
uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 1

uALFAT™ Tutorial
Step-by-step and hands-on

Rev 1.5

GHI Electronics, LLC
www.ghielectronics.com

Updated – May 8, 2006

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 2

Table of Contents

1. Before I receive my new uALFAT-SD? ...4

1.1. Power Supply ..4
1.2. RS232 Level Converter...4
1.3. Processor Prototyping Board...5
1.4. uPICFAT ...5

2. New board has just arrived! ..6
2.1. Placing 0.1” header ...6
2.2. Connect the RS232 circuit ..6
2.3. uALFAT-SD pin-out ...7
2.4. Starting a Terminal Program...7
2.5. First power up..9

3. uALFAT Creates the First File..10
3.1. Running the Firmware...10
3.2. Initialize the SD card and create a folder ..10
3.3. Writing to a file ...11
3.4. Reading from a file..13

4. Updating uALFAT firmware ..14
5. Using a microcontroller with SPI interface...16

5.1. Why SPI?...16
5.2. What is SPI? ..16
5.3. More on SPI ..17
5.4. Choosing a microcontroller...17
5.5. Ordering everything needed ..18
5.6. Wiring the circuit board. ...19
5.7. I am not using a PIC!...20
5.8. The uALFAT_lib library...20
5.9. uALFAT_lib library Functions ...20

5.9.1. int8 GHI_InitializeSD(void); ..20
5.9.2. int8 GHI_OpenFile(int8 filehandle, int8 * filename, int8 openmode);...............21
5.9.3. int8 GHI_FlushFile(int8 filehandle); ..21
5.9.4. int8 GHI_CloseFile(int8 filehandle); ..21
5.9.5. int8 GHI_DeleteFile(int8 * filename); ..21
5.9.6. int8 GHI_GetFileInfo(int8 * filename, int32 * size, int8 * attributes);22
5.9.7. int8 GHI_InitGetFile(int8 * filename, int32 * size, int8 * attributes);22
5.9.8. int8 GHI_GetNextFile(int8 * filename, int8 * fileext, int8 * attributes, int32 *
size); 22
5.9.9. int8 GHI_SendWriteCommand(int8 filehandle, int32 datasize);........................22
5.9.10. int8 GHI_GetReadAndWriteResults(int32 * actualdatasize)23
5.9.11. int8 GHI_Send ReadCommand(int8 filehandle, int32 datasize, int8 filler);.......23

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 3

5.9.12. int8 GHI_ChangeDirectory(int8 * dirname); ..24
5.9.13. int8 GHI_MakeDirectory(int8 * dirname); ...24
5.9.14. int8 GHI_RemoveDirectory(int8 * dirname);...24
5.9.15. void GHI_StartQFormat(void);...24
5.9.16. void GHI_StartMediaStatistics (void); ...24
5.9.17. int8 GHI_GetResultMediaStatistics(int32 * size, int32 * free);25
5.9.18. int8 GHI_ReadSector(int8 filehandle, int32 sectornum, int8 ascii);...................25
5.9.19. int8 GHI_WriteSector(int8 filehandle, int32 sectornum);25
5.9.20. void GHI_uALFATSleep(void); ...26
5.9.21. int8 GHI_uALFATWake(void); ...26
5.9.22. int8 GHI_GetVersion(int8 * major, int8 * BCDminor);.....................................26
5.9.23. int8 GHI_InitializeTime(int8 backup) ..26
5.9.24. int8 GHI_GetTime(int32 * time) ..27
5.9.25. int8 GHI_SetTime(int32 time) ..27

5.10. Driver Functions..27
5.10.1. void GHI_Sleep(int16 ms); ...27
5.10.2. int8 GHI_OpenInterface(void);...28
5.10.3. int8 GHI_CloseInterface(void); ..28
5.10.4. int8 GHI_SetBaudRate(int32 baud);...28
5.10.5. int8 GHI_GetC(void); ...29
5.10.6. void GHI_PutC(int8 ch);...29
5.10.7. void GHI_PutS(int8 * str); ..29
5.10.8. int8 GHI_DataIsReady(void); ...29
5.10.9. void GHI_ToggleWakePin(void);...30

6. From SPI to I2C ..31
Similar to SPI, I2C is a serial interface. Even though it is similar, there are major differences
on how communication happens. I2C uses 2 open-drain lines. The open drain pins are
pulled-up through 2 resistors. The interface usually has one master and one or more slaves.
The master starts communication by sending “start” signal followed by the slave address.
Every slave is required to have a unique address on the I2C bus. Also, when the master sends
the address, it sends a flag telling the slave it needs to read or write. When the master is done
with data transfers, it sends “stop” signal. ..31
Here is a table with I2C wire connections on my board ...31

7. uALFAT Error Codes..32

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 4

1. Before I receive my new uALFAT-SD?

Before you get the board, make sure you have 3.3V regulated voltage, RS232 level
converter and a development board with a processor of your choice (PIC, AVR, basic
stamp…etc.) The RS232 level converter is not required but it will ease the understanding of
uALFAT commands.

1.1. Power Supply

If you have a variable bench power supply, you
should be all set. Just set the voltage to 3.3V.
Now, if you need to build your own, there is a
bit more work involved. You will need any
3.3V regulator chips and 2 electrolytic
capacitors. Your local store such as radio shack
will have some regulators or you can order it
online from companies like www.digikey.com.
LD330 chip is a good example. You will need
to add one capacitor on the input and one on the
output. Look at your regulator’s datasheet for
more details.

IMPORTANT: Any voltage other than 3.3V may damage uALFAT chip and the

SD card. This voids the warranty on the chip and the board.

1.2. RS232 Level Converter

The easiest way around this is to buy a finished board. There are many out there for $10
to $20 but it is always more fun to build your own! These chips are available
everywhere. Keep in mind that your source is 3.3V. If you use RS232 level converter
chip that runs off 5V, you will need 2 different voltage sources. A good example is our

ALFAT-DEV schematic on our website. Look it up and see how
MAX3232 chip is connected.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 5

The reason you need this chip is to connect uALFAT-SD directly to the serial port on your PC.
If you want to skip this test then you don’t need RS232 circuit but we highly recommend doing
the PC connection test.

1.3. Processor Prototyping Board

You can use any processor of your choice. You will need UART, SPI or I2C for
communication. Your processor can run at 5V or 3.3V because uALFAT is 5V
tolerant but remember that your processor must accept 3.3V levels or you will
have to add level shifters. Most micros do accept 3.3V levels, PIC for example.

In these examples, we used a
PIC running on 5V. See
picture to the right.

1.4. uPICFAT

The better option to start with
uALFAT is to use uPICFAT board.
This board comes with everything
you need to test uALFAT and even
make a whole project out of it. The
board comes in a form of a kit that
includes everything you need, even
the power supply and the RS232
cable is included. On the software
side, uPICFAT comes with a full

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 6

library and many examples.

We highly recommend starting up with uPICFAT.

2. New board has just arrived!

Congratulations, you have just received your uALFAT-
SD board. You are excited to test it out and can’t wait
to create files. If you have purchased uPICFAT board
then you can skip many of the following steps.

2.1. Placing 0.1” header

The first thing you want to test is the functionality of your hardware. First, connect
wires to the needed pins. We recommend placing a 0.1” pin header on the board and
then plug it in a bread board.

2.2. Connect the RS232 circuit

Now, connect power and your RS232 circuit
and plug in your serial cable from your PC.
We used, off the shelf, USB to serial cable in
this test. Don’t plug in the power yet. Lets
take a look at the manual. We have everything
setup except the mode select. uALFAT needs
to know if you want it to run in UART, SPI or
I2C mode.

SPI_SSEL# SPI_SCK Interface

0 0 UART

0 1 Skip boot loader

1 0 I2C

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 7

1 1 SPI

For UART, we need SPI_SCK and SPI_SSEL pins connected to ground. We used
resistors to pull these pins to ground but you can safely connect them straight to ground.

2.3. uALFAT-SD pin-out

Here is the pin out of uALFAT-SD board.

Pin # Function

1 UART_TX/DATARDY

2 UART_RX/BUSY

3 I2C_SCL

4 I2C_SDA

5 SPI_SCK

6 SPI_MISO/UART_RTS

7 SPI_MOSI/UART_CTS

8 SPI_SSEL

9 MISC

10 CARD_DET (detect)

11 WAKE

12 VBAT

13 3.3 V power

14 RESET

15 GROUND

16 CARD_WP (write protect)

2.4. Starting a Terminal Program

You can use any terminal program such as “tera term” or “hyper terminal.” We will use
hyper terminal since it comes already installed with windows OS.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 8

First select the COM port number if the port you want to use on your PC. Usually, it is
COM1 if you have COM port on the mother board and COM4 if you are using USB
serial cable. Now, we need to configure the terminal. You need to set it to 9600, no
parity, 8 bits, 1 stop bit and hardware handshaking.

uALFAT returns “carriage return” at the end of every line. It will never return “line
feed” For that, you need to append line feed to carriage returns. On hyper terminal,
click on “file � properties” then click on “ASCII settings…” button. Make sure to
change your settings to mach the picture below.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 9

2.5. First power up

Finally, we are ready to power up the board. Power up the board, and take a look at the
terminal program. You should see ‘BL’ on the
screen. If you press ‘V’, you will get back the boot
loader version number.

IMPORTANT: The boot loader doesn’t accept
lower case; therefore, ‘v’ will not work, it has to be
upper case ‘V’.

Pressing ‘v’ will return !DE and pressing ‘V’ will
return BL 1.1
‘!’ symbol indicates an error and it is always
followed by the error number. DE means “unknown
command”

If you got this far, you are ready for some fun. If you can’t see the responses as the
picture above, double check your settings of the terminal and the voltages. Make sure
you have CTS and RTS connected and if they are not used then CTS on uALFAT must
be connected to ground the terminal “flow control” must be set to “none”

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 10

3. uALFAT Creates the First File

3.1. Running the Firmware

Press ‘R’ key to run the firmware. If you see
‘BL’ returning back then uALFAT is not loaded
with any firmware or the firmware is corrupted.
Read “Updating uALFAT Firmware” for details
on how to load the firmware. If everything is
okay you will see GHI Electronics banner and
the version number of the firmware.

At the end, you will see !00 indicating that uALFAT is ready for your commands. All
uALFAT commands are one character or symbol and usually are followed by some
parameters.
First thing we want to do is to enable echo. When
you enable echo, uALFAT will echo back what you
send it. The echo command is the ‘#’ symbol. The
parameter is 0 or 1. 0 will disable echo and 1 will
enable echo. All commands must be followed by a
space. Now you know how, send uALFAT a
command to enable echo. This will be
accomplished be sending “# 1”. Note that you will not type the quotes and you will end
by pressing the enter key on your keyboard (carriage return.) After that, uALFAT will
echo back everything you type. You can use backspace to erase typos. Same as the boot
loader, uALFAT will return ‘!’ followed by the error number if it detected some error.
The ‘V’ command returns the version number as you can see in the picture to the right.

3.2. Initialize the SD card and
create a folder

Insert any SD card in the connector and
initialize it using the ‘I’ command. When
done, display a list of files using ‘@’
command followed by multiple ‘N’
commands. !4D is not really an error. It is
an indication that there is no more
files/folders to list.

Let us create a folder and name it
“MYFOLDER” on the card. Use “M
MYFOLDER” and remember to finish the

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 11

command by pressing the enter key. All the previous commands should execute without
any errors.

Each file is listed with its attribute and size. Directories attribute is 0x10.

You have probably noticed that files are followed by the size in HEX and decimal.
Folders are followed by <DIR>

Now, remove the card from uALFAT

and plug it into the PC to verify the creation
of the new folder.

3.3. Writing to a file

Now that you have a new folder, we want
to write a file to go inside that folder.
Keep in mind that you need to put the card
back in uALFAT and you need to resend
‘I’ command to reinitialize the card.

To access an existing folder, use ‘A’
command. Let us send ‘A MYFOLDER’
and hit enter. You should get the prompt
back without errors. Now try ‘L’
command again. This time you will see
“dot” and “dot dot” folders. In FAT file
system, “dot” is a pointer to the same
folder and “dot dot” is a pointer to the

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 12

parent folder. To go back and access the previous folder use ‘A ..’. You can also use ‘A
\’ to access the root folder.

For the sake of this tutorial, we have created used the ‘L’ command that lists all entries

in the current directory. This command will be removed in future releases and shouldn’t

be used by users.

Make sure you have access to
“MYFOLDER” and send open new file
for write command.
‘O 2W>VOLTAGE.TXT’ this command
will create a new file under file handle
number 2. On uALFAT, you have 4 file
handles, 0 to 3. List the files and see if the
new file exists or not. As you can see the
file size is 0.

Witting data to a file is as easy as all
other commands. You can send as many
write commands as you wish. The write
command ‘W 2>10’ will write 16 bytes
(10 HEX = 16 decimal) to the open file.
After uALFAT sees the command, it
will respond with !00 if command was
accepted. At this point, you can send any
data you like to go in the file. Data can
be ASCII or binary data. When
uALFAT is done receiving all the data,
it will send back the result of the write
starting with how many bytes it was able
to write and followed by the error code.
Data is not echoed and this is why it is
not showing in the snapshot to the right.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 13

After the write, run the list command and you will notice that the file size is still

zero. This is because uALFAT buffers the data internally until the write is a must. This
speeds us the file processing and it prolong the life of your card. To force the data to be
flushed to the card, use the flush command ‘F’. Now, check the file size again and you
will see the right file size.

Let us assume that we need to add more data to the file. Simply, send another

write command. When finished close the file using ‘C 2’. Move the file to your PC and
make sure the data exists in the file. In our example, we put this string in the file
“1234567890ABCDEF”

3.4. Reading from a file

Similar to write, read is very easily done.
We start by opening a file but this time
we open it for read, ‘O
1R>VOLTAGE.TXT’. This time we will
use handle number 1 to open the file. As
you can see ‘R 1Z>5’ will read 5 bytes
from the file opened by handle number 1.
But what was the Z for? In case uALFAT
had some issue while it was reading the
file it still has to return the promised data.
In this case, uALFAT will use the filler character to fill in the data. This can be a
unique character in your system to indicate bad data before you even receive the error
code. The character can be anything including ‘\0’ (NULL)

As you can see, the second read request was for 16 bytes but the file had only 11 bytes
left in it (16-5) In this case uALFAT returned the promised 16 characters but the last 5
were the filler character, Z in this case.

If you wish to read a certain location in the file you can use the position command ‘P’ to
place the file read pointer. In this example we will return the pointer to the beginning of
the file using ‘P 1>0’, see above.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 14

4. Updating uALFAT firmware

We are constantly enhancing uALFAT firmware and we want it to be extremely

easy for you to update the firmware on your own. You r first step is to download the
firmware from our website www.ghielectronics.com. You need to save that file on a
formatted SD card.

Once the media is formatted, download the latest firmware from our website

from uALFAT page and place the file on the memory card.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 15

Place the card in the connector of uALFAT-SD and reset the board. You
should go back to the boot loader and see ‘BL’. Loading the new firmware is
accomplished by ‘LOK’ ok command. You will not see the command when
you type it. Just makes sure you enter the three letters in upper case an in the
right order. You will see uALFAT prompting for new sector write ‘Wxx’
where xx is the sector number. If any error happened, uALFAT will display
the error number; otherwise, you will see !00 at the end of the firmware write.

When loading succeed, send ‘R’ to run the new firmware and check the version number

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 16

5. Using a microcontroller with SPI interface

5.1. Why SPI?

uALFAT runs on a standard interfaces (UART, SPI and I2C) that can be

implemented in hardware or software. SPI will be the easiest to implement in
software as you are simply shifting bits. Any modern microcontroller will have
three of the supported interface. So if you have 3 of them, which one would you
use? I would use UART because you only need 4 wires and even 2 are enough
in some cases.

The problem is that most people already have UART used for debugging
or to do other work. UART can’t be connected to more than one device. Unlike
UART, SPI and I2C can be connected to multiple devices. SPI is faster than I2C
so let us use SPI.

5.2. What is SPI?

SPI is in a synchronous serial interface. Usually, SPI has one master and

one or more slaves. Basically, on every side there is a shift register that has an
input and an output and on every clock (SCK) edge, it will shift one bit out on
the output and take a new bit from the input. After 8 clocks, the master and the
one slave will have their buffers swapped. For example, if we have 11 in the
master’s buffer and 22 in the slave’s buffer, the master generates 8 clocks and
we will end up with 11 in the slave’s buffer and 22 in the master’s buffer.

The master uses a slave select pin (SSEL) that will tell the one slave that
the clocks are meant for it. If there is a system with 4 slaves, there will 4
different SSEL lines going to the different slaves but one and only one SSEL
line can be selected (low) at once.

The two signals used to transfer data to/from the master/slave are:

• MOSI: Master Out Slave In

• MISO: Master In Slave Out

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 17

5.3. More on SPI

uALFAT is slave SPI. On SPI, slaves have no way of informing the

master of new data. This is why we added DATARDY. When this pin is high,
the connected microcontroller (you) will know that uALFAT want to send data
and you must read it. Another problem arises here. What if uALFAT is busy and
it can’t accept any data? This is what BUSY line is for. When BUSY is high, do
not send any data to uALFAT.

This section is a bit confusing but the code should explain it more.
Because of how SPI is defined (not limitation of uALFAT), you read and write
at the same time, swap buffers. So what if you just want to read data from
uALFAT but you have nothing to send to it? In this case you need to use
uALFAT’s software tokens. uALFAT uses Half Data Token (HDT) and No
Data Token (NDT.)

When uALFAT has no data to send, it will send NDT. Your
microcontroller should do the same. When you need to read from uALFAT, you
will send NDT. uALFAT ignores incoming NDTs like nothing came in and your
microcontroller should do the same. NDT is the value 255 decimal of 0xFF
hexadecimal. In most applications, you will never need to send 0xFF to
uALFAT but if you had to? This is when HDT becomes handy. HDT is the
value 254 or 0xFE.

Assuming you are writing some binary data to a file and you had to use
0xFF. In this case, send HDT followed by NDT. NDT+HDT give us 0xFF. The
same applies if you need to send HDT. HDT+HDT give us 0xFE.

Enough with boring stuff and let us do something more fun!

5.4. Choosing a microcontroller

You can use any microcontroller you like, including PIC16, PIC18, PIC24,
dsPIC, AVR, Zilog, 8051, ARM, HC12, basic stamp…and many more!! Even if
your microcontroller doesn’t have any of the interfaces, there are many
examples online on how to implement those interfaces in software using simple
general I/Os.
I am going to be using my old PIC board. It has been helping me for the past 4
years so why not use it again? If you looked at the picture in the first page, you
will notice it is not so pretty but it does the job well, I hope.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 18

5.5. Ordering everything needed

If you decided you want to go with
PIC, the easiest way is to use our
uPICFAT board. Priced very low
and ir runs out-of the box. The PIC
compiler we used for the examples is
C18 from microchip. You can
download trial or free version
directly from their website
www.microchip.com

uPICFAT accepts uALFAT-SD and uALFAT-USB boards. uALFAT-USB is
similar to uALFAT-SD but you read files from USB memory instead of SD
cards. You can’t buy uALFAT-USB yet but I can get one because I work for
GHI Electronics ;-) I was told it will ship July 2006.

If you are implementing your own circuit, you will need to add 3.3V regulator.
You can simply got to www.digikey.com and search for “regulator” Any
regulator with 100mA or more will work just fine. Your local electronics store
should have 3.3V regulator. Do not forget to add capacitors on the input and
output of the regulator. Always carefully read the data sheet of whatever you are
using.
This is it for the hardware. Now how do we write software? For PIC, go to
www.microchip.com and download the free MPLAB. And also download the
free C compiler for PIC MCC18.

Don’t forget to go to www.ghielectronics.com and download the latest
version of uALFAT library. It will be on the uALFAT main page under
downloads.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 19

5.6. Wiring the circuit board.

Not all pins need to
be connected from
uALFAT-SD board.
For example,
SD_DET is useful
to detect the
replacement of an
SD card. For this
simple tutorial, we
will not use it. Also,
the I2C pins are not
needed at all.
This is a table of the pins and how they are connected. Please consult PIC18F458 or
PIC18F452 for more details.

uALFAT-SD Pin # uALFAT Function Connected to

1 DATARDY PIC RD2 (can be any pin)

2 BUSY PIC RD1 (can be any pin)

3 I2C_SCL Not connected

4 I2C_SDA Not connected

5 SPI_SCK PIC RC3/SCK

6 SPI_MISO PIC RC4/SI

7 SPI_MOSI PIC RC5/SO

8 SPI_SSEL PIC RC1 (can be any pin)

9 MISC Not connected

10 CARD_DET (detect) Not connected

11 WAKE Not connected

12 VBAT Regulated 3.3V

13 3.3 V power Regulated 3.3V

14 RESET PIC RB1 (can be any pin)

15 GROUND Ground

16 CARD_WP (write protect) Not connected

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 20

5.7. I am not using a PIC!

Our uALFAT library (uALFAT_lib) is written in a layered manner. The low
level file is the interface driver (GHI_inter.c). This can be written for any
microcontroller and for any interface. You will have to write this. The second
layer is the library core functions. These functions are written in pure ‘C’. This
file should work for any microcontroller (uALFA_lib.c) If you ever need to
make any change on this file, let us know and we will update the library. You
shouldn’t need to make any change to the core file.

5.8. The uALFAT_lib library

When you download uALFAT_lib.zip file you will get a complete MPLAB
project for MCC18 compiler. To get the library going to your system, you need
to rewrite or modify GHI_inter.c. Use the file example.c as a starting point for
you application. The final ‘C’ file is uALFAT_lib.c. You shouldn’t need to
make any changes on this file.

5.9. uALFAT_lib library Functions

First thing you need to know is we define our own variable types. These types
are in “types.h” This file also includes the type of project options. Take a look at
it.

Type Limits Byte count

int8 0 to 255 1

int16 0 to 65535 2

int32 0 to 4,294,967,295 4

5.9.1. int8 GHI_InitializeSD(void);

This function will initialize the SD card.

Return: uALFAT error code.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 21

5.9.2. int8 GHI_OpenFile(int8 filehandle, int8 * filename, int8
openmode);

filehandle: uALFAT supports 4 file handles. This value can be 0 to 3.
The handle must not be opened.
filename: and name but it has to comply with 8.3 standard
(ex:FILE1234.TXT)
openmode: Three modes for opening files

• ‘R’ to open an existing file for read

• ‘W’ to open new file for read and if the file exists it will delete it
first

• ‘A’ to open a file that existed and append new data to the end or
create new file if it didn’t exist.

Return: uALFAT error code.

5.9.3. int8 GHI_FlushFile(int8 filehandle);

Flushes all buffered data to the media.

filehandle: 0 to 3. The file has to be open for read.

Return: uALFAT error code.

5.9.4. int8 GHI_CloseFile(int8 filehandle);

Flushes all buffered data to the media and closes the handle.

filehandle: 0 to 3. The file has to be open already.

Return: uALFAT error code.

5.9.5. int8 GHI_DeleteFile(int8 * filename);

Delete a file from the media. The file must exist and it shouldn’t be
opened by any handle. uALFAT doesn’t check if the file is opened by a
handle.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 22

filename: A null terminated string with the file name.

Return: uALFAT error code.

5.9.6. int8 GHI_GetFileInfo(int8 * filename, int32 * size, int8 *
attributes);

Use this function to find a specific file with a known name. This will also return
found directories. Use Attributes to determine the type of found entry.

Return: uALFAT error code.

5.9.7. int8 GHI_InitGetFile(int8 * filename, int32 * size, int8 *
attributes);

This function must be called once before using GetNextFile to return the pointer
to the first entry in a directory.

Return: uALFAT error code.

5.9.8. int8 GHI_GetNextFile(int8 * filename, int8 * fileext, int8 *
attributes, int32 * size);

In some applications, it would be useful to obtain a list of available files. Use
GHI_InitGetFile once and then keep pooling GHI_GetNextFile until you have
read all directories. You can access files in between GHI_GetNextFile calls.

Return: uALFAT error code.

5.9.9. int8 GHI_SendWriteCommand(int8 filehandle, int32 datasize);

Writing data to files happen in multiple stages.
1. Open a file for write or append
2. Send write request (GHI_SendWriteCommand)
3. If previous command passed, send your data. You can’t stop

uALFAT at this point and you have to send all your data. This is why
we recommend smaller data blocks.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 23

4. When finished, uALFAT will return the results. Use
GHI_GetWriteResults to query the write results.

filehandle: 0 to 3. The handle must be opened first.
datasize: How many bytes are needed.

Return: uALFAT error code.

5.9.10. int8 GHI_GetReadAndWriteResults(int32 *
actualdatasize)

After sending a write or read request and finish processing the data,
uALFAT will try its best to process all the data. In some case, the file
write or read could fail, if the media is full, for example. This function
tells you how many bytes the read or write command was able to
process.
After writing, some data maybe buffered inside uALFAT and you have
to flush the file before 100% of the data exist in the card.

actaldatasize: A pointer to int32 that returns how many bytes were
actually written. In most cases the returned value is the same as datasize
in the write request function.

Return: uALFAT error code.

5.9.11. int8 GHI_Send ReadCommand(int8 filehandle, int32
datasize, int8 filler);

Similar to writing data reading data from files happen in multiple stages.
5. Open a file for read
6. Send read request (GHI_SendReadCommand)
7. If previous command passed, uALFAT will return the data from the

file. IT will send “datasize” bytes
8. When finished, uALFAT will return the results. Use

GHI_GetWriteResults to query the write results.
9. If uALFAT failed to read the data from the file it will send back the

bytes as “filler”. For example, if uALFAT said it can read 10 bytes
but it was able to read only 8, it will send 8 bytes actual data from a
file and 2 filler bytes.

filehandle: 0 to 3. The handle must be opened first.
datasize: How many bytes are needed.
filler: The filler can be any value of your choice.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 24

Return: uALFAT error code.

5.9.12. int8 GHI_ChangeDirectory(int8 * dirname);

Changes the current access to a pre-existed directory (folder) on the
connected media.

dirname: A null terminated string with the directory name.

Return: uALFAT error code.

5.9.13. int8 GHI_MakeDirectory(int8 * dirname);

Creates a new directory (folder) on the connected media. The name must
be unique over the current directory span.

dirname: A null terminated string with the directory name.

Return: uALFAT error code.

5.9.14. int8 GHI_RemoveDirectory(int8 * dirname);

Removes a pre-existing directory (folder) from the connected media. The
directory must be empty/

dirname: A null terminated string with the directory name.

Return: uALFAT error code.

5.9.15. void GHI_StartQFormat(void);

This function will completely wipe the files of the connected media. This
function can take few seconds on a very large media. The function
doesn’t wait for the task to finish and returns immediately. Use
GHI_GetResult to obtain the results.

5.9.16. void GHI_StartMediaStatistics (void);

Depending on the media size, this function could take couple seconds to
finish. This function will obtain the media size in bytes and also the free
bytes. Use GHI_GetResultMediaStatistics to obtain the values

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 25

5.9.17. int8 GHI_GetResultMediaStatistics(int32 * size, int32 *
free);

After sending GHI_StartMediaStatistics, use this function to obtain the
size of the media and the free space size.

size: A pointer to return the media size
free: A pointer to return the free space

Return: uALFAT error code.

5.9.18. int8 GHI_ReadSector(int8 filehandle, int32 sectornum,
int8 ascii);

Rarely, you may with to read a sector directly from the media overriding
the file system. The function requires a buffer internally to work and for
that it uses one of the file handles. The file handle must be not is use.

filehandle: One of the free file handles
sectornum: the number of the sector you with to read
ascii: This is a flag. If it is true, uALFAT will return the data in ASCII
HEX. If it is false, uALFAT will return the binary data as it sees it on the
media.

Return: uALFAT error code.

5.9.19. int8 GHI_WriteSector(int8 filehandle, int32 sectornum);

You should never use this function unless you are well aware of what
you are doing. uALFAT will take your data without any formatting
whatsoever and place it in the sector.

filehandle: One of the free file handles
sectornum: the number of the sector you with to write

Return: uALFAT error code.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 26

5.9.20. void GHI_uALFATSleep(void);

In low power applications, it is better to completely shut off the power of
uALFAT and the SD card for zero power consumption. The Real Time
Clock has a backup battery if there is a need to keep track of time.

In case you need to go in low power but keep the file handles open, you
need to use GHIuALFATSleep

The only way to wake uALFAT after this function is a power cycle or a
toggle on WAKE pin

5.9.21. int8 GHI_uALFATWake(void);

This is used to wakeup uALFAT from sleep and obtains any error codes.

Return: uALFAT error code.

5.9.22. int8 GHI_GetVersion(int8 * major, int8 * BCDminor);

Obtaining the latest version is very useful and very important. Always
keep uALFAT updated with latest firmware.

major: A pointer to return the major release number

Will be 1 for uALFAT with SD support and 2 for uALFAT with
SD and USB support

BCDminor: This is a BCD number that represent the minor release.
For example: 0x12 = version x.12
 0x32 = version x.32
 0xDS= invalid value and will never happen!

Return: uALFAT error code.

5.9.23. int8 GHI_InitializeTime(int8 backup)

The Real Time Clock inside uALFAT is needed to set the correct dates
on the saved files. There are 2 options for uALFAT RTC. It can be run
using the same power source and oscillator as the processor core or it can

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 27

run off 32Khz clock and a backup battery. Use this function when you
need to switch between the 2 options.

backup: A flag that is when it is true, uALFAT will run the RTC on
backup battery and when it is false it will run the RTC using the same
power source and oscillator as core processor.

Return: uALFAT error code.

5.9.24. int8 GHI_GetTime(int32 * time)

If you need to obtain the time, to save to a file for example, use
GHI_GetRTC.

time: A pointer to hold in the time value. The data is in the same format
used by FAT file system and is defines in FATtime structure.

5.9.25. int8 GHI_SetTime(int32 time)

Similar to GHI_GetRTC but this one sets the RTC.

time: holds the time value to be set. The data is in the same format used
by FAT file system and is defines in FATtime structure.

5.10. Driver Functions

uALFAT_lib is written to work on any processor but there will be a need to
implement few driver functions that will help uALFAT_lib in using your
processor. In our example code, the driver functions reside in GHI_inter.c file.

5.10.1. void GHI_Sleep(int16 ms);

In some situations, uALFAT_lib will require some delay on some task.
All delays happen through GHI_Sleep. This function will return after x
milliseconds. This function doesn’t have to be accurate at all and can be

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 28

implemented using simple loops. You can test if your function is
working right by simply toggling an LED and use 500 ms for delay.

Void BlinEveryOneSecond(void)
{
 LED=!LED; // toggle an LED

// 500 ms low + 500 ms high = switch on every 1 second
 GHI_Sleep(500);
}

ms: how many millisecond to loop

5.10.2. int8 GHI_OpenInterface(void);

The library doesn’t need this function but you will use it at power up to
initialize the interface. The interface can be UART, SPI or I2C.

Note when we say interface from now on we will be referring to

UART, SPI or I2C.

Return: 0 if okay or error code otherwise.

5.10.3. int8 GHI_CloseInterface(void);

Will close the interface. In most cases this won’t be necessary.

Return: 0 if okay or error code otherwise.

5.10.4. int8 GHI_SetBaudRate(int32 baud);

This is needed only in the case of the interface is UART. It is a good
practice to switch the baud rate to a faster one. uALFAT powers up with
9600 baud. This is very slow to what you can set the baud rate to.

baud: The baud is the rate of how many bit per seconds will be
trnsfered.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 29

Return: 0 if okay or error code otherwise.

5.10.5. int8 GHI_GetC(void);

When there is data ready in the interface receive buffer, GHI_GetC will
fetch it and return it immediately. If there is no data ready, GHI_GetC
will wait for data to be available. You can some timeout and return 0 if
there is no data for a long time to prevent code lockups.

The implementation can simply pool the interface or it can read a FIFO
that is filled by the interface’s interrupt routine.

Return: a character (byte) from the interface when ready.

5.10.6. void GHI_PutC(int8 ch);

If the interface is ready to transmit data, GHI_PutC will place a byte in
it’s transmit buffer. GHI_PutC will wait for the interface to become
ready before it sends anything.

ch: A character (byte) to be transferred to the interface when ready.

5.10.7. void GHI_PutS(int8 * str);

Very similar to GHI_PutS but GHI_PutS will traqnsfer a null terminated
string to the interface. Be careful when you use a processor that has
RAM and ROM pointers, a PIC for example. GHI_PutS will work with
ram pointers only. Most processor use the same pointer for RAM and
ROM, including your PC’s processor.

str: a null terminated string to be transmitted to the interface.

Null terminated means that the least byte of the string must be zero.

5.10.8. int8 GHI_DataIsReady(void);

It is a good practice to check that there is some data in the receive buffer
before using GHI_GetC so we will not lockup the code.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 30

Return: 1 if data is ready and 0 if there is no data ready.

5.10.9. void GHI_ToggleWakePin(void);

uALFAT_lib doesn’t know how to toggle the wake pin on your system.
Implement this function to do so if you need to use the sleep mode.

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 31

6. From SPI to I2C

Similar to SPI, I2C is a serial interface. Even though it is similar, there are major
differences on how communication happens. I2C uses 2 open-drain lines. The open
drain pins are pulled-up through 2 resistors. The interface usually has one master and
one or more slaves. The master starts communication by sending “start” signal followed
by the slave address. Every slave is required to have a unique address on the I2C bus.
Also, when the master sends the address, it sends a flag telling the slave it needs to read
or write. When the master is done with data transfers, it sends “stop” signal.

Here is a table with I2C wire connections on my board

uALFAT-SD Pin # uALFAT Function Connected to

1 DATARDY PIC RD2 (can be any pin)

2 BUSY PIC RD1 (can be any pin)

3 I2C_SCL PIC RC3/SCL

4 I2C_SDA PIC RC4/SDA

5 SPI_SCK Not Connected

6 SPI_MISO Not connected

7 SPI_MOSI Not connected

8 SPI_SSEL PIC RC1 (can be any pin)

9 MISC Not connected

10 CARD_DET (detect) Not connected

11 WAKE Not connected

12 VBAT Regulated 3.3V

13 3.3 V power Regulated 3.3V

14 RESET PIC RB1 (can be any pin)

15 GROUND Ground

16 CARD_WP (write protect) Not connected

Don’t forget to connect 2 resistors from SCL and SDA to power. On my test, I have 1K
resistors and they are connected to 5V.

As far as using our library with PIC, you only need to use the I2C driver in “types.h”
#define _USE_GHI_INTR_PIC_I2C_

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 32

7. uALFAT Error Codes
Error Number Description

0x00 No Error

0x01 ERROR_READ_SECTOR

0x02 ERROR_WRITE_SECTOR

0x03 ERROR_ERASE_SECTOR

0x11 ERROR_MBR_SIGNATURE_MISSMATCH

0x12 ERROR_BS_SIGNATURE_MISSMATCH

0x13 ERROR_SECTOR_SIZE_NOT_512

0x14 ERROR_FSINFO_SIGNATURE_MISSMATCH

0x21 ERROR_CLUSTER_OVER_RANGE

0x22 ERROR_CLUSTER_UNDER_RANGE

0x23 ERROR_NEXT_CLUSTER_VALUE_OVER_RANGE

0x24 ERROR_NEXT_CLUSTER_VALUE_UNDER_RANGE

0x25 ERROR_NO_FREE_CLUSTERS

0x31 ERROR_FILE_NAME_FORBIDDEN_CHAR

0x32 ERROR_FILE_NAME_DIR_NAME_OVER_8

0x33 ERROR_FILE_NAME_DIR_EXTENSION_OVER_3

0x34 ERROR_FILE_NAME_FIRST_CHAR_ZERO

0x35 ERROR_MEDIA_FULL

0x40 DIR_ENT_FOUND

0x41 DIR_ENT_NOT_FOUND

0x42 ERROR_FOLDER_IS_CORRUPTED_FIRST_CLUSTER

0x43 ERROR_FOLDER_IS_CORRUPTED_DIR_DOT_NOT_FOUND

0x44 ERROR_FOLDER_IS_CORRUPTED_DIR_DOTDOT_NOT_FOUND

0x45 ERROR_ROOT_DIRECTORY_IS_FULL

0x46 ERROR_OPEN_FOLDER_FILE

0x47 ERROR_WRTIE_TO_READ_MODE_FILE

0x48 ERROR_SEEK_REQUIER_READ_MODE

0x49 ERROR_INVALID_SEEK_POINTER

0x4A ERROR_FOLDER_NOT_EMPTY

0x4B ERROR_IS_NOT_FOLDER

0x4C ERROR_READ_MODE_REQUIRED

0x4D ERROR_END_OF_DIR_LIST

0x4E ERROR_FILE_PARAMETERS

0x4F ERROR_INVALID_HANDLE

0x61 ERROR_COMMANDER_BAD_COMMAND

0x62 ERROR_COMMANDER_STR_LEN_TOO_LONG

0x63 ERROR_COMMANDER_NAME_NOT_VALID

0x64 ERROR_COMMANDER_NUMBER_INVALID

0x65 ERROR_COMMANDER_WRITE_PARTIAL_FAILURE

0x66 ERROR_COMMANDER_UNKNOWN_MEDIA_LETTER

0x67 ERROR_COMMANDER_FAILED_TO_OPEN_MEDIA

0x68 ERROR_COMMANDER_INCORRECT_CMD_PARAMETER

0xFD ERROR_COMMANDER_UNKNOWN_ERROR

uALFAT™ File System Made Easy

GHI Electronics, LLC. Step by step Tutorial 33

Copyright GHI Electronics, LLC. Trademarks are owned by their respective companies.

ALFAT, µALFAT, and USBwiz are trademarks of GHI Electronics, LLC

………………… DISCLAIMER …………………

IN NO EVENT SHALL GHI ELECTRONICS, LLC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT IABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
COMPANIES, WHO UNITIZE uALFAT OR USBwiz IN THEIR PRODUCTS, MUST CONTACT MICROSOFT CORPORATION

FOR FAT FILE SYSTEM LICENCING. GHI ELECTRONICS, LLC SHALL NOT BE LIABLE FOR UNPAID LICENSE(S).
SPECIFICATONS ARE SUBJECT TO CHANGE WITHOUT ANY NOTICE.

