
 1 Revised: 2006-05-17

Using Parallax Propeller™ Floating Point Routines

The Propeller chip can be programmed using either the Spin Language or assembly code.
The design objective for the Propeller floating point package was to develop support for
floating point functions callable by both Spin and assembler code, and to
optimize for speed while using a minimum of memory. Each of the components of this
objective plays off against the others. For example, the minimum amount of memory
would be used by coding entirely in Spin (e.g. FloatMath), but this comes at the cost of
execution speed (371 usec for FAdd in FloatMath vs 4.7 usec in assembler).
Alternatively, the fastest execution would be obtained by coding entirely in assembler,
but since there are only 496 longs in a cog, you can quickly run out of memory. The most
practical solution is a balance between the various design constraints.

The following sections describe how to implement floating point operations using either
the Spin Language or assembler code.

Using Floating Point with Spin™
The three options for doing floating point operations in Spin are to use the FloatMath,
Float32 or Float32Full objects. The FloatMath object implements all functions in Spin
code so no additional cogs are required, but execution speed is much slower than the
speed of the Float32 and Float32Full objects. The Float32 and Float32Full objects
implement functions in assembler code and provide a Spin interface. Float32 uses one
additional cog, while Float32Full uses two additional cogs. Each of the options is
summarized below.

FloatMath
The FloatMath object can be used when only basic floating point functions are required
and execution speed is not a significant factor. It using the least amount of memory and
requires no additional cog.

The FloatMath object contains the following functions:

FAdd, FSub, FMul, FDiv
FFloat, FTrunc, FRound
FSqr
FNeg, FAbs

Pros:

• no cogs used
• smallest use of memory

Cons:
• slower execution speed
• limited number of functions

 2 Revised: 2006-05-17

FloatMath Execution Speeds (Spin)

FloatMath Functions
(Spin)

Execution Speed
(usec)

FAdd 371
FSub 404
FMul 341
FDiv 1413
FFloat 192
FTrunc 163
FRound 163
FSqr 1522
FNeg 21
FAbs 21

Float32
The Float32 object should be used when additional floating point functions are required
or when execution speed is a factor. It uses one cog and provides much faster execution
speed. There is an easy migration path from FloatMath to Float32 since all common
functions have the same name. The only code change required is to add a start call at the
beginning of the program to start the Float32 cog.

The Float32 object contains the following functions:

FAdd, FSub, FMul, FDiv
FFloat, FTrunc, FRound, Frac
FSqr, Pow
FNeg, FAbs
FCmp, FMin, FMax
Sin, Cos, Tan, Radians, Degrees
Log, Log10, Exp, Exp10
FMod

Pros:
• faster execution speed
• uses one cog

Cons:
• doesn’t support all functions

Float32 Execution Speeds (Spin)

Float32 Functions
(Spin)

Execution Speed
(usec)

FAdd 39
FSub 39
FMul 46

 3 Revised: 2006-05-17

FDiv 45
FFloat 35
FTrunc 36
FRound 36
FSqr 247
FNeg 21
FAbs 21
FCmp 39
Sin 128
Cos 128
Tan 234
Log 76
Log10 76
Exp 82
Exp10 82
Pow 112
Frac 36
FMod 72
Radians 62
Degrees 62
FMin 47
FMax 47

Float32Full
The Float32Full object should be used when additional floating point functions not
supported by Float32 are required (e.g. ASin, ACos, ATan, ATan2, Floor, Ceil), or when
the user-defined function processor is used. It uses two cogs. All common functions have
the same name, and the extra cog is handled internally, so no code changes are required
to switch between Float32 and Float32Full (except the name of the object in the object
definition).

The Float32Full object contains the following functions:

FAdd, FSub, FMul, FDiv
FFloat, FTrunc, FRound, Frac
FSqr, Pow
FNeg, FAbs
FCmp, FMin, FMax
Sin, Cos, Tan, Radians, Degrees
ASin, ACos, ATan, ATan2
Log, Log10, Exp, Exp10
FMod
Floor, Ceil
FFunc (user-defined functions)

 4 Revised: 2006-05-17

Pros:

• faster execution speed
• supports all functions
• user-defined function processor

Cons:
• uses two cogs

Float32Full Execution Speeds (Spin)

Float32Full Functions
(Spin)

Execution Speed
(usec)

FAdd 39
FSub 39
FMul 46
FDiv 45
FFloat 35
FTrunc 36
FRound 36
FSqr 247
FNeg 21
FAbs 21
FCmp 39
Sin 128
Cos 128
Tan 234
Log 76
Log10 76
Exp 82
Exp10 82
Pow 112
Frac 36
FMod 72
Radians 62
Degrees 62
FMin 47
FMax 47
ASin 359
ACos 366
ATan 168
ATan2 183
Floor 49
Ceil 49

 5 Revised: 2006-05-17

Using Floating Point in Assembler Code
Assembler code provides significantly faster execution speed. The following shows a
quick comparison for a floating point add:

FloatMath FAdd (Spin) 371.0 usec
Float32 FAdd (Spin) 39.0 usec
_FAdd (Assembler) 4.7 usec

The following table shows the execution times for all Float32 and Float32Full function
calls in assembler code. In some cases in-line code is used rather than a subroutine call.
The in-line code is shown in the table.

Float32 Execution Speeds (Assembler)

Float32
(Assembler)

Execution Speed
(usec)

_FAdd 4.7
_FSub 4.8
_FMul 10.5
_FDiv 13.2
_FFloat 5.4
_FTrunc 1.7
_FRound 1.7
_FSqr 217
(FNeg)
 xor fnumA, Bit31

0.05

(FAbs)
 andn fnumA, Bit31

0.05

_FCmp 0.8
_Sin 93.2
_Cos 97.7
_Tan 204
_Log 44.4
_Log10 44.4
_Exp 48.5
_Exp10 48.8
_Pow 79.2
_Frac 4.3
_FMod 37.9
(Radians)
 call _FMulI
 long pi / 180.0

10.6

(Degrees)
 call _FMulI
 long 180.0 / pi

10.6

(FMin)
 call _FCmp

0.85

 6 Revised: 2006-05-17

 if_nc_and_nz mov fnumA, fnumB
(FMax)
 call _FCmp
 if_c mov fnumA, fnumB

_ASin 326.6
_ACos 331.7
_ATan 132.4
_ATan2 146.3
_Floor 15.9
_Ceil 15.9

All floating point operations supported by Float32 and Float32Full are coded as stand-
alone subroutines that can be called from assembler code. A command dispatch routine
handles command requests from the Spin code, and a Spin function is defined to call each
of the assembler routines. The name of the assembler function is the same name as the
Spin function, but with an underscore prefix.

To use floating point routines in your own assembler code you can copy and paste the
assembler code from the Float32 or Float32A objects. There are various constants,
variables and support routines that are required in addition to the individual functions.
The following table shows the amount of memory required to support the four basic
floating point operations (FAdd, FSub, FMul, FDiv).

Memory usage for basic functions (cog)

 longs
_FAddI/_FAddI 24
_FSub/_FSubI 5
_FMul/_FMulI 18
_FDiv/_FDivI 19
Unpack2 12
Unpack 30
Pack 25
Constants 6
Variables 10
TOTAL 174

The assembler functions use either one or two arguments, defined as fnumA and fnumB,
and return the result in fnumA. For example:

 mov fnumA, val1
 mov fnumB, val2
 call _FAdd

To facilitate assembler coding, an immediate value call has been added for each of the
basic operators (_FAddI, _FSubI, _FMulI, _FDivI, _FCmpI). Using the immediate call,

 7 Revised: 2006-05-17

the fnumB value is defined by the long value immediately following the call. This
example adds the constant 1.25 to fnumA:

 call _FAddI
 long 1.25

The following tables show the cog memory usage for the Float32 and Float32A objects.

Float32 Memory Space (cog)

 longs
command dispatch 56
_FAddI/_FAddI 24
_FSub/_FSubI 5
_FMul/_FMulI 18
_FDiv/_FDivI 19
_FFloat 13
_FTrunc/Fround 17
_FSqr 28
cmdFCmp/_FCmp/_FCmpI 25
_Sin/_Cos 45
_Tan 8
_Log2/_Log/_Log10 27
_Exp2/_Exp/_Exp10 35
_Pow 6
_Frac 10
_Fmod 14
loadTable 19
floatBits 8
_Unpack2 12
_Unpack 30
_Pack 25
Constants 16
Variables 17
TOTAL 477

Float32A Memory Space (cog)

 longs
Command dispatch
and function processor 94
_Asin/_Acos 36
_Atan 29
_Atan2 25

 8 Revised: 2006-05-17

_Ceil/_Floor 20
linkage 5
sendCmd 15
_FAddI/_FAddI 24
_FSub/_FSubI 5
_FMul/_FMulI 18
_FDiv/_FDivI 19
_FCmp/_FCmpI 22
_FFloat 13
_FTrunc/Fround 17
poly 15
_Unpack2 12
_Unpack 30
_Pack 25
Constants 11
Variables 19
TOTAL 454

User-defined Functions
The preferred method of programming for many applications will be Spin code. In
floating point intensive applications, the Spin overhead can be a major issue, and the
alternative of coding in assembler may not be desirable. Implementing in assembler has
limitations due to the space limit of 496 longs for each cog. On the other hand, there may
be lots of main memory available. The user-defined function processor capitalizes on this
by allowing functions to be defined in main memory, but processed in assembler by
Float32A. The built-in function processor makes effective use of the command dispatch
routines to accomplish this task. The same command codes are used for both the call
linkage and user-defined function operations. A quick example is as follows:

 DAT
 x long 0
 y long 0
 z long 0
 func1 long JmpCmd+@func1 ' defines runtime offset
 long LoadCmd+@x ' fnumA = x
 long FMulCmd+@y ' fnumA = fnumA + y
 long SaveCmd+@z ' z = fnumA
 long 0 ' end of function

This has the advantage of much faster execution, and the variables are all directly
accessible by the Spin code.

 9 Revised: 2006-05-17

Floating Point Tips and Traps

Starting Float32 and Float32Full
Tip: Float32 and Float32Full both use additional cogs for their assembler routines. Make
sure you add a start call to the beginning of your program.
e.g.
 OBJ
 f : "Float32"
 …
 PUB
 f.start

Float32 vs Float32Full
Tip: If you don’t need the extra functions provided by the Float32Full object, you should
use the Float32 object. Float32 requires less memory and uses only one additional cog
instead of two.

Floating Point Operations
Trap: Built-in operators are only used for integer operations. You must call floating
point routines to perform floating point operations.
e.g.

Suppose you want to add the two floating point variables x and y.
 x := f.FAdd(x, y) is correct
 x := x + y is incorrect, it specifies an integer addition

NaN
Tip: When using Float32 and Float32Full any error that occurs during floating point
calculations will result in NaN (Not-a-Number). NaN is equal to the value $7FFF_FFFF,
and will propagate through all subsequent floating point functions. If you have a NaN
result, you can trace it back to find the error in your calculation. Typical errors are divide
by zero or an argument out of range.

Floating Point Constants
Trap: Make sure that you don’t forget the decimal point when you specify a floating
point constant. If no decimal point is used, Spin will assume it’s an integer constant. No
error will be displayed at compile time, but the run-time calculation will be incorrect.
e.g.
 Suppose you want to add 2.0 to the floating point variable x
 x := f.FAdd(x, 2.0) is correct

x := f.FAdd(x, 2) is incorrect, because 2 is an integer value

Pi
Tip: Spin has a built-in definition for the floating point constant pi (~3.141593).
e.g.
 angle := f.FDiv(pi, 2.0)

 10 Revised: 2006-05-17

Floating Point Expressions
Trap: Although Spin recognizes individual floating point constants, if you try to use
floating point constants in an expression, you will not get the desired result because
expressions are evaluated as integer expressions.
e.g.
 x := f.FAdd(x, pi) is correct, because pi is a single floating point constant
 x := f.FAdd(x, pi / 2.0) will yield an incorrect result

You need to use the constant directive to declare an in-line floating point expression.
e.g.
 x := f.FAdd(x, constant(pi / 2.0))

Floating Point Expressions
Tip: Floating point expressions are valid in the CON section.
e.g.
 CON
 piBy2 = pi / 2.0
 …
 PUB or PRI
 x := f.FAdd(x, piBy2)

Radians
Trap: Remember to use radians when calling the Sin, Cos, Tan functions, a common
error is to use degrees. Two function calls, Degrees and Radians, are provided make it
easy to convert.
e.g.

To find the Sin of 60 degrees, first convert to radians, then call Sin.
 x := f.Sin(Radians(60.0))

Square of a number
Tip: To calculate the square of a number, it is faster to multiply the number by itself,
then to use the Pow function.
e.g.
 x := f.FMul(x, x) returns the value x2

