
Propeller Tricks & Traps

Phil Pilgrim

Bueno Systems, Inc.

Version 2007.09.28

TM

TM

Propeller Tricks & Traps Page 2

Introduction

This document is, and always will be, a work in progress. It’s designed to be a compendium
of tricks stumbled into and traps fallen into while learning to program Parallax’s Propeller
chip. At this early stage in my own learning curve, it may seem ruefully pretentious to
produce such a document. But I wanted to get the information down while it was still fresh in
my mind and to have a vehicle for recording my adventures and misadventures with the
Propeller as they happened. I know if I wait, I’ll forget both my discoveries and my mistakes
and probably have to repeat them. Hopefully, this will be a time-saver for other
programmers, as well, as they probe the Propeller’s many wonders and mysteries.

As yet, this document is not organized by category but is, rather, just a jumbled potpourri of
miscellania. As more stuff gets added, it may become apparent how better to organize it.

Contributions

Anyone encountering this document who would like to contribute or make corrections to it is
welcome to do so. Just leave a posting in the “Tricks & Traps” thread in Parallax’s Propeller
forum. I will include it as my time allows and as my sole editorial discretion deems it
suitable. Credit will be given to contributors. Just make sure to include how you’d like to be
credited.

Copyright

This document, including any future additions, corrections, and contributions, regardless of
their source, is Copyright 2006 by Philip C. Pilgrim. Permission is hereby granted to any and
all to make and distribute (for free – not for compensation) as many copies of it as you like.
The right to modify this document in any way for distribution or any purpose other than
personal use is expressively reserved by the original author.

Disclaimer

This document is offered in the hopes that it might prove helpful to others. Although every
effort has been made to insure accuracy, it is being written by a Propeller neophyte, after all,
and may contain errors. Heck, it probably contains errors! Therefore, neither the original
author, nor Bueno Systems, Inc., nor any other contributor makes any warranties, express or
implied, as to its accuracy or suitability for any purpose whatsoever. This means that you, the
reader, accept all risks for using the information contained herein.

Trademarks

“Propeller”, as applied to a microcontroller chip, and the propeller beanie logo are
trademarks of Parallax, Inc. The beanie logo on the cover page is used with permission.

Propeller Tricks & Traps Page 3

Assembly Tricks & Traps

Immediate

Addressing

Immediate

Addressing

MOVI

MOVS

MOVD

Indirect

Addressing

Trick: You can use immediate addressing when your source operand is 9 bits
or less. Just prepend the constant with a pound sign:

 MOV Dest, #53

This statement loads the value 53 into Dest.

Trick: You can use the MOVI, MOVD, and MOVS commands to load the
Instruction (bits 31 .. 23) , Destination (bits 17 .. 9), or Source (bits 8 .. 0)
fields of any writable memory destination. This technique is a handy way to
achieve indirect addressing:

 MOVS :Indirect,Address
 .. some other instruction(s) ..
:Indirect MOV Dest,0-0

In this example, the contents of the memory at Address are stuffed into the
source field of the MOV instruction at :Indirect. When the MOV instruction
executes, the contents of the memory at that address will be loaded into Dest.
(The 0-0 is just a way to indicate that something will be stuffed into that

location from elsewhere.)

Trap: Never modify the instruction following the one doing the modifying. If
the prior example had been written:

 MOVS :Indirect,Address
:Indirect MOV Dest,0-0

it would not have worked as expected. The reason is that the Propeller uses a
two-stage pipeline. As one instruction is executing, the next one is being
fetched. By the time the MOVS is finished executing, the MOV instruction
with its prior source field contents will already have been loaded. Always
insert at least one additional instruction between modifier and modified. Use a

NOP if you have to.

Trap: Make sure, when using immediate addressing, that your operand
doesn’t exceed nine bits in length. If it does, only the least-significant nine bits
will be used. The following code loads Dest with the value $1A5.

MOV Dest, #$A5A5A5A5

Thankss to André LaMothe

Propeller Tricks & Traps Page 4

Subroutine

Parameters

Trick: You can use inline subroutine arguments to improve a program’s
readability and encapsulation:

 CALL #Subroutine
 LONG Arg1
 LONG Arg2

 ..

Subroutine MOVS :GetArg1,Subroutine_ret
 ADD Subroutine_ret,#1
:GetArg1 MOV :Arg1,0-0
 MOVS)GetArg2,Subroutine_ret
 ADD Subroutine_ret,#1
:GetArg2 MOV :Arg2,0-0

 ..

 JMP Subroutine_ret

:Arg1 LONG 0-0
:Arg2 LONG 0-0

Subroutine_ret RET

In this example, Subroutine is called with two arguments, having values Arg1
and Arg2. When Subroutine is CALLed, the address of Arg1 is written into
memory at Subroutine_ret. The first instructions in Subroutine use indirect
addressing to retrieve Arg1 and Arg2 and place their values in Subroutine’s
local variables, :Arg1 and :Arg2, respectively. One advantage to this method
is that you don’t need to use global variables to pass parameters to a
subroutine.

Notice that the JMP Subroutine_ret is an indirect jump. It jumps to the
address contained in Subroutine_ret. We could have used immediate
addressing, but that would have resulted in two jumps to exit the routine, rather
than one.

This is an example of “call by value”. You can also implement “call by
reference”, wherein Arg1, for example, might contain the address of the value
you wish to pass. In this case, you would have to do the indirect addressing

twice to get the value within the subroutine.

Propeller Tricks & Traps Page 5

JMP

Direct

JMP

Indirect

Trap: It’s so easy to forget that the source field of a JMP follows the same
rules as any other instruction. If you’re jumping directly to a location in
memory, use immediate addressing:

 JMP #Here
 ..
Here

Failure to include the pound sign (#) can be a frequent source of headaches.

Trick: Indirect JMP addressing can come in handy for implementing things
like state machines, though. Here’s an example of a three-state loop, whose
state variable is the address contained in the source field of memory location
StateMachine:

Init MOVS StateMachine,#State1
JMP StateMachine

State1 do state1 stuff
 MOVS StateMachine,#State2
 JMP #Common

State2 do state2 stuff
 MOVS StateMachine,#State3
 JMP #Common

State3 do state3 stuff
 MOVS StateMachine,#State1
 JMP #Common

 ..

Common common post-state code
 ..

JMP StateMachine

..

StateMachine RES 1

Of course, more complicated state machines can be designed by choosing the
next state based on some condition. But this simple example should be
enough to get started with.

Thanks to M. Park for suggesting improvements to this example.

Propeller Tricks & Traps Page 6

Comparing

and testing

Comparing

and testing

PAR

CNT

INA

INB

PHSA

PHSB

Multi-cog

Shared

Labels

Trap: The Propeller has a TEST instruction that lets you set flags based on
the outcome of ANDing the instruction’s source and destination arguments.
But be sure to tell it which flags to set using WZ and/or WC. This doesn’t
happen automatically, just because it’s a test instruction. The same applies to
the compare instructions (CMP, CMPS, CMPSX, and CMPX).

Trap: The DAT section of a .spin file can contain assembly code for more
than one cog. Each cog, when loaded, gets 512 longs from hub memory,
beginning at the address given in COGNEW or COGINIT. The beginning
of each cog’s assembly code should begin with an ORG statement. This
resets the assembler’s address counter so that subsequent addresses will be
correct when the code beginning at the ORG is loaded into its cog for
execution. Now, you may be tempted to share code and data among different
ORGed sections, as in the following example:

 ORG
Cog1 CALL #Common
 ..
 ORG
Cog2 CALL #Common
 ..
Common common subroutine
 ..
Common_ret

But resist the temptation. Even though Common may be included with Cog1
when it loads, the address computed for it by the assembler will be relative to
the beginning address of Cog2, because of the subsequent ORG. And it’s

that (incorrect) address that gets assembled into Cog1’s CALL statement.

Trap: You can use the compare and test instructions to test port input bits.
But beware statements like the following:

 TEST INA,#%0010 WZ

It just won’t work. Why? Because INA is read-only. And you can’t use read-
only locations in the destination field of an instruction. You will have to do
the following instead:

 TEST Mask,INA WZ
 ..
Mask LONG %0010

The read-only locations include PAR, CNT, INA, and INB. PHSA and
PHSB should also not be used in the destination field of these instructions.

Trap: The DAT section of a .spin file can contain assembly code for more
than one cog. Each cog, when loaded, gets 512 longs from hub memory,
beginning at the address given in COGNEW or COGINIT. The beginning
of each cog’s assembly code should begin with an ORG statement. This
resets the assembler’s address counter so that subsequent addresses will be
correct when the code beginning at the ORG is loaded into its cog for
execution. Now, you may be tempted to share code and data among different
ORGed sections, as in the following example:

 ORG
Cog1 CALL #Common
 ..

 ORG
Cog2 CALL #Common
 ..

Common common subroutine
 ..
Common_ret

But resist the temptation. Even though Common may be included with Cog1
when it loads, the address computed for it by the assembler will be relative to
the beginning address of Cog2, because of the subsequent ORG. And it’s

that (incorrect) address that gets assembled into Cog1’s CALL statement.

Propeller Tricks & Traps Page 7

WRBYTE

WRWORD

WRLONG

RES

LONG

Trap: In Propeller assembly code, the usual direction of data transfer is from
source to destination. The WRBYTE, WRWORD, and WRLONG are
exceptions to the rule. These statements all write data from cog memory at
from_cog to hub memory at to_hub:

 WRBYTE from_cog,to_hub
 WRWORD from_cog,to_hub
 WRLONG from_cog,to_hub

Thanks to Paul Baker

Trap: Be sure to place RES statements at the end of any ORG segment that
uses them. The following example does it wrong:

 MOV Time,CTR
 ADD Time,Offset
 ..

Time RES 1
Offset LONG 230
Other_value LONG 123

 ORG
Another_cog ..

In this example, Offset will get clobbered when CTR is copied to Time, and
123 will get added to it instead of 230. Why? Because when the assembler
encounters a RES, it reserves space in cog memory, but not in hub memory
where the program is stored. Consequently, 230 will occupy Time’s address
in hub memory, and 123 will occupy Offset’s. Do this instead:

 MOV Time,CTR
 ADD Time,Offset
 ..

Offset LONG 230
Other_value LONG 123
Time RES 1

 ORG
Another_cog ..

In this example, whatever’s assembled at Another_cog will get loaded into
Time when the first cog loads. But we don’t care, since Time will get
written over anyway.

Thanks to Beau Schwab

Propeller Tricks & Traps Page 8

CALL #:Local

PAR

Trap: The Propeller assembler won’t let you CALL a subroutine with a
local label. For example, the following is not allowed:

 MOV :Arg, #1
 CALL #:Subr
 ..

:Subr TEST :Arg, #%101
 ..

:Subr_ret RET

:Arg LONG 0-0

But there is a work-around. Just use JMPRET instead:

 MOV :Arg, #1
 JMPRET :Subr_ret,#:Subr
 ..

:Subr TEST :Arg, #%101
 ..

:Subr_ret RET

:Arg LONG 0-0

It’s not as elegant-looking as a CALL, but it does work.

Trap: The PAR register’s bits 1..0 always read as zero. This is okay as long
as you’re passing a long address to a newly-created cog via COGNEW or
COGINIT. But if you use PAR to pass any other kind of parameter, you
will need to shift it left by two to avoid getting its two LSBs zeroed, then
shift it back in the assembly routine:

COGNEW(@new_cog, arg << 2)
..

DAT

 new_cog MOV my_arg,PAR
 SHR my_arg,#2

Also, because the upper 16 bits of the 32-bit parameter field are ignored, this
effectively limits argument size to 14 bits.

Thanks to Raymanand BradC for pointing out that bits 31 .. 16 are not passed.

Propeller Tricks & Traps Page 9

@Address

Trap: The “@” prefix can be used in both Spin code and assembly to denote
the address of some memory location. But the same expression, @Address,
can mean two different things, depending on where it’s used. Here’s an
example:

VAR

 LONG var_begin

PUB start

 var_begin := @begin
 COGNEW(var_begin, 0)

DAT

begin JMP #begin

my_begin LONG @begin

In the Spin code, @begin refers to the actual location of begin in hub
memory, and var_begin will be assigned that value. In the assembly code,
one might expect my_begin to hold the same value, but it does not. What it
contains is the offset of begin from the beginning of the current object, and
that will not be the same as its location in hub memory. The rule is this
(quoting the manual):

 “It is important to note that this is a special operator that behaves

differently in variable expressions than it does in constant expressions. At

run-time, … it returns the absolute address of the symbol following it. This

run-time, absolute address consists of the object’s program base address

plus the symbol’s offset address.

“In constant expressions, it only returns the symbol’s offset within the

object. It can not return the absolute address, effective at run-time, because

that address changes depending on the object’s actual address at run-

time.”

Propeller Tricks & Traps Page 10

Hub address

of assembly

label

@@Addr

Trick: Suppose we want to start a new cog from an assembly program. To
do so, we need the hub address of that program, so we can pass it to
COGINIT. But in the prior trap, we discovered that @program won’t give
us that address. What to do?

Here’s where the @@ notation comes to the rescue. This notation,
prepended to an address (@@addr), means, “Return the value obtained from
adding the current object’s base address in the hub, to addr’s offset from
that base address: in other words, addr’s hub address. By this logic, then,
@@0 will refer to the hub address of the beginning of the object. We can use
that to advantage:

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB start

 COGNEW(@begin, @@0)

DAT

 ORG
begin ADD :new_cog,PAR
 SHL :new_cog,#2
 OR :new_cog,#%1000
 COGINIT :new_cog
 COGID :self
 COGSTOP :self

:new_cog LONG @new_begin
:self RES 1

 ORG
new_begin MOV dira,#1

:loop XOR outa,#1
 JMP #:loop

The code at begin receives the object’s base address in hub memory (@@0)
in PAR. It adds this to @new_begin, the offset of new_begin from the
begging of the object, to get its hub address. It then constructs the rest of the
argument to COGINIT, which is used to start new_begin running in a new
cog. Finally, it stops its own cog.

Thanks to Chip Gracey

Propeller Tricks & Traps Page 11

<=

>=

waitcnt

Trap: Beware the “<=” and “>=” operators. In many computer languages,
these mean “less than or equal to” and “greater than or equal to”,
respectively. Not so in Spin. Here, these are assignment operators and work
like this:

a <= b is equivalent to a := a < b
a >= b is equivalent to a := a > b

For “less than or equal to”, use “=<”; for “greater than or equal to”, “=>”.

Thanks to Beau Schwab

Trap: Failure to account for the clock speed can lead to program lockup,
especially with spin code. For example, the following snippet out of
serialDemo.spin (in the Tips & Traps forum thread) will lock up if the baud
rate is set too high for the selected clock frequency. Here is the offending
code:

t = cnt
repeat 10 '10 bits.
 waitcnt(t += bittime) 'Time for next bit edge: +=

 'is short for t := t + bittime
 outa[tx] := (b >>= 1) & 1 'Get the next bit.

The trap there is that the value of the system counter, cnt is captured in the
variable t before entering this routine. The idea then is that serial bits will be
sent out at regular times, t + bittime, t + 2 * bittime, t + 3 * bittime, etc.
However, the spin code in the line following the waitcnt instruction, plus the
repeat loop overhead, can take longer than bittime. If that happens, cnt will
already have passed t + bittime when it hits the waitcnt instruction, and it
will have to wait there for the whole cycle of 32 bits to roll back to the value,
for each bit. This limits the baud rate to 19200 for an 80 MHz clock (5 MHz
crystal , plus 16x PLL), or 1200 baud with a 5 MHz clock. Of course
assembly code is faster, but this is still a trap for fast actions that use
repeated waitcnt.

Thanks to Tracy Allen

Propeller Tricks & Traps Page 12

Hyperterminal

Stack Size

Trap: Code does not run as expected when using Hyperterminal. As with the
BASIC Stamp, the DTR line resets the Propeller; and when reset, the code
stored in EEPROM will be loaded, replacing whatever code was previously
in the Propeller RAM. Hyperterminal brings DTR high when it connects and
returns it low when it disconnects. With the FDTI programming adapter at
least, the Propeller resets when DTR goes from high to low.

A better option is to use the DEBUG window in the Stamp IDE, since DTR
is not automatically set. Here, you can manipulate DTR manually through
the DTR checkbox to see the effect of a reset on the Propeller.

Thanks to Tracy Allen

Trick: When a Spin cog is started with COGNEW, you have to give it the
address of an array in hub RAM to use as a stack. But how big does this
array have to be? The answer to that depends on the Spin code in the cog and
how deeply it nests procedure calls. To get an empirical idea how big to
make the stack area, you can use the following Spin object:

CON
 filler = $5aa5a55a

VAR
 word my_stack[32]

PUB start(addr, size)
 longfill(addr, filler, size)
 return cognew(monitor(addr, size), @my_stack) => 0

PUB monitor(addr, size) | used, i
 dira := $FF0000
 outa := 0
 repeat
 used := 0
 repeat i from addr to addr + size * 4 step 4
 used -= long[i] <> filler
 outa := used << 16

The procedure start should be called from your top-level program before you call
COGNEW and launch your Spin cog. It takes two arguments: the address of the
stack array used by your cog, and its size in LONGs. It then fills this area with a
pattern before it launches its own cog that does the monitoring. This cog will
continuously examine the stack array, counting the number of LONG locations in
which the pattern has been changed. It then displays this number on the
development board’s LEDs in binary. You can then use this number, padded

appropriately for safety, as the dimension of your stack array.

Propeller Tricks & Traps Page 13

Pre-initialized

DAT arrays

Embedding

Array Pointers

Trick: You want to define an array in the DAT area, initialized to a certain
value. How do you go about it? Use the following array constructor:

CON
 MySize = 64

DAT
 MyVar LONG $AA55[MySize]

This defines a block of MySize LONGs in cog memory, initialized to
$AA55 (assuming it's part of an assembler program that gets its own cog).
But, perhaps more interestingly, it also defines a single instance of an array
in hub RAM, initialized to $AA55, that can be shared by multiple instances
of the defining object -- or anyone else, for that matter, if they know its

address.

Trick: Instead of using a separate pointer variable in assembly language
array indexing, you can embed the pointer right into the code, viz:

 movd :loop, #buffer
 mov :i, #BufferSize

:loop mov 0-0, ina
 add :loop, :d_inc
 djnz :i, #:loop

 ...

:d_inc long 1 << 9 'LSB of destination field.
:i res 1
:buffer res BufferSize

The loop is first initialized by writing the buffer address into the destination field
of the mov instruction at :loop. (The “0-0” just signifies that something will be
written into that field.) The loop then copies the value of ina to the next position of
the buffer. The add instruction increments the destination field of the mov
instruction, effectively advancing the pointer into the buffer.

Thanks to Paul Baker

Propeller Tricks & Traps Page 14

Shifts and

Rotates

Averaging

Signed

Numbers

Trap: In working with the Propeller, the biggest trap of all is the set of
preconceived notions brought to bear from work with other microcontrollers.
That this is particularly true of the Propeller’s shift and rotate instructions
(shl, shr, sar, rol, ror, rcl, and rcr) is an understatement. The trap here is
the handling of the carry flag. In most micros, the carry flag is handled as an
extension of the register being shifted or rotated. Right shifts/rotates treat the
carry simply as a less-significant bit than the LSB of the register; left
shifts/rotates, as a more significant bit than the MSB of the register. And
rotates through the carry treat it as just another bit linking the register’s LSB
and MSB in a continuous loop. For the Propeller, however, this is not a
useful model to keep in mind. In fact it will be more hindrance than help.
Granted, shifts/rotates of a single bit position will behave just like they do on
other micros. But that’s where the similarity ends. This is because, no matter
how many positions are shifted, the carry (if written) always gets the initial
value of bit 0 for right shifts/rotates or bit 31 for left shifts/rotates. Here’s an
illustration of each instruction, starting with the following configuration in
Data and Carry, and showing the result of each given command:

Data:Data:Data:Data: abcdefghijklm------nopqrstuvwxyz Carry:Carry:Carry:Carry: C

shl Data,#4 wc efghijklm------nopqrstuvwxyz0000000000000000 aaaa

shr Data,#4 wc 0000000000000000abcdefghijklm------nopqrstuv zzzz

sar Data,#4 wc aaaaaaaaaaaaaaaaabcdefghijklm------nopqrstuv zzzz

rol Data,#4 wc efghijklm------nopqrstuvwxyzabcdabcdabcdabcd a

ror Data,#4 wc wxyzwxyzwxyzwxyzabcdefghijklm------nopqrstuv zzzz

rcl Data,#4 wc efghijklm------nopqrstuvwxyzCCCCCCCCCCCCCCCC a

rcr Data,#4 wc CCCCCCCCCCCCCCCCabcdefghijklm------nopqrstuv zzzz

Note especially the rcl (rotate carry left) and rcr (rotate carry right) instructions.
These are not actually rotates at all, but shifts, in which the initial value of the carry
bit (instead of 0) fills the vacated positions.

Trick: You can use the rcr instruction to advantage when averaging signed
numbers, thus:

 mov average, value0
 add average, value1 wc
 rcr average, #1

rcr, in this case, acts like sar but with 33 bits instead of 32, the “sign” bit being the
carry.

Propeller Tricks & Traps Page 15

Sign Extension

Trick: You can extend the sign from any bit position in both Spin and Assembly by
doing two shifts. For example, suppose you have a 24-bit number whose MSB (bit
23) is the sign, and you want to create a 32-bit signed value from it. In Spin, do this:

Value := Value << 8 ~> 8

In assembly, the equivalent would be:

 shl Value,#8
 sar Value,#8

In each case, Value is first shifted left to get its sign bit into bit 31 of the long. Then
an arithmetic right shift propagates the sign into the 8 MSBs.

Thanks to Chip Gracey via Jon Williams

Note: In Spin, two sign extension operators are pre-defined. To extend the sign
from bit 7 (byte), do this:

 ~Value

And to extend from bit 15 (word), do this:

 ~~Value

Thanks to M. Park

