
 Page 1

Manual Rev. 1.2 for Rev C Circuit Board

The Parallax GrowBot is a mobile robot kit based on the
BS2-IC module. The kit includes the parts required to
install: two LEDs, a front bumper, two photoresistors, a
pushbutton, a speaker, and a dual servo drive train. Two
AppMod headers allow AppMods to be connected for
functional upgrades and provide additional access to the
BS2’s I/O pins. This documentation shows you how to assemble, program, and customize your GrowBot.
This document will be updated as necessary and the most recent version available in Adobe PDF format on
the Parallax web site http://www.parallaxinc.com.

Table of Contents

Chapter 1: Packing List.. 2
Chapter 2: Tools Required... 4
Chapter 3: Soldering Tips.. 5
Chapter 4: GrowBot PCB Assembly.. 6
Chapter 5: GrowBot PCB Testing.. 11
Chapter 6: Chassis Assembly.. 13
Chapter 7: Final Assembly... 14
Chapter 8: Program the GrowBot .. 15

Appendix A: GrowBot Schematics... 17
Appendix B: GrowBot Programming Tips and PBASIC Quick Reference Guide.. 19

AppMods are a cool way to expand your GrowBot's abilities. You can add sounds to your GrowBot and/or
give it a user interface, or add whatever you want with an AppMod Breadboard.

Currently available for your GrowBot:

Sound Module (#27911) Mini sound studio: manual & stamp controlled record/playback of sounds.
LED Display Terminal (#27912) 4 digit LED terminal with 4 pushbuttons.
Breadboard (#29114) Blank breadboard that fits into an AppMod header for expansion.

 Page 2 25 May, 2001

Chapter 1: Packing List

Before building your GrowBot, verify that you have all the parts. Parallax stock codes are provided in case
you need to order a spare or replacement part.

Three (3) 10K Ohm 1/8W 5%
brown-black-orange

#150-01031

Four (4) 220 Ohm 1/8W 5%
red-red-brown
#150-02211

One (1) 24 pin socket
#450-02401

One (1) 220K Ohm 1/8W 5%
red-red-yellow
#150-02240

One (1) 100K Ohm 1/8W 5%
brown-black-yellow

#150-01041

One (1) tact button switch
#400-00002

One (1) red snap-on button
#400-00005

Two (2) tall headers
#450-02002

Two (2) 2-pin SIP headers
#451-00201

One (1) 7-pin SIP header

#451-00701

Two (2) LED red diffused T 1-3/4
#350-00006

Two (2) flathead screws 3/8”
Phillips 4-40
#700-00016

GrowBot starts here!

 Page 3

One (1) 10uF 16V aluminum

electrolytic capacitor
#201-01061

Five (5) 0.1 uF ceramic
Capacitors
#200-01040

One (1) DB-9 connector
#452-00005

One (1) sound generator
#900-00001

Two (2) Modified Servos
#900-00008

One (1) antenna wire
0.026" 303 stainless

#700-00021

Two (2) drive wheels
#700-00013

Two (2) stand offs, 4-40 ¾" alum.
#700-00008

BASIC Stamp II
#BS2-IC

One (1) 4 AA battery holder

700-00005

One (1) GrowBot PCB – Rev C
#300-15002

One (1) GrowBot disk
#950-00003

One (1) serial cable

#800-00003

One (1) switch
#400-00013

Two (2) O-ring wheels
#700-00011

 Page 4 25 May, 2001

Two (2) photoresistors

#350-00009

One (1) set of 9-volt battery clips
#452-00013 and -14

One (1) “ball” tail wheel
#700-00009

One(1) GrowBot chassis &
hardware #29101

One (1) #4 nylon washer
700-00015

One(1) all-important cotter pin
700-00023

Chapter 2: Tools Required

Building the GrowBot requires the following tools not included in this kit (Radio Shack part numbers are
included in case you want to buy these pieces locally):

1. Soldering iron (RS #64-2051)

2. Solder (RS #64-005)

3. Small Phillips screwdriver

4. Small cutters (RS #64-1833)

5. Small needle-nose pliers

Once the GrowBot is built and you are ready to program and run, you’ll need an IBM PC compatible
computer running DOS or Windows, four (4) AA alkaline or NiCad batteries, and one (1) 9-volt battery.

 Page 5

Chapter 3: Soldering Tips

Attaching components to the GrowBot’s PCB assembly requires soldering. If you haven’t soldered before,
there are some great tips included in Scott Edwards’ Programming and Customizing the BASIC Stamp
Computer1. Below is a consolidated summary of a few of Scott’s soldering tips.

Accidents can and do happen. Soldering irons are very hot and can produce severe burns. Please read
the following hints carefully and heed all warnings.

1. Use water soluble rosin core solder. Rosin core solder will provide better quality solder joints and will

clean up easily with warm water after the soldering is over.
2. Solder only in a well lit, well ventilated area. Ensure that there are no explosive/combustible/flammable

fumes or vapors in the room. Do not solder in the presence of flammable materials. Breathing solder
fumes is not healthy. If you experience a headache or nausea, stop soldering, get some fresh air, air
out the room, and increase the ventilation in the room that you are soldering in.

3. Always wear goggles. As the solder is heated and the rosin starts fluxing, small pops can eject
minuscule blobs of molten solder quite far . You MUST protect your eyes from this.

4. Do not eat or drink while soldering. Solder contains lead. Lead is poisonous and it is easily absorbed
through the skin. Be sure to wash your hands after soldering.

5. When the iron is hot, take it out of the stand and wipe the tip on the sponge with a match-strike motion.
This will remove excess solder and clean the tip a bit.

6. Moisten the sponge with water so it is damp, but not soaking wet. Put the iron in the stand and plug it
in. Don’t touch the heating element or anything else that is metallic on the soldering iron. To avoid
painful burns, touch only the plastic portions of the handle.

7. Apply a little solder to the tip of the soldering iron. If it beads up, wipe the iron on the sponge again and
repeat until the tip of the soldering iron has a clean shiny thin coating of solder. This is called “tinning”.

8. Bring the freshly tinned tip of the iron into contact with the wires/metals you want to solder. A tinned
clean tip will help transfer heat into the target metals. After one second, bring the solder into contact
with the metals (not the soldering iron itself). It the metals are hot enough, the flux will flow out of the
solder and clean the area, then the solder will melt and flow around the metals.

9. Remove the solder – pause – then remove the iron without jostling the molten solder left behind. If
soldered properly, smooth shiny fillets will result. A bulbous or grainy appearance indicates a poor
solder joint and should be resoldered.

1 Order part #27951 from Parallax for $34.95, less for educational use.

 Page 6 25 May, 2001

Chapter 4: GrowBot PCB Assembly

The section shows you how to assemble GrowBot’s I/O devices step by step. If you experience difficulty,
or find inconsistencies between these instructions and reality, check the downloads section on our web
site http://www.parallaxinc.com for updated documents, photographs, and pointers. If you are still stuck
please call our technical support at (916) 624-8333.

Component locations are labeled on the GrowBot printed circuit board. Soldering is done on the bottom of
the GrowBot’s printed circuit board (PCB) except where noted. (The top of the pcb is depicted below.)
Throughout this documentation references are made to the “front” of the GrowBot. The front is shown
below as the left side.

 Page 7

Pushbutton Circuit

1. Build the pushbutton circuit by bending the leads one (1) 10K ohm resistor (brown black orange) and

placing it in position R1 onto the component side (top) of the pcb.
2. Insert the pushbutton where designated by position P14 (PB1).
3. Turn the GrowBot PCB over, solder these components and trim the leads. Do not install the red plastic

button operator until after the pcb has been washed (end of chapter 4).

Picture

Schematic

Battery Monitoring Circuit / Sound Generator

The BS2-IC shares I/O line 8 (P8) between the battery monitoring circuit and the sound generator, so it
makes sense to build these circuits together.

1. Build the battery monitoring circuit by bending the leads on the 220K ohm resistor (Red Red Yellow) and

the 100K ohm resistor (Brown Black Yellow) and placing them into positions R2 and R3, respectively.
2. Insert the sound generator and the 10uF 16V aluminum electrolytic capacitor into P8 and C4,

respectively. The capacitor’s white “-” stripe is away from the PCB’s “+”sign. The speaker’s “+” lead
should be placed accordingly on the board, next to the “+” sign.

3. Turn the GrowBot PCB over, solder these components and trim the leads.

CB Sound Generator Specifications

Rated Voltage
(VDC)

Average current
consumption (mA) Sound pressure level (dB)

Resonance
frequency

20K 8.5 min 85 typ 89 at 10 cm 4,096 Hz

10K � 1/8W 5%
resistor

pushbutton

 Page 8 25 May, 2001

Picture

Schematic

Bumper

The bumper wire is a 0.026 inch diameter stainless steel spring wire covered with insulating shrink tubing.
The bumper wire uses the front X4 and X5 I/O locations, with a 2-pin SIP header providing contact closure.
To install the bumper:
1. Insert the two 2-pin SIP headers into the front I/O locations X4 and X5. The two locations are denoted by

the outermost round circles.
2. Insert two 10K ohm resistors (Brown Black Orange) into positions R6 and R9.
3. Cut off two short leads from a scrap resistor and solder them across P9 and P10.
4. Flip the board over (to the solder side), solder and trim the leads.
5. Insert the ends of the bumper wire into the set of holes next to PR1 and PR2, touching the back portion

when the bumper is pushed. Don’t solder the end of the bumper wire leads – bend the leads about 45° to
keep the bumper in place.

Picture

Schematic

bumper wires
insert and
thread through
the 2-pin SIP
headers in X4
and X5

speaker R2 – 220K
R3 – 100K

10uF 16v cap

10K ohm resistor

10K ohm resistor

 Page 9

Photoresistors

GrowBot includes two photoconductive cells (photoresistors or LDRs) from EG&G Vactec (part #VT935G
group B). The cells provide an inexpensive solution for light level sensing applications. These cells are from
Allied Electronics as part number 980-0105. Below are the specifications in case you are interested in getting
some more (you can also get these from Parallax):

Photoresistor Specifications
Resistance (Ohms) Peak Response Time

10 Lux 2850K Dark Spectral VMAX @ 1 fc
Response (ms, typ.)

Min Typ. Max. Min. Sec. nm Rise (1-1/e) Fall (1/e)
20K 29.0K 38K 1M 10 550 100 35 5

The rover.bs2 program does not use the photoresistors, but edge.bs2 does.
To install the photoresistors:

1. Flip the GrowBot PCB upside down. The photoresistors are installed on the bottom of the PCB, but the

capacitor and the resistor are installed on the top.
2. Insert the two photoresistors into PR1 and PR2, respectively. The photoresistors should face downward

as shown in the photograph on the next page.
3. Turn the GrowBot PCB right side up. Solder and trim the leads.
4. Insert the two 220 ohm resistors into R7 and R8.
5. Insert the two 0.1 µF capacitors into positions C5 and C6. Note: you may have to bend the legs a bit; if

so, use care to not bend the legs where they enter the body of the capacitor.
6. Turn the GrowBot PCB over, solder and trim the leads.

Picture

Schematic

PR1 photoresistors
(on the bottom)

R7 220 ohm
resistor

C5 0.1 uF cap

 Page 10 25 May, 2001

Installed Bumper and Photoresistors

LEDs

The LEDs are installed in two positions: LED1 and LED2. GrowBot uses Liteon LTL-4203 high intensity wide
viewing angle LEDs. Any other color or size LED could be substituted provided an appropriately sized current
limit resistor is used.

To install the red LEDs:

1. Insert the two 220 ohm (red red brown) resistors into positions R4 and R5.
2. Insert the two red LEDs with the flat side (cathode) facing the edge of the board, fitting within the PCB’s

footprint outline.
3. Flip the GrowBot board upside down, solder and trim the leads.

 Picture

Schematic

red LEDs into
‘LED1 ‘ and ‘LED2’

220 ohm resistors
into R4 and R5

 Page 11

Servo and Switch Circuitry

1. Insert two (2) 0.1 ìF capacitors into positions C1 and C2. These are for the serial port.
2. Insert one (1) 0.1 ìF capacitors into position C3. This capacitor filters the servo power leads.
3. Insert the switch into position SW1.
4. Turn the GrowBot PCB over, solder these components and trim the leads.

Schematic

Remaining Hardware

The remaining parts may be soldered onto the PCB once they are inserted in the proper locations.
1. Insert the DB-9 connector into position J1.
2. Insert the 9-volt battery clips observing the proper orientation.
3. Plug the 24-pin socket into position S1. The semi-circle goes towards the top of the PCB. This is the

BASIC Stamp 2’s position indicator as well.
4. Insert the two (2) tall headers into positions X1 and X2. These are for future AppMods in case you want to

expand the GrowBot’s functionality.
5. Insert one (1) 7-pin right angle SIP header into position J2.
6. Turn the board over. Solder these components and trim the leads.
7. Remove the wire bumper and wash the pcb with warm water if you used water soluble rosin core solder.
8. Once the PCB is dry, snap the red pushbutton cover onto the pushbutton.
9. Replace the wire bumper.

 Page 12 25 May, 2001

Chapter 5: GrowBot PCB Testing

A BS2-IC module was included in this kit. The module has been pre-programmed with a diagnostic program
(growtest.bs2) which will show some that some features of the GrowBot’s printed circuit board are working at
this stage of assembly.

1. Insert the BS2-IC module into socket S1 with Pin 1 by the switch. The biggest chip on the BS2-IC, the

PIC 16C57, is closest to the servo connections (if you are using a BS2sx-IC, then the SX28AC/SS is
nearest the servo connections).

2. Attach a 9-volt battery to the clips and put the switch (SW1) in center position. After a short duration, the
speaker will play the DTMF tones that approximate “Mary Had a Little Lamb”, then the LEDs should be
blinking. Push and hold the pushbutton. The speaker will click a few times, then the LEDs will extinguish.
From then on, the LEDs will reflect what is sensed by the bumper. Try it!

Still doesn’t work? Try these GrowBot PCB test fixes. . .
Are the battery clips installed with the correct polarity? The negative connection
should be closest to the edge of the board, and the positive connection is closer to
the BS2-IC socket.
Is the battery voltage at least 8-volts? Check voltage using a digital multi-meter.
Put the BS2-IC in backwards? Verify that the BS2-IC’s Pin 1 is by the switch.
LED polarity must be installed with flat side near the edge of the board.
Speaker and capacitor C4 are installed with correct polarity?
Try reloading the program GROWTEST.BS2.

Your GrowBot thus far…

 Page 13

Chapter 6: GrowBot Chassis Assembly

1. Insert the 13/32” rubber grommet into the hole in the
center of the chassis, and insert the two 9/32” rubber
grommets into the two corner holes as shown.

2. Use the two 1/4” 4-40 flat head screws to attach the
battery holder to the underside of the GrowBot
chassis. Note that the screw adjacent to the center
hole will be secured with a lock nut while the flat head
screw at the distal end will be secured with the female
end of one of the ½ inch stand-off. Do not tighten the
screws yet as they may need to move a bit when we
assemble the pcb to the chassis later.

3. Using eight ¼ inch 4-40 machine screws and lock nuts,
fasten both servos to the chassis as depicted.

4. Feed the battery holder power connector through the
center hole to the topside of the chassis followed by
the servo wires.

5. Strip and tin the wires from the servo battery pack,
then solder them to the “Vservo” pads on the PCB
observing the proper polarity (the white striped wire
should be the positive lead).

6. Position the battery holder such that the ½ inch stand-
offs line up with the mounting holes on the GrowBot
pcb and secure the pcb to the chassis with the ¾ inch
male-female stand-offs.

7. Connect the two servo wires to J2 observing both the
proper orientation of each plug as well as the ordering
(left-right).

 Page 14 25 May, 2001

Chapter 7: Final Assembly

1. The plastic ball is used as the GrowBot’s rear or tail wheel,

and the cotter pin is its axle. Run the cotter pin through
the holes in the rear of the chassis so that it holds the one-
inch plastic ball in place as shown.

2. Flare the end of the cotter pin to prevent it from working its
way out.

1. Push the drive wheels (broached side) onto the servo shafts (the spline) and then secure them with the

screws provided with the servos.
2. Stretch the rubber tires onto the drive wheels.
3. Install four AA’s into the servo battery pack under the GrowBot.
4. Now you're ready to program your GrowBot.

 Page 15

Chapter 8: Program the GrowBot

Run the Editor

BASIC Stamp programs are created and run from a text editor program. The program you need to run is
called stampw.exe. From within stampw.exe, you may open any .bs2 file and run it on your GrowBot. A DOS
version of the software, stamp2.exe, is also available on the GrowBot diskette. Follow these steps to activate
your GrowBot:

1. Using Windows Explorer create a directory on your hard drive named GrowBot.
2. Copy the entire contents of the GrowBot disk into the GrowBot directory.
3. Double-click on the BASIC Stamp II icon (small BS2-IC) to launch the editor program.
4. Under the FILE menu, OPEN rover.bs2. This is a simple roving program.

The screen should look like this:

 Page 16 25 May, 2001

Load the Program into the GrowBot

1. Connect the serial cable to an available serial port on your PC.
2. Connect the other end of the serial cable to your GrowBot’s DB-9 connector.
3. Put the GrowBot’s power switch in the middle position. This is the “on” position without servos (servos are

enabled by switching to the run position).
4. Under the RUN menu, select RUN.

The GrowBot is now programmed to operate in it’s roving mode! Push the bumper to see the red LEDs and
hear the speaker. Disconnect the serial cable, push the switch to the left position and the GrowBot will be
autonomous.

GrowBot programs include a simple rover program using the bumper (rover.bs2); a light / dark sensing edge
avoidance program (edge.bs2); and a player piano program adapted from the BASIC Stamp Activity Board
((rbopiano.bs2).

Expand your GrowBot with AppMods

(Alphanumeric LED Terminal and Sound Module AppMods shown)

 Page 17

Appendix A: GrowBot Schematic

Each BASIC Stamp 2 I/O pin is accessible by the AppMod headers and at solder points on the front of the
GrowBot. When using I/Os, watch for conflict with existing on-board devices. These schematics are for the
Rev. C GrowBot, December 18, 1998.

 Page 18 25 May, 2001

GROWBOT BS2 I/O PIN ASSIGNMENTS
 I/O Pin Use

0 Right photoresistor
 7 Left photoresistor
 8 Speaker / battery monitor
 9 Right bumper
 10 Left bumper
 11 Left LED
 12 Left wheel
 13 Right wheel
 14 Pushbutton
 15 Right LED

 Page 19

Appendix B: GrowBot Programming Tips and PBASIC Quick Reference Guide

The Parallax BASIC Stamp Manual Version 1.9 consists of approximately 450 pages of PBASIC command
descriptions, application notes, and schematics. This manual is not included in this GrowBot kit, but it’s
available for download from http://www.parallaxinc.com in Adobe’s PDF format.

Although several programs are already provided for the GrowBot, don’t be afraid to venture out and write
your own. Here’s a brief version of the manual that covers most of the commands that you will need to use
while exploring your GrowBot world.

BRANCHING
IF...THEN
IF condition THEN addressLabel
Evaluate condition and, if true, go to the point in the program marked by addressLabel.
• Condition is a statement, such as “x=7” that can be evaluated as true of false.
• AddressLabel is a label that specifies where to go in the event that the condition is true.
BRANCH
BRANCH offset, [address0, address1, …address N]
Go to the address specified by offset (if in range).
• Offset is a variable / constant that specifies which of the listed address to go to (0-N).
• Addresses are labels that specify where to go.
GOTO
GOTO addressLabel
Go to the point in the program specified by addressLabel.

• AddressLabel is a label that specifies where to go.
GOSUB
GOSUB addressLabel
Store the address of the next instruction after GOSUB, then go to the point in the program specified by
addressLabel.

• AddressLabel is a label that specifies where to go.
RETURN
Return from subroutine – sends the program back to the address (instruction) immediately following the
most recent GOSUB.

 Page 20 25 May, 2001

LOOPING
FOR...NEXT
FOR variable = start to end {stepVal} …NEXT
Create a repeating loop that executes the program lines between FOR and NEXT, incrementing or
decrementing variable according to stepVal until the value of the variable passes the end value.
• Variable is a bit, nib, byte, or word variable used as a counter.
• Start is a variable or constant that specifies the initial value of the variable.
• End is a variable or constant that specifies the end value of the variable. When the value of the

variable passes end, the FOR . . . NEXT loop stops executing and the program goes on to the
instruction after NEXT.

• StepVal is an optional variable or constant by which the variable increases or decreases with each
step through the FOR / NEXT loop. If start is larger than end, PBASIC2 understands stepVal to be
negative, even though no minus sign is used.

NUMERICS
LOOKUP
LOOKUP index, [value0, value1,... valueN], variable
Look up the value specified by the index and store it in a variable. If the index exceeds the highest index
value of the items in the list, variable is unaffected. A maximum of 256 values can be included in the list.
• index is a constant, expression or a bit, nibble, byte or word variable.
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.
LOOKDOWN
LOOKDOWN value, {??,} [value0, value1,... valueN], variable
• value is a constant, expression or a bit, nibble, byte or word variable.
• ?? is =, <>, >, <, <=, =>. (= is the default).
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.
RANDOM
RANDOM variable
Generate a pseudo-random number.
• VARIABLE is a byte or word variable in the range 0..65535.
DIGITAL I/O
INPUT
INPUT pin
Make the specified pin an input (write a 0 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
OUTPUT
OUTPUT pin
Make the specified pin an output (write a 1 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

 Page 21

REVERSE
REVERSE pin
If pin is an output, make it an input. If pin is an input, make it an output.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
LOW
LOW pin
Make pin output low (write 1 to the corresponding bit of DIRS and 0 to the corresponding bit of OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
HIGH
HIGH pin
Make the specified pin output high (write 1s to the corresponding bits of both DIRS and OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
TOGGLE
TOGGLE pin
Invert the state of a pin.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
PULSIN
PULSIN pin, state, variable
Measure an input pulse (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• variable is a bit, nibble, byte or word variable.
• Measurements are in 2uS intervals and the instruction will time out in 0.13107 seconds.
PULSOUT
PULSOUT pin, period
Output a timed pulse by inverting a pin for some time (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word
• variable in the range 0..65535 representing the pulse width in 2uS units.
BUTTON
BUTTON pin, downstate, delay, rate, workspace, targetstate, label
Debounce button, perform auto-repeat, and branch to address if button is in target state.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• downstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• delay is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• rate is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• workspace is a byte or word variable.
• targetstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• label is a valid label to jump to in the event of a button press.

 Page 22 25 May, 2001

SHIFTIN
SHIFTIN dpin, cpin, mode, [result{\bits} { ,result{\bits}... }]
Shift bits in from parallel-to-serial shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

data pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

clock pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..4

specifying the bit order and clock mode. 0 or MSBPRE = msb first, pre-clock, 1 or LSBPRE = lsb
first, pre-clock, 2 or MSBPOST = msb first, post-clock, 3 or LSBPOST = lsb first, post-clock.

• result is a bit, nibble, byte or word variable where the received data is stored.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits to receive in result. The default is 8.
SHIFTOUT
SHIFTOUT dpin, cpin, mode, [data{\bits} {, data{\bits}... }]
Shift bits out to serial-to-parallel shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

data pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

clock pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..1

specifying the bit order. 0 or LSBFIRST = lsb first, 1 or MSBFIRST = msb first.
• data is a constant, expression or a bit, nibble, byte or word variable containing the data to send out.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits of data to send. The default is 8.
COUNT
COUNT pin, period, result
Count cycles on a pin for a given amount of time (0 - 125 kHz, assuming a 50/50 duty cycle).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• result is a bit, nibble, byte or word variable.
ANALOG I/O
PWM
PWM pin, duty, cycles
Output PWM, then return pin to input. This can be used to output analog voltages (0-5V) using a
capacitor and resistor.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• duty is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 0..255

representing the number of 1ms cycles to output.

 Page 23

RCTIME
RCTIME pin, state, variable
Measure an RC charge/discharge time. Can be used to measure potentiometers.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• variable is a bit, nibble, byte or word variable.
SOUND
FREQOUT
FREQOUT pin, milliseconds, freq1 {,freq2}
Generate one or two sine waves of specified frequencies (each from 0 - 32767 hz.).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range of 0..15.
• milliseconds is a constant, expression or a bit, nibble, byte or word variable.
• freq1 and freq2 are constant, expression or bit, nibble, byte or word variables in the range 0..32767

representing the corresponding frequencies.
XOUT
XOUT mpin, zpin, [house\keyorcommand{\cycles} {, house\keyorcommand{\cycles}... }]
Generate X-10 Powerline control codes. For use with TW523 or TW513 Powerline interface module.
• mpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

modulation pin.
• zpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

zero-crossing pin.
• house is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying

the house code A..P respectively.
• keycommand is a constant, expression or a bit, nibble, byte or word variable in the range 0..15

specifying keys 1..16 respectively or is one of the commands in the following table:
• See the Parallax manual for a list of X-10 commands for lights on, off, dim and bright.
• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 2..65535

specifying the number of cycles to send. (Default is 2).

 Page 24 25 May, 2001

SERIAL I/O
SERIN
SERIN rpin{\fpin}, baudmode, {plabel,} {timeout, tlabel,} [inputdata]
Serial input with optional qualifiers, time-out, and flow control. If qualifiers are given, then the instruction
will wait until they are received before filling variables or continuing to the next instruction. If a time-out
value is given, then the instruction will abort after receiving nothing for a given amount of time. Baud
rates of 300 - 50,000 are possible (0 - 19,200 with flow control). Data received must be N81 (no parity, 8
data bits, 1 stop bit) or E71 (even parity, 7 data bits, 1 stop bit).
• rpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• plabel is a label to jump to in case of a parity error.
• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535

representing the number of milliseconds to wait for an incoming message.
• tlabel is a label to jump to in case of a timeout.
• inputdata is a set of constants, expressions and variable names separated by commas and optionally

proceeded by the formatters available in the DEBUG command, except the ASC and REP
formatters. Additionally, the following formatters are available:
1. STR bytearray\L{\E} input a string into byte array of length L with optional end-character of E.
2. SKIP L input and ignore L bytes.
3. WAITSTR bytearray{\L} Wait for bytearray string of L length, or terminated by 0 (6 byte maximum).
4. WAIT (value {,value...}) Wait for up to a six-byte sequence.

SEROUT
SEROUT tpin{\fpin}, baudmode, {pace,} {timeout, tlabel,} [outputdata]
Send data serially with optional byte pacing and flow control. If a pace value is given, then the instruction
will insert a specified delay between each byte sent (pacing is not available with flow control). Baud rates
of 300 - 50,000 are possible (0 - 19,200 with flow control). Data is sent as N81 (no parity, 8 data bits, 1
stop bit) or E71 (even parity, 7 data bits, 1 stop bit).
• tpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..60657.
• pace is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535 specifying

a time (in milliseconds) to delay between transmitted bytes. This value can only be specified if the
fpin is not specified.

• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535
representing the number of milliseconds to wait for the signal to transmit the message. This value
can only be specified if the fpin is specified.

• tlabel is a label to jump to in case of a timeout. This can only be specified if the fpin is specified.
• outputdata is a set of constants, expressions and variable names separated by commas and

optionally proceeded by the formatters available in the DEBUG command.

 Page 25

DTMFOUT
DTMFOUT pin, {ontime, offtime,}[key{,key...}]
Generate DTMF telephone tones.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• ontime and offtime are constants, expressions or bit, nibble, byte or word variables in the range

0..65535.
• key is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
EEPROM ACCESS
DATA
DATA {pointer} DATA {@location,} {WORD} {data}{(size)} {, { WORD} {data}{(size)}...}
Store data in EEPROM before downloading PBASIC program.
• pointer is an optional undefined constant name or a bit, nibble, byte or word variable which is

assigned the value of the first memory location in which data is written.
• location is an optional constant, expression or a bit, nibble, byte or word variable which designates

the first memory location in which data is to be written.
• word is an optional switch which causes DATA to be stored as two separate bytes in memory.
• data is an optional constant or expression to be written to memory.
• size is an optional constant or expression which designates the number of bytes of defined or

undefined data to write/reserve in memory. If DATA is not specified then undefined data space is
reserved and if DATA is specified then SIZE bytes of data equal to DATA are written to memory.

READ
READ location, variable
Read EEPROM byte into variable.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• variable is a bit, nibble, byte or word variable.
WRITE
WRITE location, data
Write byte into EEPROM.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• data is a constant, expression or a bit, nibble, byte or word variable.
TIME
PAUSE
PAUSE milliseconds
Pause execution for 0–65535 milliseconds.
• milliseconds is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.

 Page 26 25 May, 2001

POWER CONTROL
NAP
NAP period
Nap for a short period. Power consumption is reduced.
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..7 representing

18ms intervals.
• Current is reduced to 50uA (assuming no loads).
SLEEP
SLEEP seconds
Sleep for 1-65535 seconds. Power consumption is reduced to approximately 50 µA.
• seconds is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535

specifying the number of seconds to sleep.
END
END
Sleep until the power cycles or the PC connects. Power consumption is reduced to approximately 50
µA.
• 50uA reduced current (no loads).
PROGRAM DEBUGGING
DEBUG
DEBUG outputdata{,outputdata...}
Send variables to PC for viewing.
• outputdata is a text string, constant or a bit, nibble, byte or word variable. If no formatters are

specified DEBUG defaults to ASCII character display without spaces or carriage returns following the
value.

