Raycasting Notes

RJA Decl8

The permadi.com raycasting Tutorial is great,
but need more visualization to understand math

LS| | Ray Casting Tutorial Del X ‘ = Ray-Casting Tutorial —perm | 4+ v~
< 2 O nr & httpsy//permadi.com/tutorial/raycast/demay/5/
8, amazon.com Online$ g DigiKey Electronics - i+ Fitbit Dashboard ﬂ Propeller 1 Multicore 3§ Ray's Logic @ Tech News, Reviews £ ¥

Ray Casting Techniques Demo Series - Part 5

This 1s a ray casting demo, to be used as a companion to the Ray Casting Tutorial at https://permadi com/1996/05/rav-casting-

tutorial-table-of-contents/

Fifth in a senies of ray casting demos:

Panoramic background using prerendered bitmap.
To move around, use the arrow kevs on vour keyboard or the W A.S.D keys.

Checkout the source and other demos in the series in the Git Hub repository

Note: Be sure to read the tutorial: https://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/

A \ > X
TILE_SIZE X=0, y=0
The Coordinate System
fPlayerY
fPlayerArc
\ 4
y fPlayerX

Note: Y axis goes down instead of the usual up. Same way screen data stored memory.

A \ > X
TILE size| X=0, y=0 Treating the screen as an arc of
— a circle makes the math easier
v as each column on screen is

just one unit angle wide

Screen
fPlayerY Left edge of screen:
/ castArc=fPlayerArc-ANGLE30
\
Y
ANGLE30
Right edge of screen: — Center of screen:
<’-
castArc=fPlayerArc+ANGLE30 castArc=fPlayerArc

The projections screen represents a 60 degree field of view, maps directly to PROJECTIONPLANEWIDTH

Each column on screen represents one angular unit from fPlayerArc-ANGLE30 to fPlayerArc+ANGLE30
Initialize: castArc=fPlayerArc-ANGLE30

Note that ANGLE6O is equal to number of columns on screen (320 in this example).

The main loop is over columns on the screen (from 0 to 319), iteration variable is castColumn

At end of loop, we do castArc++ to increment angle

Note: Pretending screen is curved causes a “fish bowl” distortion that is corrected for before drawing to screen

For each castArc, we find first intersection of our cast ray with vertical and horizontal walls

>
X

= fPlayerY
castArc

J

. YlIntersection

distToNextXIntersection

fPlayerX

xIntersection

'Y

e If the first intersections we find are an opening on map and not a wall, just
add a fixed number (from a table) to get next intersection:
« distToNextXIntersection = this.fXStepTable[castArc];
* XIntersection += distToNextXIntersection;
* We repeat this in a loop until we find both x and y nearest walls

We use 1/cos table (flICosTable)to calculate distance from player to xIntersection

>
Y X
2
%
O,
/).
eoo
Y
G..
%
(Q’.
—)
castArc

YV fPlayerX xIntersection

Cos(castArc) = adjacent/hypotenuse

Adjacent= xIntersection-fPlayerX

Hypotenuse= distToHorizontalGridBeingHit
distToHorizontalGridBeingHit=adjacent/Cos(castArc)

distToHorizontalGridBeingHit = (xIntersection - this.fPlayerX)* this.flCosTable[castArc];
™ |Cos=1/cos

Similarly, use 1/sin table to calculate distance from player to yIntersection

>
X

fPlayerY

} castArc

—— yintersection

YV Sin(castArc) = opposite/hypotenuse

Opposite= yIntersection-fPlayerY

Hypotenuse= distToVerticalGridBeingHit
distToVerticalGridBeingHit=opposite/Sin(castArc)

distToVerticalGridBeingHit =(yIntersection- this.fPlayerY)* this.fISinTable[castArc];
™ ISin=1/sin

Need to handle angles 0, 90, 180 and 270 with care

< ¥V

distToVerticalGridBeingHit

A
v

,_,castArc=O

fPlayerX

verticalGrid

* 1/sin and 1/cos of these angles can be infinite
* The javascript example adds a hair to each angle in table
* Trig value comes out very large instead of infinite
* Large value times tiny value of (ylntersection-fPlayery) turns out OK
* Possibly a better way is to simply use:
* Angle=0: distToVerticalGridBeingHit = verticalGrid — fPlayerX
* Angle=180: distToVerticalGridBeingHit = fPlayerX — verticalGrid

Finding yIntersection facing right, the y-coordinate of first
intersection of the ray with a vertical wall

< ¥V

n
castArc

/

yTemp

— yintersection

verticalGrid
fPlayerX

fPlayerY

Tan(castArc) = Opposite/Adjacent
Opposite=yTemp
Adjacent=verticalGrid-fPlayerX
Opposite=Tan(castArc)*Adjacent

For ray Facing Right (castArc<kANGLE90) OR (castArc>ANGLE270):

verticalGrid=TILE_SIZE + floor(fPlayerX / TILE_SIZE) * TILE_SIZE
yTemp = Tan(castArc) * (verticalGrid - fPlayerX)

yintersection= fPlayerY + yTemp

When Facing Left (Quadrants Il and lll): verticalGrid is TILE_SIZE smaller

>
X
fPlayerY
Quadrant Il Quadrant IV
yTemp Tan=Positive Tan=Negative
. — castArc Sin=Negative Sin=Negative
yIntersection Cos=Negative Cos=Positive
» X
. . Quadrant i Quadrant|
verticalGrid Tan=Negative Tan=Positive
fPIayerX Sin=Positive Sin=Positive
Cos=Positive

Cos=Negative Y

For ray facing left (castArc>ANGLESO) AND (castArc<ANGLE270):

verticalGrid= floor(fPlayerX / TILE_SIZE) * TILE_SIZE

yTemp = Tan(castArc) * (verticalGrid - fPIayerX)\

yintersection= fPlayerY + yTemp

Negative*negative in Quadrant

Finding xIntersection facing down, the x-coordinate of first
intersection of the ray with a horizontal wall

< ¥V

]
J castArc

A

xIntersection
fPlayerX

fPlayerY

——— horizontalGrid

Tan(castArc) = Opposite/Adjacent
Opposite=horizontalGrid-fPlayerY
Adjacent=xTemp
Adjacent=0pposite/Tan(castArc)

For ray Facing Down (castArc>ANGLEO) AND (castArc<ANGLE180):
horizontalGrid=TILE_SIZE + floor(fPlayerY / TILE_SIZE) * TILE_SIZE

xTemp = (horizontalGrid - fPlayerY)/ Tan(castArc) <

xIntersection= fPlayerX + xTemp

Note: Code actually multiplies
by 1/Tan table (flITanTable)

Finding xIntersection facing up, the x-coordinate of first intersection
of the ray with a horizontal wall

» horizontalGrid
castArc X

A 4

fPlayerY

xTemp

»
»

A

XIntersection : _
fPlayerX Note: tan=opposite/adjacent concept

really only works for angles < 90 degrees.
But, math still works in similar way.

For ray Facing UP:

horizontalGrid= floor(fPlayerY / TILE_SIZE) * TILE_SIZE
xTemp = (horizontalGrid - fPlayerY) /Tan(castArc) <— | Note: Code actually multiplies
xIntersection= fPlayerX + XTemp by 1/Tan table (flTanTable)

