
Propeller Quick Reference v1.5 • 10/19/2007 • © Parallax Inc. Parallax, Propeller, Parallax logo, Propeller hat logo, and Spin are trademarks of Parallax, Inc. Page 1 of 4

Propeller Chip Quick Reference
Spin Language

Command Returns
Value Description

ABORT 〈Value〉 Exit from PUB/PRI method using abort status with optional return value.
BYTE Symbol 〈[Count]〉 Declare byte-sized symbol in VAR block.
〈Symbol〉 BYTE Data 〈[Count]〉 Declare byte-aligned and/or byte-sized data in DAT block.
BYTE [BaseAddress] 〈[Offset]〉 Read/write byte of main memory.
Symbol.BYTE 〈[Offset]〉 Read/write byte-sized component of word/long-sized variable.
BYTEFILL (StartAddress, Value, Count) Fill bytes of main memory with a value.
BYTEMOVE (DestAddress, SrcAddress, Count) Copy bytes from one region to another in main memory.
CASE CaseExpression

MatchExpression :
 Statement(s)
〈 :
 Stat (s)〉

MatchExpression
ement

OTHER : 〈
 Statement(s)〉

Compare expression against matching expression(s), execute code block if match found.
MatchExpression can contain a single expression or multiple comma-delimited expressions.
Expressions can be a single value (ex: 10) or a range of values (ex: 10..15).

CHIPVER Version number of the Propeller chip.
CLKFREQ Current System Clock frequency, in Hz.
CLKMODE Current clock mode setting.
CLKSET (Mode, Frequency) Set both clock mode and System Clock frequency at run time.
CNT Current 32-bit System Counter value.
COGID Current cog’s ID number; 0-7.
COGINIT (CogID, SpinMethod 〈(ParameterList)〉, StackPointer) Start or restart cog by ID to run Spin code.
COGINIT (CogID, AsmAddress, Parameter) Start or restart cog by ID to run Propeller Assembly code.
COGNEW (SpinMethod 〈(ParameterList)〉, StackPointer) Start new cog for Spin code and get cog ID; 0-7 = succeeded, -1 = failed.
COGNEW (AsmAddress, Parameter) Start new cog for Propeller Assembly code and get cog ID; 0-7 = succeeded, -1 = failed.
COGSTOP (CogID) Stop cog by its ID.
CO
 Sym = Exp 〈((,┆)) Sym = Exp〉…

N
 Declare symbolic, global constants.

CON
 〈#Exp ((,┆))〉 Sym 〈[Ofs]〉 〈〈((,┆)) #Exp〉 ((,┆)) Sym 〈[Ofs]〉〉…

 Declare global enumerations (incrementing symbolic constants).

CONSTANT (ConstantExpression) Declare in-line constant expression to be completely resolved at compile time.
CTRA Counter A Control register.
CTRB Counter B Control register.
DAT
 〈Symbol〉 Alignment 〈Size〉 〈Data〉 〈[Count]〉 〈,〈Size〉 Data 〈[Count]〉〉…

 Declare table of data, aligned and sized as specified.

DAT
 〈Symbol〉 〈Condition〉 Instruction 〈Effect(s)〉 Denote Propeller Assembly instruction.

DIRA 〈[Pin(s)]〉 Direction register for 32-bit port A.
FILE "FileName" Import external file as data in DAT block.
FLOAT (IntegerConstant) Convert integer constant expression to compile-time floating-point value in any block.
FRQA Counter A Frequency register.
FRQB Counter B Frequency register.
((IF ┆ IFNOT)) Condition(s)

 IfStatement(s)
〈ELSEIF Condition(s)

 ElseIfStatement(s)〉…
〈ELSEIFNOT Condition(s)

 El IfStatement(s)〉… se
〈ELSE

 ElseStatement(s)〉

Test condition(s) and execute block of code if valid.
IF and ELSEIF each test for TRUE. IFNOT and ELSEIFNOT each test for FALSE.

INA 〈[Pin(s)]〉 Input register for 32-bit ports A.
LOCKCLR (ID) Clear semaphore to false and get its previous state; TRUE or FALSE.
LOCKNEW Check out new semaphore and get its ID; 0-7, or -1 if none were available.
LOCKRET (ID) Return semaphore back to semaphore pool, releasing it for future LOCKNEW requests.
LOCKSET (ID) Set semaphore to true and get its previous state; TRUE or FALSE.
LONG Symbol 〈[Count]〉 Declare long-sized symbol in VAR block.
〈Symbol〉 LONG Data 〈[Count]〉 Declare long-aligned and/or long-sized data in DAT block.
LONG [BaseAddress] 〈[Offset]〉 Read/write long of main memory.
LONGFILL (StartAddress, Value, Count) Fill longs of main memory with a value.
LONGMOVE (DestAddress, SrcAddress, Count) Copy longs from one region to another in main memory.
LOOKDOWN (Value:ExpressionList) Get the one-based index of a value in a list.
LOOKDOWNZ (Value:ExpressionList) Get the zero-based index of a value in a list.
LOOKUP (Index:ExpressionList) Get value from a one-based index position of a list.
LOOKUPZ (Index:ExpressionList) Get value from a zero-based index position of a list.
NEXT Skip remaining statements of REPEAT loop and continue with the next loop iteration.

Propeller Quick Reference v1.5 • 10/19/2007 • © Parallax Inc. Parallax, Propeller, Parallax logo, Propeller hat logo, and Spin are trademarks of Parallax, Inc. Page 2 of 4

Spin Language (continued…)
Command Returns

Value Description
OBJ
 Symbol 〈[Count]〉:"Object" 〈 Symbol 〈[Count]〉: "Object"〉…

 Declare symbol object references.

OUTA 〈[Pin(s)]〉 Output register for 32-bit port A.
PAR Cog Boot Parameter register.
PHSA Counter A Phase Lock Loop (PLL) register.
PHSB Counter B Phase Lock Loop (PLL) register.
PRI Name 〈(Par 〈,Par〉…)〉 〈:RVal〉 〈| LVar 〈[Cnt]〉〉 〈,LVar 〈[Cnt]〉〉…
 SourceCodeStatements Declare private method with optional parameters, return value and local variables.

PUB Name 〈(Par 〈,Par〉…)〉 〈:RVal〉 〈| LVar 〈[Cnt]〉〉 〈,LVar 〈[Cnt]〉〉…
 SourceCodeStatements Declare public method with optional parameters, return value and local variables.

QUIT Exit from REPEAT loop immediately.
REBOOT Reset the Propeller chip.
REPEAT 〈Count〉

 Statement(s) Execute code block repetitively, either infinitely, or for a finite number of iterations.

REPEAT Variable FROM Start TO Finish 〈STEP Delta〉
 Statement(s) Execute code block repetitively, for finite, counted iterations.

REPEAT ((UNTIL┆ WHILE)) Condition(s)
 Statement(s) Execute code block repetitively, zero-to-many conditional iterations.

REPEAT
 Statement(s)

((UNTIL┆ WHILE)) Condition(s)
 Execute code block repetitively, one-to-many conditional iterations.

RESULT Return value variable for PUB/PRI methods.
RETURN 〈Value〉 Exit from PUB/PRI method with optional return Value.
ROUND (FloatConstant) Round floating-point constant to the nearest integer at compile-time, in any block.
SPR [Index] Special Purpose Register array.
STRCOMP (StringAddress1, StringAddress2) Compare two strings for equality.
STRING (StringExpression) Declare in-line string constant and get its address.
STRSIZE (StringAddress) Get size, in bytes, of zero-terminate string.
TRUNC (FloatConstant) Remove fractional portion from floating-point constant at compile-time, in any block.
VAR
 Size Symbol 〈[Count]〉 〈((,┆ Size)) Symbol 〈[Count]〉〉…

 Declare symbolic global variables.

VCFG Video Configuration register.
VSCL Video Scale register.
WAITCNT (Value) Pause cog’s execution temporarily.
WAITPEQ (State, Mask, Port) Pause cog’s execution until I/O pin(s) match designated state(s).
WAITPNE (State, Mask, Port) Pause cog’s execution until I/O pin(s) do not match designated state(s).
WAITVID (Colors, Pixels) Pause cog’s execution until its Video Generator is available for pixel data.
WORD Symbol 〈[Count]〉 Declare word-sized symbol in VAR block.
〈Symbol〉 WORD Data 〈[Count]〉 Declare word-aligned and/or word-sized data in DAT block.
WORD [BaseAddress] 〈[Offset]〉 Read/write word of main memory.
Symbol.WORD 〈[Offset]〉 Read/write word-sized component of long-sized variable.
WORDFILL (StartAddress, Value, Count) Fill words of main memory with a value.
WORDMOVE (DestAddress, SrcAddress, Count) Copy words from one region to another in main memory.

Propeller Assembly Language
Instruction Description Z Result C Result Result Clocks

ABS AValue, 〈#〉SValue Get absolute value of a number. Result = 0 S[31] Written 4
ABSNEG NValue, 〈#〉SValue Get the negative of a number’s absolute value. Result = 0 S[31] Written 4
ADD Value1, 〈#〉Value2 Add unsigned values. Result = 0 Unsigned Carry Written 4
ADDABS Value, 〈#〉SValue Add absolute value to another value. Result = 0 Unsigned Carry Written 4
ADDS SValue1, 〈#〉SValue2 Add signed values. Result = 0 Signed Overflow Written 4
ADDSX SValue1, 〈#〉SValue2 Add signed values plus C. Z & (Result = 0) Signed Overflow Written 4
ADDX Value1, 〈#〉Value2 Add unsigned values plus C. Z & (Result = 0) Unsigned Carry Written 4
AND Value1, 〈#〉Value2 Bitwise AND values. Result = 0 Parity of Result Written 4
ANDN Value1, 〈#〉Value2 Bitwise AND value with NOT of another. Result = 0 Parity of Result Written 4
CALL #Address Jump to address with intention to return to next instruction. Result = 0 --- Written 4
CLKSET Mode Set clock mode at run time. --- --- Not Written 7..22 *
CMP Value1, 〈#〉Value2 Compare unsigned values. D = S Unsigned Borrow Not Written 4
CMPS SValue1, 〈#〉SValue2 Compare signed values. D = S Signed Borrow Not Written 4
CMPSUB Value1, 〈#〉Value2 Compare unsigned values, subtract second if it is lesser or equal. D = S Unsigned (D => S) Written 4
CMPSX SValue1, 〈#〉SValue2 Compare signed values plus C. Z & (D = S+C) Signed Borrow Not Written 4
CMPX Value1, 〈#〉Value2 Compare unsigned values plus C. Z & (D = S+C) Unsigned Borrow Not Written 4
COGID Destination Get current cog’s ID. Result = 0 --- Written 7..22 *
COGINIT Destination Re/start cog, ID optional, to run Propeller Assembly or Spin code. Result = 0 No Cog Free Not Written 7..22 *
COGSTOP CogID Start a cog by ID. --- --- Not Written 7..22 *
DJNZ Value, 〈#〉Address Decrement value and jump to address if not zero. Result = 0 Unsigned Borrow Written 4 or 8 **

Propeller Quick Reference v1.5 • 10/19/2007 • © Parallax Inc. Parallax, Propeller, Parallax logo, Propeller hat logo, and Spin are trademarks of Parallax, Inc. Page 3 of 4

Propeller Assembly Language (continued…)
Instruction Description Z Result C Result Result Clocks

HUBOP Destination, 〈#〉Operation Perform a hub operation. Result = 0 --- Not Written 7..22 *
JMP 〈#〉Address Jump to address unconditionally. Result = 0 --- Not Written 4
JMPRET RetInstAddr, 〈#〉DestAddr Jump to address with intention to “return” to another address. Result = 0 --- Written 4
LOCKCLR ID Clear semaphore to False and get its previous state. --- Prior Lock State Not Written 7..22 *
LOCKNEW NewID Check out new semaphore and get its ID. Result = 0 No Lock Free Written 7..22 *
LOCKRET ID Return semaphore back for future “new semaphore” requests. --- --- Not Written 7..22 *
LOCKSET ID Set semaphore to true and get its previous state. --- Prior Lock State Not Written 7..22 *
MAX Value1, 〈#〉Value2 Limit maximum of unsigned value to another unsigned value. D = S Unsigned (D < S) Written 4
MAXS SValue1, 〈#〉SValue2 Limit maximum of signed value to another signed value. D = S Signed (D < S) Written 4
MIN Value1, 〈#〉Value2 Limit minimum of unsigned value to another unsigned value. D = S Unsigned (D < S) Written 4
MINS SValue1, 〈#〉SValue2 Limit minimum of signed value to another signed value. D = S Signed (D < S) Written 4
MOV Destination, 〈#〉Value Set register to a value. Result = 0 S[31] Written 4
MOVD Destination, 〈#〉Value Set register’s destination field to a value. Result = 0 --- Written 4
MOVI Destination, 〈#〉Value Set register’s instruction field to a value. Result = 0 --- Written 4
MOVS Destination, 〈#〉Value Set register’s source field to a value. Result = 0 --- Written 4
MUXC Destination, 〈#〉Mask Set discrete bits of value to state of C. Result = 0 Parity of Result Written 4
MUXNC Destination, 〈#〉Mask Set discrete bits of value to state of !C. Result = 0 Parity of Result Written 4
MUXNZ Destination, 〈#〉Mask Set discrete bits of value to state of !Z. Result = 0 Parity of Result Written 4
MUXZ Destination, 〈#〉Mask Set discrete bits of value to state of Z. Result = 0 Parity of Result Written 4
NEG NValue, 〈#〉SValue Get negative of a number. Result = 0 S[31] Written 4
NEGC RValue, 〈#〉Value Get value, or its additive inverse, based on C. Result = 0 S[31] Written 4
NEGNC RValue, 〈#〉Value Get value, or its additive inverse, based on !C. Result = 0 S[31] Written 4
NEGNZ RValue, 〈#〉Value Get value, or its additive inverse, based on !Z. Result = 0 S[31] Written 4
NEGZ RValue, 〈#〉Value Get value, or its additive inverse, based on Z. Result = 0 S[31] Written 4
NOP No operation, just elapse four clock cycles. --- --- --- 4
OR Value1, 〈#〉Value2 Bitwise OR values. Result = 0 Parity of Result Written 4
RCL Value, 〈#〉Bits Rotate C left into value by specified number of bits. Result = 0 D[31] Written 4
RCR Value, 〈#〉Bits Rotate C right into value by specified number of bits. Result = 0 D[0] Written 4
RDBYTE Value, 〈#〉Address Read byte of main memory. Result = 0 --- Written 7..22 *
RDLONG Value, 〈#〉Address Read long of main memory. Result = 0 --- Written 7..22 *
RDWORD Value, 〈#〉Address Read word of main memory. Result = 0 --- Written 7..22 *
RET Return to address. Result = 0 --- Not Written 4
REV Value, 〈#〉Bits Reverse LSBs of value and zero-extend. Result = 0 D[0] Written 4
ROL Value, 〈#〉Bits Rotate value left by specified number of bits. Result = 0 D[31] Written 4
ROR Value, 〈#〉Bits Rotate value right by specified number of bits. Result = 0 D[0] Written 4
SAR Value, 〈#〉Bits Shift value arithmetically right by specified number of bits. Result = 0 D[0] Written 4
SHL Value, 〈#〉Bits Shift value left by specified number of bits. Result = 0 D[31] Written 4
SHR Value, 〈#〉Bits Shift value right by specified number of bits. Result = 0 D[0] Written 4
SUB Value1, 〈#〉Value2 Subtract unsigned values. Result = 0 Unsigned Borrow Written 4
SUBABS Value, 〈#〉SValue Subtract absolute value from another value. Result = 0 Unsigned Borrow Written 4
SUBS SValue1, 〈#〉SValue2 Subtract signed values. Result = 0 Signed Underflow Written 4
SUBSX SValue1, 〈#〉SValue2 Subtract signed value plus C from another signed value. Z & (Result = 0) Signed Underflow Written 4
SUBX Value1, 〈#〉Value2 Subtract unsigned value plus C from another unsigned value. Z & (Result = 0) Unsigned Borrow Written 4
SUMC SValue1, 〈#〉SValue2 Sum signed value with another whose sign is inverted based on C. Result = 0 Signed Overflow Written 4
SUMNC SValue1, 〈#〉SValue2 Sum signed value with another whose sign is inverted based on !C. Result = 0 Signed Overflow Written 4
SUMNZ SValue1, 〈#〉SValue2 Sum signed value with another whose sign is inverted based on !Z. Result = 0 Signed Overflow Written 4
SUMZ SValue1, 〈#〉SValue2 Sum signed value with another whose sign is inverted based on Z. Result = 0 Signed Overflow Written 4
TEST Value1, 〈#〉Value2 Bitwise AND values to affect flags only. Result = 0 Parity of Result Not Written 4
TESTN Value1, 〈#〉Value2 Bitwise AND value with NOT of another to affect flags only. Result = 0 Parity of Result Not Written 4
TJNZ Value, 〈#〉Address Test value and jump to address if not zero. Result = 0 0 Not Written 4 or 8 **
TJZ Value, 〈#〉Address Test value and jump to address if zero. Result = 0 0 Not Written 4 or 8 **
WAITCNT Target, 〈#〉Delta Pause execution temporarily. Result = 0 Unsigned Carry Written 5+
WAITPEQ State, 〈#〉Mask Pause execution until I/O pin(s) match designated state(s). --- --- Not Written 5+
WAITPNE State, 〈#〉Mask Pause execution until I/O pin(s) don’t match designated state(s). --- --- Not Written 5+
WAITVID Colors, 〈#〉Pixels Pause execution until Video Generator can take pixel data. Result = 0 --- Not Written 5+
WRBYTE Value, 〈#〉Address Write byte to main memory. --- --- Not Written 7..22 *
WRLONG Value, 〈#〉Address Write long to main memory. --- --- Not Written 7..22 *
WRWORD Value, 〈#〉Address Write word to main memory. --- --- Not Written 7..22 *
XOR Value1, 〈#〉Value2 Bitwise XOR values. Result = 0 Parity of Result Written 4
* Hub instructions require 7 to 22 clock cycles to execute depending on the relation between its moment of execution and the cog’s hub access window. Since cogs run independent of the

hub, they must sync to the hub to execute hub instructions. Cogs receive an “access window” every 16 clocks. The first hub instruction in a sequence will take 0 to 15 clocks to sync and
7 clocks afterwards to execute; 0+7 to 15+7 = 7 to 22 clock cycles. After that instruction, there are 9 (16–7) free clocks before the cog’s next access window; enough time for two 4-clock
instructions. Beware that hub instructions can cause timing to appear indeterminate; particularly the first hub instruction in a sequence.

** Conditional-Jump instructions require extra clock cycles if a jump is not required. These instructions take 4 clock cycles if a jump is required and 8 clock cycles if no jump is required.
Since loops utilizing these instructions typically need to be fast, they are optimized in this way for speed.

Math and Logic Operators
Operator Constant

Expressions3 Level1 Normal Assign2 Integer Float

Is
Unary Description

-- always Pre-decrement (--X) or post-decrement (X--).
++ always Pre-increment (++X) or post-increment (X++).
~ always Sign-extend bit 7 (~X) or post-clear to 0 (X~).
~~ always Sign-extend bit 15 (~~X) or post-set to -1 (X~~).
? always Random number forward (?X) or reverse (X?).
@ never Symbol address.

Highest
(0)

@@ never Object address plus symbol.
+ never Positive (+X); unary form of Add.
- if solo Negate (-X); unary form of Subtract.
^^ if solo Square root.
|| if solo Absolute value.
|< if solo Bitwise: Decode 0 – 31 to long w/single-high-bit.
>| if solo Bitwise: Encode long to 0 – 32; high-bit priority.

1

! if solo Bitwise: NOT.
<- <-= Bitwise: Rotate left.
-> ->= Bitwise: Rotate right.
<< <<= Bitwise: Shift left.
>> >>= Bitwise: Shift right.
~> ~>= Shift arithmetic right.

2

>< ><= Bitwise: Reverse.
3 & &= Bitwise: AND.

| |= Bitwise: OR. 4
^ ^= Bitwise: XOR.
* *= Multiply and return lower 32 bits (signed).
** **= Multiply and return upper 32 bits (signed).
/ /= Divide (signed).

5

// //= Modulus (signed).
+ += Add. 6
- -= Subtract.
#> #>= Limit minimum (signed). 7
<# <#= Limit maximum (signed).
< <= Boolean: Is less than (signed).
> >= Boolean: Is greater than (signed).
<> <>= Boolean: Is not equal.
== === Boolean: Is equal.
=< =<= Boolean: Is equal or less (signed).

8

=> =>= Boolean: Is equal or greater (signed).
9 NOT if solo Boolean: NOT (promotes non-0 to -1).

10 AND AND= Boolean: AND (promotes non-0 to -1).
11 OR OR= Boolean: OR (promotes non-0 to -1).

= always n/a3 n/a3 Constant assignment (CON blocks). Lowest
(12) := always n/a3 n/a3 Variable assignment (PUB/PRI blocks).

1 Precedence level: higher-level operators evaluate before lower-level operators. Operators in
same level are commutable; evaluation order does not matter.

2 Assignment forms of binary (non-unary) operators are in the lowest precedence (level 12).
3 Assignment forms of operators are not allowed in constant expressions.

Assembly Conditions
 Condition Instruction Executes Condition Instruction Executes
IF_ALWAYS always IF_NC_AND_Z if C clear and Z set
IF_NEVER never IF_NC_AND_NZ if C clear and Z clear
IF_E if equal (Z) IF_C_OR_Z if C set or Z set
IF_NE if not equal (!Z) IF_C_OR_NZ if C set or Z clear
IF_A if above (!C & !Z) IF_NC_OR_Z if C clear or Z set
IF_B if below (C) IF_NC_OR_NZ if C clear or Z clear
IF_AE if above/equal (!C) IF_Z_EQ_C if Z equal to C
IF_BE if below/equal (C | Z) IF_Z_NE_C if Z not equal to C
IF_C if C set IF_Z_AND_C if Z set and C set
IF_NC if C clear IF_Z_AND_NC if Z set and C clear
IF_Z if Z set IF_NZ_AND_C if Z clear and C set
IF_NZ if Z clear IF_NZ_AND_NC if Z clear and C clear
IF_C_EQ_Z if C equal to Z IF_Z_OR_C if Z set or C set
IF_C_NE_Z if C not equal to Z IF_Z_OR_NC if Z set or C clear
IF_C_AND_Z if C set and Z set IF_NZ_OR_C if Z clear or C set
IF_C_AND_NZ if C set and Z clear IF_NZ_OR_NC if Z clear or C clear

Constants (pre-defined)
Constant1 Description
_CLKFREQ Settable in Top Object File to specify System Clock frequency.
_CLKMODE Settable in Top Object File to specify application’s clock mode.
_XINFREQ Settable in Top Object File to specify external crystal frequency.
_FREE Settable in Top Object File to specify application’s free space.
_STACK Settable in Top Object File to specify application’s stack space.
TRUE Logical true: -1 ($FFFFFFFF)
FALSE Logical false: 0 ($00000000)
POSX Max. positive integer: 2,147,483,647 ($7FFFFFFF)
NEGX Max. negative integer: -2,147,483,648 ($80000000)
PI Floating-point PI: ≈ 3.141593 ($40490FDB)
RCFAST Internal fast oscillator: $00000001 (%00000000001)
RCSLOW Internal slow oscillator: $00000002 (%00000000010)
XINPUT External clock/oscillator: $00000004 (%00000000100)
XTAL1 External low-speed crystal: $00000008 (%00000001000)
XTAL2 External medium-speed crystal: $00000010 (%00000010000)
XTAL3 External high-speed crystal: $00000020 (%00000100000)
PLL1X External frequency times 1: $00000040 (%00001000000)
PLL2X External frequency times 2: $00000080 (%00010000000)
PLL4X External frequency times 4: $00000100 (%00100000000)
PLL8X External frequency times 8: $00000200 (%01000000000)
PLL16X External frequency times 16: $00000400 (%10000000000)

1 “Settable” constants are defined in Top Object File’s CON block. Most expect
whole numbers, however _CLKMODE uses Valid Clock Modes, below.

Valid Clock Modes
 Valid Expression CLK Reg. Value Valid Expression CLK Reg. Value
RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_1_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

Assembly Directives
Directive Description

FIT 〈Address〉 Validate previous instr/data fit below an address.
ORG 〈Address〉 Adjust compile-time cog address pointer.
〈Symbol〉 RES 〈Count〉 Reserve next long(s) for symbol.

Assembly Effects
 Effect Results In Effect Results In
 WC C Flag modified WR Destination Register modified
 WZ Z Flag modified NR Destination Register not modified

Propeller Quick Reference v1.5 • 10/19/2007 • © Parallax Inc. Parallax, Propeller, Parallax logo, Propeller hat logo, and Spin are trademarks of Parallax, Inc. Page 4 of 4

	* Hub instructions require 7 to 22 clock cycles to execute depending on the relation between its moment of execution and the cog’s hub access window. Since cogs run independent of the hub, they must sync to the hub to execute hub instructions. Cogs receive an “access window” every 16 clocks. The first hub instruction in a sequence will take 0 to 15 clocks to sync and 7 clocks afterwards to execute; 0+7 to 15+7 = 7 to 22 clock cycles. After that instruction, there are 9 (16–7) free clocks before the cog’s next access window; enough time for two 4-clock instructions. Beware that hub instructions can cause timing to appear indeterminate; particularly the first hub instruction in a sequence.

