ' initialization code here

 tris_C=%00000000 ' Set port direction (0=output, 1=input)

 option = %10000111 ' Set the RTCC scale to 1:256

 rc = $FF ' Set an initial value to RC

 MyCounter = 0 ' Initialize to zero

 Main:

 ' Later we will put additional code here

 ' For now we just want to loop forever

 goto main

Ah! NOW we can see the blink. With a little experimenting and using a count of 36 I was able to blink
the LED about once per second. To get it to blink at EXACTLY once per second would involve some
more exprimentation. In the next chapter, we will turn an LED on or off when some external event
happens like an alarm being tripped.

Other Values for the OPTION registerOther Values for the OPTION registerOther Values for the OPTION registerOther Values for the OPTION register

� RTW - as stated above, 0=WatchDog Timer, 1=RTTC
� RTI - 0=rollover is enabled (which we want), 1=disable rollover
� RTS - 0=increment on instruction cycle (which we want), 1=increment on RTCC pin on MCU
� RTE - 0=increment on low-to-high transition, 1=increment on high-to-low
� PSA - 0=prescaler is assigned to RTCC, 1=prescaler assigned to Watchdog Timer
� PS2 - these last three bits determine the prescaler as powers of 2, from 2 to 256.
� PS1
� PS0

File: RTCCInterrupts.mkdRTCCInterrupts.mkdRTCCInterrupts.mkdRTCCInterrupts.mkd updated: 04/04/2010 18:29

Page 5 of 5File ./sx/RTCCInterrupts.mkd

4/4/2010 18:30:50 PMhttp://wis17/ref/index.php?action=file&file=./sx/RTCCInterrupts.mkd

