
Raycasting Notes

RJA Dec18

The permadi.com raycasting Tutorial is great,
but need more visualization to understand math

Note: Be sure to read the tutorial: https://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/

X=0, y=0

X

Y

fPlayerArc

fPlayerX

fPlayerY

TILE_SIZE

Note: Y axis goes down instead of the usual up. Same way screen data stored memory.

The Coordinate System

X=0, y=0

X

Y

castArc

fPlayerX

fPlayerY

TILE_SIZE

Screen

ANGLE30

• The projections screen represents a 60 degree field of view, maps directly to PROJECTIONPLANEWIDTH
• Each column on screen represents one angular unit from fPlayerArc-ANGLE30 to fPlayerArc+ANGLE30
• Initialize: castArc=fPlayerArc-ANGLE30
• Note that ANGLE60 is equal to number of columns on screen (320 in this example).
• The main loop is over columns on the screen (from 0 to 319), iteration variable is castColumn
• At end of loop, we do castArc++ to increment angle
• Note: Pretending screen is curved causes a “fish bowl” distortion that is corrected for before drawing to screen

Left edge of screen:
castArc=fPlayerArc-ANGLE30

Center of screen:
castArc=fPlayerArc

Right edge of screen:
castArc=fPlayerArc+ANGLE30

Treating the screen as an arc of
a circle makes the math easier
as each column on screen is
just one unit angle wide

For each castArc, we find first intersection of our cast ray with vertical and horizontal walls

X

Y

castArc

yIntersection

fPlayerX

fPlayerY

xIntersection

• If the first intersections we find are an opening on map and not a wall, just
add a fixed number (from a table) to get next intersection:
• distToNextXIntersection = this.fXStepTable[castArc];
• xIntersection += distToNextXIntersection;

• We repeat this in a loop until we find both x and y nearest walls

distToNextXIntersection

X

Y

castArc

fPlayerX

We use 1/cos table (fICosTable)to calculate distance from player to xIntersection

xIntersection

distToHorizontalGridBeingHit = (xIntersection - this.fPlayerX)* this.fICosTable[castArc];

Cos(castArc) = adjacent/hypotenuse
Adjacent= xIntersection-fPlayerX
Hypotenuse= distToHorizontalGridBeingHit
distToHorizontalGridBeingHit=adjacent/Cos(castArc)

ICos=1/cos

X

Y

castArc

yIntersection

fPlayerY

Similarly, use 1/sin table to calculate distance from player to yIntersection

distToVerticalGridBeingHit =(yIntersection- this.fPlayerY)* this.fISinTable[castArc];

Sin(castArc) = opposite/hypotenuse
Opposite= yIntersection-fPlayerY
Hypotenuse= distToVerticalGridBeingHit
distToVerticalGridBeingHit=opposite/Sin(castArc)

ISin=1/sin

X

Y

castArc=0

fPlayerX

Need to handle angles 0, 90, 180 and 270 with care

distToVerticalGridBeingHit

• 1/sin and 1/cos of these angles can be infinite
• The javascript example adds a hair to each angle in table

• Trig value comes out very large instead of infinite
• Large value times tiny value of (yIntersection-fPlayery) turns out OK
• Possibly a better way is to simply use:

• Angle=0: distToVerticalGridBeingHit = verticalGrid – fPlayerX
• Angle=180: distToVerticalGridBeingHit = fPlayerX – verticalGrid

verticalGrid

X

Y

castArc

verticalGrid

yIntersection

fPlayerX

verticalGrid=TILE_SIZE + floor(fPlayerX / TILE_SIZE) * TILE_SIZE
yTemp = Tan(castArc) * (verticalGrid - fPlayerX)
yIntersection= fPlayerY + yTemp

fPlayerY

yTemp

Tan(castArc) = Opposite/Adjacent
Opposite=yTemp
Adjacent=verticalGrid-fPlayerX
Opposite=Tan(castArc)*Adjacent

Finding yIntersection facing right, the y-coordinate of first
intersection of the ray with a vertical wall

For ray Facing Right (castArc<ANGLE90) OR (castArc>ANGLE270):

X

Y
verticalGrid

yIntersection

fPlayerX

verticalGrid= floor(fPlayerX / TILE_SIZE) * TILE_SIZE
yTemp = Tan(castArc) * (verticalGrid - fPlayerX)
yIntersection= fPlayerY + yTemp

When Facing Left (Quadrants II and III): verticalGrid is TILE_SIZE smaller

For ray facing left (castArc>ANGLE90) AND (castArc<ANGLE270):

castArc

fPlayerY

yTemp

Negative*negative in Quadrant II

Y

X

Quadrant I
Tan=Positive
Sin=Positive
Cos=Positive

Quadrant II
Tan=Negative
Sin=Positive
Cos=Negative

Quadrant III
Tan=Positive
Sin=Negative
Cos=Negative

Quadrant IV
Tan=Negative
Sin=Negative
Cos=Positive

X

Y

castArc

horizontalGrid

xIntersection
fPlayerX

horizontalGrid=TILE_SIZE + floor(fPlayerY / TILE_SIZE) * TILE_SIZE
xTemp = (horizontalGrid - fPlayerY)/ Tan(castArc)
xIntersection= fPlayerX + xTemp

fPlayerY

xTemp

Tan(castArc) = Opposite/Adjacent
Opposite=horizontalGrid-fPlayerY
Adjacent=xTemp
Adjacent=Opposite/Tan(castArc)

Finding xIntersection facing down, the x-coordinate of first
intersection of the ray with a horizontal wall

For ray Facing Down (castArc>ANGLE0) AND (castArc<ANGLE180):

Note: Code actually multiplies
by 1/Tan table (fITanTable)

X

Y

castArc
horizontalGrid

xIntersection
fPlayerX

horizontalGrid= floor(fPlayerY / TILE_SIZE) * TILE_SIZE
xTemp = (horizontalGrid - fPlayerY) /Tan(castArc)
xIntersection= fPlayerX + XTemp

fPlayerY

xTemp

Finding xIntersection facing up, the x-coordinate of first intersection
of the ray with a horizontal wall

For ray Facing UP:

Note: Code actually multiplies
by 1/Tan table (fITanTable)

Note: tan=opposite/adjacent concept
really only works for angles < 90 degrees.
But, math still works in similar way.

