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Preface 
 
Interfacing sensors, the focus of the activities in this text, is integral to many types of 
fieldwork. Think of yourself as a geologist, wanting to know more about El Niño, and 
how this famous phenomenon in the waters off the coast of South America changes 
weather patterns all over the world. You are going to need lots of measurements. Or, 
think of yourself as the operator of a water treatment plant, where a city full of people is 
counting on you to deliver pure water day and night. You are going to have to monitor 
the water and operate a computer-controlled plant to pump it across the city. Or, think of 
yourself as responsible for an orchard of apples. You need to keep close track of the 
weather so that you will keep one step ahead on irrigation and pest control to bring a 
healthy crop to market.  
 
Think about home appliances such as clothes dryers, ovens and room thermostats.  They 
all use microcontrollers for measurement and control, as do instruments in the factory, 
the laboratory, the hospital, and beyond earth out into space. The techniques of 
measurement in these different settings are all similar. What you learn here will apply to 
many fields.  
 

About Version 2.0 
This revision of Applied Sensors (formerly titled Earth Measurements) was necessary 
because the low-voltage pump used to develop the activities in Chapter 6 is no longer 
available. Though we no longer supply a pump or the related components in the Applied 
Sensors Parts Kit v2.0, we have kept Chapter 6 in the book for your reference and 
adaptation to commercially available low-voltage pumps.  As Parallax identifies sources 
of compatible and reasonably inexpensive low-voltage pumps, we will post links on the 
Applied Sensors product pages at www.parallax.com. We also invite our customers to 
submit information about low-voltage pump resources, or project adaptations to other 
types of pumps, to editor@parallax.com for potential posting on our website. 
 
Other typographical corrections and product reference updates have been made. 
Pagination of Chapters 1 through 5 should be similar, if not identical, to Version 1.4.  
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AUDIENCE 
Applied Sensors was created for ages 17+ as a subsequent text to What's a 
Microcontroller?  Like all Stamps in Class texts, Applied Sensors teaches new techniques 
and circuits with only minimal overlap between the other texts. New topics introduced in 
this text are a closed-loop feedback control system, serial communication, use of the 
BASIC Stamp EEPROM for data logging, calibration of sensors, conductivity in water, 
and the use of a sound transducer for human feedback. Instructors are invited to 
participate in the private Parallax Educators Forum to obtain support and additional 
related educational materials for this text if they are available. Email 
stampsinclass@parallax.com for enrollment instructions. 

FOREIGN TRANSLATIONS 
Parallax educational texts may be translated to other languages with our permission under 
our Volunteer Translators Program. Please email translations@parallax.com for details.   

SPECIAL CONTRIBUTORS 
The Applied Sensors text was written by Tracy Allen Ph.D.  Dr. Allen is with 
Electronically Monitored Ecosystems, located in Berkeley, California 
(http://www.emesystems.com). EME Systems designs and manufactures instruments for 
environmental science. Some of their products are off-the-shelf, and others are 
customized systems for individual clients. The commercially available OWL2C On-site 
Weather Logger uses a BASIC Stamp 2 or 2pe microcontroller, providing programmable 
capabilities for a customer who doesn't want to use the default program. Dr. Allen has 
particular interest in programs that address integrated pest management on the farm, 
efficient use of natural resources, and understanding of endangered species or 
ecosystems. A recent project of Dr. Allen's consists of measuring the surface temperature 
of dairy cows to evaluate milk productivity. Dr. Allen is a frequent contributor to the 
Parallax forums, and Parallax is very appreciative of his continuing involvement with the 
Stamps in Class program.     
 
Thanks also go to everyone on the Parallax Team, for those who provided ideas and 
content for this book, and in particular to Rich Allred for the technical graphics and to 
Jen Jacobs for the cover graphics. Aristides Alvarez gets credit for updating the book 
format to the Stamps in Class style, and for rewriting the programs to PBASIC 2.5.  The 
whole Parallax Team that designs, manufactures, accepts orders, and packages the 
Stamps in Class products is recognized as integral to the success of the Stamps in Class 
program.  
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Chapter 1: Piezo and Temperature Transducer 
 
Applied Sensors will guide you as you build, program, test, and calibrate a multi-sensor 
instrument with a data logger.  With this instrument you will measure ambient 
temperature, water temperature, and light level. You will build and apply a conductivity 
sensor to various materials, and detect salinity in a cup of water. In an optional final 
experiment, you will maintain the water level in a cup with a pump and conductivity 
sensor. Feedback about the operation of the BASIC Stamp will be conveyed to you 
audibly with a piezo transducer, and collected data will be displayed on your computer 
screen. If this sounds exciting, great!  If this sounds intimidating, don't worry.  You will 
be introduced to each subsystem one at a time, and integrate them in small steps. The first 
phase of this progressive experiment includes: 
 

• A piezo transducer that converts electrical impulses from the BASIC Stamp into 
musical tones  

• Programming the BASIC Stamp to send Morse code via the piezo transducer  
• A digital temperature sensor which is another transducer that converts 

temperature into a coded form that the BASIC Stamp can understand   
• Programming the BASIC Stamp to take temperature readings and display them 

on the computer screen in the Debug Terminal  
 
Temperature is of the first importance in any process. We all know from personal 
experience that temperature is important to our well-being. You are probably sitting in a 
comfortable room, in the range of 17 to 30 degrees Celsius (63 to 86 degrees Fahrenheit). 
There may be a thermostat in the room that holds the temperature at that comfortable 
value, using a heater or an air conditioner (or maybe not!?). What do you think the 
temperature is right now where you are? How about outside? If you don't have a 
thermometer, don't worry; you will have one before this experiment is over. We need 
only a transducer to measure the temperature, and another transducer to convey the 
temperature readings to our eyes and ears.  
 
We live on a planet that is just the right distance from the sun and has the right kind of 
atmosphere to offer temperatures conducive to life, as we know it.  Through our human 
technology and industry, from clothing and housing all the way through to modern 
electronic environmental controls, we have extended the range of temperatures where we 
can live. 
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It is not far-fetched to say that every process on earth depends on temperature in some 
way.  Think of erosion of mountains.  Every year water seeps into cracks in the rocks, 
freezes, expands, and breaks off pieces. Snow, rain, clouds, wind - nearly every aspect of 
the weather depends critically on temperature.  A few tenths of a degree change in the 
temperature of the water in the South Pacific Ocean (El Niño) can affect the weather all 
over the world. How apples grow on trees, how the worms grow in the apples, how 
mosquitoes thrive in stagnant pools, how tadpoles survive to eat the mosquitoes, 
everything relating to agriculture and biology is dependent on temperature. Add to that 
the environment in factories, hospitals, laboratories, schools, homes, museums, and on 
and on. Suffice it to say that if you want to go into any career related to microcontrollers, 
you are going to have to know how to measure temperature. 

Preparation 

To complete the experiments in this text, you will need to have your BASIC Stamp 
Editor v 2.4 or higher installed and running on your computer.  Then, you will need to 
hook up your BASIC Stamp 2 and Board of Education, or your BASIC Stamp 
HomeWork Board, to your computer with a programming cable.  If you are using a USB 
board or USB to Serial Adapter, you will need to have the appropriate USB VCP drivers 
installed on your computer as well.  A complete listing of the components required for all 
of the experiments can be found in Appendix A. 

Parts Required 

(1)  Piezo transducer 
(1)  DS1620 Temperature Sensor 
(1)  1 kΩ resistor (brown black red) 
(1)  0.1 µF capacitor 
(6)  Jumper wires 

Building the Circuit 

It's always good to start out with a simple project, just to get into the swing of things.  
That is going to be the pattern in this series of experiments. You will start out with a 
warm-up project, and then move on to the main focus of the experiment. The warm-up to 
start this experiment is simply a buzzer, a sound output device. In fancy terms, it is an 
"annunciator" or a "piezoelectric transducer."  It will be a big part of our user interface in 
the projects to come in Applied Sensors. Sure, we can also see results on the computer 
screen when your BASIC Stamp is hooked up to it via its serial cable. However, having 
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the annunciator will allow us to stand up and walk away from the computer, around the 
room, into the dark, outside into the sunlight, and still be able to "hear" what is going on. 
 

 

Piezoelectric transducers    Piezo comes from a Greek word that means "to squeeze or 
press", and electric comes from a Greek word that refers to amber, a mineral that can 
accumulate a charge of static electricity when rubbed. Crystals, such as quartz and also 
some ceramic and plastic materials, generate electricity when they are flexed back and 
forth. This is the piezoelectric effect. Electrical wires attached to the surface of such 
materials can pick up that electricity. This is the basis of some kinds of microphones.  

A microphone is a transducer (Latin for "lead across") that transforms sound into electricity. 
The piezoelectric effect works in reverse too. If electricity is applied across some 
piezoelectric materials, they bend in response. They can be fabricated as a thin disk, with 
electrical connections on both faces, and wires attached. The disk is like a tiny drumhead. 
When connected to a rapidly alternating electrical voltage, it flexes back and forth, 
compressing the air which emits sound waves, and thereby becomes a piezo transducer. It 
turns electricity into sound. The electrical voltage has to be in the right frequency range to 
resonate with the natural tone of the tiny drumhead.  

Sometimes a piezo transducer is packaged along with some electrical circuitry, so that all 
you have to do is connect it to a battery or to a power supply and it will buzz at one preset 
pitch. Such a device is called a piezo buzzer. The device we are using here is a simple 
piezo transducer. It will not buzz if we connect it directly to a battery. It will only produce 
sound when we provide audio frequency electrical impulses from the BASIC Stamp. 

 
The piezoelectric transducer you will find in your parts kit is a black plastic cylinder with 
two pins sticking out the bottom and a sound hole in the top. The top of the case above 
one of the pins is labeled with a + sign.  
 
√ Build the circuit shown by the schematic in Figure 1-1 and the wiring diagram in 

Figure 1-2. 
√ Verify that your piezo transducer is positioned the same as the one shown in the 

wiring diagram in Figure 1-2. 
√ Set aside the DS1620 Temperature Sensor, 1 kΩ resistor, 0.1 µF capacitor, and the 

4 remaining jumper wires to use later in the chapter. 
 

 

FOLLOW THE WIRING DIAGRAMS EXACTLY!  The six experiments in this Applied 
Sensors series will progress from unit to unit by adding new circuits onto the old ones 
already built on your Board of Education or HomeWork Board. To avoid having to rewire 
things later, please follow the suggested parts placement shown in each wiring diagram. 
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Figure 1-1 
Piezo Transducer Schematic  
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Figure 1-2 
Piezo Transducer Wiring Diagram 
 
•  Position and orient the piezo transducer as 
shown 
 
• P0 connects to the + pin of the piezo. 
 
•  Other piezo pin wired to Vss (straight, or in 
two steps if necessary) 
 
Please note.  The six experiments in this 
Applied Sensors series will progress from unit to 
unit by adding new circuits onto the old ones 
already built on the Board of Education or 
HomeWork Board. To avoid having to rewire 
things later, please follow the suggested parts 
placement. 

Programming the Project 

This experiment consists of three smaller sections that cover the piezo transducer, Morse 
code, and temperature measurement. The project is progressive. 

Piezo Transducer 
Now, to make noise with the piezo transducer, the BASIC Stamp has to supply a high 
frequency signal from P0.  The PBASIC command to do this is FREQOUT.  That's short for 
"frequency output."  
 
√ Start the BASIC Stamp Editor on your computer.  
√ Enter the program FirstSound.bs2 
√ Make sure the Board of Education or the HomeWork Board is connected by its 

cable to the PC and to the power supply or battery. 
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√ Download the program to the BASIC Stamp.  You can do this in three ways: While 
holding the CTRL key down, press the letter R, for Run, or press F9, or use the 
mouse to click on the ► button on the BASIC Stamp Editor's tool bar. 

 
' Applied Sensors - FirstSound.bs2 
' One line Program. (This is a comment) 
' {$STAMP BS2}      (This is a compiler directive) 
' {$PBASIC 2.5}     (This is a compiler directive) 
 
FREQOUT 0, 1000, 1900 

 
If all is well, you should hear a high-pitch beep. Each time you press the Reset button on 
the Board of Education or the HomeWork Board, you will hear it again. The reset button 
is easily found on the board, and is clearly labeled Reset. You can press it as often as you 
want, no worries. Pressing the button starts your program over again but will not erase it. 
 
 
 

 

In case of difficulty during download: If RUN gives you a message about "hardware not 
found" or "communication error", then check to be sure that the cable that connects the PC 
to the Board of Education or the HomeWork Board is okay. Also check to be sure that the 
Board has a good power supply and that the power supply indicator light on the Board is 
glowing. If you need help, contact Parallax Tech Support for free at support@parallax.com, 
or call 1-888-99-STAMP in the US, or (916) 624-8333 outside the US.  Or, visit our Stamps 
in Class forum at http://forums.parallax.com. 

If you see a message indicating an error in your program, then check your typing.  If the 
program is okay and CTRL-R is accepted without an error message, but it simply won't 
work, then check the wiring on your Board. Compare it to the wiring shown on the Wiring 
Diagram. 

 
As you know from What's a Microcontroller? the comments at the beginning of the 
program are for the programmer's future reference. The compiler directives:  
 

{$STAMP BS2}  
{$PBASIC 2.5}  
 

…identify the model of BASIC Stamp you are using and the language version. Beyond 
these comments and directives, this program consists of only one line of code, using the 
FREQOUT command. 
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There are three arguments in the FREQOUT command: 
 

 
Freq1  selects an output frequency of 1900 Hertz. 

Duration makes the tone last 1 second 
(1000 milliseconds). 
 
Pin  uses P0 signal line for the tone. 

 
 
We can observe the voltage on P0 during the FREQOUT command using an oscilloscope 
such as the Parallax USB Oscilloscope (formerly the OPTAscope 81M). You will find 
out that the voltage goes back and forth from 0 to 5 volts very rapidly, and what comes 
out is fundamentally a 1900-Hertz sine wave that lasts for 1 second.  To learn more about 
FREQOUT or any other PBASIC commands, you may click on the book icon on the 
BASIC Stamp Editor's tool bar, then select PBASIC Reference.  
 
Figure 1-3 shows a screen capture of this signal taken with the Parallax USB 
Oscilloscope. The characteristics of the signal can be measured with the cursors, which 
are the red and blue lines at the peaks of the sine wave. In our actual measurement, the 
frequency was around 1.86 KHz, which you can read in the Cursors display. If you want 
to learn to use an oscilloscope, we recommend the Stamps in Class tutorial 
Understanding Signals listed in the Further Investigation section at the end of this 
chapter.   
 

FREQOUT  0, 1000, 1900 
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Figure 1-3 
OPTAscope 
Screen Capture 
 
 

 

 

Argument: An argument is a number that governs the behavior of a command or a process.  
In the FREQOUT command, the arguments of the command specify what pin to use, how 
long the sound will be, and what the frequency will be.  

 
Now it's time to experiment!  
 
√ Modify the program by changing the Freq1 argument from 1900 to 3800, resulting 

in a higher pitch:  
 

FREQOUT 0, 1000, 3800 
 

√ Download the modified program to your BASIC Stamp. 
√ Pay attention that what you hear is a higher pitch. 
√ Listen to it a couple of times, by re-running the program from the BASIC Stamp 

Editor and by pushing the Reset button on your Board. Don't be afraid you are 
going to wear out the BASIC Stamp by reprogramming it lots of times.  You can 
reprogram the BASIC Stamp at least a million times. 

√ Now try changing the Duration argument to make the tone last longer: 
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FREQOUT 0, 2000, 3800 
 
√ Change Freq1 back to 1900, and add the optional Freq2 argument to the FREQOUT 

command to play two tones at once. 
 

FREQOUT 0,2000,1900,2533 
 
The number 2533 is equal to 1900 times 4/3, the musical interval "fourth."  
 
√ And try the following frequency combination: 

 
FREQOUT 0, 2000,1900,1903 

 
√ How do you explain what you hear?  Try changing Freq2 to 1901, then 1902, then 

1903 again.  Do you hear the pattern? 
 
√ And try a very short duration, to make a click 2 ms long: 

 
FREQOUT 0, 2, 1900, 3804 

 
Feel free to experiment. By experimenting with individual BASIC Stamp commands, you 
can become aware of possibilities that may be of use in programs later on. 

Morse Code 
An "audio annunciator" is a device that gives sound feedback about what is going on in a 
system. Having an audio annunciator on the Board of Education or the HomeWork Board 
is going to be very useful throughout these experiments in Applied Sensors. In Chapter 2, 
we will program it to send numbers using Morse code, shown in Table 1-1, and use the 
code to annunciate the temperature readings. Morse code is a fine way to send messages 
using sound. 
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Table 1-1: Morse Code Numerals 
Numeral: Morse Code Binary 

0 dah dah dah dah dah 11111 
1 dit dah dah dah dah 01111 
2 dit dit dah dah dah 00111 
3 dit dit dit dah dah 00011 
4 dit dit dit dit dah 00001 
5 dit dit dit dit dit 00000 
6 dah dit dit dit dit 10000 
7 dah dah dit dit dit 11000 
8 dah dah dah dit dit 11100 
9 dah dah dah dah dit 11110  

 
The Morse code is based on sending patterns of short and long sounds. The long sound is 
always three times as long as the short sound. The short sound is called "dit" and the long 
sound is called "dah." The numerals are all made up of five dits and dahs. The letters of 
the alphabet have from one to four sounds, and the most common letters have the shortest 
patterns (for example, e = dit, t = dah, s = dit dit dit, q = dah dah dit dah). Punctuation 
marks  have six sounds, e.g. period = dit dit dah dah dit dit. Within one letter or numeral, 
the time between sounds is supposed to be the same length as the dit.  The time between 
different digits in a sequence like "50" is supposed to be the same length as a dah. The 
"binary" column is there just to show how you might think of Morse code as a binary 
number. 
 
In these experiments, we will use only the numerals. TwoDigitMorse.bs2 is a program 
that sends the two-digit number "50" as Morse code. You do not have to type in the 
remarks, but you have to include the compiler directives. Recall that remarks are the 
apostrophe ( ' ) and everything that follows it on the line. 
 
√ Enter the program TwoDigitMorse.bs2. into your BASIC Stamp Editor. 

 
' Applied Sensors - TwoDigitMorse.bs2 
' Morse code two digits test. 
 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
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Dit              CON        70          ' Short span of time in milliseconds. 
Dah              CON        3*Dit       ' Longer time, 3 times the above. 
index            VAR        Nib         ' Index. 
 
FOR index=1 TO 5                        ' Send 5 sounds. 
  FREQOUT 0, Dit, 1900                  ' Send a dit. 
  PAUSE Dit                             ' Short silence. 
NEXT 
 
PAUSE Dah                               ' Longer silence between digits. 
 
FOR index=1 TO 5                        ' Send 5 sounds. 
  FREQOUT 0, Dah, 1900                  ' Send a Dah. 
  PAUSE Dit                             ' Short silence. 
NEXT 

 
√ Run the program.  
√ Press the Reset button on your board if you want to hear the number 50 again.  

 
Can you modify your program to send the most famous Morse code message of all, SOS?  
 
You should already be familiar with the FOR-NEXT loop from the What's a 
Microcontroller? text. Think about how the program incorporates the rules of the Morse 
code. Note how it starts off by defining a constant named Dit in milliseconds, and then 
Dah is defined as a constant equal to three times Dit. PBASIC allows you to do that, to 
define one constant mathematically in terms of another. That's convenient, because it 
allows you to change the overall speed by changing only the Dit constant, and Dah will 
fall into place. 
 
√ Modify TwoDigitMorse.bs2 by changing the Dit constant from 70 to 140. 
√ Do it again, changing Dit to 35.  
√ Listen to the effect on the overall speed.  

 
The important thing to note is that the ratio between the Dit and the Dah is always going 
to be 1:3.  This is only an introduction. We will write a serious Morse program in Chapter 
2, to annunciate temperature readings. 

Temperature Readings from the DS1620 
Now for a complete change of pace! Let's move on to the main topic, acquiring some 
temperature readings. In engineering, we usually use the word acquire, instead of get, 
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when we refer to data or readings. Your Board of Education or your HomeWork Board is 
going to become your data acquisition system. 
 
The DS1620 is a modern temperature transducer (portions of the DS1620 data sheet are 
included in Appendix D). There is that word transducer again. Here, it refers to a device 
that transforms temperature into an electrical signal. The DS1620 takes temperature as its 
input, and transduces that value into a digital code that the BASIC Stamp can understand. 
The digital code represents the temperature of the DS1620 chip. 
 
√ Disconnect the battery or power supply to your Board of Education or HomeWork 

Board. A word to the wise: always do this before you change a circuit, as it is all 
too easy to touch a wire in the wrong place and risk burning something out. 

√ Locate the parts that you set aside at the beginning of this chapter: the DS1620 
Temperature Sensor, 1 kΩ resistor, 0.1 µF capacitor, and the 4 remaining jumper 
wires. 

√ Build the circuit for the DS1620 as shown in Figure 1-4, following the positioning 
for the wiring diagram shown in Figure 1-5. Please note that the piezo circuit built 
previously remains in place in the schematic and wiring diagram, as it should on 
your Board. 

 

VssVss

Vdd

1

2

4

3

8

7

5

6RST

CLK

DQ

GND T(com)

T(lo)

T(hi)

Vdd

DS 1620
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P14

P13

1 kΩ

0.1 µF

Vss

P0

 

Figure 1-4 
DS1620 Schematic  
 
Schematic of the wiring diagram 
depicted in Figure 1-5. Remember – the 
piezo transducer portion of the circuit 
has already been built. 
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Figure 1-5 
DS1620  Wiring Diagram  
 
• Plug the DS1620 in at the edge of the 
  breadboard, taking care to orient it properly. 
 
• 0.1 µF capacitor from Vdd to Vss 
 
•  DS1620 pin 4 wired to Vss. 
 
•  DS1620 pin 8 wired to Vdd. 
 
•  1 kΩ resistor connects P15 to DS1620 pin 1. 
  
•  DS1620 pin 2 wired to BASIC Stamp P14. 
 
•  DS1620 pin 3 wired to BASIC Stamp P13. 

 
√ Make sure you lined up the DS1620 in at the very end of the breadboard when you 

plugged it in, observing that there is an indicator at one end of the DS1620 package 
to indicate where pin 1 is connected. Be careful not to reverse the power supply 
connections! 

√ Double check your wiring, or better yet, have someone else check it, before you 
reconnect the power. 

 

 

Which Way is Up? The DS1620 is an 8-pin DIP package. The 
indicator denoting the DS1620's pin 1 is a small notch on top of the 
chip. On parts like the DS1620 and BASIC Stamp, the pins are 
always counted counterclockwise starting from the mark. The mark 
can be a bump, round depression, notch, beveled edge, etc. 

1

2

4

3

8

7

5

6
DS 1620

 

 
Now it's time to program the DS1620, literally. The DS1620 is itself a little computer. 
More accurately, it's a smart sensor. It can remember certain settings and do some pretty 
nifty tricks all on its own. Smart sensors are being used more and more in electronics and 
in the fields of environmental and industrial monitoring and control. 
 
√ Enter the program DS1620Configuration.bs2 into your BASIC Stamp Editor. 
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' Applied Sensors - DS1620Configuration.bs2 
' Configure the DS1620 for CPU continuous conversion. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
LOW 13                             ' Puts the DS1620 in the waiting state. 
FREQOUT 0, 1000, 3800              ' Sound shows us the program is running. 
 
HIGH 13                            ' Tells the DS1620 a command is coming. 
SHIFTOUT 15, 14, LSBFIRST, [12,2]  ' Command  to set DS1620 configuration 2. 
LOW 13                             ' Completes the command cycle. 
 
END                                ' End of program. 

 
√ Double-check your typing.  
√ Download DS1620Configuration.bs2 into your BASIC Stamp and run it. 

 
You will hear the one-second tone. That's all. But a lot has happened. The SHIFTOUT 
command sends two bytes, 12 and 2, to the DS1620. The 12 is a command to the DS1620 
to get ready for the configuration, and the 2 is the actual configuration.  Here are the four 
possible configurations: 
 
 0:  No CPU, continuous conversion 
 1:  No CPU, one-shot conversion 
 2:  Yes CPU, continuous conversion 
 3:  Yes CPU, one-shot conversion 
 
What does that mean? By selecting configuration 2, we are telling the DS1620 that we 
want it to send its readings to a CPU (Central Processing Unit—the BASIC Stamp). The 
alternative is for it to sit there and monitor temperature on its own, and not send back any 
readings. What good would that be? We asserted that the DS1620 is a smart sensor. 
Those other pins we are not using on the DS1620 could be wired up to a fan or heater, 
and set to regulate the temperature in a room or in a terrarium. The DS1620 also has a 
command that allows you to set a desired temperature. You will hear more about 
regulation of temperature in Chapter 6. But that is the way we are using it here, and we 
have not connected anything to those pins. 
 
By setting the CPU option as "Yes" the DS1620 will send data back on the serial line 
when it receives commands. The term "continuous conversion" means that it will read 
temperature over and over and always have a current value available. The term "one-
shot" (which we are not using) means that it will read the temperature once and then stop 
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until it receives a new command. The one-shot mode is used when an engineer needs to 
get the best battery life. 
 
Now that we have sent the configuration, the DS1620 will not forget the setting.  It is 
stored in memory inside the DS1620 in a kind of memory (EEPROM, like the BASIC 
Stamp program memory) that is not lost when the power supply is turned off.  
 
The heart of the DS1620Configuration.bs2 PBASIC program is the SHIFTOUT command. 
The sequence is an example of synchronous serial communication. It will pay for you to 
understand how it works. Lots of modern electronics found in everything from pagers to 
satellites use these ideas. One main reason for this popularity is that devices that use 
serial communication can be made very small, because there don't have to be many wires 
connecting them. Here are the arguments of the command: 
 

This is really part of it, the chip select. 

Two bytes sent from the BS2 to the DS1620. 
The bytes are sent least significant bit first. 
P14 on the BASIC Stamp is the clock. 
P15 is used to send the data bytes. 

HIGH 13
SHIFTOUT 15, 14, LSBFIRST, [12,2]

LOW 13 This is part of it too, ends the session.  

 
To explain how it works, I'll try an analogy using a stick figure dance. Please refer to 
Figure 1-6. The BASIC Stamp is at the bottom and the DS1620 is at the top. The DS1620 
starts off with a zero as its configuration in memory. 
 

• The BASIC Stamp starts the SHIFTOUT dance by raising the left hand. That is a 
wake-up call to the DS1620, and it means get ready, this message is for you.  

• Then the BASIC Stamp taps out the first 8 beats on the clock pin with its foot.  
• On each tap, the BASIC Stamp holds his right hand either low to signal a zero, 

or high to signal a one.  Those are the digits of a binary number, sent out, least 
significant bit (LSB) first on the data pin.   

• The DS1620 watches BASIC Stamp's right hand at each tap.  
• After eight taps, DS1620 has the binary number 12 and recognizes it as a 

command. The BASIC Stamp knows in advance that DS1620 will interpret 12 as 
a command. (The command set is determined by the engineers at Dallas 
Semiconductor, the manufacturer of this part). 
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Figure 1-6: SHIFTOUT Dance  

 
It isn't over yet!  
 

• The DS1620 is now waiting for another binary number to follow the 12.  
• The BASIC Stamp taps out 8 more beats.  
• The DS1620 watches BASIC Stamp's right hand at each tap. This time it gets the 

number 2.  
• The DS1620 stores the 2 in its EEPROM memory. Now the DS1620 is 

configured.  
• The BASIC Stamp puts down its left hand to signal that the sequence is finished.  
• The BASIC Stamp and the DS1620 are no longer in communication.  

 
All that signaling is taken care of automatically, in less than 1/1000 second, by the 
SHIFTOUT command. Figure 1-7 shows the same thing in a timing diagram as an engineer 
might draw it. 
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Figure 1-7:  Timing Diagram  

 
Note that 12 decimal = 00001100 binary, and 2 decimal is 00000010 binary. 
 
When reviewing the timing diagram from Figure 1-7 consider the following: 
 

• P13 starts the exchange by going from 0 to 5 volts.  The command ends when 
P13 goes back down from 5 to 0 volts.  P13 is often called the chip select or chip 
enable. 

• P14 is the clock and puts out a series of 16 pulses, 0 to 5 volts, in two groups of 
8. 

• P15 is the data line and puts out either 0 or 5 volts in each time slot, 
synchronized with the clock pulses on P14.  The first group forms the 12 
(00001100 in binary), and the second group forms the 2 (00000010) in binary. 

• Note the LSBFIRST argument for the SHIFTOUT command. The least significant 
bit comes first in the time sequence. 

• This whole transmission of 16 clock cycles takes about 1 millisecond, 1/1000 of 
a second, and it happens automatically under the SHIFTOUT command. 

 
If you want more explanation, please refer to the BASIC Stamp Manual where it 
describes the SHIFTOUT command in detail, and where there is also an application note. 
This is called synchronous serial communication, because the data is synchronized with 
the clock ticks that come from the BASIC Stamp. The BASIC Stamp is commonly 
referred to as the master and the DS1620 as the slave. That is because the clock pulses 
and commands originate in the BASIC Stamp. 
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Now for the main event: to read the room temperature from the DS1620.  
  
√ Enter the program DS1620.bs2 into your BASIC Stamp Editor. 
√ Download the program to your BASIC Stamp. 

 
' Applied Sensors - DS1620.bs2 
' Obtain temperature readings from the DS1620. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
x         VAR        Byte          ' General purpose variable, byte. 
degC      VAR        Byte          ' Variable to hold degrees Celsius. 
 
' Note: DS1620 has been preprogrammed for mode 2. 
 
OUTS=%0000000000000000             ' Define the initial state of all pins, 
     'FEDCBA9876543210 
DIRS=%1111111111111111             ' as low outputs. 
 
FREQOUT 0, 20, 3800                ' Beep to signal that it is running. 
 
HIGH 13                            ' Select the DS1620. 
SHIFTOUT 15, 14, LSBFIRST, [238]   ' Send the "start conversions" command. 
LOW 13                             ' Do the command. 
 
DO                                 ' Going to display once per second. 
  HIGH 13                          ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command. 
  SHIFTIN 15, 14, LSBPRE, [x]      ' Get the data. 
  LOW 13                           ' End the command. 
 
  degC = x / 2                     ' Convert the data to degrees C. 
  DEBUG ? degC                     ' Show the result on the PC screen. 
  PAUSE 1000                       ' 1 second pause. 
LOOP                               ' Read & display temperature again. 

 
 

 

In case of difficulty from an error in your program: If you get a message about an error 
in your program, you may have typed something wrong. The BASIC Stamp Editor program 
will position the cursor near where the error occurred, and will often display a message 
giving you a hint as to the problem.  Look for any error near the cursor. If the error message 
you see is about "hardware not found" or "communication error", then be sure your Board 
has power and that the cable to the PC is connected properly. If all that goes okay, but the 
program does not work, then you will have to decide whether the problem is in the program 
or in your wiring of the DS1620. 
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√ Look at the Debug Terminal to see the current temperature readings appear once 
per second. The readings are in units of degrees Celsius.  

√ Hold your finger on top of the DS1620 chip; you should see the temperature rise. 
√ Put your Board under a lamp or in the sun, and observe the time it takes for it to 

heat up some more.  
√ Move it away from the heat source and watch it cool down. 
√ Cool it down faster by fanning air across it.   
√ Measure the temperature near the floor. 
√ Measure the temperature on top of your PC. 
√ Measure the temperature next to your body. 
√ Use your new data acquisition device to find any other interesting warm or cool 

spots near your computer, and measure those! Experiment! 
 
Which one of these temperatures (if they are different) will be the one you call the room 
temperature? Usually, HVAC engineers (Heating, Ventilation and Air Conditioning) 
prefer to use a temperature reading that is taken in the shade at a position not too close to 
sources of heat, like computers and bodies. This is called a representative temperature. In 
the real world, there can be lots of variation over even small distances and short times. 
You always have to make some choice about where and when is the best place and time 
to make a measurement. 
 
What is going on in the program? First a word about the OUTS and DIRS statements: 
 

OUTS=%0000000000000000   ' Define the initial state of all pins 
     'FEDCBA9876543210 
DIRS=%1111111111111111   ' as low outputs. 

 
When using the BASIC Stamp, or any microcontroller, there will be pins connected to the 
outside world, and those pins can be either an input or an output, and if it is an output it 
can be either output high or output low. You are already familiar with the OUT and DIR 
variables from What's a Microcontroller? Here, with an "S" on the end, the statements 
control all 16 I/O pins, numbered from 0 to F (Note the apostrophe in front of the "F"--
above that makes it a remark – and it is just there for reference.) The BASIC Stamp I/O 
pins are numbered from P0 to P15, where A = 10,...,F = 15.   
 
It is good programming practice to start off every serious program by putting all of the 
microcontroller pins into a known, desirable state. When the BASIC Stamp is first turned 
on or reset, all of the pins are configured by default as inputs. This is a fine state for a 
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microcontroller to start up in. You, the designer, are in charge of making the pins outputs 
as needed. On the other hand, if a pin is not connected to anything, it is not a good idea to 
leave it as input. Unconnected inputs may cause the microcontroller to behave erratically 
or to draw excessive power from the battery. The above instructions turn all of the pins 
on the BASIC Stamp into low outputs. That is what we want at first for the piezo 
transducer and for the DS1620. All the other pins are made low outputs just as a matter of 
principle. Reasons to do otherwise will arise as we progress through these experiments. 
For more information on the DIRS and OUTS command, please refer to the BASIC Stamp 
Manual or the Help file in your BASIC Stamp Editor. 
 
The main action in the temperature program comes from the SHIFTOUT and SHIFTIN 
commands. 
 
The first SHIFTOUT should look familiar. You see the familiar sequence: It sets P13 high, 
and then sends one byte, 238, out to the DS1620, and then sets P13 low again to end the 
sequence. Inside the DS1620, the 238 is a command that tells it to start converting 
temperature into digital codes. The 238 command needs to be sent at least once after the 
DS1620 is powered on. Unlike the configuration command, this one is not stored in the 
permanent memory of the chip. 
 
Next comes the heart of the routine, to read the temperature from the DS1620. Again you 
see the familiar sequence: It sets P13 high, and then sends one byte, 170, out to the 
DS1620. So far so good. The DS1620 interprets the 170 as a command for it to get the 
current temperature reading and send it back to the BASIC Stamp. Now things get 
interesting. The DS1620, in response to the 170 command, takes control of the data line.  
The BASIC Stamp moves on to the SHIFTIN command. Here are the arguments: 
 

 
Name of the variable to receive the data. 
The bytes are received least significant bit first. 
P14 on the BASIC Stamp is the clock. 
P15 is used to receive the data bytes. 

SHIFTIN 15, 14, LSBPRE, [x]

LOW 13  End the command. 
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Figure 1-8:  SHIFTIN Dance  

 
P15 on the BASIC Stamp is now an input, whereas for SHIFTOUT it was an output. The 
BASIC Stamp is now ready to receive data from the DS1620. This is pictured once in 
Figure 1-8, and again as an engineering timing diagram in Figure 1-9. 
 
Observe that the BASIC Stamp is still in charge of the timing. The BASIC Stamp is still 
the master and the DS1620 is the slave. 
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Figure 1-9:  Timing Diagram for SHIFTIN  

 
Each time the BASIC Stamp sends out a pulse on the clock line P14 (taps its foot), the 
DS1620 signals the next bit of the temperature byte. It starts with the least significant bit 
first. The LSBPRE means that the BASIC Stamp looks for the least significant bit before it 
sends out the first clock pulse. It goes like this: get 1st bit, pulse clock, get second bit, 
pulse clock, and so on until it has all 8 bits. The BASIC Stamp stores the data it receives 
from the DS1620 in the variable, x.  
 
If the temperature is 25 degrees Celsius, the DS1620 sends back the value 50, which is 
two times the temperature. In binary, 50 is 00110010. The bytes that the DS1620 sends 
out are always two times the temperature. If the temperature is 25.5 degrees C, then the 
byte that the DS1620 sends back will be 51. Each step in x represents 0.5 degrees C.  
That is the resolution, the smallest change in temperature that the sensor detects.   
 
Our program then converts the raw value of x to temperature: 
 

degC = x / 2   ' Convert the data to degree C. 
 

The BASIC Stamp uses integer arithmetic. It throws away the 0.5 degree remainder.  
Both 50/2 and 51/2 come out as degC = 25, and 52 and 53 both come out as degC = 26, 
and so on. There are ways to keep the half degree resolution, but we won't pursue that 
here.  (But you can do so as a challenge!) 
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The temperature is sent to the Debug Terminal by this command: 
 

DEBUG ? degC    ' Show the result. 
 
The "?" makes the BASIC Stamp send "degC =" and then the actual value of degC to the 
Debug Terminal, with each entry on a new line. 
 

 

What are the operational limits of the DS1620? 

The DS1620 is perfectly capable of measuring temperatures below zero, down to -25 
Celsius. That would be important if you were out doing research on snow in Alaska, or if you 
were designing a control system for a freezer. The trouble is, the program we just wrote 
does not handle negative temperatures correctly. When the temperature goes to -1 degrees 
C, our reading would be degC = 127 instead of degC = -1. In order to read negative 
temperatures, we would have to take a couple more steps, which would complicate the 
program more than we want to get into at this time. 

 As it stands, zero degrees Celsius is the operational limit on the low end of our sensor 
circuit. Operational limits are everywhere in engineering, and they come up for all kinds of 
reasons, both in the software and hardware and in the properties of materials. This particular 
operational limit comes from a short cut we have taken in writing the software. That will be 
justified so long as the temperature is above freezing, but becomes a "bug" if we try to go 
below freezing. A famous software operational limit is the Y2K bug, where a software 
shortcut taken in the latter half of the 20th century led to an operational failure or glitches in 
the year 2000. 

 
Now for a valuable experiment like this one, you should save the program you have just 
typed in and debugged.  In this series of experiments, we are going to build up a large 
program, one piece at a time. This is the first piece you will be able to reuse. If you didn't 
do so already, you may want to enter the remarks attached to the program.  That will 
reinforce your understanding, and it will also make it easier for you to pick up the 
program the next time you look at it, in Chapter 2. 
 
Decide what you want to name the program. Your instructor will have directions, 
depending on how your class is set up to share the PCs. The program will have an 
extension of "bs2."  Let's say you decide to name the program "DS1620.bs2." 
 
This is how you save the program in the Parallax BASIC Stamp Editor: 
 
√ From the BASIC Stamp Editor menu bar, click File. 
√ Click on Save from the drop-down menu. 
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√ In the Save As window, navigate to the directory where you want to save the 
program.  

√ Type in the name of your program.  The .bs2 file extension will be added 
automatically unless you choose another option. 

√ Click Save. 
 

Your program can be re-opened and re-named from inside the BASIC Stamp Editor when 
it comes time to add to it in the upcoming exercises. 
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Challenge! 

1. Write a program using a sequence of FREQOUT commands to play a simple tune.  
Look up the FREQOUT command in the BASIC Stamp Manual. You will find an 
example of how to play Mary Had a Little Lamb. (Okay, you can try Stairway to 
Heaven, or Beethoven's 5th, if you prefer. You will discover some of the high 
fidelity limitations of the piezo transducer!)  If you want to explore 
microcontroller music more thoroughly, see What's a Microcontroller v2.0 or 
later for details. 

 
2. Define a variable degF for Fahrenheit.  Display both degrees Celsius and degrees 

Fahrenheit on the Debug Terminal. Use either formula:  
 

degF = degC * 9 / 5 + 32    or         degF = x * 9 / 10 + 32 
 

Is one formula better than the other?  Why?  Observe how the readings change as 
you gradually change the temperature of the DS1620 chip. 

 
3. Display degrees Celsius resolved to 0.5 degrees.  Recall that the result that 

comes from the DS1620 is a binary number where each bit represents 0.5 
degrees.  To get degrees, we divided by 2 and lost a bit of information (literally, 
one bit).  You can display the result as 205 to represent 20.5 degrees C.  Hint: 
multiply by 5 instead of divide by 2. 

 
4. If the temperature is greater than (you choose a value), play an alarm tone on the 

piezo transducer.  Make the alarm stop when the temperature goes back down.  
Then modify it so that the alarm continues, even when the temperature goes back 
down. Under what circumstances would each kind of alarm be appropriate? 

 

Further Investigation 

"What's a Microcontroller ?", Student Guide, Version 2.2, Parallax, Inc., 2004 
Written by Andy Lindsay of Parallax, Inc., this text begins with detailed 
instructions for setting up and using your BASIC Stamp and Board of Education 
or HomeWork Board for the first time.  Chapter 8 explores frequency and sound, 
including microcontrolled music.  It is available online from www.parallax.com.  
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"Understanding Signals", Student Guide, Version 1.0, Parallax, Inc., 2003 
Written by Doug Pientak, formerly of Optimum Designs, Inc., this introduction 
to the basics of digital oscilloscopes features the Parallax USB Oscilloscope 
(formerly the OPTAscope 81M).  The student learns about signals through 
building circuits that generate and manipulate different types of waveforms with 
the BASIC Stamp 2, and then measures and analyzes them with the Parallax 
USB Oscilloscope. The book and two software platforms for the Parallax USB 
Oscilloscope are available online from www.parallax.com.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 26 · Applied Sensors 
 

 
 
 



Chapter 2: Data Logging · Page 27 

Chapter 2: Data Logging 
 
The theme of the Data Logging experiment is best answered by the question: What is 
data logging and why is it important when using sensors? During the activities in this 
experiment you will:  
 

• Design a user interface by adding a pushbutton to your existing setup on the 
Board of Education or HomeWork Board, then implement single click, double 
click and long click to do different things  

• Learn the basics of READ and WRITE with the BASIC Stamp's EEPROM  
• Implement a "talking (Morse code) thermometer" 

 
Constancy punctuated by change: that is one prevalent view of the real world. In order to 
understand and predict events, people often need to keep a record of variables that affect 
the action. In laboratories, factories, and field research, the data logger, or data 
acquisition system, or DAQ for short, is an essential tool. It is a machine that 
automatically takes readings and stores them at regular intervals of time (or on some 
other basis) into the memory of the machine for later retrieval. 
 
Data is stored in a log file. The term comes from nautical history, where readings of 
position and depth soundings on a ship were regularly noted in the Captain's log-book. In 
fact, some data was collected by throwing a log (not the book!) off the bow of the boat 
and counting the time it took for the log to reach the stern of the boat. Then they could 
calculate speed. 
 
These days, much logging is done by computers with sensors attached. Computers are 
well suited to data logging - they never get bored or tired, and they can work reliably and 
very rapidly if required. It can be difficult, boring, or downright impossible for a real 
human being to exist in the place and time where data needs to be collected. Data loggers 
are found out on buoys floating in the ocean, high on windy mountaintops, on spacecraft, 
in collars on grizzly bears, in the stomachs of whales, out in orchards and vineyards, and 
in innumerable industrial settings.   
 
Another "buzz word" these days is SCADA, for Small Computer Aided Data Acquisition.  
That usually refers to something fancier, a network of sensors and computers, but the 
general idea is the same. Data loggers may even communicate to a central hub via 
TCP/IP connections to the Internet, or via long-distance radio links. 
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In this experiment you will learn important details about the EEPROM memory in the 
BASIC Stamp 2. This is in preparation for logging readings of temperature, light and 
water level in the experiments to come. Also, you will improve on your DS1620 
thermometer from the previous experiment, and make it talk (in Morse code). And as a 
warm-up, you will work with one pushbutton and the piezo speaker, to make a user 
interface. 
 
Everyone who has a computer understands what you mean by a mouse, and the actions of 
click, double-click, and click-and-hold. These actions are central to the modern 
computer's user interface. Have you ever wondered how a program implements those 
actions? How hard would it be to implement them on the BASIC Stamp? Well, it is not 
too hard at all, and we are going to do it, to enable one button on your Board to perform 
multiple tasks. There is not going to be room for multiple pushbuttons. One button, along 
with feedback from the piezo transducer, is going to have to do it all for our user interface 
when the Board is not docked to the PC. 

Parts Required 

The Applied Sensors experiments are progressive and build on the previous projects. 
Therefore, you'll be adding parts to your Board of Education or HomeWork Board. This 
experiment requires the following parts: 
 
(1) Pushbutton  
(1) 10 kΩ resistor  
(1) 220 Ω resistor 
(2) Jumper wires 

Building the Circuit 

In the What's a Microcontroller? Student Guide you learned how to use one or two 
buttons to make decisions, and to control light emitting diodes. In this experiment you 
will build on that project and on the previous Applied Sensors experiment. You already 
have an audio annunciator for output. Now, let's install a pushbutton for input. 
 
√ Build the circuit as shown in the schematic (Figure 2-1) and wiring diagram 

(Figure 2-2). 
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Figure 2-1 
Data Logger Schematic  
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Figure 2-2 
Data Logger Wiring Diagram 
 
 
Install the pushbutton at the very 
edge of the breadboard.  
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Programming the Project 

The wiring has a pushbutton connected to a pull-up resistor, and the junction between the 
resistor and the switch connected to P1 on the BASIC Stamp, through a protective 
resistor in series. When the pushbutton is not pressed, the voltage at the BASIC Stamp 
pin is 5 volts (= Vdd) through the pull-up resistor. But when the button is pressed, the 
voltage at the BASIC Stamp pin is low, zero volts (= Vss).  
 
√ Enter the program TestPushbutton.bs2 into your BASIC Stamp Editor.  

 
' Applied Sensors - TestPushbutton.bs2 
' Test pushbutton wiring. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
DO 
  DEBUG BIN IN1 
LOOP 

 
√ Download the program to your BASIC Stamp. 
√ Run it and observe the Debug Terminal as you push and release the pushbutton.  

 
The program is going around and around the DO…LOOP, spewing out the level that it finds 
at the input. The variable is IN1. It is either high = 1, or low = 0. The reading should go 
to zero immediately when you press the pushbutton, and it should go to one when you 
release it. Yes? Go on to the next step. No? Is the problem in the program, the connection 
to the BASIC Stamp, or in the wiring of your pushbutton?  
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What's all this DEBUG stuff? 

In these experiments, you will be seeing the DEBUG command very often, to put data on the 
computer screen in the Debug Terminal. Its name comes from the notion of debugging. You 
can put information on the screen that helps you see what is going on in your program. 
Moreover, you can ask the DEBUG command to send any messages or data you want to the 
Debug Terminal, it does not have to be especially for debugging. 

The DEBUG command lets you display the data on screen in quite a few different ways, 
using modifiers and screen control commands. Previously we used commands like this to 
display temperature data: 

DEBUG ? degC 

That is a combination command that does 3 things: it prints the variable name and an equals 
sign; it prints the decimal value of the variable; and it moves the cursor down to a new line. 
The result looks something like this: 

degC = 25 

The current little program has a different form of the DEBUG command: 

DEBUG BIN IN1 

This prints the binary value of the variable IN1.  Yes, IN1 is a variable, the state of input 
pin P1, either low or high, 0 or 1.  This form of the DEBUG command prints only the "0" or 
the "1", and not the name " IN1 ", nor the "=", nor any spaces between the 1s and 0s, nor 
does it move down to a new line (until it hits the full width of the screen).  The result looks 
something like this: 

  11111111000000000001111111111111110000000 

  0000001111111111111111111000000011111... 

As we come to new forms, we will describe them briefly, and refer you to the BASIC Stamp 
Manual. You may always look up commands in  the BASIC Stamp Editor's Help file. 

 
Now, let's make the pushbutton produce a continuous sound while it is pressed down. 
 
√ Enter the program Buzzer.bs2. 

 
' Applied Sensors - Buzzer.bs2 
' Read pushbutton to control the piezospeaker. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
DO                                    ' Repeat forever. 
  IF IN1=0 THEN FREQOUT 0, 8, 2500    ' Buzz if button is pressed. 
LOOP 
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√ Run it, and press and release the pushbutton. 
 
You should hear a sound that may remind you of a cricket chirping. What is going on? If 
the button is up, nothing happens, because the IF statement sees a 0 in the input pin, so 
FREQOUT is not executed and simply sends the program back to the top of the DO…LOOP 
loop. If the button is down, the IF statement sees a zero on the input pin. The program 
then executes the FREQOUT statement. Then it loops back to the top.  So long as the button 
stays down, the loop with the FREQOUT is executed over and over.   
 
Recall that the argument 8 in the FREQOUT command is the duration of the tone in 
milliseconds.  The tone is 2500 Hertz, so in 8 milliseconds, there are 20 cycles of the tone 
(0.008 seconds * 2500 cycles per second = 20 cycles). Then the tone stops briefly, while 
the program goes back up to the top and tests the state of the P1 pin again. The tone is not 
produced during that time, because the BASIC Stamp can only execute one command at 
a time (This is an important fact to remember!). If the pin is still low, though, it soon is 
back to the FREQOUT command. 
 
So the sound looks something like this:  ||||||||.||||||||.||||||||.||||||||.||||||||. What you hear is not the 
pure 2500 Hertz tone, but a tone with repeated brief interruptions. These add the low sub-
tone you hear in the sound, at about 110 Hertz (about 9 milliseconds for the loop, 1/.009 
= 111). This is indeed kind of like a cricket's stridulation (song), which is produced when 
the insect rubs a file on one of its forewings against a ridge on the other forewing, 
producing a high pitch, with brief pauses in the back and forth motion of the wings. 
 
Let's try some variations on the above program: 
 
√ Modify Buzzer.bs2. by changing the FREQUOT command's Duration argument to 1.  
√ Download the modified program. 
√ Press and release the pushbutton, observing the result.  
√ Repeat this modification for Duration values of 4, 50, 500 and 5000.  

 
After you have run the program each time and listened, can you explain why each 
variation sounds as it does? At the long interval, 500 and especially 5000, note that the 
tone can go on long after the pushbutton is released. Why is that? Why doesn't the tone 
stop immediately when you release the pushbutton? 
 
√ Modify Buzzer.bs2 once again by changing the FREQUOT command's Duration 

argument back to 8. 
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√ Tap on the pushbutton to send the number 50, or the signal "SOS" in Morse code.  
(dit dit dit dit dit= "5" and dah dah dah dah dah = "0", dit dit dit = "S", dah dah dah 
= "O").   

 
It is already a useful program - a Morse code keyer! Refer back to Table 1-1 if you want 
to send other numeric messages. 
 
√ Try inserting a PAUSE 6 command on the line after the IF command.  

 
That gives a ||||||||......||||||||......||||||||......|||||||| pattern that may seem even more cricket-like. 
Crickets, in addition to their "output transducer" (the wings), also have an "input 
transducer" (an ear).  It is a membrane located on their front legs! Crickets are very 
sensitive to repeating patterns and pulses of sounds. It is their "Morse code." Their songs 
are part of their courtship and male rivalry. Entomologists have studied insect 
stridulations by reproducing sounds on speakers, and watching what arguments of the 
sound evoke what behaviors from the crickets. 
 
Sometimes you don't want an action to keep going all the time the button is down. You 
want it to happen once and only once each time the button is pressed.  
 
√ Modify the program so that is reads as SingleClickDown.bs2.  

 
' Applied Sensors - SingleClickDown.bs2 
' Single click on pushbutton, action on button down. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
DO                              ' Repeat forever. 
 
  DO                            ' Do nothing. 
  LOOP UNTIL (IN1=0)            ' until button is pressed. 
 
  FREQOUT 0, 100, 2500          ' Buzz if button is pressed. 
 
  DO                            ' Do nothing 
  LOOP UNTIL (IN1=1)            ' until button is released. 
 
LOOP 

 
As in the previous program, nothing happens until the button is pressed down. Then the 
tone plays for 100 milliseconds. Then there is a second holding loop, where the program 
stays looping until the pushbutton is released. This concept was introduced in the What's 
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a Microcontroller? Student Guide. When that occurs the program goes back up to the 
top, ready for the button to be pressed again. One press, one action. 
 
That is fine, but think about how a mouse click usually works. Most mouse clicks do not 
perform their action until you release the mouse button. That's easy.  Move the FREQOUT 
down after the second "Do nothing" loop: 
 
' Applied Sensors - SingleClickUp.bs2 
' Single click on pushbutton, action on button up. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
DO                                ' Repeat forever. 
 
  DO 
  LOOP UNTIL (IN1=0)              ' Loop here until button is pressed. 
 
  DO                              ' Do nothing. 
  LOOP UNTIL (IN1=1)              ' until button is released. 
 
  FREQOUT 0, 50, 1900             ' Buzz when button is released 
  FREQOUT 0, 100, 3800            ' and while we're at it, a better sound! 
 
LOOP 

 
Now a rising note should occur when the button is released. Logical, right? Be sure you 
understand totally how this works. 
 
Now let's make the pushbutton take one action if you click it, and a different action if you 
hold it down for a long time. This is similar to the action of some computer menus that 
only appear if you hold the mouse button down for a longer period of time. Or you may 
have seen this in a car radio, where you press a preset button briefly to select a station, 
but you hold the button down for a longer time (until you hear a beep), to program a 
station you want into the preset memory. Appliances from wristwatches to VCRs, and 
yes, instruments sold in catalogs, all use tricks like this to get to the configuration menus.   
 
Such a program needs a variable to keep track of the time you hold down the button. Try 
this:  
 
√ Enter and download the program LongClick.bs2. 
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' Applied Sensors - LongClick.bs2 
' Single click on pushbutton, actions on button up or long click. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
n       VAR    Word               ' Variable to keep  the time. 
 
DO                                ' Main loop. 
 
  DO                              ' Do nothing 
  LOOP UNTIL (IN1=0)              ' until button is pressed. 
 
  n = 0                           ' Variable initialization. 
  DO                              ' Loop to track pressing time. 
    n = n + 1                     ' Increment counter. 
  LOOP UNTIL (IN1=1 OR n>500)     ' Conditions to stop the loop. 
 
  IF (n>=500) THEN 
    FREQOUT 0, 5, 3800, 2533      ' Sound for long click. 
 
    DO                            ' Do nothing. 
    LOOP UNTIL (IN1=1)            ' Until button is released. 
 
  ELSE 
    FREQOUT 0, 50, 1900           ' Buzz twice when button is released 
    FREQOUT 0, 100, 3800          ' after a standard click. 
  ENDIF 
 
LOOP 

 
√ Quickly press and release the button, noting the effect. 
√ Now press and hold the button, noting a different effect. 

 
How does this work?  The program initializes the variable n after you press the button. 
While the button is down, the program goes around and around incrementing the value of 
n in the loop. The statement: 
 

LOOP UNTIL (IN1=1 OR n>500)  
 

…keeps the loop going repeatedly so long as the pushbutton remains down or the counter 
variable remains smaller than or equal to 500. Each time around the loop, the timer 
variable n increases by one. It is a race to see which happens first. Do you release the 
button first, or does the timer reach 500 first? If the button is released first, well, that is 
just a single click, as above. The program plays the tones and goes back up to the top to 
await another button action. But if the timer n reaches 500 before you release the button, 
the program executes the FREQOUT 0, 5, 3800, 2533 statement. There it plays one 
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short chirp, to let you know that you've gotten there, and then waits for you to release the 
button. And then it goes back to the top. 
 
Where does the magic number 500 come from? The simple answer is "trial and error." 
The programmer (you!) tries different numbers until it feels right. Approximately how 
long (in milliseconds) do you have to hold the button down before it is identified as a 
long click? Try experimenting - substitute different values in place of 500. 

Advanced Topic: Detecting a Double-Click with the BASIC Stamp 

Can the BASIC Stamp detect a double click? Sure, it's not too hard. At the end of a single 
click, the program has to wait a fraction of a second to see if you are going to press the 
button again. If you do, then it is a double click.  If you don't, it is a single click. The 
interval of time is so short that you don't really notice it. The actual interval is determined 
by trial and error, a "user preference." This too needs a timer variable. We will recycle 
the same timer variable, n, from the last program. Just for fun, we also modified the 
program so that it plays a constant chirp that continues until the button is released. Try 
this:   
 
√ Enter and download the program Doubleclick.bs2. 

 
' Applied Sensors - DoubleClick.bs2 
' Double and long click on pushbutton. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
n       VAR    Word               ' Variable to keep the time. 
 
DO                                ' Main loop. 
 
  DO                              ' Do nothing 
  LOOP UNTIL (IN1=0)              ' until button is pressed. 
 
  n = 0                           ' Variable initialization. 
  DO                              ' Loop to track pressing time. 
    n = n + 1                     ' Increment counter. 
  LOOP UNTIL (IN1=1 OR n>500)     ' Conditions to stop the loop. 
 
  ' First IF. 
  IF (n>=500) THEN                ' Long click? 
    FREQOUT 0, 5, 3800, 2533      ' Sound for long click. 
 
    DO                            ' Do nothing 
    LOOP UNTIL (IN1=1)            ' until button is released. 
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  ELSE                            ' Short click? 
    n=0                           ' Initialization to check double click. 
    DO                            ' Loop to track double click. 
      n = n + 1                   ' Increment counter. 
    LOOP UNTIL (IN1=0 OR n>150)   ' Conditions to stop the loop. 
 
    ' Second IF. 
    IF n>150 THEN                 ' Single click? 
      FREQOUT 0, 50, 1900         ' Buzz twice when button is released 
      FREQOUT 0, 100, 3800        ' after a single click. 
 
    ELSE                          ' Double click? 
      DO                          ' Wait until button is released. 
      LOOP UNTIL (IN1=1) 
 
      FREQOUT 0, 50, 3800         ' Play a unique falling sound 
      FREQOUT 0, 50, 2533         ' indicating double click. 
      FREQOUT 0, 50, 1900 
    ENDIF                         ' End of the second IF. 
  ENDIF                           ' End of the first IF. 
 
LOOP 

 
√ Give the pushbutton a single click. What do you hear? 
√ Give the pushbutton a double click. What do you hear now? 

 
If you press the pushbutton once and quickly release it, the program will generate the 
increasing pitch tones.  Now there is another race between the button and the timer. This 
time the button is up to begin with. If you quickly press the pushbutton a second time 
before the timer reaches 150, that means you intend a double click. But if the timer 
reaches 150 first, that means you just want a single click (or you have slow fingers and 
need to reset the preference to a longer time, say 200). 
 
√ Save the program DoubleClick.bs2, (or rename it if requested by your instructor) 

as we will be using "snippets" of what you learned here in programs to come. 
 

 

What is a Snippet?    You can "snip" an action from one program, and use it (with 
changes?) in another.  Pieces of programs that perform specific actions are called snippets. 
Snippets often do not stand on their own as complete programs. Programmers often 
exchange ideas in the form of snippets. 

 
At this point we are expanding on what you learned in the What's a Microcontroller? 
Student Guide. If you want, you could extend this logic to make a routine respond to a 
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triple click, like some word processing programs use to select an entire paragraph. We'll 
let that be a challenge! 
 
Now, let's move on. 

The Basics of Learning to READ and WRITE 

In this series of experiments, we are going to program the BASIC Stamp to collect 
readings of temperature and other variables. We want to log them, that is, collect them at 
regular intervals of time and store them in a file, and read them out later for comparisons, 
charts and graphs. We'll take this a step at a time.  First, it is important to understand how 
the memory on the BASIC Stamp is organized. 
 
You know from What's a Microcontroller? that the memory available in the BASIC 
Stamp 2 is of two kinds, RAM and EEPROM. To understand the difference, it may help 
you to think about these kinds of memory if you know where they are located physically. 
Take a look at Figure 2-3, which shows a top view of the BASIC Stamp 2.  
 

Voltage Regulator Resonator 

 
24LC16B PIC16C57 

Figure 2-3 
BASIC Stamp Memory 
 
The PIC16C57 chip is the BASIC 
Stamp's RAM and central 
processor. The 24LC16B is the 
EEPROM, which holds your 
PBASIC program and data we 
will be storing. 

 
Variables are created in the RAM (Random Access Memory). You store numbers in 
RAM with statements like this, using named variables: 
 

  x       VAR     Byte 
  x = 76 

 
Variables are very versatile. They can be added and subtracted and used in lots of other 
kinds of arithmetic, and they can be arguments in all sorts of commands that are 
described in the BASIC Stamp Manual. It is very fast to manipulate data in RAM (~200 
microseconds per operation), and RAM does not wear out with use. Trouble is, there isn't 
very much RAM available on the BASIC Stamp, only 26 bytes. It is not suitable for 
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storing lots of data. Also, the contents of RAM are lost when the BASIC Stamp loses 
power, or when the Reset button is pressed. RAM is not suitable for storing "valuable" 
data that you would want to survive when the power is disconnected. 
 
Then there is EEPROM. A greater amount of EEPROM memory is available on the 
BASIC Stamp: 2048 bytes. Although part of the EEEPROM is used for your PBASIC 
program code, there will be some left over for data storage. One great advantage of 
EEPROM is that it is semi-permanent. The EEPROM memory retains its contents with or 
without power and through resets.  
 
Two minor limitations of EEPROM are that it is relatively slow (~10 milliseconds to save 
a byte of data), and, it will wear out after something like 10,000,000 changes at one spot. 
To put this in perspective, if one certain location in EEPROM is reprogrammed over and 
over, once per second, it would take you about 116 days to get near the 10,000,000 mark. 
How many seconds are there in 116 days? On the other hand, at once per hour, it would 
take 1142 years to reach that same mark. (How many hours are there in 1142 years?) It is 
something to think about in planning. In Applied Sensors we may write to a single 
location a hundred times at most, nowhere near ten million. 
 
There are three instructions the BASIC Stamp 2 uses for interacting with EEPROM: 
DATA, which stores initial values during a program download, WRITE, which stores 
values during program run time, and READ, which retrieves values. Once you WRITE 
data to the EEPROM, you must READ it into a variable again before using it in a 
calculation or as an argument in a command. The main reason we use EEPROM is to 
store larger quantities of data, if we won't have to change them too often, and to safely 
store data it will stay as long as we want them to. 
 
DATA, WRITE, and READ are most easily used to move byte at a time, as shown below 
and in the following example programs.  However, PBASIC 2.5 allows you to use the 
Word modifier to handle word-sized variables, and also allows you to move multiple 
variables in one line of code.  To learn more about the power of these commands, read 
about them in your BASIC Stamp Editor's Help file. 
 
In PBASIC, the DATA directive reserves an area in the EEPROM, and gives it a name: 
 

 
The value 7 is loaded into EEPROM at address, Log. 

Log   DATA   7

 Name for the address in EEPROM where the data is located. 
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READ retrieves a byte from an address (in EEPROM) and copies its value to a variable (in 
RAM).  The value of the byte in EEPROM is not affected by reading it. 
 

 
RAM variable to receive the data. 

READ   Log,  X

 Where in EEPROM to get the data. 
 
WRITE may be used in a program to change the byte stored at an address in EEPROM.   
 

 
Byte size value. 

Log,WRITE 25

 Where in EEPROM to put it. 
 
 
or, with a variable, 
 

 
RAM variable. 

Log, XWRITE

 Where in EEPROM to put it. 
 
 
Do not confuse the address, Log in this case, with the data that is stored there!  
 
√ Enter and download EEPROMExample.bs2. 

 
' Applied Sensors - EEPROMExample.bs2 
' Distinction of constant, data and variable. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Dit        CON     70           ' Define a constant. 
 
x          VAR     Byte         ' Define two variables. 
y          VAR     Byte 
 
Log        DATA    7            ' Reserve a byte in EEPROM, initially 7. 
Worm       DATA    240          ' Reserve a byte in EEPROM, initially 240. 
 
READ Log, x                     ' Read data from EEPROM into the variables. 
READ Worm, y 
 
DEBUG ? Dit, ? Log,             ' Show all quantities. 
      ? x, ? Worm, ? y 
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The value of Dit is 70, an ordinary constant. The name Dit refers to the value itself. The 
values of Log and Worm are constants too, but they have values of 0 and 1, not 7 and 240. 
The names Log and Worm refer indirectly to the data. To read the 7 and the 240, there are 
two READ commands in the program. One READ gets the 7 from EEPROM address Log = 
0 and puts it in the RAM variable x, and the second READ gets the 240 from EEPROM 
address Worm = 1 and puts it in RAM variable y. The labels Log and Worm have the 
addresses 0 and 1 because PBASIC assigns addresses for data statements starting at 0.  
 
Now, let's try a modified version of EEPROM.bs2 that has four more lines at the end. 
 
√ Enter and download the program WriteEEPROM.bs2. 

 
' Applied Sensors - WriteEEPROM.bs2 
' Writing a variable. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Dit        CON     70           ' Define a constant. 
 
x          VAR     Byte         ' Define two variables. 
y          VAR     Byte 
 
Log        DATA    7            ' Reserve a byte in EEPROM, initially 7. 
Worm       DATA    240          ' Reserve a byte in EEPROM, initially 240. 
 
READ Log, x                     ' Read data from EEPROM into the variables. 
READ Worm, y 
 
DEBUG ? Dit, ? Log,             ' Show all quantities. 
      ? x, ? Worm, ? y 
 
x = x + 1                       ' Make a new value for x. 
y = y / 2                       ' Make a new value for y. 
 
WRITE Log, x                    ' Change the value stored at Log. 
WRITE Worm, y                   ' Change the value stored at Worm. 

 
√ Press the Reset button on your Board a couple of times with the Debug Terminal 

active. You should see the values of x increase by 1 each time, and the value of y 
halved each time.  

√ Disconnect the power momentarily, and reconnect it. The first value you see on the 
Debug Terminal should be the next one in the series, showing that the EEPROM 
retains its data when the power is off.  

 



Page 42 · Applied Sensors 
 

What happened to the 7 and the 240 that were there when you first ran the program? 
They are gone. The WRITE statement changed those values. The only way to restore the 
initial condition is to download the program again from your computer.  
 
√ Re-download the program WriteEEPROM.bs2 from the BASIC Stamp Editor.   
√ Verify that the initial variables stored by the DATA directives have returned. 

 
The EEPROM is often used to store settings and calibration constants that may need to be 
changed occasionally. It might be a argument that tells how hot the temperature has to be 
before turning on a fan, or how many seconds have to pass before recording data in a log 
file. Here is a fun demo program that plays a musical scale when you single-click the 
button. How many notes it plays depends on an argument that is stored in the EEPROM. 
 
√ Enter and download the program SaveSetting.bs2. 

 
' Applied Sensors - SaveSetting.bs2 
' Saving a setting in EEPROM. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Dit        CON     70           ' Define a constant. 
 
many       VAR     Word         ' RAM variable for number of sounds. 
n          VAR     Word         ' Multipurpose variable. 
tone       VAR     Word         ' Frequency of the sound. 
 
How        DATA    1            ' Initial number of sounds. 
 
DO                              ' Main loop. 
 
  DO 
  LOOP UNTIL (IN1=0)            ' Loop here until button is pressed. 
 
  n = 500                       ' Variable initialization. 
  DO                            ' Loop to track pressing time. 
    n = n - 1                   ' Decrement the counter. 
  LOOP UNTIL (IN1=1 OR n=0)     ' Conditions to stop the loop. 
 
  IF (n=0) THEN                 ' Code for long click. 
    DO                          ' Repeat these actions. 
      FREQOUT 0, 2, 3800        ' Short tick. 
      PAUSE 400                 ' Short delay (time for response). 
      n = n + 1                 ' Increment counter. 
    LOOP UNTIL (IN1=1)          ' Until button is released. 
 
    WRITE How, n                ' Store the new argument. 
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  ELSE                          ' Code for short click. 
    tone = 4519                 ' Play tones, this is the first tone. 
    READ How, many              ' Get how many to play from EEPROM 
 
    FOR n=1 TO many             ' and play them. 
      FREQOUT 0, Dit, tone      ' Sound, duration Dit, frequency tone. 
      PAUSE Dit                 ' Brief silence. 
      tone = tone ** 61858      ' Next note of chromatic scale. 
    NEXT                        ' End of FOR-NEXT. 
 
  ENDIF 
 
LOOP 

 
√ Press and hold the pushbutton for a few moments, then release it. 
√ Give the pushbutton a quick press-and release click. 
√ Repeat several times, holding the button down for varying intervals. 

 
What happened each time? Try to figure out how it works in detail. It consists of snippets 
from the foregoing button and memory routines. (The mathematical formula, tone = 
tone**61858, generates the chromatic scale, but you don't have to understand that here.) 
Do understand the role of READ and WRITE. There is one READ command to fetch the 
number of notes to play, and one WRITE command to store the new number selected by 
the user.  
 
To test your understanding, modify the program SaveSetting.bs2 as follows: 
 
√ Add a DATA directive with a label of Dur and make 70 milliseconds its initial 

value. 
√ Change Dit from a constant to a byte variable named dit (because variables are 

formatted to start with a lowercase letter). 
√ At the outset of the program, use READ to move the value from Dur into the 

variable dit. At this point, the program should run, just as it does now.  
√ At the end of the long click routine, before the ELSE statement, have it wait for 

you to press and release the button a second time. 
√ During this second time the button is down, have it increment the value of n each 

time around a loop. 
√ When the button is released, write the value of n into the address Dur. 
√ Verify that the program runs, and that it allows you to change both the number of 

notes to be played, and the duration of the notes. 
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Talking Thermometer, Morse Code Revisited 

We will begin this next activity by re-using the program DS1620.bs2 that you saved in 
Chapter 1. This program reads the temperature from the DS1620 chip and displays it on 
the Debug Terminal.  
 
√ Open the program DS1620.bs2 (or whatever you named it). 
√ Download and run it to make sure that it still works.  

 
You never can be sure, maybe you accidentally bumped a wire on your breadboard, or 
maybe someone was fooling around with your program on disk. It is a wise practice to 
start each step of building a complex system at a point where you know everything is 
working.  
 
As it stands, the program displays the temperature on the Debug Terminal once per 
second. Let's modify it to make the piezo transducer send the temperature using Morse 
code. The Morse code in the first experiment of Applied Sensors was an introduction - it 
only sends the number 50. We need a subroutine that can sound out any arbitrary two-
digit number we throw at it. We'll also change the program so that your new pushbutton 
will initiate the temperature reading. Starting with the program from Chapter 1, we 
developed the next program. 
 
√ Save your program under the new name DS1620MorseCode.bs2. 
√ Enter the new name and description in the Title section of your program in the 

BASIC Stamp Editor.  
√ Continue entering the new code, being careful to note that elements of the old 

program have been separated into different sections, and following the hints in the 
new comments. 

 
' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors - DS1620MorseCode.bs2 
' Talking thermometer, using Morse code. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
' -----[ Constants ]------------------------------------------------------- 
Dit       CON        70            ' Milliseconds for Morse dit. 
Dit2      CON        2*Dit         ' Constants related to Dit. 
Dah       CON        3*Dit         ' Ditto. 
 
' -----[ Declarations ]---------------------------------------------------- 
mc        VAR        Byte          ' Temporary for Morse pattern. 
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xm        VAR        Byte          ' Morse input variable. 
j         VAR        Nib           ' Index for digits to send. 
i         VAR        Nib           ' Index for dits and dahs. 
 
x         VAR        Byte          ' General purpose variable, byte. 
degC      VAR        Byte          ' Variable to hold degrees Celsius. 
 
' -----[ Initializations ]------------------------------------------------- 
' Note: DS1620 has been preprogrammed for mode 2. 
' If not, uncomment the instructions on the next line on the first RUN 
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13 
 
OUTS=%0000000000000000             ' Define the initial state of all pins 
     'FEDCBA9876543210 
DIRS=%1111111111111101             ' as low outputs, 
                   '^--------------- except P1, an input for pushbutton. 
 
FREQOUT 0, 20, 3800                ' Beep to signal that it is running. 
 
HIGH 13                            ' Select the DS1620. 
SHIFTOUT 15, 14, LSBFIRST, [238]   ' Send the "start conversions" command. 
LOW 13                             ' Do the command. 
 
' -----[ Main Routine ]---------------------------------------------------- 
DO                                 ' Start of the main loop. 
 
  DO 
  LOOP UNTIL (IN1=0)               ' Loop here until button is pressed 
 
  DO 
  LOOP UNTIL (IN1=1)               ' Loop here until button is released 
 
  HIGH 13                          ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command. 
  SHIFTIN 15, 14, LSBPRE, [x]      ' Get the data. 
  LOW 13                           ' End the command. 
 
  degC = x / 2                     ' Convert the data to degrees C. 
  DEBUG ? degC                     ' Show the result on the PC screen. 
  xm = degC                        ' Morse routine expects data in xm. 
  GOSUB Morse                      ' To the subroutine. 
 
LOOP                               ' Back to wait for button again. 
 
' -----[ Subroutines ]----------------------------------------------------- 
Morse:                             ' Emits byte xm as Morse code. 
  FOR j=1 TO 0                     ' Send 2 digitS, Tens then ones. 
    mc = xm DIG j                  ' Pick off the (j+1)th digit. 
    mc = %11110000011111 >> mc     ' Set up pattern for Morse code. 
    FOR i=4 TO 0                   ' 5 dits and dahs. 
      ' Send pattern from bits of mc. 
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      FREQOUT 0, Dit2*mc.BIT0(i) + Dit, 1900 
 
      PAUSE Dit                    ' Short silence. 
    NEXT                           ' Next I, dit or dah of five. 
 
    PAUSE Dah                      ' Interdigit silence. 
  NEXT                             ' Next j, digit of two. 
RETURN                             ' Back to main program.  

 
√ Double-check your work against the program in the text above. 
√ Run the program and try it by clicking the button.  
√ Heat up the DS1620 with your fingertip or a lamp, and then cool it off by fanning 

it. 
√ Listen to the Morse code as you make the temperatures go up and down.  
√ Watch the numbers display simultaneously in the Debug Terminal. 
√ Save the program DS1620MorseCode.bs2 on a disk, or under the name and 

directory given by your instructor. 
 
If you are not a ham or Navy radio operator, you may need a little practice to hear the 
numbers of the Morse code, but it shouldn't take long. This talking thermometer is a 
useful instrument already. A visually impaired person could use it. Or, how about a 
biologist doing research on bats in a dark cave? (You would need to listen on an 
earphone—bats are very sensitive to high-frequency sound!) Can you think of other 
situations where this device might be useful?  
 
Now let's look at the program step by step. Several variables and constants are defined at 
the top of the program. Some of these you will recognize from Chapter 1, where they 
appeared in the routine to send the number 50 as Morse code. There is the basic length of 
the Dit in milliseconds, and the Dah, which is defined as three times the length of the 
Dit, and a new one, Dit2, which is defined as twice the length of the Dit. There are a 
couple of other variables, too, xm and mc, that we'll talk about in connection with the 
Morse subroutine below. 
 
P1 is now an input, for the pushbutton. P1 is set to input by making its bit in DIRS equal 
to zero. The following statements fix the input and output state of all 16 pins of the 
BASIC Stamp. 
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OUTS=%0000000000000000    ' Define initial state of all pins 
     'FEDCBA9876543210 
DIRS=%1111111111111101    ' as low outputs. 
                  ' ^------ this is now an input for the button 

 
Note the single change from the original program. If we do not set that bit in DIRS equal 
to zero, then the program cannot read the pushbutton. If you don't believe it, try it and see 
what happens. You may wonder about the programs in the first part of this experiment, 
where we were reading the state of the pushbutton very well with neither a DIRS nor an 
OUTS command. The reason is that the BASIC Stamp always starts up with all its pins as 
inputs. As a matter of good programming, we are turning them all into outputs, except the 
ones we truly need to be inputs. When we make a pin like P1 into an input, it doesn't 
matter what the state of the corresponding OUTS bit is. The OUTS bit has no effect when 
the pin is defined as an input. 
  
The central idea of the Morse subroutine is held in the binary pattern, 
%11110000011111.  The % sign marks it as a binary number. This is the pattern of zeros 
and ones as they are actually stored in binary brain of the BASIC Stamp. This binary 
number does have a standard numerical value (it happens to be 15391), but the numerical 
value is not important here. Quite often in computer science, you have to think of 
computer data as something other than a standard numerical value. Think of this as a 
pattern on an audio tape. If you put a playback head (by analogy) at the far left and play 
back 5 bits moving to the right, you come up with 11110. This is going to translate in 
Morse code to dah dah dah dah dit, a nine. (It is not a binary number nine, which would 
be 1001 - instead, it is a pattern for Morse code number 9 - there are many ways to 
represent numbers!) Take a look at the way the different digits overlap in the binary 
pattern in Figure 2-4. Depending on where you start on the "tape" different code patterns 
result, in fact, the total pattern is arranged to give the code patterns for the Morse code 
numerals numbers in order.  It's a trick.   
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11110000011111

11110, dah dah dah dah dit  9

11100, dah dah dah dit dit  8

11000, dah dah dit dit dit  7

10000, dah dit dit dit dit  6

00000, dit dit dit dit dit  5

00001, dit dit dit dit dah  4

01111, dit dah dah dah dah  1

00111, dit dit dah dah dah  2

00011, dit dit dit dah dah  3

11111, dah dah dah dah dah  0 

Figure 2-4 
Morse Code Binary Pattern 

 
Now let's take a closer look at how the Morse code elements fit into the program. First, 
you have to recognize that there is a subroutine that starts with the label Morse, and ends 
with the RETURN command. By writing the Morse section as a subroutine, we will be able 
to use it over again at different points in our progressive program, as it develops. 
 
The Morse subroutine is called from within the Main Routine section. The Main Routine 
section begins by monitoring for a pushbutton press. A pushbutton release is followed by 
SHIFTOUT and SHIFTIN instructions which acquire the temperature reading from the 
DS1620, and put it into the variable x.  Next, x is divided by 2 to give us the variable 
degC, and the DEBUG command sends this value to the Debug Terminal so we can read 
the temperature in degrees Celsius on the PC screen.  Then, the variable xm is assigned 
the value of degC. This is necessary because xm is the variable that will  be recognized 
by the Morse subroutine code we designed earlier.  GOSUB Morse sends the program to 
that subroutine, where xm is converted to Morse code and played on the piezospeaker 
with a FREQOUT instruction.  The RETURN command at the end of this subroutine sends 
the program back to the final LOOP in the Main Routine section, causing the program to 
go back to DO at the top, where it will begin monitoring for a another pushbutton  press. 
  
Let's look closer at the Morse subroutine. The variable xm is the one that will be sounded 
out as Morse code. In the Morse subroutine itself there are two FOR…NEXT loops, one 
inside the other. The outside loop has an index j: 
 

Morse:                         
  FOR j=1 TO 0                           
    mc = xm DIG j                        
    mc = %11110000011111 >> mc           
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    'Inner FOR…NEXT loop here 
  NEXT                                   
RETURN                                   

 

 

What is an Index, and what is a Pointer? An index is a variable that steps through a 
sequence of values. For example, j in the for-next loop steps through the values of 1 and 0. 
A pointer is a variable that specifies where in memory, or where in some ordered set, to 
retrieve information. For example, the variable j is both an index and a pointer. It points to a 
digit in the variable xm. The index i in this same program is a pointer to the bits (binary 
digits) of the variable mc. In experiments to come, we will use indices and pointers to refer to 
the data in the EEPROM log, as in, 1st reading, 2nd reading, and so on. 

 
When the program first arrives at the Morse subroutine, it sets j equal to 1, and then 
continues with j = 1 all the way through the outer loop (including everything in the 
inner FOR…NEXT loop). The keyword NEXT in the outer loop, is the trigger that makes the   
program jumps back up to the corresponding outer FOR, sets j = 0, and executes all the 
way through again, back to the outer NEXT. Note that the BASIC Stamp knows how to 
count backwards! After j has taken on the values 1 and 0, that's it, the loop ends, and the 
program returns to the Main routine. 
 
There are two math statements in this outer FOR…NEXT loop. The first one is:  
 

    mc = xm DIG j                        
 
This DIG is a PBASIC operator, the way "plus" and "divided by" are operators. Short for 
digit, DIG returns a digit from a given position within a larger number. In our program 
DIG sits between two numbers, xm and j, and returns the (j+1)th digit of xm, reading 
from right to left. It is easiest to illustrate with a specific example: Suppose the value of 
xm = 25. On the first time through the loop, the value of j is 1, which gives us j+1 = 2. 
Therefore, (mc = 25 DIG 1) will return the 2nd digit from the right, in the tens column, 
which is a 2.  So the instruction (mc = 25 DIG 1) will produce (mc = 2). On the second 
time through the loop, the result of (mc = 25 DIG 0) will be (mc = 5), because 5 is the 
1st digit from the right, in the ones column. The logic of this can be extended to larger 
numbers, for example, j = 3 would point to the thousands digit. However, in this 
program we will only need 2 digits.  Check out your Basic Stamp Editor's Help file for 
the full description of DIG. 
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Now we have a number between 0 and 9 inclusive in the variable mc. The next statement 
sets up the pattern for the Morse code. 
 

  mc = %11110000011111 >> mc           
 
The symbol >> is another operator that goes between two numbers. The constant, 
%11110000011111, is the binary pattern we were talking about above. The >> operator is 
one that operates specifically on binary patterns. It is called a shift operator. (Shifts are 
very important in computer science.) It shifts the binary pattern to the right a certain 
number of places (mc places) and drops that same number of bits off the right end. Let's 
continue using the example from above, that had the initial value mc = 25. Continuing 
with first time through the loop, the digit  is 2 when the program arrives at this command: 
 

  mc =  11110000011111 >> 2  ' Shifting bits instruction 
' mc =  111100000111           pattern shifted two to the right 
'                   \11        two bits dropped                
'              ^^^^^-----> 5 bits are the Morse pattern for "2" 

And the second time through the loop, the digit is 5: 
 

  mc =  11110000011111 >> 5  ' Shifting bits instruction 
' mc =  111100000              pattern shifted 5 to the right 
'                \11111        five bits dropped                
'           ^^^^^-----> 5 bits are the Morse pattern for "5" 

 
What has happened is that the Morse code pattern has ended up in bits 4 to 0 of the 
variable mc. In the example, 00111 represents 2 in Morse code, and 00000 represents 5. 
Earlier we talked about moving a "playback head" over the "tape"; here we have moved 
the "tape" over the "playback head," ready to play back the five bits on the right. 
 
Now the Morse code pattern is in position, and we come to the inner FOR…NEXT loop: 
 

    FOR i=4 TO 0                         
      FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900 
      PAUSE Dit                          
    NEXT                                 
    PAUSE Dah                            

 
The index here is i, and it runs through 5 values, counting backwards from 4 to zero.  
The FREQOUT command plays a dit or dah for each time around the inner loop. Between 
each sound, there is a short pause equal in width to a Dit. After the 5 dits and dahs of the 
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tens-column digit are played, there is a longer pause, equal in width to a Dah.  Then, the 
program loops back to get the ones-column digit from the DIG operation, then plays its 
five-bit Morse code equivalent in the same way. 
 
The FREQOUT command is familiar, except here the Duration argument is neither a 
constant nor a simple variable. It is an expression. PBASIC lets you do that. The 
expression is:  
 

    Dit2*mc.BIT0(i) + Dit 
   '     ^^^^^^^^^^-------this has a value of either 0 or 1.   

 
Let's start out by stating that mc.BIT0(i) is a variable that has a value of either zero or 
one. So the statement reduces with simple multiplication and addition to either: 
 

    Dit2 * 0 + Dit  ==>  Dit 
 …or 

    Dit2 * 1 + Dit  ==>  3*Dit ==> Dah 
 
The FREQOUT command plays a dit or a dah, depending on the value of the mystery 
variable. 
 
So what exactly is mc.BIT0(i)? One powerful feature of PBASIC is that it allows you 
easy access to individual bits in that byte. The byte, mc, has 8 bits. The notation, mc.BIT0 
is called a modifier of the byte variable mc. It is really just name for the least significant 
bit of that byte. The second bit is mc.BIT1, and so on until mc.BIT4, is the 5th bit. It is 
simply a way of naming the bits, a syntax that is built into the PBASIC language. 
 
There is still another way to refer to those same bits, using a variable as a pointer to bits 
in the byte. This notation is mc.BIT0(i). For example, mc.BIT0(4) and mc.BIT4 both 
refer to the same bit. Literally it means, "the fourth bit up from mc.BIT0." See the BASIC 
Stamp Manual, for more explanation. Figure 2-5 illustrates the way it works: 
 

Figure 2-5 
Five lower bits of the byte variable mc. 

00111

mc.BIT0  or  mc. 0(0)BIT

mc. 1  or  mc. 0(1)BIT BIT

mc. 2  or  mc. 0(2)BIT BIT

mc. 3  or  mc. 0(3)BIT BIT

mc. 4  or  mc. 0(4)BIT BIT  
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The variable i is the pointer. The power of this indirect, or array, method of naming, is 
that the program loop (for i = 4 to 0) can step through the bits of the byte variable, mc, 
one by one, and pick off the binary 0 or 1 values of the individual bits. Those are the bits 
that need to be sounded out as 0 → dit and 1→ dah. Here is another way we could have 
played the five dits and dahs, without using a FOR…NEXT loop: 
 

      FREQOUT 0, Dit2*mc.BIT0+Dit, 1900   '  first bit 
      PAUSE Dit                           '  short silence 
      FREQOUT 0, Dit2*mc.BIT1+Dit, 1900   '  second bit 
      PAUSE Dit                           '  short silence 
      FREQOUT 0, Dit2*mc.BIT2+Dit, 1900   '  third bit 
      PAUSE Dit                           '  short silence 
      FREQOUT 0, Dit2*mc.BIT3+Dit, 1900   '  fourth bit 
      PAUSE Dit                           '  short silence 
      FREQOUT 0, Dit2*mc.BIT4+Dit, 1900   '  fifth bit 
      PAUSE Dit                           '  short silence 

 
You see, this method refers directly to each bit, one at a time.  But it comes out much 
shorter and more elegant using the FOR…NEXT loop and the index as a pointer to the bits. 
 
Whew! That was a lot of explanation for a short stretch of program. But it contains some 
advanced ideas: how to interpret a number as a pattern, using an index and a pointer, and 
how to extract decimal digits. We covered the DIG and shift (>>) operators, how to use 
an expression as an argument, and how to use array modifiers of PBASIC variables. 
These are the stuff of programming a microcontroller! 
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Challenge! 

1. Hook up an LED to P5, so that HIGH 5 will turn it on. Write a program to turn 
the led ON when you click the button once, and OFF when you click the button 
again. (Push on, push off action). Hint: although there are several ways to do 
this, the TOGGLE command may help. See the BASIC Stamp Manual for more 
information. 

 
2. Write a program for your BASIC Stamp 2 that prints "working" on the Debug 

Terminal, and plays a sound, once each time you click a pushbutton. Hint: print a 
message on the Debug Terminal using commands like DEBUG "working", CR 
(CR stands for "carriage return"). 

 
3. Then program it so that if you hold the button down while you press and release 

Reset on the Board of Education or the HomeWork Board, it will not go 
immediately to the "working" routine. Instead it will print "I await your 
instructions" on the Debug Terminal, play a different sound, and delay until you 
click the button again. (Think about printers, how some will print a "test page" if 
you hold down some button on the front panel as you turn the printer on.)  

 
4. The program DS1620MorseCode.bs2 measures the temperature in degrees 

Celsius. Modify the program so that it displays degrees Fahrenheit, and plays it 
in Morse code.   

 
5. Modify the Morse subroutine so that it will play three digits instead of just two, 

in case the Fahrenheit temperature goes above 99 degrees.  
 

6. Advanced -  after accomplishing #5 above, make it so that it will not play 
leading zeros, that is, if the reading is 76 degrees F, it will play "7","6", not 
"0","7","6"). 

 
7. Then try this: start with a byte of data, initially zero, stored in EEPROM. Each 

time the button is single-clicked, increment the byte in EEPROM by one (READ, 
increment, WRITE), and display the current value on the Debug Terminal. When 
the value reaches 7, print the words "access denied" on the Debug Terminal, and 
make a sound and blink the led on and off repeatedly. At that point, if you reset 
the BASIC Stamp or remove the power and then restore it, the "alarm" should 
come on right away (READ & decision at top of program.).  
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8. Advanced – After accomplishing #7 above, think of a way, using a special action 
on the button, like holding it down for a long time, to reset the value in 
EEPROM to zero. That will allow access so you can click the button 7 more 
times before the alarm re-sounds and locks you out. 
 

9. Write a program that plays a unique sound if you triple click the pushbutton. 
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Chapter 3: Temperature Probe for Micro-
Environments 
 
The theme of Applied Sensors Chapter 3 is to connect a temperature probe mounted at the 
end of a cable that can reach out away from the Board of Education or the HomeWork 
Board, to monitor micro-environments. A well-calibrated sensor, with good resolution, 
will achieve the most accurate results. The specific activities of this experiment include:  
 

• Using a capacitor with the RCTIME command  
• Temperature measurement using an AD592 probe, with calibration in an ice bath  
• Comparison of calibration with the DS1620 at room temperature  
• Automatic calibration using the BASIC Stamp's EEPROM  
• Talking (Morse code) temperature experiments featuring solar radiation, wet-

bulb/dry bulb techniques and wind chill 

Analog Temperature Sensor 
It is often important to extend sensors out away from the recording instruments, so that 
measurements can be made in micro-environments. In the natural world there can be 
much variation from place to place and time to time. For example, the temperature of a 
leaf on a plant in the sun can be significantly different from the surrounding air 
temperature. The leaf forms its own micro-environment. And as plants grow, they create 
a unique micro-environment under their canopy. Often measurements are needed in 
several places at once and are fed back to one centrally located instrument. For example, 
an agricultural weather station will measure wind high above the ground, soil moisture 
underground, and other arguments at points in between. This means that sensors have to 
be mounted on cables to reach all those separate micro-environments.   
 
In Chapter 1 you learned about the DS1620 smart temperature sensor. One nice thing 
about that sensor is that it returns readings directly as digital numbers. But one 
disadvantage it has is that it is a chip with 8 pins, hard to turn into a probe that can be 
used apart from a circuit board.  In this experiment you will learn about a different kind 
of temperature sensor, the AD592. It is easy to incorporate into a probe mounted on a 
single pair of wires. This AD592 is an analog temperature sensor. Analog means that its 
signal is a continuous electrical value (microamps), proportional to temperature. Analog 
is the opposite of digital; digital readings are returned as a code of discrete values (zeros 
and ones). The AD592 is a "classic" technology that has been proven through many 
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years. Many of the signals you will encounter in science, or in many fields of engineering 
for that matter, are analog signals. Chips like the DS1620 have analog sensors at their 
heart, and engineers have worked very hard to give the DS1620 its digital smarts. 
 

 

Analog temperature sensor: The microampere current produced by the AD592 is what is 
called an "analog" of temperature. Microamps is not the same as temperature, just as 
apples are not the same as oranges. Considering an analogy between a capacitor and a 
water tank, here the analogy is between the temperature and electrical current. This is the 
basis of "analog" sensors. Other temperature transducers may transduce temperature to 
voltage or resistance or capacitance. The signals on both sides of the analogy are of a 
continuous nature, with infinite gradations of strength from low to high. Analog is the 
opposite of digital, where the signals are transmitted as digital codes of zeros and ones. 

 
Analog sensors require a different kind of interface to the BASIC Stamp 2. In this 
experiment you will learn about the RCTIME command. You may know about analog-to-
digital converters, a kind of electronic chip that is dedicated to doing those conversions. 
The RCTIME command is a rudimentary analog-to-digital converter that is built into the 
BASIC Stamp. To introduce the RCTIME command, you will connect a capacitor to the 
BASIC Stamp input and review the properties of capacitors. Once you have the RCTIME 
command reading the temperature sensor, you will learn how to calibrate it, so that it will 
read the correct temperature, despite variations in the parts that are provided to build the 
circuit. 
 
Once you have the probe on a cable, you can extend it out to measure temperature in 
micro-environments in your surroundings. 

BASIC Stamp Pins, Capacitors, Review of the BASICs 

You probably already understand that the 16 general purpose I/O pins on the BASIC 
Stamp can be in one of three distinct states at any given time. As shown in Figure 3-1, 
this is like three-position switch: 
 

1. HIGH: The switch is connected to Vdd = +5 volts, as shown here, output is high. 
Current can flow out of the pin, sourcing from the +5 volt (Vdd) power supply.  

 
2. INPUT: The switch is connected as an input. Zero current flows in or out of the 

pin. As an input, the internal BASIC Stamp circuitry monitors the voltage at the 
I/O pin. Levels less than 1.3 volts are interpreted as low, or 0, those greater than 
1.3 volts are seen as high, or 1. 
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3. LOW: The switch is connected to Vss = 0 volts, output is low. Current can flow 
into the pin, sinking current to ground (Vss). 

 

Vss=0 volts

Vdd=5 volts

? input

BS2

1
2

3

P0-P15

 

Figure 3-1 
BASIC Stamp I/O Pins  
 
Three positions exist in this switch: 
(1) Vdd +5V; (2) input to act as low 
or high; and (3) switch is connected 
to Vss +0V. 

 
The simple commands HIGH 5 or LOW 5 or INPUT 5 put the named I/O pin instantly into 
the correlating state. Many of the commands in the PBASIC language work by playing 
fancy games with the pins. For example, the FREQOUT command makes a sound by 
flipping the internal switch rapidly between the high and low output states. The SHIFTIN 
and SHIFTOUT commands work by coordinating the activity on several pins at once, some 
as outputs jumping from high to low, and others as inputs synchronized to the action. 
Here we will be introducing the RCTIME command, which works by switching a pin from 
an output to an input, and then timing how long it takes for the voltage at the I/O pin to 
cross the 1.3-volt threshold level. 
 
The change in voltage is brought about by external circuitry, usually a resistor (R) and a 
capacitor (C). The important point we want to emphasize here is that practically zero 
current flows when the pin is an input—it just looks. 
 
First, a brief review of capacitors. Please bear with us if you already understand how 
capacitors work. The analogy is a tank of water, with an inlet pipe and an outlet pipe. The 
tank stores water, analogous to how the capacitor stores electrical charge. Figure 3-2 and 
Figure 3-3 demonstrate this point. 
 

Vss=0 volts

Vth=1.3 volts

Vdd=5 volts

 

Figure 3-2 
Analogy, capacitor charging 
 
Water flows (amps) into the tank and the level (volts) 
rises.  Higher inflow means higher rate of rise. The 
flow through the pipe can be limited by resistance 
(ohms) in the pipe, or by the water pressure at the 
other end of the pipe. 
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Vss=0 volts

Vth=1.3 volts

Vdd=5 volts

 

Figure 3-3 
Analogy, capacitor discharging 
 
Flow (amps) discharges from the tank and the level 
(volts) falls. The flow can be slow, a trickle, or fast, a 
deluge. If both inflow and outflow are zero, then the 
level stays constant.  There can be unintentional 
flows, called leakage (amps). 

 
Capacitors come in a wide range of sizes, measured in picofarads up to farads. This does 
not refer to physical size, but to the capacity to store charge, which depends on the 
material of which the capacitor is composed. Two capacitors of exactly the same physical 
size can have vastly different capacitances. We will be using values in this experiment 
that are 0.01 to 0.22 microfarads (μF). 

Parts Required 

Throughout this chapter, leave all parts from the previous experiments in place on the 
Board of Education or the HomeWork Board, as well as those you add in each activity. 
The following additional parts are required: 
 
(1)  AD592 temperature probe.  See Appendix B if you would prefer to build your own. 
(1)  0.1 µF monolithic capacitor 
(2)  0.22 µF film capacitor 
(2)  100 Ω resistor  
(2)  100 kΩ  
(1)  Jumper wire 
(2)  2-inch 4/40 stainless steel screws 
(2)  16-inch pluggable jumper wires (1 red, 1 black) 
(2)  2 4/40 nylon nuts 
(1)  Cup spanner 

Building the Circuit 

The first activity requires the pre-assembly of a conductivity sensor.   
 
√ From the Parts List on the preceding page, gather the 2-inch stainless steel screws, 

the 16-inch pluggable jumper wires, the nylon washers and the cup spanner.   
√ Begin by dropping the two screws through the two holes in the middle of the cup 

spanner.   
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√ Fasten them from the other side with the nylon nuts, but do not tighten them yet.  
√ Wrap one bare end of each jumper wire around a screw between the cup spanner 

and the screw head.   
√ Now tighten the nylon washers to keep the wires in place and in firm contact with 

the screw heads.   
 
The conductivity sensor will later be placed over the rim of a cup with the screw ends 
hanging down inside, and the other ends of the jumper wires will plug into the 
breadboard. 

Simple Resistance Detector 

√ From the Parts List, gather the 0.1 μF capacitor, the 100 Ω resistor, and the 
conductivity sensor you just assembled.  

√ Build the circuit shown in the schematic (Figure 3-4) and the wiring diagram 
(Figure 3-5). 

√ Double check your circuits, using the hints next to the wiring diagram. 
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Figure 3-4  
Simple Resistance 
Detector Schematic 
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Figure 3-5 
Simple Resistance Detector 
Wiring Diagram 
 
• The 100 Ω resistor connects 
  P10 to the 0.1 µF capacitor 
  and one lead of the 
  conductivity sensor. 
 
• The capacitor connects to Vss 
  via the same row (node) as pin 
  4 of the DS1620. 
 
• The other lead of the 
  conductivity sensor connects 
  directly to Vdd. 
 

 
√ Enter the program CapacitorDemo.bs2. 
√ Let the conductivity sensor rest on a nonconductive surface, such as a pad of paper.  
√ Run the program, letting the circuit run through its DO…LOOP for a minute or two 

while leaving the conductivity sensor undisturbed. 
 
' Applied Sensors - CapcitorDemo.bs2 
' Simple demo of a capacitor on a BS2 pin. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
v     VAR     Bit         ' Bit-size variable for input state. 
 
DO                        ' Beginning of the program. 
  LOW 10                  ' Discharge the capacitor to 0 volts. 
  FREQOUT 0, 5, 3500      ' Signal event. 
  DEBUG CR                ' New line on screen. 
  INPUT 10                ' Make the pin an input. 
 
  DO                      ' Beginning of a loop. 
    v = IN10              ' Read the input. 
    DEBUG BIN v           ' Show it. 
    PAUSE 99              ' 0.1 second pacing. 
  LOOP UNTIL (v=1)        ' Repeat until the input is >1.3 V. 
 
LOOP                      ' Back to the beginning of the program. 
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Do you hear beeps or see any 1s in the Debug Terminal? No? The first instruction in the 
program discharges the capacitor to zero volts. The capacitor discharges very fast, like a 
big pipe dumping water from the tank out onto the earth. Current from the PIC 
microcontroller on the BASIC Stamp can discharge the capacitor through the 100 ohm 
resistor in about 25 microseconds, which is much less than the Duration argument of the 
FREQOUT command. Then comes the INPUT 10 instruction. P10 instantly becomes an 
input. Don't be surprised that the capacitor stays discharged, because there is no source of 
current to charge it. All those zeros on the screen mean that the capacitor stays 
discharged. 
 
√ Now touch the two leads of the conductivity sensor at the same time with your 

fingers as shown in Figure 3-6 
√ Experiment! Your finger short-circuits the capacitor. The result should depend on 

how sweaty or wet your fingers are (a lie detector?), and how hard you pinch. 
There are leakage paths through the moisture on your fingers, and through your 
skin and tissue.  

√ Try dipping the conductivity sensor in water.  
√ Touch it to wet paper, or  
√ Touch it to a heavy pencil line drawn on paper.  
√ Substitute the 100 kΩ resistor for the 100 Ω resistor, and test the same objects over 

again. 
 

 

Figure 3-6 
Short-Circuit  
 
Touch the two screws that 
comprise the conductivity 
sensor. Your finger will short-
circuit the capacitor. 

 
We need to say a word here about safety. The voltage and current in this circuit are very 
small, five volts and a few microamperes. If you are ever unsure about a circuit, always 
err on the side of safety!  
 
The input pin on the BASIC Stamp is acting as a "comparator." This is a technical term in 
electronics for this device that gives a yes or no answer, 1 or 0, to the question, "is the 
voltage level at P10 greater than or less than 1.3?" This 1.3-volt threshold is fixed by the 
PIC microcontroller in the BASIC Stamp 2, and there is nothing we can do to change it. 
Figure 3-7 shows how this works.   



Chapter 3: Temperature Probe for Micro-Environments · Page 63 

Time
0 V

1.3 V

+5 V

Charging rate
Fast Slow

 

Figure 3-7 
Capacitor Discharge 
 
Over and over, the capacitor is discharged to 
zero volts, and then more or less rapidly 
charges back up to the 1.3 volt threshold.  By 
varying the resistance of the probe, you are 
affecting how fast the voltage level rises. 

 
If the voltage level on the capacitor rises to 1.3 volts, then variable v will become equal 
to 1.  This will allow the program to exit the DO…LOOP UNTIL and go back up to the 
beginning, discharge the capacitor to zero volts, make a tone, and print a line return on 
screen. Otherwise, the program remains inside the inner DO…LOOP UNTIL, where it 
continues to read the input and print zeros on the Debug Terminal.  

Resistance Detector using RCTIME 

√ Now enter and run the program RCTIMEDemo.bs2, 
 
' Applied Sensors - RCTIMEDemo.bs2 
' Simple demo of the RCTIME command. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
rct     VAR        Word         ' Word variable to track time. 
n       VAR        Byte         ' Variable for the bar graph. 
 
LOW 10                          ' Discharge the capacitor. 
 
DO                              ' Beginning of the main routine. 
  RCTIME 10, 0, rct             ' Time for the volts to rise to 1.3V. 
  LOW 10                        ' Discharge the capacitor to 0 volts. 
  DEBUG ? rct                   ' Show the time. 
  n = (rct - 1) / 2048 + 1      ' Calculate length of bar graph. 
  DEBUG REP "*"\n, CR           ' Display ASCII art bar graph. 
  PAUSE 50                      ' Slows down the program. 
LOOP                            ' Back to the beginning of main routine. 

 
√ As before, experiment by varying pressure and wetness of different materials. 

 
What sorts of rct values do you observe? 
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Here is a commented snippet of our RCTIME command: 
 

 RCTIME 10, 0, rct    ' Original instruction 
'              ^^^----> variable to hold the result (2μs units) 
'           ^---------> starts with in10=0, ends when in10=1 
'       ^^------------> use pin 10 for this RCTIME command 

 
You may know the RCTIME command from the What's a Microcontroller? Student Guide, 
but we are going to refresh it here. The RCTIME command measures the time that it takes 
for the capacitor to charge up from zero to the 1.3 volt threshold. The program makes pin 
10 low to start off, and that discharges capacitor to zero volts. The RCTIME command then 
turns P10 into an input, and immediately starts looking for the voltage at the I/O pin to 
cross the 1.3 volt threshold, while at the same time it counts up the elapsed time. The 
RCTIME command counts up in two-microsecond intervals. If the voltage at the pin does 
cross the 1.3 volt threshold, then the RCTIME command wraps up and puts the elapsed 
time into the variable rct, and the program continues with the instruction after the 
RCTIME. Here that is a LOW 10, which discharges the capacitor back to zero. If the voltage 
at the pin does not cross the 1.3 volt threshold within a tenth of a second (0.13107 
second, to be exact), the RCTIME command gives up. It puts zero into the variable rct (to 
indicate overflow) and then the program continues with the next instruction after the 
RCTIME.  
 
RCTIME counts in units of 2 microseconds (μs), and the maximum value of the count is 
65,535 (the maximum value that will fit in a sixteen bit word), so it follows that the 
maximum time is 131,070 μs (2 μs x 65,535) = 0.13107 seconds. See the BASIC Stamp 
Manual for more information about RCTIME. To reiterate, if nothing happens within 
0.13107 second, the RCTIME puts zero in the variable rct, to indicate an overflow 
condition. 
 
The RCTIME command is useful for measuring many different things. Electrically, the 
circuit can be arranged so that the measured time depends on resistance, capacitance, 
voltage or current. Many transducers output one of those electrical quantities. For 
example, the temperature sensor coming up is a transducer that transduces temperature 
into an electrical current. A simple formula will allow us to convert the value returned by 
RCTIME immediately into temperature. Another type of temperature sensor that is well 
suited for use with the RCTIME command is the thermistor. It has a resistance that varies 
with temperature. It is not so convenient, because it is harder to calibrate. 
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Finally an explanation of the ASCII art bar graph in the RCTIMEDemo.bs2. This is a 
continuing education into the capabilities of the DEBUG command. Before the advent of 
computer graphic displays and printers, these ASCII graphs were the only way to produce 
a graphical output! 
 

  n = (rct - 1) / 2048 + 1      ' Calculate length of bar graph 
  DEBUG REP "*"\n, CR           ' Display ASCII art bar graph 

 
When rct has a value between 0 and 65535, the value computed for n will be between 1 
and 32. Note that 65535/2048 = 31. That defines the maximum value, and lower values 
fall into place. We scale it to 32 maximum simply so that the graph will fit neatly on the 
width of the Debug Terminal. Subtracting 1 from rct is a refinement.  Recall that the 
RCTIME command only waits around for 0.13107 second, and then returns rct = 0 to 
show that the time was longer than that. If we just graph that, then the longest overflow 
times end up having the shortest length on the graph. By subtracting 1, rct = 0 becomes 
(rct - 1) = 65535. (That is how unsigned binary 16 bit math works--zero minus one 
equals 65535!). The graph makes more sense that way. The DEBUG command then uses 
the REP modifier to print n stars in the Debug Terminal, followed by a line return. See the 
BASIC Stamp Manual for more information about the REP modifier of the DEBUG 
command. 
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Temperature Sensor Probe using the AD592 and RCTIME 

√ Now, remove the conductivity sensor circuit that was shown in Figure 3-4 Figure 
3-5, leaving all of the other circuits in place. 

√ From the Parts Required List, gather together the AD592 temperature probe, the 
100 Ω resistor, the 0.22 µF film capacitor, and 1 jumper wire.  Note: if you are 
making your own probe, see Appendix B. 

√ Build the circuit shown by the schematic Figure 3-8  and the wiring diagram in 
Figure 3-9.  
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Figure 3-8   
AD592 Temperature 
Sensor and RC-time 
Schematic 
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Figure 3-9:  AD592 Temperature Sensor and RC-time Wiring Diagram  

 
√ Enter and run the program AD592.bs2. 

 
' Applied Sensors - AD592.bs2 
' Reading the AD592 temperature sensor using the RCTIME command. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Kal     CON         15300               ' Constant to be determined. 
 
rct     VAR         Word                ' A word variable. 
TK      VAR         Word                ' Kelvin temperature. 
TC      VAR         Word                ' Degrees Celsius. 
 
DO                                      ' Loop forever. 
  LOW 5                                 ' Discharge the capacitor. 
  RCTIME 5, 0, rct                      ' Time for the volts to rise to 1.3 V. 
  TK = Kal/rct*10 + (Kal//rct*10/rct)   ' Calculate Kelvin 
  TC = TK - 273                         ' and Celsius. 
  DEBUG DEC rct, TAB, DEC TK,           ' Show the results. 
        TAB, SDEC TC, CR 
  PAUSE 50                              ' Slows down the program. 
LOOP                                    ' Back to the beginning of the loop. 
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The display on the Debug Terminal should show three columns, rct, which is raw count 
time (in units of two microseconds) from RCTIME, and the calculated Kelvin and Celsius 
temperatures.  
 
√ Heat up the temperature probe in your hand or by some other means and verify that 

the rct reading on the Debug Terminal goes down as the temperature goes up.  
 
The TK and TC readings should go up with temperature, but do not pay attention to the 
exact values yet. You still need to "calibrate" the sensor, which we will do shortly. 
 

 

Displaying decimal values, negative numbers and numbers in columns: This form of 
the DEBUG command separates the decimal values of the variables with TAB characters to 
put them in columns. The SDEC modifier allows for the display of negative numbers. 

 
A word about what sort of device the AD592 transducer is, electrically. It is a current 
source. The equation that governs its behavior is exceedingly simple: 
 

Output = 1 microamp / Kelvin 
 
That is, at 273 Kelvin (freezing, 0 °C), it produces 273 μA. At 373 Kelvin (boiling, 
100 °C), it produces 373 μA. At absolute zero it would produce zero microamps, 
although that is actually outside its operational limit of -40 degrees Celsius.   
 
If you look at the AD592 in terms of the analogy with a water tank, it is like a flow 
regulator on the input pipe. The flow does not depend on the level in the tank, nor does it 
depend on the pressure (voltage) that supplies the current on the other side of the 
regulator. This is very different from a resistor or wet fingers, where the current depends 
on several factors. The name RCTIME comes from R for resistance, C for capacitance, and 
the time it takes for a resistor to charge the capacitor. A current source is a very special 
kind of regulated resistor, one that makes the calculations relatively easy, lucky for us! 

AD592 Calibration 

The formula that relates the temperature to the time measured by RCTIME is a reciprocal: 
in this case TK is Kelvin temperature. 
 

   rct = constant/TK      or     TK = constant/rct 
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See the box for the theory regarding the rate of change of voltage on a capacitor. The 
constant will be around 153,000 when the capacitor is 0.22 µF. But it will not be exactly 
that value due to variations in the component values. That is why it needs to be 
calibrated. 
 

 

Theory governing the rate of change of voltage on the capacitor 

The equation governing the rate of change of voltage on the capacitor is: 

dV/dt = I/C 

where I is the current and C is the capacitance.  If you know calculus, and assume that I and 
C are constant, you can easily solve for elapsed time in terms of the change in voltage and 
the capacitance and the current: 

t = C * V / I 

where t is in seconds, C is in farads, V is in volts, and I is in amps.  If we substitute TK in 
Kelvin for microamps, 0.22 µf for C, 1.3 for the voltage, and 2*rct for the time in 
microseconds, and taking care for the units, we come up with the formula in the text: 

rct = constant / TK 

The constant is 153,000, when those ideal values are plugged into the formula. In reality, the 
capacitor will not be exactly 0.22 μF, the threshold will not be exactly 1.3 volts, and the 
AD592 will not have an output of exactly 1 microamp per Kelvin.  Nevertheless, since there 
is only one free constant, we will need just one point of calibration. 

 
In order to calibrate the sensor, we need to find the constant for this particular setup. To 
do this, the AD592 sensor must be put in a location where you know the temperature 
exactly. A good choice is an ice bath at 0 C, 273 K. With an ice bath reference, TK = 273, 
the constant will be (rearranging the previous equation): 
 

   constant = 273 * rct 
 
We have to put the probe into an ice bath, let it stabilize, read the value of rct, and 
multiply to find the constant. 
 
√ Prepare an ice bath.  For tips on making an effective ice bath, please see the 

information box below. 
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Ice bath preparation for calibration:  

The melting point of ice made with pure water is a physical constant: zero degrees Celsius, 
32 degrees Fahrenheit, 273 Kelvin (Or 273.14 if you want to push the precision). You can 
get the best results if the ice and water mixture is: 

 made with crushed ice made from distilled water;  

 is held in a vacuum thermos bottle with a narrow mouth;  

 stirred gently while making the measurement; and 

 at least 5 cm of wire is submersed above the sensor probe tip. 

Lacking a thermos bottle, you can substitute a well-insulated foam container. Careful 
preparation is very important if you want to achieve good results in the calibration! Watch 
until the reading settles down to a steady value, to equilibrium. 

Metrologists (not meteorologists!) are scientists who advance the science of accurate 
measurements. They have to think about all possible factors that could influence the 
measurements.   

 
√ Place the AD592 temperature probe into the ice bath. 
√ Run the program AD592.bs2. 
√ Watch the Debug Terminal until the readings equilibrate (become steady). 
√ Record the reading for rtc. 

rtc =  ___________. 
√ Take that number and multiply it times 273. This is your AD592 calibration 

constant.   
rtc x 273 = ___________.  

 
Be aware that this constant is specific for this sensor, this BASIC Stamp, and this 
capacitor.  
 
√ Now round off the constant to the nearest 10, and drop the final digit (a zero). This 

should be a five-digit number. This will be the value of Kal you need to substitute 
in the program.  
Kal = __________. 

√ Put this value in your AD592.bs2 program in place of the 15300 "default" value.  
√ Re-run the program. You should see TK and TC show the temperature of the 

calibration bath; 273 Kelvin, 0 Celsius. 
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Now, to explain the peculiar formula needed to calculate TK. Unlike big computers, 
where the computer language has lots of fancy math available, you will need to stretch 
the BASIC Stamp's math brain. The reason we need the trick is that the constant, 
~153000 (or whatever you found) is larger than the highest possible number that the 
BASIC Stamp can work with (2^16=65536).   
 
Recall how you did long division in elementary school. This is the same thing, really, but 
the notation is a little different. Here are examples of the two essential elements in 
BASIC Stamp math: 
 

BASIC Stamp 
Notation:  

..meaning 

1432/524 = 2 Single slash means INTEGER DIVISION (524 
goes twice into 1432) and there is a remainder. 

1432//524 = 384 
Double slash means remainder after INTEGER 
DIVISION: 1432-(2*524) = 384.  Remainder 
always less than divisor, 384< 524.  

 
Observe that: 
 
(2 x 524) +384 = 1432, that is, the quotient times the divisor, plus the remainder is equal 
to the original number. That is really the definition of division. 
 
Now, think how you would solve the problem of 143220/524, using elementary school 
arithmetic: 
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Equation: Steps in elementary school arithmetic 

524

27

143220
14148
    174  

First step in a long division.  524 goes 27 times 
into 14322, and the remainder is 174.  The BS2 
knows how to divide into numbers that have 
numerators less than 65536, so it has no trouble 
in figuring out that 14322/524 = 27 in one step. 

524

273

143220
14148
    1740
    1572
      168  

Next step, the zero is brought down to the right of 
the 174 remainder.  That effectively multiplies the 
174 times 10. Then 1740 is divided by 524, and 
the result, 3 is put after the quotient, which 
becomes 273.  This too effectively multiplies the 
27 times 10, as it moves up by one significant 
figure.  The fractional remainder, 168/524, is 
dropped.  

 
Here is how the BASIC Stamp 2 denotes the same problem: 
 

 TK = 14322/524*10 + (14322//524*10/524) 
     '^^^^^^^^^^^^----------------------first step of division 
                     '^^^^^^^^^^^^^-----the remainder times ten 
                                   '^^^-div. to get next digit 
     '^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^-quotient is 273 
     'final remainder 168 is dropped 

                             
The result is that the BASIC Stamp has calculated 143220/524 = 273. 
 
If you like math, great, you understand or can figure out how it works. If you are one of 
those who draws a blank when you see math, or you don't have the time to sit down and 
think it through, well, just take the formula, use it, and turn the crank.  A lot of math in 
computer science is like that. It comes in libraries you just use without thought when you 
write programs. You assume that the wizards in the tower have gotten it right.  
Nonetheless, understanding it can be helpful and rewarding, or a career, if you are good 
at it. 
 
What is the smallest change in temperature that we can detect? Look at Table 3-1 for 
some typical rct values and TK values, if the constant is 143000. 
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Table 3-1: Temperature Resolution 
Raw 

Conversion Real Kelvin Celsius 

143000/484 = 295.5 295 22 
143000/485 = 294.8 294 21 
143000/486 = 294.2 294 21 
143000/487 = 293.6 293 20 
143000/488 = 293.0 293 20 
143000/489 = 292.4 292 19  

 
The real temperature resolution is about 0.6 Kelvin. That is, each step in rct is at best a 
step of 0.6 Kelvin in temperature. We are rounding it off to 1 Kelvin, losing a little bit of 
information, but with knowledge beforehand. 
 
If we were to use a larger capacitor (say 0.33µF) in the circuit, the constant would be 
larger, and the resolution would be improved. On the other hand, with a smaller capacitor 
(like 0.1µF), the resolution would be worse. 
 
In the next experiment, you will check on the calibration of the AD592 probe in 
comparison with the DS1620 from Chapters 1 and 2. 
 

 

Resolution: Suppose you are measuring a quantity that can take on any value between 
zero and 100.  If your instrument can only tell the difference between "greater than 50" and 
"less than 50" then it has one bit of resolution, that is, the measurement is a sort of "yes/no." 
On the other hand, if your instrument can tell the difference between 1 and 2 and 3 and so 
on up to 100, then the resolution is 1%, or about 7 bits (7 bits, because 2^7 = 128). 
Resolution is not the same thing as accuracy. If your instrument reads 50 when the true 
value is 52.3, then it is not accurate, or at least it needs to be calibrated. That is true whether 
it has one bit or 7 bits or more of resolution. 

Talking Thermometer Revisited, Two Channels 

Now let's combine this new sensor with the DS1620 talking thermometer. The next 
program you will use is a variation of DS1620MorseCode.bs2, which you may have 
saved from Chapter 2.  If you are careful, you can reload that program, rename it and 
make the modifications so it matches TwoChannelsThermometer.bs2 shown below. Look 
for new variables in the Declarations section, one line of code in the Initializations 
section, and a routine for the AD592 within the Main Routine section. 
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The first thing you are going to test is to see if the AD592 probe and the DS1620 have the 
same reading at "room temperature" so you will want them to be at the same temperature. 
 
√ Position the AD592 probe in contact with the DS1620 on your Board of Education 

or HomeWork Board. 
√ Enter the program TwoChannelsThermometer.bs2.   
√ In place of the Kal value shown in the program, enter value you calculated above.  

 
' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors - TwoChannelsThermometer.bs2 
' Talking thermometer, two channels. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
' -----[ Constants ]------------------------------------------------------- 
Dit       CON        70               ' Milliseconds for Morse dit. 
Dit2      CON        2*Dit            ' Constants related to Dit. 
Dah       CON        3*Dit            ' Ditto. 
 
' -----[ Declarations ]---------------------------------------------------- 
mc        VAR        Byte             ' Temporary for Morse pattern. 
xm        VAR        Byte             ' Morse input variable. 
j         VAR        Nib              ' Index for digits to send. 
i         VAR        Nib              ' Index for dits and dahs. 
 
x         VAR        Byte             ' General purpose variable, byte. 
degC      VAR        Byte             ' Variable to hold degrees Celsius. 
 
rct       VAR        Word             ' Reading from RCTIME. 
TK        VAR        Word             ' Kelvin temperature. 
TC        VAR        Word             ' Degrees Celsius. 
 
Kal       CON        15300            ' Constant to be determined. 
 
' -----[ Initializations ]------------------------------------------------- 
' Note: DS1620 has been preprogrammed for mode 2. 
' If not, uncomment the instructions on the next line on the first RUN. 
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13 
 
OUTS=%0000000000000000                ' Define the initial state of all pins. 
     'FEDCBA9876543210 
DIRS=%1111111111111101                ' As low outputs 
                   '^----------------   except P1, an input for a pushbutton. 
 
FREQOUT 0, 20, 3800                   ' Beep to signal that it is running. 
 
HIGH 13                               ' Select the DS1620. 
SHIFTOUT 15, 14, LSBFIRST, [238]      ' Send the "start conversions" command. 
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LOW 13                                ' Do the command. 
LOW 5                                 ' Discharge the capacitor. 
 
' -----[ Main Routine ]---------------------------------------------------- 
DO                                    ' Start of the main loop. 
 
  DO 
  LOOP UNTIL (IN1=0)                  ' Loop here until button is pressed. 
 
  DO 
  LOOP UNTIL (IN1=1)                  ' Loop here until button is released. 
 
DS1620:                               ' DS1620 temperature sensor code. 
  HIGH 13                             ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [170]    ' Send the "get data" command. 
  SHIFTIN 15, 14, LSBPRE, [x]         ' Get the data. 
  LOW 13                              ' End the command. 
  degC = x / 2                        ' Convert the data to degrees C. 
  DEBUG ? degC                        ' Show the result on the PC screen. 
  xm = degC                           ' Morse routine expects data in xm. 
  GOSUB Morse                         ' to the subroutine. 
 
  PAUSE 100 
 
AD592:                                ' AD592 temperature sensor code. 
  RCTIME 5, 0, rct                    ' Get the AD592 count. 
  LOW 5                               ' Discharge the capacitor. 
  TK = Kal/rct*10 + (Kal//rct*10/rct) ' Calculate Kelvin 
  TC = TK - 273                       ' and Celsius. 
  DEBUG DEC rct, TAB, DEC TK,         ' Show the results. 
        TAB, SDEC TC, CR 
  PAUSE 50                            ' Slows down the program. 
 
LOOP                                  ' Back to wait for button again 
 
' -----[ Subroutines ]----------------------------------------------------- 
Morse:                                ' Emits byte xm as Morse code. 
  FOR j=1 TO 0                        ' Send 2 digits, tens then ones. 
    mc = xm DIG j                     ' Pick off the (j+1)th digit. 
    mc = %11110000011111 >> mc        ' Set up pattern for Morse code. 
    FOR i=4 TO 0                      ' 5 dits and dahs. 
                                      ' Send pattern from bits of mc. 
      FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900 
      PAUSE Dit                       ' Short silence. 
    NEXT                              ' Next i, dit or dah of five. 
 
    PAUSE Dah                         ' Interdigit silence. 
  NEXT                                ' Next j, digit of two. 
RETURN                                ' Back to main. 
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√ If the Morse code becomes obnoxious to you or your classmates, simply unplug 
the wire from P1 to turn off the buzzer, or put an apostrophe in front of the GOSUB 
Morse and turn it into a comment.  

√ Run this with the AD592 probe in direct contact with the DS1620 on your Board 
(and no direct sunlight). If you have some, you can put some heat sink compound 
(thermally conductive grease) between the two to improve the contact.   

√ Be sure the readings are constant, and record the readings in degrees Celsius: 
 
       DS1620 :__________ 
       AD592 :__________ 
 
They should be pretty close to one another. You just calibrated the AD592 in an ice bath, 
and the DS1620 data sheet specifies that its reading will be within ±0.5 degree. 
 
Save the program TwoChannelsThermometer.bs2 on disk, following your teacher's 
instructions. 

Automatic Calibration  (Advanced Topic) 

One feature of many modern instruments is automatic calibration. For example, since we 
know that the DS1620 has ±0.5 degree accuracy, we might like to skip the preparation of 
an ice bath, which, after all, requires quite a few materials and effort to do it right. We 
could use the DS1620, at room temperature, as the calibration reference. You could 
attach a new AD592 temperature probe to the Board of Education or HomeWork Board, 
put it in contact with the DS1620, and let it sit for a few minutes, and then press a button 
to enter the calibration value. Voilá! The BASIC Stamp would calculate the correct 
calibration value and stores it in EEPROM for you.  
 
The program ThermometerCalibration.bs2 can do just that. The program also directs you 
storing and retrieving word-size data in the EEPROM. You can modify 
TwoChannelsThermometer.bs2 using the instructions below, and the complete program 
ThermometerCalibration.bs2 is also listed for your reference. 
 
√ Open TwoChannelsThermometer.bs2. 
√ Save as ThermometerCalibration.bs2. 
√ Remove the calibration constant: 

 
  Kal   CON  15300       
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√ Replace the calibration constant you just removed with:  
 

EKal  DATA Word 15300 ' constant to be determined 
kal   VAR  Word       ' for calibration constant 
 

The value EKal points to a value in the EEPROM, and that value will be transferred to 
and from the variable kal, using the BASIC Stamp's READ and WRITE statements. The 
calibration constant is a word value, but the EEPROM stores only bytes. PBASIC 2.5 
automatically stores words in two successive bytes of EEPROM when you follow the 
DATA directive with the Word modifier. This also works with READ and WRITE. 
 
√ Enter the following line in the program, just before the RCTIME instruction. 

  
READ EKal, Word kal  ' Get calibration constant 
    '^^^^------------- read from location EKal 
    '      ^^^^^^^^--- word variable kal 
 

√ Also add the section to the Main Routine so that if you hold the button down for a 
long time, it will branch to a special calibration routine.  (Do you recognize this 
from the LongClick.bs2 program from Chapter 2?) 

 
  x = 0                            ' Counter initialization. 
 
  DO                               ' Loop beginning. 
    PAUSE 100                      ' 0.1 second pacing. 
    x = x + 1                      ' Increment counter. 
    IF x>30 THEN GOSUB Calibrate   ' Calibrate if long click. 
  LOOP UNTIL (IN1=1)               ' Until button is released. 

 
√ Finally, add the following subroutine at the end of the program: 

 
Calibrate: 
  FREQOUT 0, 5, 3400                  ' Show we got here. 
 
  DEBUG "The probe should be in contact", CR 
  DEBUG "with the DS1620",CR 
 
  TK = degC + 273                     ' Kelvin from DS1620. 
  kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round kal. 
 
  DEBUG ? kal                         ' Show value of kal. 
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  WRITE EKal, Word kal                ' Write kal on EEPROM. 
 
  FREQOUT 0, 5, 1900                  ' Show finished. 
 
  x = 0                               ' Reset counter. 
 
RETURN                                ' Back to main program. 

 
√ Check your work against the program ThermometerCalibration.bs2 below. 

 
' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors - ThermometerCalibration.bs2 
' Talking thermometer, two channels, with calibration. 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
' -----[ Declarations ]---------------------------------------------------- 
Dit       CON        70               ' Milliseconds for Morse dit. 
Dit2      CON        2*Dit            ' Constants related to Dit. 
Dah       CON        3*Dit            ' Ditto. 
 
mc        VAR        Byte             ' Temporary for Morse pattern. 
xm        VAR        Byte             ' Morse input variable. 
j         VAR        Nib              ' Index for digits to send. 
i         VAR        Nib              ' Index for dits and dahs. 
 
x         VAR        Byte             ' General purpose variable, byte. 
degC      VAR        Byte             ' Variable to hold degrees Celsius. 
 
rct       VAR        Word             ' Reading from RCTIME. 
TK        VAR        Word             ' Kelvin temperature. 
TC        VAR        Word             ' Degrees Celsius. 
kal       VAR        Word             ' Calibration constant. 
EKal      DATA       Word 15300       ' Initial value of Constant on EEPROM. 
 
' Note: DS1620 has been preprogrammed for mode 2. 
' If not, uncomment the instructions on the next line on the first RUN. 
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13 
 
OUTS=%0000000000000000                ' Define the initial state of all pins. 
     'FEDCBA9876543210 
DIRS=%1111111111111101                ' As low outputs 
                   '^----------------   except P1, an input for a pushbutton. 
 
FREQOUT 0, 20, 3800                   ' Beep to signal that it is running. 
 
READ EKal, Word kal                   ' Get calibration constant. 
LOW 5                                 ' Discharge the capacitor. 
 



Chapter 3: Temperature Probe for Micro-Environments · Page 79 

HIGH 13                               ' Select the DS1620. 
SHIFTOUT 15, 14, LSBFIRST, [238]      ' Send the "start conversions" command. 
LOW 13                                ' Do the command. 
 
' -----[ Main Routine ]---------------------------------------------------- 
DO                                    ' Start of the main loop. 
 
  DO 
  LOOP UNTIL (IN1=0)                  ' Loop here until button is pressed. 
 
  x = 0                               ' Counter initialization. 
  DO                                  ' Loop to track pressing time. 
    PAUSE 100                         ' 0.1 second pacing. 
    x = x + 1                         ' Increment counter. 
    IF x>30 THEN GOSUB Calibrate      ' Calibrate if button held > 3 seconds. 
  LOOP UNTIL (IN1=1)                  ' Loop here until button is released. 
 
DS1620:                               ' DS1620 temperature sensor code. 
  HIGH 13                             ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [170]    ' Send the "get data" command. 
  SHIFTIN 15, 14, LSBPRE, [x]         ' Get the data. 
  LOW 13                              ' End the command. 
  degC = x / 2                        ' Convert the data to degrees C. 
  DEBUG ? degC                        ' Show the result on the PC screen. 
  xm = degC                           ' Morse routine expects data in xm. 
  GOSUB Morse                         ' To Morse subroutine. 
 
  PAUSE 100 
 
AD592:                                ' AD592 temperature sensor code. 
  RCTIME 5, 0, rct                    ' Get the AD592 count. 
  LOW 5                               ' Discharge the capacitor. 
  TK = kal/rct*10 + (kal//rct*10/rct) ' Calculate Kelvin 
  TC = TK - 273                       ' and Celsius. 
  DEBUG DEC rct, TAB, DEC TK,         ' Show the results. 
        TAB, SDEC TC, CR 
  PAUSE 50                            ' Slows down the program. 
 
LOOP                                  ' Back to wait for button again 
 
' -----[ Subroutines ]----------------------------------------------------- 
Morse:                                ' Emits byte xm as Morse code. 
  FOR j=1 TO 0                        ' Send 2 digits, tens then ones. 
    mc = xm DIG j                     ' Pick off the (j+1)th digit. 
    mc = %11110000011111 >> mc        ' Set up pattern for Morse code. 
    FOR i=4 TO 0                      ' 5 dits and dahs. 
                                      ' Send pattern from bits of mc. 
      FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900 
      PAUSE Dit                       ' Short silence. 
    NEXT                              ' Next i, dit or dah of five. 
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    PAUSE Dah                         ' Interdigit silence. 
  NEXT                                ' Next j, digit of two. 
RETURN                                ' Back to main program. 
 
Calibrate: 
  FREQOUT 0, 5, 3400                  ' Signal to show we got here. 
 
  DEBUG "The probe should be in contact", CR 
  DEBUG "with the DS1620",CR 
 
  TK = degC + 273                     ' Kelvin temperature of DS1620. 
  kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round off kal. 
 
  DEBUG ? kal                         ' Show value of kal. 
 
  WRITE EKal, Word kal                ' Write kal on EEPROM. 
 
  FREQOUT 0, 5, 1900                  ' Show finished. 
 
  x = 0                               ' Reset counter. 
 
RETURN                                ' Back to main program. 

 
When you first run the program, the temperatures returned from the AD592 will be 
incorrect, due to incorrect default value of EKal. 
 
√ Run the program ThermometerCalibration.bs2. 
√ Put the AD592 in contact with the DS1620. IMPORTANT: make good contact 

between the AD592 and the DS1620, using a wire to hold them together, and 
improve the contact with silicone heat sink grease if you have some.  Be sure there 
are no nearby sources of heat. 

√ Click the button and watch the reading until you see that it has settled down.  
√ When ready, press and hold the button until you hear the calibration click.  

 
When you release the button, the readings should suddenly become correct in comparison 
to the DS1620. The AD592 probe can now be extended out to measure other 
temperatures. This kind of auto-calibration capability is especially important for 
instruments that read things like conductivity or pH (acidity), where the sensors need 
frequent recalibration.  
 
Let's verify that the calibration routine worked, by taking the temperature in the ice bath. 
 
√ Place your AD592 probe in the ice bath.  
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√ DO NOT press the calibration button. 
√ Read the temperature in the Debug Terminal. 

 
It should read close to zero, within the ±1 degree resolution of your Board of Education 
or HomeWork Board measurement system. Remember, the calibration routine depends 
on having the AD592 at the same temperature as the DS1620! With this auto-calibration 
routine, do not press the calibration button when the probe is in the ice bath!  
 
The calibration constant comes from the equation: 
 

  constant = (true Kelvin temperature) * rct 
 

We are assuming that the DS1620 gives us the "true" temperature. Suppose the DS1620 
is at 25 degrees Celsius, 298 Kelvin.  Suppose the value of rct is 591.  So, 
 

  constant = (298 * 591) = 176134,  
 
. . .and the value that must go into the EEPROM is the top five digits of that, rounded off 
as before. The trick is to get this result on the BASIC Stamp without overflowing 16 bits.  
It takes two steps, rewriting the reference temperature as: 
 

  298  =  29 * 10 + 8 
 
…or in the notation of the BS2, for any Kelvin temperature: 
 

  TK  =  (TK/10)*10 + (TK//10)  
'        ^^^^^^^^^^------------Integer division,  
'                     ^^^^^^^^-plus remainder. 
 

Multiplying both sides by rct, then dividing by ten (to get the top 5 digits of the product) 
we end up with the formula in the program: 
 

 kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round kal 
 
The 5 added before the final division is for rounding. Think it through.   
 
The WRITE statement stores the word kal in the location, EKal. Subsequently, the READ 
command retrieves the calibration value in exactly the same way. The calibration 
constant stays there unchanged in EEPROM until (1) you press the calibration button 
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again, or (2) until you re-download the program again by running it from within the 
BASIC Stamp Editor. 

Some Field Research: Temperature Experiments 

Investigate the temperatures you find around and about your environment. Your 
instructor may have specific instructions.  Measure the temperature in:  
 
√ Hot and cold tap water  
√ An aquarium  
√ Out in the open sun  
√ Under trees or bushes  
√ Underground  

 
Note that it is possible to extend the length of the temperature probe, if you want, simply 
by adding more wire. Look for those micro-environments. Where are the sources of heat 
that lead to variation in temperatures in microenvironments? 
 
Here are a few specific experiments you can try. These merely illustrate how a 
temperature probe can be used to measure more than just temperature.   

The Psychrometer: Measuring Humidity 

√ Measure and record the air temperature in the shade.   
Dry bulb temperature:__________. 

√ Wrap wicking, gauze, cloth or a piece of paper towel around the temperature 
sensor and hold it in place with rubber bands or wire. Try to make the wrapping 
tight and compact, and not too much of it!  

√ Make the covering wet.  
√ Fan air across the wet sensor, or spin the probe rapidly around on its wire. It will 

cool down to its final value quicker if you have constructed a compact wet bulb.  
√ Measure an record the new final temperature: 

Wet bulb temperature:__________. 
√ Subtract the wet measurement from the dry measurement. 

 
You might expect 4 or 5 degrees Celsius of wet bulb depression in a room at 50% relative 
humidity. Everyone knows that a wet body cools off in the breeze. The cooling effect is 
greatest in dry air. This is called the wet bulb depression. It depends mainly on the 
relative humidity in the air, and on wind speed. At higher wind speeds it depends only on 
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relative humidity. An instrument to measure humidity using a wet and a dry thermometer 
in this fashion is called a "psychrometer" (from the Greek root, psychros, meaning 
"cold"). By spinning the wet bulb through the air, it becomes a "sling psychrometer." 
Psychrometric charts are where you would go to look up the humidity as a function of the 
dry and wet bulb temperatures. Try this both inside and out of doors. For interest, an 
example of a psychrometric chart is shown in Figure 3-10. This chart was designed by 
Hong Kong University in order to classify building comfort zones. 
 

•  "y" axis on the right side is absolute humidity. 
•  "x" axis is dry-bulb temperature (°C). 

 

 
Figure 3-10:  Example of Psychrometric Chart  

 

Ice Point Depression in Salt Water: Measuring Salinity 
You have an ice bath from your calibration of the temperature probe. When ordinary 
table salt is mixed with ice water, what happens to the temperature of the mixture? Think 
about the role of salt water in relation to ice cream makers, icy roads and icebergs.  
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√ Set up your ice bath again, if necessary. 
√ Design and complete a quantitative experiment that features varying amounts of 

the same type of salt added to the ice bath. 
√ Design and complete an experiment that compares different types of salt added to 

the salt bath. 
 
Be sure to use a well-insulated container for best results.  What conclusions can you draw 
about the relationship between salinity and the freezing point of water? 

The Pyranometer: Measuring Solar Radiation 

√ Wrap a cylinder of aluminum foil around the temperature sensor, twisted at the 
end.  

√ Tie a thread to the foil so that you can pull it put it off the probe.  
√ Put it in the sun, inside a clear plastic or glass jug to cut down the wind.  
√ Record the temperature reading when it settles down. 

Reading with foil wrap: _________. 
√ Use the thread to pull off the foil.   
√ Let the temperature re-equilibrate. 
√ Record the new temperature reading with and without the foil.  

Reading with black sensor: _________. 
√ Compare the difference between the two readings. 

 
Everyone knows that dark objects can get hot in the sun. A device that measures radiation 
by looking at the temperature difference between a black and a white surface is called a 
"black and white" pyranometer.  (Pyr is a Greek root that means "fire" but you already 
knew that!) 

The Hot Probe Anemometer: Measuring Wind Speed 

√ Allow the black temperature sensor to become hot in the sun. 
√ Record the temperature _________.  
√ Slowly spin the probe around on the end of its wire for 30 seconds. 
√ Record the "slow spin" temperature _________.  
√ Allow the temperature sensor to heat up in the sun to its previously recorded 

temperature. 
√ Quickly spin the probe around on the same length of wire for 30 seconds. 
√ Record the "quick spin" temperature _________. 
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√ Find the difference between your "slow spin" and "quick spin" temperature 
measurements. 

 
Everyone knows that warm bodies cool off in the breeze. This shows that temperature 
can be used to measure winds speed. "Hot wire anemometers" use a platinum wire both 
as the sensing element (its resistance changes with temperature) and as the heating 
element (electrical current passing through it makes it heat up). 
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Challenge! 

1. Hook up a circuit as in Figure 3-5, except use 100 kΩ resistor and a 0.22 µF 
capacitor. Measure the rct value, and insert it in the center cell of the table 
below. You have two 0.22 μF capacitors in your kit, and two 100 kΩ resistors. 
By making parallel and series connections of those parts, you can fill in the rest 
of the entries in the chart. 

2.  

 
 

 
 

2 R Ω R/2 Ω C/2 µF 2C µF 
RCTIME vs. R and C 50 kΩ 100 kΩ 200 kΩ 

0.11 µF    
0.22 µF    
0.44 µF     

 
3. Modify the program AD592.bs2 so that it shows its result in degrees Fahrenheit 

and degrees Rankine, instead of degrees Celsius and Kelvin. (Rankine = 
Kelvin*1.8.). Do not just convert Kelvin to degrees Rankine though. Calculate a 
new constant for Rankine = constant/rct. 

 
4. Pushbutton application: sometimes the Morse code sound may be annoying. You 

can unplug the wire from P0 to shut it off. But the challenge here is to make a 
way to turn it off in software. Think of a way using the pushbutton to toggle the 
sound on and off. 

 
5. Hook up a 0.1 μF capacitor and 100 Ω resistor to P10, as in Figure 3-5, with the 

conductivity sensor. Also hook up an LED and resistor to P8, so that the BASIC 
Stamp can turn the LED on and off. Then (a) make a program that turns on the 
LED only when the probe is dipped in water; (b) Make a program that pauses for 
10 seconds, then tests the input and blinks the led if the probe was dipped in 
water anytime during the 10 second pause. Then recharge the capacitor, turn the 
pin to an input, then go back to the pause; and (c) Modify the program so that it 
counts up how many times you dip the probe in water, one count possible for 
each pause. This program shows how the capacitor helps to monitor things like 
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rain gages and traffic counters–switches that close unpredictably for short 
periods of time. The capacitor is used as a "memory" remembering the event 
until the BASIC Stamp gets around to looking at the input. 
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Chapter 4: Light on Earth and Data Logging 
 
The theme of the Light on Earth and Data Logging experiment is "light, and its 
importance for everything under the sun." To demonstrate this, we'll build a light 
meter/data logger. The activities we'll perform in this experiment include:  
 

• A light sensor photodiode using RCTIME, and observations of the orders of 
magnitude scales of intensity 

• A combined temperature and light meter  
• A pushbutton data logger for temperature and light 
• A couple of experiments using the light meter/data logger 
 

The sun is the driving force of most of the weather and physical processes on earth. 
Where would we be without photosynthesis? People have been taking measure of the sun 
since the dawn of prehistory. At Stonehenge, at the Caracol of Chichen Itza, and around 
the world, the ancients took the measure of the solar cycle of the seasons in relation to 
agriculture and to temporal and spiritual life. 
 
Temperature is a relatively simple variable in comparison to light. Light comes in a 
spectrum of colors, both visible and invisible, and the spectrum extends out to fuzzy 
limits of wavelength. It has polarization and direction. Many aspects of light have special 
significance. Certain wavelengths are responsible for sunburn; other wavelengths are 
special for the ripening of fruit. There are subtle patterns of light. For example, bees can 
see patterns of deep blue on flowers in the ultraviolet range that the human eye cannot 
perceive, and hummingbirds' vision extends farther into the red, infrared, than our own. 
Light is important to us in a tremendous range of intensities, from solar energy for 
electricity and heating, to bioluminescence of creatures in the deep oceans. 
 
Like temperature, light is often used to measure other things. For example, instruments 
for detecting air quality and CO2 are often based on lasers, or on the fact that gases 
absorb light at characteristic wavelengths. Astronomers use the spectra to deduce the 
chemical composition of the stars and interstellar gasses. On the other end of the scale of 
size, light is used to probe chemical processes in DNA and the mechanisms of the living 
cell. In a practical arena, light is used for motion detectors, for indicators, and of course 
for illumination, which is in itself a whole specialty of engineering.   
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One fundamental law is that the intensity of light from a point source falls off with the 
square of the distance. That is, at double the distance from a light bulb (or from the sun), 
the light intensity will be 1/4 of its value at the first location. The same amount of energy 
is spread over 4 times the area. Using the light meter you build in this lesson, you will 
have a tool to investigate that law, as well as to explore light variation in your 
environment. This concept of light attenuation is illustrated in Figure 4-1 
 

R

2R  

Figure 4-1 
Light Attenuation 
 
At twice the distance from a 
bulb (or from the sun), the light 
intensity will be 1/4 of its value 
at the first location. We'll 
investigate this law with our 
microcontroller-based light 
meter. 

Parts Required 

For this experiment we'll be leaving parts on the Board of Education or HomeWork 
Board that we installed in Chapter 3. The following parts are required for Chapter 4: 
 
(1)  Photodiode  
(4)  100 Ω resistor (brown black brown) 
(2)  0.01 μF poly capacitor  
(1)  0.22 μF poly capacitor 
(2)  100 pF ceramic capacitor (101) 
(1)  Red LED 
(1)  Green LED 
(1)  9 V battery (not included) 
A 50 watt R20 spotlight, if available, for experiments (not included) 

Building the Circuit 

Photodiode as a Light Transducer 
What's a Microcontroller? introduced one kind of light-responsive sensor called a 
photoresistor, which has a cadmium sulfide-coated surface that becomes less resistant to 
current as it is exposed to brighter light. In this lesson, we will use a different type of 
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photodetector, a photodiode. A photodiode passes an electrical current (in amps) that is 
directly proportional to light intensity. This characteristic makes it especially well suited 
for quantitative measurements. 
 
You may also be familiar with the light emitting diode (LED), which turns electrical 
current into light.   The LED emits light when the current flows in the direction of the 
diode arrow. You may know that electrons (negative charges, e-) actually flow in the 
opposite direction. But in an accident of historical interpretation, in electronics we 
usually think of current as if it were carried by positive charges. Again, the LED emits 
light when the (positive) current flows in the direction of the arrow. 
 

Light 

e 
10 mA

Figure 4-2 
LED 
 
The LED emits light when the 
(positive) current flows in the 
direction of the arrow. 

 
It also works in reverse. Light falling on a diode produces electricity. If you connect a 
voltmeter to a diode exposed to light, you will measure a fraction of a volt, with the 
polarity as indicated. Electrons accumulate at the cathode end. 
 

Light 

0.4-0.5 V
- -  - -

+ +  + +

Figure 4-3 
Photodiode 
 
A photodiode produces 
electricity with light. 

 
When you connect the photodiode into a circuit loop with a wire, current flows around 
the loop. The amount of current is proportional to the intensity of the light. This is 
fundamental. It is the light that generates the charges that make the current. The only way 
they can get back together is to flow around the external circuit. Observe that the 
electrons flow clockwise around the circuit, as shown in Figure 4-4. The conventional 
current (positive charges) flows in the opposite direction, against the direction of the 
diode arrow. This is called a photocurrent, and it is a reverse current. Compare this to the 
forward current that lights up an LED. This business of the arrow can be confusing, but in 
electricity, it is all relative. In this circuit, the voltage across the diode is zero–it is short-
circuited. 
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Figure 4-4 
Photocurrent 
 
Photocurrent occurs when 
conventional current (the positive 
charges) flow in the opposite 
direction, against the direction of 
the diode arrow. 

 
Sensitivity to light is a fundamental property of transistors and diodes. In most places, 
that would be an undesirable side effect. Transistors and integrated circuits are usually 
potted in a plastic, ceramic or metal case, and one reason to do that is to keep out light 
that would greatly affect their performance. Photodiodes are made especially to 
accentuate the sensitivity to light. Look at the photodiode in your kit. It has a clear epoxy 
top, and underneath that you can see a small black square of silicon, with wires attached 
at the sides. Electrical charge builds up on the top and the bottom, where the wires pick it 
up. The difference between a solar panel and a photodiode is largely in the area of the 
diode. Solar panels have huge areas, square feet or square meters, so they can intercept a 
lot of light and produce lots of current and power, measured in amps and watts. The 
photodiode is made of especially pure material for measurement, not for energy 
production. 
 
One thing that makes photodiodes very useful for measurement is that a simple equation 
governs their behavior as a transducer: 
 

i = constant * light intensity 
 
The sensor is linear. That means that if the light level increases, say, by a factor of 1000, 
then the current through the diode will also increase by that same factor. For the 
photodiode, this holds true over several orders of magnitude, over several powers of ten. 
It is that characteristic that makes it so useful for measurement. 
 
The simple equation also holds true when the diode is hooked up in a reverse voltage 
circuit as in Figure 4-5. At the same light intensity, the amount of current is exactly the 
same here as it would be in the short circuit of Figure 4-4. The current through the 
photodiode charges the capacitor. The charge accumulates on the capacitor as shown, and 
the voltage across the capacitor gradually increases. The BASIC Stamp 2 program will 



Chapter 4: Light on Earth and Data Logging · Page 93 

measure the time it takes for the voltage at P6 to fall from 5 V down to 1.3 V as shown in 
Figure 4-5. 
 

Vss

Vdd

P6

1.3 - 5 V

e µA

Current
depends 
on light

 

Figure 4-5 
Photodiode Circuit  
 
With this circuit the BASIC Stamp can measure 
the time it takes for the charge to fall from 5 V to 
1.3 V. This is called a resistor/capacitor circuit. 

 
√ From the Parts Required list above, gather together the 0.01 µF capacitor, the 

photodiode, and a 100 Ω resistor. 
√ Add the circuit to your breadboard as shown in the schematic (Figure 4-6) and 

wiring diagram (Figure 4-7). 
√ Add an optional resistor between the piezo transducer and BASIC Stamp PO to 

quiet down the speaker if your instructor requests it. 
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Figure 4-6 
Photodiode Light 
Transducer Schematic. 
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Figure 4-7:  Photodiode Light Transducer Wiring Diagram  

 

 

Node: A node consists of all the points in a circuit that are connected together. Each row of 
5 holes on the Board of Education or the HomeWork Board is a node, because all of the 
holes are connected electrically.  One node in Figure 4-7 is the row where the diode, the 
capacitor and P6 (via the resistor) meet. 

 
√ Enter the program LightMeter.bs2. 

 
' Applied Sensors – LightMeter.bs2 
' Sound out light levels from the photodiode. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
rct     VAR     Word          ' Variable for RCTIME. 
 
HIGH 6                        ' Discharge the capacitor. 
 
DO 
  DO 
    RCTIME 6, 1, rct          ' Time for volts to fall to 1.3V. 
    HIGH 6                    ' Discharge the capacitor. 
  LOOP UNTIL (rct<>0)         ' No sound if RCTIME overflows. 
  FREQOUT 0, 1, 3400          ' Make a click. 
LOOP                          ' Repeat the main loop again. 
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√ Download and run the program.  
√ Expose the light sensor to dim light, such as under your desk, and brighter light, 

such as a lamp.  
√ Read the next couple of paragraphs before you get too carried away.  

 
Light levels can vary tremendously in the natural environment. Our eyes have an amazing 
capability to accommodate both dim and bright light. Sensitivity is the amount of light 
that it takes to get a response.  Sometimes we need a sensitivity adjustment, or a switch 
for "high" and "low" sensitivity. Cameras and eyes have an iris that opens or closes to 
adjust the amount of incoming light, to extend the range of sensitivity.   
 
Observe that the program jumps back to the top without making a sound, if the value of 
rct is equal to zero. That is at the dim end of the range. You may have to cover the 
sensor with a box or something to make it dark enough to see this effect. The capacitor 
takes too long to charge and the RCTIME command does not see a transition from 1 to 0 at 
P6 within its 0.13107-second limit. At the other extreme, in bright light, the clicking 
becomes very high-pitched and bunched up, so you can't distinguish differences.   
 
√ Find your 0.22 µ capacitor and your 100 pF capacitor. 
√ Replace the 0.01 µF capacitor with 100 pF capacitor to make it more sensitive and 

responsive in dim light. 
√ Try taking measurements in dim light again. 
√ Try fastening a piece of tissue paper, if available, over the photodiode to decrease 

its sensitivity. 
√ Try taking measurements back in brighter light. 
√ Take out the 100 pF capacitor, and put in a 0.22 µF capacitor. 
√ Take measurements in brighter light again. 

 
Now that you have figured out when to swap out capacitors to obtain the proper 
sensitivity to the given light conditions you are measuring, let's explore your 
surroundings.  Have fun with this! 
√ Disconnect your Board of Education or HomeWork Board from the programming 

cable. 
√ Power your board with a 9-volt battery. 
√ Carry along the 100 pF and a 0.22 µF capacitor and change the sensitivity 

whenever you feel it is necessary. 
√ Explore your surroundings, indoors and outside, if possible: 
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o Try pointing the sensor both up and down, to detect the direct light and 
the reflected light and patterns of light and shade.  

o Try scanning close across the objects on a desk, both shiny and dull. 
o Try scanning close  to the bold pattern on a curtain or clothing.  
o Try scanning the flickering pattern on your computer screen or TV set. 
o Try scanning a relatively dark place using the 100 pF capacitor.  
o Try scanning outside in sunlight, if available, using the 0.22 µF 

capacitor. 

More about Measuring Light Intensity 
A Pyranometer quantifies light intensity by the light energy hitting a surface per unit 
time. This is the right measurement if you are designing a solar panel system or a solar 
water heater, or if you are an architectural engineer thinking about the energy efficiency 
of a building. This kind of light intensity is measured in watts per square meter. The 
power input from the sun at the earth's surface, on a clear summer day, is a little over 
1000 watts per square meter, or 75 watts per square foot.  The solar energy input above 
the atmosphere is nearly 1400 watts per square meter, which is often given in other units 
as 2 Langleys per minute.  (1 Langley = 1 calorie per square centimeter). Sometimes we 
are interested only in the energy of certain wavelengths. For example, ultraviolet light at 
about 300 to 320 nanometers causes sunburn, not only in people, but in other life on earth 
too, like coral in the ocean. This UVB light can be separated out and measured. It 
amounts to less than 0.1% of the total, less than 1 watt per square meter. But it is a very 
significant 0.1%. More and more UVB is getting down to the earth as the ozone in the 
upper atmosphere is depleted, due it seems to human activity, the use of certain CFC 
chemicals. 
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A Photometer quantifies light intensity as our eyes see it. This is the subject of 
illumination engineering, and of physiology.  How does an owl see? Our eyes are most 
sensitive to bright light in the yellow-green range, and the sensitivity falls off in the red 
and the blue. The question of light intensity is still one of energy per unit area per unit 
time, but now it includes only energy at the wavelengths we can see. It is measured in 
special units, lux or foot-candles. The light intensity looking at full sunlight is about 
110,000 lux, but of course, looking at direct sunlight is not something that we do. It is too 
intense. In contrast, a 100 watt light bulb, viewed from 1 meter distance, is about 100 lux.  
That too is perceived as bright. Normal room lighting is measured in 10s of lux. There is 
a tremendous range of values that sensors, including our eyes, have to deal with – around 
7 or 8 orders of magnitude. But that is nothing compared to the range of light levels 
arriving from celestial objects, which is detectable in over 20 orders of magnitude. 
 
A PAR meter quantifies light intensity as it affects the growth of plants. This is of great 
interest to farmers, and aquaculturists, and botanists. Photosynthesis occurs in special 
band of wavelengths, called the photosynthetic action spectrum. PAR stands for 
Photosynthetically Active Radiation. Measurement of PAR allows botanists to estimate 
how much growth would be possible for a given plant, if light were the limiting factor. 
Light comes in packets of energy, called quanta, and each unit of photosynthesis takes 
one quanta of light. The units of PAR are micromoles of quanta per square meter per 
second.  Full sun illuminosity is about 2000 moles per square meter per second. A lot of 
plant biology has to with plant adaptations to light levels. 
 
A Spectrophotometer is the most versatile of the bunch. It tells you how much light 
energy is in each narrow band of wavelengths across the spectrum. In contrast, the 
photocurrent in your photodiode is due to the convolved effect of many different 
wavelengths. The spectrophotometer can be used to characterize and calibrate almost any 
of the other light measuring instruments, but, needless to say, it can be a much more 
complicated and expensive instrument. An economical version of this is a colorimeter 
that you might find in a paint store for matching colors. 
 

How LightMeter.bs2. Works 

 
Let's go back to our own light meter, and talk more about the BASIC Stamp program that 
makes it work. Note that one side of the capacitor is connected to Vdd (+5) instead of 
being connected to Vss (ground) as it was in the AD592 temperature sensor circuit. Here, 
LightMeter.bs2 starts off with HIGH 6 to discharge the capacitor.  This might seem 
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strange, making the pin high to discharge the capacitor, but note that a capacitor is said to 
be "discharged" when the voltage from one side to the other is equal to zero.  The top of 
the capacitor is connected to +5 volts, so HIGH 6 makes both sides equal to +5 volts, so it 
is discharged. Figure 4-8 illustrates the time course of the voltage at P6. 
 

Time
0 V

1.3 V

+5 V

Charging rate
Low High

rct
 

Figure 4-8 
Resistor/Capacitor Discharge  
 
Light strikes the photodiode, causing it to sink 
current from the discharged capacitor.  As the 
capacitor charges, the voltage at P6 decays 
from nearly 5 V down to 1.3 V. The RCTIME 
command holds P6 as an input during that time. 
As soon as the RCTIME detects the 1.3 volt 
level, the program moves to the HIGH 6 and 
quickly discharges the capacitor, and the 
voltage at P6 quickly returns to +5 volts. 

 
Look carefully at the RCTIME command in LightMeter.bs2. The second argument is now 
a 1. That argument was 0 in the programs in Chapter 3 with the AD592 temperature 
transducer. This instructs the RCTIME routine to count time while P6 is equal to one, and 
to stop when P6 makes the transition to zero. Try changing the second argument from 1 
to 0. It doesn't work, does it? That is, is it sensitive to light? Do you hear a very high 
tone, a very low tone, or no tone at all? For debugging, it is good to think these "what 
if..." kinds of questions.   
 
The BASIC Stamp accepts both forms of the command, with the second argument either 
0 or 1, because there are situations where one or the other will be the best, or the only, 
choice. For example, the AD592 temperature sensor works fine in the circuit of Chapter 
3, but it would fail to work in this one.  That has to do with the voltage requirements of 
the AD592. We can't go into all the advantages and disadvantages of one circuit over the 
other, but it is good to be aware of this flexibility when you get down to the fun of 
designing your own serious projects. 
 
Observe that the pitch of the tone from the annunciator goes higher in brighter light.  
Why is that, when the time to discharge the capacitor, rct, goes lower in brighter light?  
Be sure you understand the reason, which is that with lower values of rct, the program 
loop cycles faster, which sounds a higher tone. (Note that this program is using a constant 
for the FREQUOT command's Freq1 argument – it is the more rapid cycling that causes the 
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tone to sound higher in pitch, but the frequency generated by the BASIC Stamp remains 
the same.) 

Photodiode and the BASIC Stamp as a Digital Light Meter 

The previous program was an analog meter, because the audible frequency output was an 
analog of the light input.  Both go up and down in a similar manner. Analog meters are 
great conveying information directly to our senses. This time, let's look at the actual 
numbers on the Debug Terminal. This is the digital connection.  
 
√ Enter and download the program DigitalLightMeter.bs2 

 
' Applied Sensors – DigitalLightMeter.bs2 
' Numerical light levels from the photodiode. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
rct     VAR     Word            ' Variable for RCTIME. 
light   VAR     Word            ' Variable light intensity. 
 
HIGH 6                          ' Discharge the capacitor. 
 
DO 
 
  RCTIME 6, 1, rct              ' Time for volts to fall to 1.3V. 
  HIGH 6                        ' Discharge the capacitor. 
 
  light = 65535 / rct           ' Calculating light. 
 
  DEBUG DEC rct, TAB,           ' Display values. 
        DEC light, TAB, 
        BIN light, CR 
 
  PAUSE 400                     ' Slow things down. 
 
LOOP                            ' Repeat the main loop again. 

 
The constant 65535 is arbitrary. The important thing is that the light is proportional to 
1/rct. The exact value of the proportionality constant will be determined when we 
calibrate the sensor against a light source of known intensity, like the sun, or a standard 
light bulb. 
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The Theory Behind it:  

For those of you who are interested, the theory here is the same as for Chapter 3. The 
voltage across the capacitor here must change by 3.7 volts (see Figure 4.8), instead of 1.3 
volts (see Figure 3.7).  The formula is: 

2*rct = C * 3,700,000 / i 

(2*rct) is in microseconds, C is in microfarads, and i is in microamps. This shows the 
theoretical inverse relation between the photocurrent, i, and the rct variable that comes out 
of the RCTIME command. The photocurrent is proportional to the light intensity falling on 
the photodiode. However, unlike the AD595 temperature probe, where the calibration 
constant is 1 µA/K, there is not an exact equality between standard units of light and 
photocurrent. But it doesn't matter. All the constants can be lumped into one that can be 
determined at the time of calibration: 

rct  = constant / (light level)  or  light level  =  constant / rct 

 
√ Run the program. 
√ Expose the light meter to dim light. 
√ Now expose it to bright light. 

 
Notice how the numbers in the second column in the Debug Terminal increase in bright 
light. Notice also that the numbers in the first column decrease as the capacitor charges 
more rapidly from the larger photocurrent.  
 
The final column is included, not so much so you can see the binary value of the light 
level, but because the length of the binary number, from 1 to 15 binary digits, is 
proportional to the logarithm of the light level. One digit is added for every doubling of 
the light intensity. Try taking your light meter from very dim to very bright to see what 
we mean.  
 
Logarithms are useful for dealing with phenomena that vary over huge ranges. As another 
example, the VU meter on a stereo sound system shows you a logarithmic graph of sound 
level. Our ears, like our eyes, can accommodate a tremendous range of sound levels. In 
technical terms, the length of the binary number shows the integer part of the logarithm to 
base 2. The same is true for the decimal number in the second column; it adds one digit 
for each factor of 10 in the increase in light level, but that is harder to perceive. You can 
try replacing BIN light in the DEBUG statement with REP 42\ NCD light. This prints a 
string of stars, instead of the actual binary number. The NCD operator is the closest thing 
the BASIC Stamp has to a logarithm function. 
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Let's look now at the effect of the capacitor on the reading: 
  
√ Start with a 0.01 µF capacitor in your light meter circuit.  
√ Place your Board in a place where the light level is constant, and note the reading.  
√ Now find the second 0.01 µF capacitor.  
√ Install it on your breadboard in parallel with the first one, as shown in Figure 4-9.  
√ Now (with the same light level as before) observe the rct and the light level 

readings.  
 
The rct reading should be about twice what it was before, and the light reading in the 
second column should be about 1/2 of what it was. This is because the value of the 
capacitor enters into the calculation of the calibration constant, as shown in the theory 
box. If the current from the photodiode is constant, then doubling the capacitor value also 
doubles the time it takes for the capacitor to charge down to the threshold. 
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Figure 4-9 
Parallel 
Capacitors 
 
By adding the 
second capacitor 
in the circuit in a 
parallel fashion, 
the rct reading 
will double from 
what we've 
measured before. 
The value of the 
capacitor enters 
into the 
calculation of the 
calibration 
constant. 

 
The capacitors we are using are of a type called "polyester film" capacitors. They are 
desirable because of their stability. Temperature changes do not affect their capacitance. 
We need a stable capacitor like that, so that the RCTIME value will only depend on the 
current from the photodiode. 
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√ Now remove both of the 0.01 µF capacitors, so that there is no capacitor at all in 
the photodiode circuit. (Be sure you are getting the photodiode capacitors, not the 
temperature capacitor).  

√ Expose the light meter to very dim light. 
 
It still works! The actual numbers don't mean anything, but you should find that it acts 
just as if there were a capacitor in the circuit. It will be sensitive to very low levels of 
light. As a matter of fact, there is a capacitor in the circuit. The input gate on the PIC 
16C57 microcontroller on the BASIC Stamp has a built-in capacitance of about 50 pF 
(picofarads). In addition to that, the wiring of the white block breadboard contributes 
capacitance. Remember, capacitance exists whenever electrical conductors come close to 
one another, intended or not.  This is called stray capacitance, because it was not really 
intended to be there as part of your circuit. The combination of the PIC input capacitance 
and the capacitance of the white block wiring add up to the equivalent of about 250 pF of 
stray capacitance.  
 
√ Put in a 100 pF capacitor where you removed the 0.01 μF capacitor.  
√ Check the reading in the same dim light. 

 
The reading will not change too much. The capacitance has only gone from about 250 pF 
to 350 pF, not from zero to 100 pF as you might have expected.  
 
√ Put a second 100 pF capacitor in parallel with the first.  
√ Check you reading again. 

 
The readings will not change by a factor of 2, because the capacitance has gone from 
about 350 pF up to 450 pF, not from 100 pF to 200 pF. Often when things do not turn out 
the way you expect, it is due to stray circuit elements for which you are not accounting. 
 
√ Now remove the two 100 pF capacitors.  
√ Restore the single 0.01 µF capacitor in the light meter circuit.  
√ Hold the light meter in a bright light source. If you have it, use a 50-watt R20 

spotlight (the kind used in track lighting). If you don't have this type of bulb an 
alternative would be a 100 watt bulb. The light intensity of such a light source 
facing the center of the beam at one-meter distance is about 425 lux (40 
candlepower).  
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If you tried to write down the light reading you see in the second column in the Debug 
Terminal, you might be waiting there forever it to settle on a value. You may find that it 
fluctuates up and down quite a bit, making it hard to decide what the "reading" really is. 
These fluctuations come from a couple of different sources. Not the least of them is that 
the light level really is fluctuating very fast, faster than your eye can perceive it. The 
intensity of the lamp depends on the power line voltage, so we should really emphasize 
again that its intensity is approximately 425 lux at one meter. The AC line voltage that 
drives the lamp goes from zero to 170 V, 120 times per second. As this happens, the 
intensity flickers. The filament in the lamp stays glowing hot, due to its thermal mass, but 
the output does fluctuate on a time scale of 1/120th of a second, about 10 milliseconds. 
Along comes the photodiode and the BASIC Stamp, to sample the light in less than one 
millisecond. Sometimes it samples the highs, and sometimes it samples the lows. 
 
Make a rough estimate of your average value:  
 
√ Look at the readings for a bit to note a minimum value. 

Raw Reading Minimum: ________. 
√ Now scan the readings for a maximum value 

Raw Reading Maximum: ________.  
√ Average them to make an estimate halfway in between.   

Reading Mean: _________.  
√ Now, see if you can find a scale factor so that the program displays the numerical 

value in standard units of 425 lux, instead of the raw value in arbitrary units, when 
the sensor is in position in front of the lamp.  

 
(Reading Mean) * (scale factor) = 425 lux 

 
For example, if your Raw Reading Mean happens to be 168, then on a calculator you 
would multiply that times 2.53. That number is found by using  
 

(scale factor) = 425/ Reading Mean 
(scale factor) = 425/168 = 2.53 

   
Subsequently you can move the light meter into an unknown area and find the actual light 
level there in units of lux, because the light meter is calibrated. 
 

(new light level in lux) = (new raw reading) * (scale factor) 
(new light level in lux) = (new raw reading) * 2.53 
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The trouble is, the BASIC Stamp (like most microcontrollers) uses integer math. It does 
not have fractions. Well, not quite true. The BASIC Stamp 2 has a peculiar math operator 
called */ that is called fractional multiply. The catch is that the fraction has to be one of 
these specific values:  0, 1/256, 2/256 and so on, up to 256/256 (unity) and so on: 
257/256 (one + 1/256th), up to 65535/256 (255 + 255/256ths). All these fractions have a 
denominator of 256. The factor that goes on the right side of the */ is the numerator of the 
fraction, and the denominator of 256 is implied. Here are some examples: 
 

Y = X */ 256  ' is the same as Y = X, because 256/256=1 
Y = X */ 128  ' is the same as Y = X*1/2, because 128/256 = 1/2 
Y = X */ 384  ' is the same as Y = X*3/2, because 384/256=3/2 
Y = X */ 647  ' is the same as Y = X*647/256 ... 
 

It so happens that 647/256 is close to 2.53, which is the scale factor we need.  Try it: 
 

647/256  =  ______     168 * (647/256)  = ______ 
close to 2.53?   close to 425? 

 
Here is an example of how to find the value to put after the */. You have your own 
Reading Mean, say it is 168.  You have the known value of light intensity, nominally 425 
lux. Then the factor to put after the */ is 425*256/168 = 647.   
 

425 * 256 / (Reading Mean) = calibration constant for indoor light  
425 * 256 / 168 = 647 

 
The equation to use in the DigitalLightMeter.bs2 program now becomes:  
 

light = 65535/rct*/647      ' Computes light from left to right 
 
√ Use your own Reading Mean to calculate your calibration constant for indoor light. 
√ Insert the numerical value you found for your calibration constant for indoor light 

in the appropriate line of code in the DigitalLightMeter.bs2 program.  
√ Re-download and run the program.  
√ Take a reading from the same light source at the same distance you used to obtain 

your Minimum and Maximum readings.  
 
The Debug Terminal should display 425 in the second column, when the sensor is placed 
one meter in front of the calibration source you originally used. Now, as you take the 
light meter around the room, the reading will be displayed in standard units of lux. This is 
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a "ballpark" calibration. But it demonstrates the idea, and how the */ operator can help 
with the math See the BASIC Stamp Manual for the full details on PBASIC operators. 
Calibration of analog sensors often involves multiplying a raw reading times a fraction, 
so understanding how to use the */ operator can be a great help.   

Temperature and Light Meter 

Do you still have your temperature sensor probe hooked up? We hope so. If not, hook it 
back up as shown in Figure 3-9. 
 
√ Enter the program LightTemperature.bs2.  
√ Enter your own calibration constant for indoor light value in place of 647 in Lical 

CON 647.  
√ Enter your own constant, Kal, for the AD592 temperature sensor, from page 70. 

That number goes in the place of the 15068 in Kal CON 15086. 
 
' Applied Sensors – LightTemperature.bs2 
' Light intensity and temperature meter. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Kal     CON     15068           ' Calibration constant for AD592. 
Lical   CON     647             ' Calibration constant for photodiode. 
                                ' Use Your Own Calibration Constants!! 
rct     VAR     Word            ' Variable for RCTIME. 
light   VAR     Word            ' Variable light intensity. 
TC      VAR     Word            ' Variable for degrees Celsius from AD592. 
 
LOW 5                           ' Discharge AD592 capacitor. 
HIGH 6                          ' Discharge photodiode 
DO 
  RCTIME 5, 0, rct              ' Read temperature probe. 
  LOW 5                         ' Discharge AD592 capacitor. 
 
  ' Calculate Celsius. 
  TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273 
 
  RCTIME 6, 1, rct              ' Read photodiode. 
  HIGH 6                        ' Discharge photodiode capacitor. 
 
  light = 65535 / rct */ Lical  ' Calculate lux. 
 
  DEBUG DEC TC, " C", TAB,      ' Display values. 
        DEC light, " lux", CR 
  PAUSE 400                     ' Slow things down. 
LOOP                            ' Repeat the main loop again. 
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Now you have both temperature (first column) and light readings (second column) in the 
Debug Terminal, with units. That's progress!  
 
√ Compare the two RCTIME instructions that go with the temperature and the light 

level.  
√ Be sure you understand why the two instructions are different, in relation to how 

the circuits are set up.  
√ Get this working before you proceed to the next section. 

Light and Temperature Logger, using RAM Memory 

Now let's make the program store up a bunch of readings. We have already discussed in 
earlier lessons why data logging is important. It's time to get down and do some of it. The 
ultimate goal is to log data in the EEPROM memory of the BASIC Stamp. But for now to 
keep it simple we will log data in the RAM memory of the chip. Recall from Chapter 1 
that there are 26 bytes of RAM available for our general purpose use in the BASIC Stamp 
2. We will set aside 18 bytes of that for the data log shown in Figure 4-10. 
 
log (0) = TC n=9  log (n) 
↕         ↕         
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T L T L T L T L T L T L T L T L T L  

Figure 4-10 
Allocation of 
Memory for Log 
File  

 
The instruction to reserve 18 bytes in RAM will be: 
 

log    VAR  Byte(18) 
 
These bytes are like 18 bins in a row, numbered from 0 to 17, and we are going to store 
temperature values in the even numbered bins and light intensity values in odd numbered 
bins. In the program, will refer to these bins by using an index inside parentheses: 
 

log(0)=TC        ' stores temperature reading in first bin 
light=log(9)     ' retrieves light reading from 10th bin. 
light=log(n)     ' bin number is held in a variable, n. 
                 ' when n=9, retrieves the light value  
                    ' from the 10th bin. 

 
On signal from the pushbutton, the program will acquire a temperature and a light level 
reading, and it will store the numbers in the next two available bins. When all the bins are 
full, the program will make a special protest beep to annunciate the fact, "memory full." 
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When you make a special long press on the pushbutton, all of the values in the 18 bytes 
will be displayed on the Debug Terminal. To erase the data and start over, all you have to 
do is press the reset button. That "re-zeros" all the bins and the pointer. 
 
√ Enter the program LightTemperatureLogger.bs2. 

 
' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors – LightTemperatureLogger.bs2 
' Temperature and light intensity logging in RAM. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
' -----[ Constants ]------------------------------------------------------- 
Kal     CON     15068             ' Calibration constant for AD592. 
Lical   CON     647               ' Calibration constant for photodiode. 
                                  ' Use Your Own Calibration Constants!! 
' -----[ Declarations ]---------------------------------------------------- 
log     VAR     Byte(18)          ' 18 bytes reserved for the log file. 
rct     VAR     Word              ' Variable for RCTIME. 
light   VAR     Word              ' Variable light intensity. 
TC      VAR     Word              ' Variable for degrees Celsius from AD592. 
n       VAR     Byte              ' Counter for the pushbutton. 
ptr     VAR     Byte              ' Pointer to next entry in data log file. 
 
' -----[ Initializations ]------------------------------------------------- 
OUTS=%0000000001000000            ' Now put in the outs and dirs statements. 
     'fedcba9876543210 
DIRS=%1111111111111101            ' All are low outputs 
             ' ^-----------------   except P6 is high output to discharge C 
                  ' ^------------   and P1 is input for pushbutton. 
DEBUG CLS 
DEBUG "Ready to log data!", CR 
FREQOUT 0, 200, 2550 
FREQOUT 0, 400, 3400 
ptr = 0                           ' Pointer initialization. 
 
' -----[ Main Routine ]---------------------------------------------------- 
DO                                ' Main loop. 
 
  DO 
  LOOP UNTIL (IN1=0)              ' Loop here until button is pressed 
 
  n = 0                           ' Variable initialization. 
  DO                              ' Loop to track pressing time. 
    PAUSE 100                     ' Time the button in 0.1 sec increments. 
    n = n + 1                     ' Increment counter. 
  LOOP UNTIL (IN1=1 OR n>12)      ' Conditions to stop the loop. 
 
  IF (n>=12) THEN                 ' Long click? 
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    GOSUB Long_Click 
  ELSEIF ptr>17 THEN              ' Short click but memory full? 
    GOSUB Memory_Full 
  ELSE                            ' Short click instructions. 
    GOSUB Get_Data 
  ENDIF 
 
LOOP                              ' Jump to the main loop. 
 
' -----[ Subroutines ]----------------------------------------------------- 
Long_Click: 
  FREQOUT 0, 50, 2550             ' Feedback sound. 
  FREQOUT 0, 100, 3400 
 
  ' Message on screen print units of measurement 
  DEBUG CLS, "logged data!", CR, "degC",TAB,"Lux",CR 
 
  FOR n=0 TO 16 STEP 2            ' Will show 9 records. 
    TC = log(n)                   ' Get temperature. 
    light = log(n+1) * 2          ' Get light. 
    DEBUG DEC TC, TAB,            ' Display. 
          DEC light, CR 
  NEXT                            ' Next record of 9. 
 
  DO                              ' Do nothing 
  LOOP UNTIL (IN1=1)              ' Until button is released 
 
  DEBUG CR, "press RESET to erase data", CR 
RETURN 
 
Memory_Full: 
  DEBUG CR, "memory full"         ' Message. 
  FREQOUT 0, 50, 3400             ' Audio indication. 
  FREQOUT 0, 200, 2000, 2100 
RETURN 
 
Get_Data: 
  FREQOUT 0, 10, 1900             ' Sound to show we got here. 
 
  RCTIME 5, 0, rct                ' Read temperature probe. 
  LOW 5                           ' Discharge AD592 capacitor. 
 
  ' Calculate Celsius. 
  TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273 
 
  log(ptr) = TC                   ' Store temperature. 
  ptr = ptr + 1                   ' Point to next bin. 
 
  RCTIME 6, 1, rct                ' Read photodiode. 
  HIGH 6                          ' Discharge photodiode capacitor. 
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  ' Calculate lux. 
  light = 65535 / rct */ Lical 
 
  log(ptr) = light/2 MAX 255      ' Store light intensity/2. 
  ptr = ptr + 1                   ' Point to next bin. 
 
  DEBUG DEC TC, " C", TAB,        ' Display values. 
        DEC light, " lux", CR 
 
  PAUSE 400                       ' Slow things down 
RETURN 

 
√ Run the program.  
√ Press the pushbutton 9 times to collect 9 records of temperature and light level.  
√ Listen for the program to make a "memory full" beep.  
√ Hold down the button for >1.2 seconds to make all 9 of the records display in the 

Debug Terminal.  
 
You can leave the Debug Terminal open on the screen, and go off and do an experiment 
to collect 9 records, and then come back to the computer to play them back. When you 
are ready to start over, press the Reset button on your Board. 
 

 

Records and fields: Each line, or row, of data is a record.  Each reading across is a field.  
The first field here is temperature in units of degrees Celsius; the second field is light in units 
of lux.  The fields line up in columns.  The file here consists of up to 9 records.  This 
terminology is commonly heard in relation to spreadsheets and databases 

 

How LightTemperatureLogger.bs2 Works 

We'll comment on the program itself, then move on to some experiments you might want 
to try. 
 
This program starts off with the OUTS and the DIRS statements. They replace the HIGH 5 
and LOW 6 that were in previous programs. Note that the sixth position in the OUTS 
statement is 1, and the fifth position is zero. That makes P6 high and P5 low, as is 
required to discharge the two capacitors. The P1 position in the DIRS statement is a zero, 
which makes P1 an input. The other pins on the BASIC Stamp are all set to be low 
outputs, as a matter of good programming practice. 
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The program starts off with familiar single click and long click code for the pushbutton, 
so you should recognize the code. When the button is down, there is a race between the 
timer and the button. If the timer passes the 1.2 second mark, then the program jumps to 
the Long_Click subroutine. 
 
But if the button is released before the 1.2 seconds, then the program goes right into the 
Get_Data subroutine. There, it reads the temperature probe and the light probe just as in 
program LightTemperature.bs2. Then it puts the temperature value in the bin that is 
pointed to by the variable ptr, then ptr is increased by one. Next it puts the value of 
light/2 into this next bin. Again,  ptr is increased by one to point to the next empty 
bin. 
 
Before jumping to the Get_Data subroutine, the program tests the value of the pointer, 
and jumps to the memory full message if the pointer is greater than 17. The program does 
not allow itself to collect more data than will fit in the allotted space. You might try 
taking out this condition, just to observe what sort of error will occur! 
 
Why log the value of light divided by 2, instead of simply light as it is? The bins only 
hold byte-size quantities, less than or equal to 255. That is fine for Celsius, which will be 
in the range of 0-100. But the light level might get higher than that. It was calibrated at 
425 lux. By dividing by 2, light values of up to 511 lux can be stored. The downside is a 
loss of resolution, but it is not significant in light of our "ballpark" calibration. When we 
read the light values from the log, we will multiply them by two to get back the original 
value. Note that light/2 is followed by max 255. The 255 is a signal that your data is 
out of range. 
 
The Long_Click routine uses a FOR…NEXT loop to step through all 9 records.   
 

  for n=0 to 16 step 2                  ' Will show 9 records 
 
The "step 2" makes the value of the index, n, take on the even values, 0,2,4,6,...,16.  
That is a total of 9 steps. The value of temperature is read first from log(0), and light 
from log(1), and these values are displayed in the Debug Terminal. Note that light is 
multiplied by 2 to reconstruct the original value. Then the FOR…NEXT loop bumps up the 
value of the index to 2, and fetches and displays log(2) and log(3), and so on up 
through log(16) and log(17).  
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Why does the program use n as the pointer, instead of ptr? First, understand that it 
doesn't matter what variable goes in parentheses after the log(). The only thing that 
matters is the numerical value of what is in the parentheses. By using "n" as the pointer, 
the value of "ptr" is not disturbed. Let's say you have already acquired 5 readings, and 
then you do the long click to read out what you already have for those 5. You can then 
continue where you left off and collect readings 6 to 10, and then do the long click to 
read them all out. It is just a small refinement. 
 
At the end of the playback routine, the program reminds you that you have to press the 
Reset button on your Board in order to start over with a clean slate. 
 
This program uses every single RAM variable available in the BASIC Stamp. Two bytes 
each are used for the word variables, rct, TC and light, and one byte each for the 
indexes n and ptr, and 18 bytes for the log file.  That adds up to 26. If you tried to add 
one more variable to the program, you would get an error message, "out of variable 
space" when you ran it. 

Experiments with the Data Logger 

Verification of 1/r2 dependence for the light source  

√ Prepare a string with knots at one meter, 1.5 meters, 2 meters, 2.5 meters and so on 
up to 4 meters.  

√ Connect the string to the side of the fixture holding the 50 watt, R20 spotlight.  
√ Press Reset on your Board to clear the data log.  
√ Collect data at each distance from the light source, taking care to stay in the center 

of the beam.  
√ Upload your data to the Debug Terminal.  
√ Graph the readings as a function of position.  
√ Verify that the intensity of light falls off as 1/r2.  

 
This is a "ballpark" experiment. Think of some factors that might make the results less 
than perfect. Don't forget about the fluctuations we discussed earlier! 

Investigation of the light distribution from the spotlight   

√ Set up a protractor with the string and spotlight from the previous experiment. 
√ Using your ingenuity, design and execute an experiment that involves holding the 

light sensor at 10 different angles around the center of the beam from the spotlight.   
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√ Collect the readings and graph them. 

Rate of heating and cooling, timed logging   

√ Hold the temperature probe a few inches from the lamp, and press the button at 
regular 15 second intervals.  

√ Then take the sensor away from the light and take 4 more readings at the same rate. 
√ Upload the data and graph the temperature as a function of time.  

 
Wouldn't it be nice to have the data logger press the button for you, at regular intervals? 
Easily done! Change the first nested DO…LOOP in the Main Routine section of the 
LightTemperatureLogger.bs2 program as follows: 
 

DO                          ' Changes to program 
  n = 0                     ' Initialize the time counter 
  DO                        ' Loop here until button or time  
    PAUSE 1000              ' One second pacing. 
    n = n + 1               ' Count time 
  LOOP UNTIL (n=15 OR in1=0)' Get data at 15 second intervals 
                            ' Can press button to get data too. 
  n = 0                     ' ... and so on as in the original 

 
√ Download the modified program. 
√ Press Reset on your Board to start your experiment.  

 
The routine still accepts clicks for data logging. The number n can be up to 65535 
seconds–more than 18 hours between readings–if you care to start a long term 
experiment! 

Alternative Scale for the Light Sensor in Bright Light, Easy Method  
If you want to measure brighter light, outdoors in sunlight for example, here is an easy 
"ballpark" way to go about it.  
 
√ Insert the 0.22 µF capacitor in place of the 0.01 µF capacitor in the photodiode 

circuit. 
√ Put a factor of 22 in the three lines that calculate the light intensity: 

 
light = log(n+1)*44               ' Get light. 

…and 
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' Calculate lux 
light = 65535/rct*/Lical*22       

…and 
log(ptr)= light/44 MAX 255       ' Store light intensity/44 
 

This works because the new capacitance is 22 times the old capacitance. The rct value 
that used to be produced at 100 lux is now produced at 2200 lux. Recall the effect of 
doubling the capacitance earlier in this lesson. The old range of measurement was 0 to 
512 lux. That is now 0 to 11264 lux. 

Alternative Scale for the Light Sensor, Calibration in Full Sun   
This will give a light sensor reading in PAR, which are units of micromoles of quanta per 
square meter per second. If you read the section about light intensity, you know that this 
is the measurement used for plant growth. This is again a ballpark calibration! Our 
photodiode does not have the filters that would limit it to the wavelengths best for plant 
growth.  
 
√ Put the 0.22 µF capacitor in place of the 0.01 µF capacitor.  
√ Temporarily make the constant Lical equal to 256 and take out the divide and 

multiply factors in the light calculations: 
 

Lical      CON     256    ' Calibration constant for photodiode 
log(ptr) = light MAX 255  ' Store raw light intensity. 
light = log(n+1)          ' Get light. 

 
Recall that in using the */ operator, */256 is like doing nothing. It is the fraction 256/256, 
unity.  Recall also that when we calculated a calibration constant for units in lux, we 
assumed a known value of 425 lux at one meter from our spotlight.  Now we will assume 
a known value of 2000 PAR in full direct sunlight. 
 
√ Place the photodiode sensor directly facing the outdoor sun. Of course, you may 

have to go outside with your Board running on the battery on a sunny day to do 
this! You can log data by pressing the button, or by using the timed data mode, 
depending on how you have your current program configured.  

√ Upload the data to the Debug Terminal. (Note: if the light readings are 255, that 
means it is out of range, too bright. Put a piece or two of tissue paper over the 
sensor held with a rubber band, and try again.)   

√ Record the raw value of light shown in the Debug Terminal in the second column.  
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√ Multiply the raw value times 2000, and then divide by 256. Insert this as the new 
value for  Lical. For example, given a raw value of 188: 

 
2000*256/188 = 2723. 

 
Lical     CON    2723         ' Cal. Constant for photodiode 

 
√ Change this line of code again so that when it is stored, it is reduced to a byte-sized 

value by dividing by 10: 
 

log(ptr) = light/10 MAX 255  ' Store PAR/10 
 
√ And change this line of code so that when it is retrieved for use, it is re-multiplied 

by 10.  
  

light = log(n+1)*10          ' Get PAR 
 

 
Of course, we lose some resolution, because the final digit used will always be a zero 
regardless of our initial measurement. 
 
√ Also, change the units of measurement in the DEBUG CLS statement from "lux" to 

"PAR."   
 
Now, when the light sensor is in full sun, it should log a reading of about 2000 PAR. 

Use your logger to explore the temperatures and light levels in the outdoor 
environment!  

√ Modify your program to log readings automatically once every two hours (7200 
seconds). 

√ Come back in 18 hours to see what happened to light levels and temperature while 
you were away! 
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Challenge! 

1. Do you understand energy per unit area? A certain laser puts out a total energy 
of one milliwatt into a beam with a cross sectional area of one square millimeter. 
How does the intensity of that light compare with the intensity of sunlight, which 
is about 1000 watts per square meter? 

 
2. Assignment: Pluto. You are planning to visit the planet Pluto, and you want to 

know how bright the light will be there.  Guess–would it be enough to read this 
page comfortably?  

 
a. Estimate Pluto's daytime illumination in lux.  (The earth is 149,500,000 

kilometers from the sun, while Pluto averages 5,920,000,000 kilometers 
from the sun. On Earth, with the sensor pointed directly at the sun, we 
measure about 110,000 lux. Approximately what value in lux will you 
measure when you point the light meter at the sun from Pluto?  

b. Using your calibrated BS2 light meter, find a place in your environment 
where the ambient light level falling on this page would be comparable 
to what you will experience outdoors on the sunny side of Pluto.  

 
3. Reaction Time Tester Install a light emitting diode and 470 ohm resistor on 

your Board so that a HIGH 9 instruction can turn it on, and LOW 9 can turn it off. 
Write a program that does the following to test your reaction time. When you 
press and hold down the pushbutton, the program waits a random amount of time 
from 1 to 15 seconds, and then turns on the LED. Then you have to release the 
pushbutton as fast as you can. The program should use the RCTIME instruction to 
measure the time it takes to release the button. Then it displays your reaction 
time in milliseconds on the Debug Terminal, turns off the LED, and goes back to 
the top to await another round. The program should test to see if you released the 
button before the LED goes on, and call you a "cheater" if you do. 

 
4. Colorimeter In your kit you have a red and a green light emitting diode. Not 

only can these diodes emit light, they can also act as photodiodes to receive light. 
That is, the reverse current in the LED is proportional to light level hitting it. 
They respond best at the same color they emit. So a red LED responds most to 
red light, and green to green. Hook up the red and the green LEDs as shown in 
Figure 4-5 except use BASIC Stamp I/O pins P8 and P9, and use 100 pF 
capacitors. The current produced by the LEDs is very small. You may reverse 
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the position of the diodes and the capacitors to get more sensitivity if needed. 
Write a program that reads the output of both sensors in succession and displays 
the result on the Debug Terminal. With the sensors in bright white light, the two 
readings will be different, because two diodes will have different natural 
sensitivities. Adjust the amount of light reaching the diodes, or adjust the scaling 
in the program, so that both readings are the same in white light. Then try putting 
red and green filters in front of the diodes. Have the diodes look at different 
colors of paper or through different filters, or at the light from a prism. 
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Chapter 5: The Liquid Environment 
 
The theme of the Liquid Environment experiment is "level and conductivity of water as 
examples of sensors of the liquid environment." This is a more difficult kind of sensor, 
but we'll continue with the data logging experiments. The activities associated with this 
experiment consist of:  
 

• Conductivity using ON-OFF input or RCTIME  
• Adding a 555 oscillator as an input to your Board of Education or HomeWork 

Board  
• Using the 555 oscillator for measurement of conductivity in water using stainless 

steel probes  
• Adding a conductivity measurement to the data logger from Chapter 3 

 
The view of Earth from our moon in 1969 cleared up for once and for all that we live on a 
water planet.  Scientists, farmers, emergency response agencies, the general public, 
everybody needs to know some "how, when, or why" about water.  When is it going to 
rain?  How deep is it? How cold, how hot, how clear, how clean? What minerals, what 
organic materials does it contain? How fast is it moving? How much is underground?  
How long has it been there? How much water is in the ice caps, the oceans, the rivers, in 
living tissue? How do raindrops form? What makes an El Niño event? What happens 
inside a cloud when it snows? Is there danger of landslides, droughts, floods, or famines? 
Can a cactus survive here? Can a frog, or a mouse? Can I drink it? Are our wetlands 
disappearing? Should we care? 
 
So, water will be the third variable we get to in this book. What can you measure about 
water? I am sure that you can think of hundreds of things right off the bat. We will 
concentrate on a couple. The first is to detect its presence, or its level. This is the sort of 
measurement that is needed in order to monitor or control the level of water in a stream, 
or a fish farm, or a water treatment plant, or when it is a question of when to irrigate a 
field or a potted plant. The second type of measurement will be the electrical conductivity 
of water. This is a measurement that is used to detect the presence of salt and minerals in 
water, and it is also used to assess the quality of drinking water or to study the mixing of 
fresh and salt water in a tideland or an estuary. There are many kinds of water 
measurements that require different sensors, like how acidic it might be, or how clear it 
might be. It is a big field, with lots of research going into the development of sensors that 
can detect the quality of water. 
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Measurements in the liquid medium are more problematic than measurements of 
temperature or light. The sensor probes that detect temperature or light do not actually 
have to contact the medium electrically. In contrast, wetness sensors often do have to 
come in direct contact and are subject to corrosion and all sorts of electrical interactions 
with metals, ions and currents in the liquid medium itself. 
 
Following that observation, we want to make an IMPORTANT precautionary note.  
Water and electricity don't mix, usually, without planning. Do not, we repeat, do not, by 
any mistake, spill water on your Board of Education or HomeWork Board! And always 
be careful about your own safety when working around electricity and water. 

Parts Required 

The following parts are required for this experiment: 
 
(1)  LMC555 CMOS timer  
(4)  Jumper wires 
(2)  0.1 µF capacitor 
(1)  100 Ω resistor 
(2)  100 kΩ resistor 
(1)  Conductivity sensor  
(1)  Cup (not included) 
Water  
Salt 

Building the Circuit 

Wetness Alarm 
In Chapter 3 you experimented with the conductivity sensor in your kit, as a way of 
introducing the RCTIME command. We removed it from your breadboard after that 
experiment, but now we will be using it again.  
 
√ Build the circuit shown in the schematic (Figure 5-1) and wiring diagram (Figure 

5-2. 
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Figure 5-1 
Conductivity Sensor 
Schematic 
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Figure 5-2:  Conductivity Sensor Wiring Diagram  

 
 
√ Now enter the program WetnessAlarm.bs2. 

 
' Applied Sensors – WetnessAlarm.bs2 
' Wetness alarm. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
DO 
 DEBUG BIN IN10 
 IF IN10=1 THEN FREQOUT 0, 6, 2550 
 PAUSE 50 
LOOP 

 
√ Fill your cup with water to within 2 inches of the rim.  
√ Leave the conductivity sensor on a non-conducting surface. 
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√ Run the program.  Did you hear anything? 
√ Now place the sensor over your cup of water, with the two probes (screws) 

hanging into the water while the cup spanner rests on the rim. 
√ Run the program again.  What did you hear this time? 

 
This is your basic water detector and alarm. When you run the program, you will not hear 
anything until you dip the probes in the water. The program here is like the pushbutton 
routines you studied in Chapter 2, where pushing down the button made the "cricket" 
sound. Here, the conductivity sensor's probes in water take on the role of the pushbutton.  
 
√ Recall the discussion of the conductivity sensor as a variable resistor in Chapter 3. 
√  Explain what is going on by adding remarks to program WetnessAlarm.bs2. 
√ Try replacing the IN10=0, with IN10=1, and see what happens.  
√ Think of a situation where that flavor of alarm might be useful. 

 
Why is a 100 kΩ resistor chosen for the circuit? The resistor sets the sensitivity. With 
higher resistance values, we would run the risk of the circuit saying "wet!" even if a little 
condensation forms on the wiring. With lower resistance values, that type of error 
becomes less likely, but on the other hand, the sensor might fail to say "wet" when it 
should, if the water happens to be especially pure and non-conductive. It comes down to 
trial and error.  
 
√ Remove the 100 kΩ resistor from the conductivity sensor circuit. 
√ Replace it with a 1 kΩ resistor. 
√ See how much moisture across the probes is needed to trigger the sensor. 

 
You will find that you have to get the probes much wetter than before, to get the alarm. 
This kind of wetness alarm is used to train toddlers not to wet their bed. A pad absorbs 
urine and sets off the alarm. A similar circuit is used to set off the alarm in industrial 
plants if there is a spill. 
 
Imagine expanding this circuit to control water level. If the water is spilled, we could turn 
on a pump clean it up. Then when sensor tells us the level is down, we turn the pump off. 
That is how a sump pump works, to keep water out of someone's basement, or a bilge 
pump to keep water out of a boat.  But we are getting ahead of the game. That is the topic 
for Chapter 6. At this point the game is to look into quantitative analog measurements, 
not just "yes/no" but "how much water" and "water of what quality?" 
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Measurement of Conductance using RCTIME 

√ Remove the 1 kΩ resistor (where the 100 kΩ resistor used to be) from the 
conductivity sensor circuit.  

√ Replace it with a 0.1 µF capacitor. This is now precisely the circuit shown in 
Figure 3-4 Figure 3-5.   

√ Enter the program Conductivity.bs2. 
 
' Applied Sensors – Conductivity.bs2 
' RCTIME measures conductivity. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
rct     VAR      Word       ' Word variable for RCTIME. 
n       VAR      Byte       ' Variable for the bar graph. 
 
LOW 10                      ' Discharge the capacitor to 0 volts. 
 
DO 
  RCTIME 10, 0, rct         ' Time for the volts to rise to 1.3V. 
  LOW 10                    ' Discharge the capacitor to 0 volts. 
 
  rct = rct – 1             ' Calculate length of bar graph. 
 
  DEBUG DEC rct, TAB,       ' Display ASCII art bar graph. 
        REP "*"\NCD rct, CR 
 
  PAUSE 1000                ' Slow it down to 1 per second. 
LOOP 

 
√ Run the program. Now you have a digital output that reflects the resistance of the 

water between the probes. 
√ Hold the conductivity sensor's probes in the water to the depths indicated in Table 

5-1. You will have to figure out how to determine the depth in the water. Maybe 
you can put marks on the side of the cup, or on the sensor itself. 

√ Measure and record your findings in Table 5-1. 
√ Observe how the numbers change as you change the depth of the probe in the 

water. 
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Table 5-1: Depth/Resistance Relationship 
Probe Location RC-time Reading 

Probe not in water  
Probe tip only touching water  

Probe 1cm in water  
Probe 2cm in water  
Probe 3cm in water   

 
Do you see a trend?  
 
√ Try repeating the measurements a few times, and write down the numbers.  
√ Allow the probe to sit at depth for a minute or two in the water. 

 
Are the readings repeatable? That is, do you get the same result each time?  
 
Here are a couple of program notes.  First, why include the formula, rct=rct-1? The 
reason is to make the graph look better. As you pull the probe out of the water, the 
number rct gets larger and larger, but suddenly when the probe leaves the water, rct 
suddenly goes back to zero. That is due to a peculiarity of the RCTIME command, which 
returns the value "0" as a kind of error message when it runs over its maximum value.  
By putting in the formula rct=rct-1, we are in effect making "aces high." 
 
When you subtract 1 from zero in integer arithmetic, you get 65535. When you use 
microcontrollers, or really, when you program any computer, you often have to 
compensate for the little peculiarities of the commands available to you. 
 
How about the graph?  It uses a DEBUG modifier: 
 

 REP "*"\NCD rct 
 
You know rct is the variable. REP is short for "repeat." It repeats printing the character 
"*" on the Debug Terminal, and the number of times it repeats is given by the number 
after the "\" For example: 
  

 DEBUG REP "*"\12 
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would print 12 stars in a row in the Debug Terminal.  You could also program that as:  
 

 DEBUG "************" 
 
But doing it with REP is more concise. And the number after the "\" can be a variable, 
which can be very useful. Here the variable after the "\" is actually an expression that 
results in a number. The expression is NCD rct. The NCD is a math operator unique to the 
BASIC Stamp. The result is just the length of the number rct in binary form. For 
example, if rct=35 in decimal, its binary form is rct=%100011. The length of that binary 
number is 6 binary digits. Run that through the NCD operator, and NCD rct returns the 
value, 6, and six stars are printed on the Debug Terminal. Maybe you will never have to 
use that command! But there it is, to add to your bag of programming tricks. The number 
of stars increases by one for each doubling of the value of rct. 
 
We will take one more measurement series for the above table, with the electrical 
connection to the conductivity sensor reversed: 
 
√ Take out the probe wire that connects to Vdd. 
√ Place it in the breadboard where the other probe wire normally belongs. 
√ Connect the probe wire you just removed from the breadboard to Vdd instead.  
√ Make the series of measurements again as listed in Table 5-1.  

 
You will probably find that the numbers are a little different.  The difference is due to 
what is going on in the liquid medium, as electricity passes through it from one probe to 
the other. 
 
The effect you are seeing is called "polarization." Chemical reactions are actually 
changing the electrode. This is not a big deal for the simple on-off kind of sensor, but it is 
a disaster for quantitative measurements. Polarization occurs because the electrical 
current is constantly moving in one direction through the probe. It is direct current, DC. 
The simple cure is to drive the sensor with current first one direction and then other. That 
is alternating current, AC. Many of these chemical reactions are reversible, up to a point, 
so the alternating current leads to much more stable readings. The BASIC Stamp can't 
supply the necessary AC signal. An external chip can help here.  

Measurement of Conductance using the 555 Timer IC 

√ Remove the conductivity sensor circuit.  
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√ From the Parts Required list at the beginning of the chapter, gather a 100 Ω 
resistor, a 100 kΩ resistor, a 0.1 µF capacitor, the jumper wires, and the 555 timer 
IC chip. 

√ Install the 555 timer IC circuit shown in the schematic (Figure 5-3).  
√ Be attentive to follow the parts placement in the wiring diagram (Figure 5-4) since 

the wiring is getting tight! 
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Figure 5-3 
Conductance Using the 
555 Timer Schematic 
 
Space on the 
breadboard is 
becoming very limited. 
Follow the wiring 
diagram below exactly  
to make the project fit 
on the breadboard. 
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Figure 5-4 
Conductance 
Using the 555 
Timer IC Wiring 
Diagram  
 
 

 
 
This circuit is an astable multivibrator. That is terminology held over from the early days 
of electronics. All it means is that the circuit output (pin 3 of the 555 timer) alternates 
from high to low repeatedly on its own. The resistor from pin 3 to pin 2, along with the 
capacitor from pin 2 to pin 1, determine the frequency of oscillation. P10 on the BASIC 
Stamp will be configured as an input so that it can monitor the frequency produced by the 
555 timer. I/O pin 9 will be configured as an output that can turn the 555 timer ON or 
OFF. When P9 is high, the 555 timer is ON. There are several ways to hook up the 555 
timer chip, in fact, there are entire books devoted to nothing but the 555 timer! 
 
√ Enter and run the Test555.bs2  program: 
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' Applied Sensors – Test555.bs2 
' Test of the 555 oscillator. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
cnt    VAR   Word       ' Word variable for count. 
 
HIGH 9                  ' Turn on the 555 oscillation. 
 
DO 
  COUNT 10, 1000, cnt   ' Count for one second. 
  DEBUG DEC cnt, CR     ' Show values. 
LOOP 

 
Here are the arguments of the BASIC Stamp 2 COUNT command: 
 

 
RAM variable for the result of counting. 
Count this long in milliseconds, duration. 

COUNT 10,1000,cnt

 Pin to use for counting, a BASIC Stamp input. 
 
√ When the Duration argument is 1000, the reading you see in the Debug Terminal 

should be about 75. Write down your reading.   
 
cnt = ________    for COUNT Duration of 1000, 100 kΩ resistor, 0.1 µF capacitor 
 
√ Now place a second 100 kΩ resistor in parallel with the first, side by side in your 

breadboard. The parallel combination of two 100 kΩ resistors is a resistance of 50 
kΩ (the series combination gives 200 kΩ). The frequency should be about double.  

√ Enter the value in Table 5-2 below.  
√ Now put the two 100 kΩ resistors in series from pin 2 to pin 3 of the 555. The 

frequency should now by 1/2 of the original value. 
√  Also record this value in Table 5-2.  
√ Calculate the value of 1/R, which is called the conductance, and has units of 

siemens (an older, more colorful term for conductance is the mho, or ohm spelled 
backwards: 1 siemen = 1 mho).  

√ Make a quick graph of the frequency versus resistance, and a graph of frequency 
vs. conductivity in the space provided below. 
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Table 5-2: 555 Timer Test 
R, resistance, 

ohms 
G, conductance,  

mho (= 1/R) 
cnt, from BASIC Stamp 

COUNT command 
50 k   

100 k   
200 k    

 
You'll need to calculate G = 1/R, and measure cnt from Test555.bs2 
 
Frequency versus Resistance Frequency versus Conductivity 

(fill in your values) (fill in your values) 

cnt

ohms  

cnt

Mhos
 

 
√ Observe which graph is more linear. 

 
Why do we have to have to talk about both resistance and conductance, if one is just the 
inverse of the other? Get used to it! There is a separate term for the inverse of everything 
in electronics. In electronics it is more common to talk about resistance. However, in 
materials science, chemistry, and environmental instrumentation, it is more common to 
hear the term conductance. Maybe that is because in the liquid medium there are many, 
many different paths between any two points. The different paths are like many resistors 
in parallel, and changes in the liquid medium tend to change those parallel elements. So it 
is easier to talk about conductance, where conductances add in parallel. Figure 5-5 shows 
how resistors are placed in series and parallel to measure resistance I and conductance 
(G). 
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R + R ohms 1 / ( 1/R + 1/R) ohms 

1 / ( 1/G + 1/G) mhos G + G mhos 

Figure 5-5 
Resistance and  
Conductance Formulas 
 
Resistance R, and conductance G, of 
series and parallel resistors 
(conductance). The formula for parallel 
resistors is easier in terms of 
conductance.  

 
√ Restore your circuit to the original single 100 kΩ resistor.  
√ Modify the program Test555.bs2 by changing the Duration argument from 1000 

ms to 500 ms. 
√ Run the modified program and observe the reading. 
√ Now repeat with a Duration of 2000 milliseconds.  

 
Did you see that the reading changes by a factor of close to 2 each way?    
 
Let's look at this another way. Just above you wrote down a value of cnt, the value that 
came out when a 100 kΩ resistor and a 0.1 µF capacitor were in the circuit, and the 
duration argument was equal to 1000 in the COUNT command. What Duration argument 
would you have to put in the COUNT command in order to make the reading come out at 
100 instead of at 75 (or your reading          )? Well, you just have to make the Duration 
argument proportionately longer. A longer Duration gives you a higher count, right?  
 
√  So calculate: 

 
Duration = 1000 * (100/75) = 1333, but you need to use your own reading: 
 
Duration = 1000 * (100/             ) =_______  (use your reading to obtain the result) 

 
That is your Duration calibration constant. You will need it again. 
 
√ Modify Test555.bs2 again, using your Duration calibration constant as the COUNT 

command's Duration argument.  
√ Run the program and observe the results. 

 
Now when you run the program with 10-5 siemens (100 kΩ) in the circuit, it should 
display 100 in the Debug Terminal instead of the original value.  The point of this is that 
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the Duration argument in the COUNT command can be used to scale the result, so that it 
appears directly in siemens. We want you to think quantitatively! 
 
Now let's change the DEBUG command so that it shows the units. And while we're at it we 
might as well calculate the resistance in ohms and display that too.  The resulting new 
program is given below. 
 
√ Enter the program Calibrate555.bs2. 

 
' Applied Sensors – Calibrate555.bs2 
' Calibration of the 555 oscillator. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
cnt    VAR    Word      ' Word variable for count. 
R      VAR    Word      ' Word variable for resistance. 
 
HIGH 9                  ' Turn on the 555 oscillation. 
 
DO 
 
  COUNT 10, 1333, cnt   ' Count for about one second. 
           '^^^^--------  You use your own constant here!!! 
  R = 50000/cnt*2       ' Calculate resistance R = 1/G. 
 
  DEBUG DEC cnt, "E-7", ' Show values. 
        TAB, DEC R, "00", CR 
 
LOOP 

 
√ Run the program and observe the results. 

 
The display should now show 100E-7 (for 100*10-7 siemens), and in the second column 
it should show 100000 (for Ω).  
 
√ Verify the calibration by putting the extra 100 kΩ resistor in parallel to with the 

first again to get a resistance value of 50 kΩ back in the circuit.  
√ Run the program again and observe the change in your readings. 

 
The display should show 200E-7 siemens and 50000 Ω. Notice that the resistance reading 
appends two zeros to the value of R, to make it come out in Ω. 
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Theory behind using a 555 timer to measure conductivity: 

There are many references that talk about how the 555 timer circuit works, and how to apply 
it, even whole books on nothing but the 555 timer! The important point for measuring 
conductivity is that the current through the resistor in this circuit goes back and forth, first 
one direction and then the other direction, equal and opposite. As we discussed above, that 
is what we are looking for in a probe to put in the liquid medium.  There is a balance of 
current flow in each direction, to forestall corrosion, plating, and polarization. The theory for 
the 555 timer is very similar to the theory for RCTIME, but we don't want to get into it here. 
The equation for the output frequency is approximately: f = 3/4*R*C.  With R = 100000 Ω 
and C=0.1µF, that comes out to 75 hertz. 

Conductance in Water 

Now it is time to dive in!  
 
√ Gather up a cup full of water if you don't have one now, and keep a spoon and a 

couple of pinches of table salt handy.  
√ Re-install the conductivity sensor. Figure 5-6 shows how to connect the probe to 

the 555 timer on your breadboard. 
√ Leave the Duration calibration constant you calculated for your setup in place for 

the COUNT command's Duration argument.  
 

555, pin 2

555, pin 3

 

Figure 5-6 
Conductivity Sensor 
 
Replace the 100 kΩ resistor with 
the conductivity sensor. 

 
√ With the conductivity sensor in the circuit, run program Calibrate555.bs2 again.  
√ Place your fingers across the probe to see if you get a reading in siemens and in Ω.  
√ Wet your fingers and take another reading. How do you explain the result in terms 

of conductances?    
√ Without touching the probe with your fingers, touch the probe to the leads of the 

100 kΩ resistor, to confirm that the meter still reads correctly. It should read 100E-
7 siemens, 100 kΩ. 

√ Immerse the probes in the center of the cup of tap water to a depth of 4 cm. 
√ Read the conductance from the Debug Terminal. 
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√ Record the reading in  Table 5-3.  
√ Repeat and record the conductance measurements at depths of 3, 2, and 1 cm, 

completing  Table 5-3. 
 

 Table 5-3: Distilled or Tap Water Conductance vs. Depth 
Water level Conductance 

1 cm  
2 cm  
3 cm  
4 cm   

 
√ Keeping the sensor at one constant depth, move it over until it is near the side of 

the cup.  
√ Look for a change in the conductivity reading. 

 
What happens to the reading, and can you explain why in terms of conductances in 
parallel?  
 
√ Move the sensor back to the center of the cup.  
√ Note the reading. 
√ Bring a metal object such as the back of a metal spoon up near the sensor probe.  
√ Look for a change in the conductivity reading. 

 
How does that affect the reading, and why is it different from bringing the probe near the 
side of the cup? 
 
√ Drop a pinch of salt crystals into the cup, but do not stir. 
√ Look at the conductivity reading. 
√ Stir to disperse and dissolve the salt crystals.  
√ Look at the reading again. Surprised? 
√ Hold the probes in the saltwater at a depth of one centimeter. 
√ Observe and record the reading in Table 5-2. 
√ Repeat the measurements for each depth until Table 5-2 is completed. 

 
Can you see the pattern emerging?  How do you think this may be useful? 
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Table 5-4: 555 Timer Test 
Pinch of Salt Dissolved in Water, Conductance versus Depth 

Water level Conductance 
1 cm  
2 cm  
3 cm  
4 cm   

 
Conductivity is often used to determine the salinity of water (how much salt it contains 
per unit volume), or more generally, how much mineral content is present. If you used tap 
water, you might try the experiment again using distilled water. By holding the depth 
constant, you could use this probe to measure salinity, which is closely related, through a 
rather complicated formula, to conductivity. 
 
Note that in each case the conductance is proportional to depth, either in the tap water, or 
in the salt water. You can use this device to measure the depth of water. 
 
However, the two measurements are confounded. To use the device to measure depth, 
you have to be sure that the amount of salt in the water is going to be constant, or you 
have to acquire a separate measurement of conductivity in order to compensate. On the 
other hand, in order to measure conductance, you have to be careful to keep the sensor at 
a constant depth.   
 
Design of professional instruments is largely concerned with overcoming or 
compensating for the effects of confounding variables. For conductivity measurements, 
great care is taken to confine the solution to a fixed volume, and to use stable electrode 
materials, and to monitor the temperature at the point of measurement. Professional water 
depth meters are seldom based on the conductance principle because of these difficulties. 
 
The conductivity of water in the natural environment spans many orders of magnitude. 
Conductivity is measured in units of siemens per centimeter. Ocean water may have a 
conductivity of 50000 siemens per cm, whereas pure distilled water may have a 
conductivity of mere microsiemens per cm. 
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Figure 5-7 
Conductivity Measurement 
 
Conductivity is measured, in theory, with a block 
of material, 1 centimeter on a side. Electrodes 
are fastened to two opposite faces of the block, 
and the conductance is measured. Since the 
sample block is one cm long, the conductivity is 
in units of siemens per cm. Conductivity 
measurements are reported as if they were 
made in this setup, but the actual measuring 
setup is a lot more complicated! 

 
To calibrate a conductivity instrument, you would need to have a standard salt solution 
that lets you make the leap from conductance (measured by your BASIC Stamp across its 
particular sensor) to conductivity (a property of the water being measured, independent of 
peculiarities of the measuring instrument).  You have to find a constant, called the "cell 
constant" or the "instrument constant" that accounts for the actual geometry of the probe 
you are using.  It is a constant of proportionality.  We leave the calibration to the 
exercises that follow this experiment. 
 

 

What is the difference between conductance and conductivity? 

Conductivity is a property of materials. Materials that conduct electricity well, like metals, 
have a high conductivity, while insulators have low conductivity. If you take a thin wire one 
meter long, it will have a certain resistance from end to end, and its conductance will be 
simply one over the resistance. A thicker wire made of the same material and of the same 
length will have a lower resistance and a higher conductance. The conductivity of the wire is 
the same in both cases. It is a property of the material itself, not the quantity of the material. 

Data Logging Continued:  Drying of Soil 

In the natural world, the phenomenon of evaporation is very important. Water evaporates 
from the soil, and water is also lost in the transpiration of plants. The rate of evaporation 
and other mechanisms of water loss depend on the solar intensity, the wind speed, the 
temperature, the humidity and the ground cover. You can use your BASIC Stamp-
controlled data logger to study evaporation. On a practical basis, you can use your logger 
to tell you when to water your houseplants or your garden! 
 
√ Enter the program RAMDataLogger.bs2 (which is a modification of  

LightTemperatureLogger.bs2)  as shown below.  
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' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors – RAMDataLogger.bs2 
' Temperature and light intensity logging in RAM. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
' -----[ Constants ]------------------------------------------------------- 
Kal        CON     15068          ' Calibration constant for AD592. 
Lical      CON     647            ' Calibration constant for photodiode. 
CondCal    CON     1333           ' Calibration constant for conductance.                         
' Use Your Own Calibration Constants!! 
Interval   CON     10             ' Get data once per ten seconds 
                                  ' you can choose whatever interval you need. 
' -----[ Declarations ]---------------------------------------------------- 
log       VAR      Byte(18)       ' 18 bytes reserved for the log file. 
rct       VAR      Word           ' Variable for RCTIME. 
light     VAR      Word           ' Variable light intensity. 
TC        VAR      Word           ' Variable for degrees Celsius from AD592. 
n         VAR      Byte           ' Counter for the pushbutton. 
ptr       VAR      Byte           ' Pointer to next entry in data log file. 
cnt       VAR      rct            ' Variable for conductivity  ALIAS of rct. 
 
' -----[ Initializations ]------------------------------------------------- 
OUTS=%0000000001000000            ' Now put in the OUTS and DIRS statements. 
     'fedcba9876543210 
DIRS=%1111101111111101            ' All are low outputs. 
     '     ^   ^    ^-------------  except P1 is input for pushbutton 
     '     ^   ^------------------  P6 is high output to discharge C 
     '     ^----------------------  and P10 is input for conductivity (555). 
 
ptr = 0                           ' Pointer initialization. 
DEBUG CLS 
DEBUG "Ready to log data!", CR, 
      "degC", TAB,                ' Display units. 
      "lux", TAB, "siemens", CR 
FREQOUT 0, 200, 2550              ' Initialization sound. 
FREQOUT 0, 400, 3400 
 
' -----[ Main Routine ]---------------------------------------------------- 
DO                                ' Main loop. 
 
  n = 0                           ' Initialize counter. 
  DO                              ' Loop here until button or time. 
    PAUSE 1000                    ' One second pacing. 
    n = n + 1                     ' Increment counter. 
  LOOP UNTIL (IN1=0 OR n=Interval)' Time out or button pressed. 
 
  FREQOUT 0, 5, 3400              ' Tick for button down or time out. 
 
  n = 0                           ' Initialize counter. 
  DO                              ' Loop to track pressing time. 
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    PAUSE 100                     ' Time the button in 0.1 sec increments. 
    n = n + 1                     ' Increment counter. 
  LOOP UNTIL (IN1=1 OR n>12)      ' Conditions to stop the loop. 
 
  IF (n>=12) THEN                 ' *Long click? 
    GOSUB Long_Click 
  ELSEIF ptr>17 THEN              ' *Short click or time out 
    GOSUB Memory_Full             ' but memory full? 
  ELSE                            ' *Short click or time out? 
    GOSUB Get_Data 
  ENDIF 
 
LOOP                              ' Jump to the main loop. 
 
' -----[ Subroutines ]----------------------------------------------------- 
Long_Click: 
  FREQOUT 0, 50, 2550             ' Feedback sound. 
  FREQOUT 0, 100, 3400 
 
  ' Message on screen print units of measurement 
  DEBUG CLS, "logged data!", CR, "degC", TAB,"Lux", TAB, "mho", CR 
 
  FOR n=0 TO 15 STEP 3            ' Will show 6 records. 
    TC = log(n)                   ' Get temperature. 
    light = log(n+1) * 2          ' Get light. 
    cnt = log(n+2)                ' Get conductivity. 
    DEBUG DEC TC, TAB,            ' Display. 
          DEC light, TAB, 
          DEC cnt, CR 
  NEXT                            ' Next record. 
 
  DO                              ' Do nothing 
  LOOP UNTIL (IN1=1)              ' until button is released. 
 
  DEBUG CR, "press RESET to erase data", CR 
RETURN 
 
Memory_Full: 
  DEBUG CR, "memory full"         ' Message. 
  FREQOUT 0, 50, 3400             ' Audio indication. 
  FREQOUT 0, 200, 2000, 2100 
RETURN 
 
Get_Data: 
  FREQOUT 0, 10, 1900             ' Sound to show we got here. 
 
  ' Temperature. 
  RCTIME 5, 0, rct                ' Read temperature probe. 
  LOW 5                           ' Discharge AD592 capacitor. 
 
  ' Calculate Celsius. 
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  TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273 
 
  log(ptr) = TC                   ' Store temperature. 
  ptr = ptr + 1                   ' Point to next bin. 
 
  ' Light. 
  RCTIME 6, 1, rct                ' Read photodiode. 
  HIGH 6                          ' Discharge photodiode capacitor. 
 
  ' Calculate lux. 
  light = 65535 / rct */ Lical 
 
  log(ptr) = light/2 MAX 255      ' Store light intensity/2. 
  ptr = ptr + 1                   ' Point to next bin. 
 
  ' Conductivity. 
  HIGH 9                          ' Turn on the 555. 
  PAUSE 100                       ' Delay for it to get up to speed. 
  COUNT 10, CondCal, cnt          ' Count the frequency. 
                                  '  use your scale factor!!! 
  LOW 9                           ' Turn off the 555. 
 
  log(ptr) = cnt                  ' Store the conductivity. 
  ptr = ptr + 1                   ' Point to next bin. 
 
  ' Display values. 
  DEBUG DEC TC, TAB, DEC light, 
        TAB, DEC cnt, "E-7", CR 
RETURN 

 
This adds conductivity to the mix. Now you will be able to store 6 readings in memory 
and read them out later. The total number of bytes available for logging is 18. With 3 per 
record, that means we are limited to 6 records total. 
 
Recall from Chapter 4 that we ran out of variables for that program. We used 18 bytes for 
the data log file, and the rest of the available variables for the program. In this program 
we reuse the variable rct for the COUNT function for conductivity. We call it cnt, and 
define it in a variable alias statement at the top of the program. That means the cnt and 
rct are really the same physical variable. Changing one of the variables changes them 
both, simply because they are physically the same.  
 
There is nothing unusual about this program.  It is a straightforward expansion of the one 
from Chapter 4. It seems to be getting longer, but each piece has its special part to play. 
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In this program the OUTS and DIRS statements are modified to take account of the new 
pins. P10 is an input for the COUNT operations. P9 is an output to turn the 555 timer on 
and off. The new quantity Interval is a constant for the number of seconds between 
readings (0-65535). The new program has the code necessary for the conductivity probe.  
We have made a modification to the Long_Click routine to play back the conductivity 
data 
 
√ Get this program running, and tested at 10 second intervals.  
√ Insert the temperature probe and the conductivity sensor in a cup or flower pot full 

of vermiculite or other potting medium.  
√ Place the whole set-up in the sun, with the light sensor set for outdoor light.  
√ Leave it for 6 hours. 
√ Look at your data. Is the time interval appropriate? 

 
If you are doing this in a classroom, different groups can do the experiment with 
variations. For example, some in the sun, some in the shade, some with ventilation, some 
not. Use a real potted plant. Experiment – that's the way you learn how to use 
microcontrollers! 
 
Alternatively, for a quicker experiment, drape a wet paper towel over the conductivity 
sensor probe. Follow and log the conductivity and temperature of the paper towel as it 
dries out. 

Additional Experiments to Try 

Condensation Sensor 

√ Press a piece of dry plastic or glass up against the screws on the sensor. Note the 
conductivity reading. 

√ Place the glass or plastic surface near your face, and exhale on it slowly to fog it 
up. 

√ Retake the conductivity reading. 
 
When the glass is dry, it is an insulator, and the conductivity is low. But if you breathe 
heavily on the glass, it will deposit condensation that will conduct electricity. Depending 
on the temperature and humidity, you may have to chill the surface before condensation 
will form. This kind of sensor is useful in agriculture, where condensation forming on 
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leaves of plants can lead to infection by fungus and scab diseases.  
 

Humidity Sensor  

√ Find a length of heavy thread or light-weight cotton twine.  
√ Soak it in salt water (a pinch of salt will do). 
√ Wrap it around the stainless steel screws of the conductivity sensor.  
√ Dry it off with a hair dryer and observe the conductivity while you do this.  
√ Let the string come back to atmospheric moisture.  
√ Exhale slowly on it, and see if the conductivity will increase.  

 
The NaCl has a transition point at about 75% humidity where it picks up lots of water. 
Below 75% humidity, NaCl tends to give up water to the atmosphere. Above 75% 
humidity, NaCl tends to absorb moisture from the atmosphere. The conductivity follows 
along. Different salts respond at different humidity levels. 
 

Surface Explorer   

√ Create a shallow pool of water in a large shallow plastic or glass tray or dish.  
√ Carefully put some pieces of rock salt in the dish, but do not stir.  
√ Use the conductivity sensor's probe to explore the diffusion of salt into your 

"aquifer."  
 
Incursion of salt water into fresh water marshes and aquifers is a big problem in areas 
where the fresh water is drawn off for uses in industry and agriculture.  
 
√ Scribble in an area on a piece of paper with heavy pencil or artist's charcoal.  
√ Drag the conductivity sensor across the surface. 

 
The variation in conductivity can be used to explore the thickness and resistivity of the 
pattern and the density of the markings. 

Temperature Dependence of Conductivity 
The conductivity of salt solutions in water depends on the type of salt, and also on 
temperature.  
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√ Dissolve some table salt in a cup of water.  
√ Log both temperature and conductance at a constant depth as you heat the water. 

Graph the result of your experiment.  
√ Repeat the same experiment with a different type of salt (say KOH). 
√ Repeat the experiment again with a weak acid solution made with vinegar.  

 
You will find that each solution has its own characteristic temperature dependence. 
Commercial conductivity sensors always measure both temperature and conductivity. 
From temperature and conductivity, they can then calculate the concentration of the salt. 
Can you figure out how to do that calculation? Chemistry reference books, like the 
Handbook of Chemistry and Physics, contain this kind of information. Look and see. You 
have to know in advance what type of salt or salt mixture is in solution.  

Quantitative Calibration of the Conductivity Sensor, using a Standard 
Solution  
In order to calibrate this sensor to measure conductivity (property of the material) instead 
of conductance (an electrical quantity), you would have to prepare a standard solution 
that has a known conductivity. Such standard solutions can be purchased, or you can 
make them yourself in the classroom, by adding a known amount of potassium chloride 
(KCl) to a known amount of water. Tables of conductivity are found in chemistry or in 
water quality handbooks, or in references such as the Handbook of Chemistry and 
Physics.  
 
Once you have the standard solution, you measure its conductance with your BASIC 
Stamp-controlled instrument. That gives you a constant of proportionality between your 
conductance reading and the conductivity of the solution. This constant is called the 
instrument constant. It has to do with the geometry of the electrodes and the cup. You 
also measure the temperature of the solution. With this information in hand you can 
proceed to measure the conductivity (and the concentration) of unknown water samples.  

Ground Loop Error 

√ Connect a long piece of hookup wire to Vss (zero volts) on your Board of 
Education or Homework Board. 

√ Drop the free bare end of the wire into a cup of water where the conductivity probe 
is operating and showing its readings in the Debug Terminal.  

√ Watch as you do this to see if the reading changes.  
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This is due to the extra ground path provided by the wire. This kind of situation is 
common in large instrumentation systems, say, in a fish farm or in an industrial plant. But 
it is sometimes hard to track down where the interaction is coming from. There can be 
unplanned connections between points in the system. To avoid this problem, engineers 
often design "isolated" sensors, which means that signals are passed across an optical link 
or other barrier of that sort, so that there will be no direct electrical connection. This is 
also extremely important in situations where safety and shock hazard are an issue, such as 
in medical instrumentation. 

Environmental Explorer 
This experiment requires you to measure the conductivity of several samples of the same 
volume of water collected from various places.  Be prepared to do some fieldwork to 
collect your samples!  
 
√ Measure the conductivity of a sample of distilled water at a depth of 2 cm. 
√ Record your reading. 
√ Repeat with the same volume of tap water. 
√ Repeat with the same volume of pond or lake water. 
√ Repeat with the same volume of ocean water (or beg a sample from the owner of a 

salt-water aquarium!). 
√ Rank your samples by conductivity. 
√ Begin with your sample of distilled water, and add ¼ teaspoon of salt at a time, 

stirring and then measuring the conductivity between each addition. 
√ Determine how much salt you had to add to your distilled water to give it the same 

conductivity as your ocean water sample. 
√ Use this information (the volume of your water sample, and the volume of salt 

used) to calculate the volume of salt you have to add to one liter of distilled water 
to make it as salty as the ocean. 

 
Are you surprised at your answer? 



Chapter 5: The Liquid Environment · Page 145 

Challenge! 

1. Write a program that counts the number of times you press the pushbutton in 5 
seconds. The BASIC Stamp should sound a "start" tone, and then count the 
number of button presses, play a "finish" tone, display the result in the Debug 
Terminal, pause for 3 seconds, and then do it again. 

 
2. Install a red and a green LED on your breadboard, so that your BASIC Stamp 

can use P7 and P8 to turn them on or off.  Modify the program that measures 
temperature, light and conductivity as follows:  

 
a. It should turn on the green LED if the measurements are all within 

normal operating range (you decide what that range is).  
b. If they go outside the normal range, the green LED should turn off, and 

the red LED should turn on.  
c. If they then return to normal, the green LED should come back on, but 

the red light should stay on to show that there has been a "problem."  
d. If the readings get way out of range, turn on the "alarm siren." 

 
3. With the circuit of Figure 5-3, the frequency of oscillation is proportional to 

1/RC, where R is the resistance, and C is the capacitance. In your kit, you have 2 
of the 100 kΩ resistors and 2 of the 0.1 µF capacitors. You can put resistors in 
series to make 200 kΩ, and in parallel to make 50 kΩ. You can put two of the 
capacitors in series to make 0.05 µF, and in parallel to make 0.2 µF.  Write a 
program to show you the frequency in Hertz for each value of resistance and 
capacitance in the following table: 

 

Frequencies from 555 timer 0.05 µF 0.1 µF 0.2 µF 
50 KΩ-20E-6 mho    
100 KΩ-10E-6 mho    
200 KΩ-5E-6 mho     

 
This will test your understanding of how the white block is connected 
underneath! Does it seem to be true that frequency = constant/RC? Graph 
frequency vs. conductivity. Graph frequency vs. resistance. Which is linear? 
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Chapter 6: Measurement and Control 
 
Editor's Note: The low-voltage pump used to develop the activities in Chapter 6 is no 
longer available. Though we no longer supply the pump circuit components in the 
Applied Sensors Parts Kit v2.0, we have kept Chapter 6 in the book for your reference 
and adaptation to commercially available low-voltage pumps.   
 
The theme of the Measurement and Control experiment is that the BASIC Stamp 
microcontroller can do both measurement and control, closing the feedback loop.  The 
final activities in this text will explore: 
 

• Feedback to control the level of water in a cup using a pump, and a conductivity 
sensor as the level detector  

• Simultaneous measurement and control of 4 variables  
 
Measurement and data logging are often combined with control. Not satisfied to simply 
sit there and watch, your BASIC Stamp-controlled instrument reaches out and does 
something that affects the conditions in the outside world. It might open a door in 
response to an approaching pedestrian. Or it might function as a thermostat, to control a 
heater or a fan when the temperature gets too hot or too cold. In industry, on the farm, in 
public works, in scientific research, all manner of processes need to be controlled and 
regulated based on measurements to achieve a desired result. Some instruments may 
themselves require internal measurement and control.  Imagine what goes on in a 
machine like the automated Mars rover, where robot arms and chemistry laboratories and 
instruments of all kinds have to function as an integrated measurement and control 
system far from human interaction. Many modern instruments, like DNA analyzers or 
automated water quality analyzers, are marvels of measurement and control. 
 
In this experiment, you will turn on a pump to regulate the water level in a cup, or to keep 
up the moisture in the soil around a potted plant. You might think of this as smaller 
versions of a fish farm, or a water treatment plant, or a full-scale irrigation system for a 
vineyard.  
 
Feedback is important here. It is possible to have control without feedback. If you have 
an automated system pour one cup of water on a potted plant every day, regardless of the 
condition of the plant, there is no feedback in that. You are in danger of over-watering the 
plant, and wasting water and fertilizer besides. It might not matter with one small plant in 
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well-drained soil, but imagine a dry-land farm, or a large greenhouse operation. If the 
condition of the soil or the plant is first measured, and from that decision is made of 
whether or not to irrigate, that is feedback at work. The result can be a happier plant as 
well as more efficient use of resources. This is especially important in places and times 
where water is scarce. Feedback can take on many forms, and involve a combination of 
measurements in the control decisions. 
 
The final project in Applied Sensors will be a data logger that combines the two 
temperature sensors (the DS1620 and the AD592), the light sensor, the conductivity 
sensor, and the pump control in one program. The data will be stored in the BASIC 
Stamp's EEPROM memory. This data logger can also be used for a variety of 
experiments of your own design to undertake as class projects or on your own initiative.  
Thank you for sticking with it! 

Parts Required 

The following parts are required to complete this experiment.  
 
(1)  100 Ω resistor 
(2)  16" jumper wires, one red and one black 
(1)  Cup, in which a ¼" hole can be punched or drilled near the bottom (not included) 
(1)  Watertight tray or shallow dish made of glass or plastic (not included) 
Duct tape or extra-wide electrical tape (not included) 
(1)  10 Ω, 1 watt resistor, heavy-duty heat-resistant (brown-black-black)*  
(1)  TX1049A NPN "superbeta" transistor  (marked  ZTX 104 9A)* 
(1)  3V Submersible water pump with 1/4" tubing (not included)* 
(1) 5 VDC 300 mA external power supply (not included)* 
 
* Editor's note: The datasheets for the pump and transistor used in the development of 
this kit are included in Appendix D: Data Sheets for your reference.  If you choose to use 
a pump with different specifications, be sure to select a transistor, resistor, and external 
power supply adequate for the pump.  Be sure to protect the BASIC Stamp with a 
minimum 100 Ω, ¼ watt resistor between P3 and the transistor base.  
 
For this experiment, and external power supply is used as a precaution in case the pump 
selected has a current draw that exceeds the capacity of the 500 mA regulator on the  
Board of Education (all revisions) or BASIC Stamp HomeWork Board (rev C or higher).  
The HomeWork Board revisions A – C  have a 50 mA regulator. 
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Figure 6-1 shows the preparation of the pump. The lead wires from the pump are fragile, 
and the pump cannot tolerate water inside the motor, so we suggest these precautions: 
 
√ Take a piece of duct tape or extra-wide electrical tape and wrap it around the 

plastic pump housing where the wire leads are connected.  
√ Pinch the tape together at the top to provide strain relief for the wires and protect 

the pump from splashed water.  
√ Connect the 16" jumper wires to the leads of the pump, by laying them ends-

together and twisting the bare portions. 
√ Wrap the connections with tape for waterproofing and to provide strain relief. 

 

Tape

Pump

Tape

 

Figure 6-1 
Pump Preparation 
 
Wrap a piece of duct tape around the top of the 
pump to protect the wires and prevent water 
from getting into the pump. Join and tape the 
pump's wires with the long red and black wires 
that are included in the kit. 

Building the Circuit  

√ Disconnect your board's wall-mount power supply or 9 V battery. 
√ Follow the schematic in Figure 6-2 and the wiring diagram in Figure 6-3 to add the 

transistor and pump circuit to your board. 
√ Be sure to orient the transmitter so that the printed face is directed away from the 

BASIC Stamp. 
√ As shown in the schematic in Figure 6-3, connect the collector of the transistor to 

the external regulated 5 VDC 300 mA power supply.  
√ The ground from the external 5 VDC 300 mA power supply must be connected to 

any ground pad on your Board of Education or HomeWork Board. When using 
split power supplies it is always important to tie the grounds together. 

√ For the moment, lay the conductivity sensor aside, but it will rest across the rim of 
the cup as shown in Figure 6-3 later on in the experiment. 

√ Plug in your board's original wall-mount power supply or 9 V battery. 
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Figure 6-2 
Pump Control with 
Transistor Wiring Diagram 
(for both Board of 
Education and HomeWork 
Board). 
 
 
•  Transistor collector to 
external 5 VDC 300 mA 
regulated power supply  
 
•  Transistor base  through 
a 100 ohm resistor to P3 
 
• Transistor emitter to the 
10 ohm , 1 watt resistor 
 
•  10 ohm 1 watt resistor 
the red pump wire 
 
•  Black pump wire to 
common Vss. 
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On-Off Control of Pump 

Now that your circuit is assembled, it is time to prepare the environment in which your 
instrument will work.  The pump will raise the water level in the cup, but the water will 
drain back out when the power is off. 
 
√ Drill or punch a ¼ " hole in the side of your cup near the base. 
√ Insert the pump tube into this hole; it should fit snugly.   
√ Place the pump and the cup into your watertight tray. 
√ Fill the tray with tap water to cover the base of the pump. There needs to be 

enough water in the tray to fill the cup to the level of the conductivity probe. 
√ Keep more water and also a scoop or sponge on hand, to adjust the total water in 

your environment as may be necessary. 
 
After building the circuits and setting up our water environment, we jump into the 
programming.  
 
√ Enter and run the program PumpTester.bs2. 

 
Figure 6-3: Pump Control with Transistor Wiring Diagram  
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' Applied Sensors – PumpTester.bs2 
' Pump tester. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
DO 
  HIGH 3 
  PAUSE 5000 
  LOW 3 
  PAUSE 2000 
LOOP 

 
Ideally, the pump should turn on for 5 seconds and off for 2 seconds, and repeat until you 
interrupt.  If it works, great! If not, here are a couple of suggestions for troubleshooting.   
 
√ Kick the pump, but not literally! But sometimes the impeller becomes stuck if it 

has dried out in a way that leaves mineral deposits inside, so give it a tap.  
√ Look at the bottom of the pump, and you will see a hole and the vanes of the 

impeller inside. You can loosen them with the tip of a paper clip.  
√ Also, look to be sure that the tube that emerges from the side of the pump housing 

is not pushed in too far. If it is pushed into far it can prevent the impeller from 
turning.   

√ Use a wire to jump directly from the collector to the emitter of the transistor on 
your Board. That bypasses the program control of the pump, so you can tell if the 
problem is your pump or your program.  

√ If the pump still does not operate, then disconnect the pump from your breadboard 
and touch the pump wires to a 1.5 volt flashlight battery.  That way you can tell if 
it is your pump or your breadboard circuit.  

√ If that doesn't do it, check the wires that connect to the pump for loose connections. 
√ If it still doesn't work, your pump may be defective or broken.  

 
If the pump does work, but the circuit does not respond to the program, recheck the 
wiring.  
 
√ Be sure that the transistor is oriented correctly in the circuit and that the base is 

connected to P3.  
√ One end of the 10 Ω resistor should be in the same row as the emitter of the 

transistor.   
√ The wiring is getting tight. You have to check the connections carefully to be sure 

there is not a short circuit with one of the other parts on the Board. 
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Impeller: Inside the plastic housing at the bottom of the motor is a rapidly rotating disk with 
radial vanes. The vanes pull in water at the center through a hole you can see in the bottom 
of the housing, and throw the water out along the edge and force it to flow through the exit 
tube.  The water is pulled through by the action of centrifugal force. The spinning disk with 
vanes is called an impeller. 

 
Figure 6-4 shows an impeller, the rotating disk within the pump.  
 

 

Figure 6-4 
Pump Impeller  
 

 
The motor in the pump draws about 300 milliamps of current at 3 volts. That is lots more 
than the pins of the BASIC Stamp are capable of supplying. It is necessary to use a 
transistor to amplify the current available from the BASIC Stamp. There are several ways 
to use transistors. The one here is called an "emitter follower." The voltage at the emitter 
of the transistor "follows" the voltage at the base. When P3 is low, at zero volts, the 
emitter of the transistor is also at zero volts and the motor is off. But when P3 goes high, 
to +5 volts, the emitter follows along (4.4 volts when P3 is at +5 volts) and the pump is 
turned on. The 300 milliamps needed by the pump comes through the transistor from the 
external power supply, not from pin P3.  
 
 

 

Figure 6-5 
Transistor Action 
 
e = emitter 
b = base 
c = collector 
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√ Now modify the program to look like PumpTesterButton.bs2.  
 
' Applied Sensors – PumpTesterButton.bs2 
' Testing the pump with the pushbutton. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
OUTPUT 3 
 
DO 
  OUT3=~IN1 
LOOP 

 
Now the pump will be on only when you hold the pushbutton down.  Maybe you were 
expecting a longer program?  Look at the statement, OUT3=~IN1. What that says is, 
"make the output the opposite of the state of the pushbutton input." The symbol "~" 
means "not." If IN1 is zero, pushbutton down, then the state of the pump will become 1, 
ON.  If IN1 is equal to 1, pushbutton up, then the state of the pump will become 0, OFF.  
 
√ Try it. Mark a level on the side of the cup a little above the hole.  
√ Hold down the button until the pump raises the water level in the cup to reach your 

mark.  
√ Then release the button, and the water will begin to drain out. 
√ Try to press and release the button so that you hold the water level close to the 

mark.  
 
You are now part of a feedback loop. And soon you are going to be replaced by 
automation. The conductivity sensor is going to do the looking and turning the pump on 
and off. I think this is one job you would just as soon have automated. 
 
A further word about the program: another way to write it would be to use IF…THEN 
statements, something like PumpTesterButtonIF.bs2, below. 
 
' Applied Sensors – PumpTesterButtonIF.bs2 
' Testing the pump with the pushbutton, 
' Then selecting action with IF instruction. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
DO 
  IF IN1=0 THEN HIGH 3 
  IF IN1=1 THEN LOW 3 
LOOP 
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That is a fine way to write the program. It shows very well what is going on. If the 
pushbutton is down, the pump turns on. If the pushbutton is up, the pump turns off. The 
program has to take one or the other course of action, because IN1 has to be either 0 or 1.  
 
√ Enter PumpTesterButtonIF.bs2, and give it a try. 

 
You may try to find other different ways to write the code. It is always good to know that 
there are different ways of accomplishing a task. The goal may be to make the code as 
compact as possible, or to make it run as fast as possible, or to make the program as easy 
as possible to follow in documentation. There is rarely just one solution. 

Pump Control with Feedback 

The objective now is to operate the pump until the water comes up to the level of the 
conductivity sensor's probe, and then to hold the level there, automatically, using the 
conductivity sensor as the level detector. In the above exercise you were using your eye 
as the level sensor and your finger on the pushbutton as part of the feedback loop. Now 
the BASIC Stamp will do the job. 
 
√ Place the conductivity sensor on your cup so that the spanner rests on the rim and 

the end of the screws are above the resting water level.   
√ Enter the program PumpController.bs2. 
√ Use your own Duration calibration constant from page 132, divided by 10, for the 

COUNT command's Duration argument. 
  
' Applied Sensors – PumpController.bs2 
' Pump controller. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
cnt       VAR     Word 
 
DO 
  HIGH 9                        ' Turn ON the 555. 
  COUNT 10, 133, cnt            ' Count pulses. 
            '^^---------------- ' USE YOUR CONSTANT divided by 10. 
  LOW 9                         ' Turn OFF the 555. 
 
  DEBUG DEC cnt, " umho", CR    ' Display micromho. 
 
  IF cnt > 36 THEN LOW 3        ' Level too high, turn pump off. 
  IF cnt < 30 THEN HIGH 3       ' Level too low, turn pump on. 
LOOP                            ' Do it again. 
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The Duration calibration constant makes the reading come out in units of micro-mho (or 
micro-siemens, µS, in cgs units). What does that mean? If you take the reading from the 
Debug Terminal and divide it into 106, the result will be the resistance in ohms. It is not 
so important here to have real units for control of the level, but on general principles we 
like to remind you that there are accepted units of measurement for conductance.  
 
√ Run the program. 

 
The water should rise up to the level of the sensor, and then the pump should turn off. 
The water level drops until it no longer hits the sensor, and then the pump turns on. 
Remember, the count is higher as the probe is deeper in the water. 
 
√ Observe the action: How often does the pump come on? What is the ratio of the 

"on" time to the "off" time? 
 
This isn't a very efficient system, because the water leaks back out through the pump 
when the pump is off. 
 
The critical level chosen for the water, the point where the pump changes from off to on 
and vice versa, is called the "set point." There are two set points in this program, one for 
on and one for off. The pump turns on when the value of cnt is less than 30, and it turns 
off when the value of cnt is greater than 36. Think about what happens in the program 
code when the value of cnt is 30 or 36. Neither of the IF statements is true, so the 
program goes around the loop without taking any action to change the state of the pump 
motor. If the motor was off, it stays off. If the motor was on, it stays on.  
 
This kind of control, where the two set points are offset in such a way so that the effect 
lags behind the change, is called hysteresis. This program has 7 units of hysteresis, from 
30 to 36 inclusive. This is a desirable feature in some kinds of feedback systems. For 
example, there are some kinds of motors and equipment that suffer if they are cycled on 
and off too often. It is better to let the liquid reach the upper set point, and then let the 
motor rest until the liquid drops below the lower set point before turning the motor back 
on again.  That saves wear and tear on mechanical parts. Other times it is a requirement 
of the system, say, to let a plant dry out between waterings, or to create a surge in the 
water level in a fountain.  
 
The hysteresis built into our program is expressed by the diagram in Figure 6-6. The 
vertical axis is the water level, or the conductance, since higher water level causes higher 
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conductance.  The horizontal axis is the state of the pump, on or off. On the left, the water 
is low, and the pump is on. On the right, the water is high, and the pump is off. In 
operation, the system spends most of its time going around the square of hysteresis: ON 
up to the upper set point, then OFF, and falling down to the lower set point. 
 

OFF &
falling

30ON &
rising

36

 

Figure 6-6 
Hysteresis 
 

 
You can experiment with the value of the high and the low set points by changing their 
values in the IF cnt > and IF cnt < instructions.  
 
√ Increase the upper set point in the IF cnt > instruction by 1 until you can make 

the water reach a high level on the conductivity sensor, without overflowing the 
cup.  

√ Observe the value of cnt on the Debug Terminal.  
√ Observe how often the pump cycles on and off. 
√ Now reduce the upper set point in the IF cnt > instruction by 1 (starting at 35) 

and observe how often the pump cycles on and off, as you approach IF cnt > 
31.  

 
What will happen to the actual level if the conductivity of the water changes?  
 
√ Return the program to the original IF values. 
√ Add a pinch of salt to the water. 
√ Observe how the behavior of the pump and the water level changes.  

 
You can see that this is not a professional level sensor! 
 
Here is an alternative way to program it that avoids the use of the IF…THEN statements.  
This is a matter of programming style. Try it! 
 
√ Enter and run the program PumpControllerEquation.bs2 
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' Applied Sensors – PumpControllerEquation.bs2 
' Pump controller with equation. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
cnt      VAR     Word          ' Variable for count. 
 
LOW 3 
 
DO 
 
  HIGH 9                       ' Turn on the 555. 
  COUNT 10, 200, cnt           ' Count pulses. 
  LOW 9                        ' Turn off the 555. 
 
  DEBUG DEC cnt, CR 
 
  OUT3 = ~(cnt/36 MAX 1) 
 
LOOP                           ' Do it again. 

 
When the value of the COUNT is less than the set point of 36, the value of cnt/36 will be 
zero. Remember, this in integer math, and the result of cnt/36 is always an integer. 
When cnt is greater than or equal to 36, then the value of cnt/36 will be 1 or greater. 
The additional operation, MAX 1, limits the value to 1 at most. There is a "not" operator, 
"~" in front of the whole expression in parentheses. The result is that when cnt is less 
than the set point, OUT3 is high, and the pump is on. But when cnt is greater than or 
equal to the set point, then OUT3 is low and the pump is off. Note that this program starts 
off with a command, LOW 3, that turns P3 into a low output. Otherwise P3 would be an 
input. 
 
This program PumpControllerEquation.bs2 does not have any hysteresis. The pump is on 
for all values of the count less than 36, and off for all values greater than or equal to 36.  
However, we can alter the equation to add a little bit of hysteresis:  
 
√ Modify the OUT3 instruction so it reads:  

 
OUT3=~(cnt/(30+(OUT3*6)) MAX 1) 

 
√ Run the modified program. 

 
The pump stays on until the water level reaches 36 or above, but once the pump is off, it 
does not turn back on until the level falls back below 30. The hysteresis is added here by 
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mixing the state of the output into the right-hand side of the formula. The BASIC Stamp 
can do that. OUT3 is a variable like any other variable, and your program can either read 
or set its value. Think this through. It is tricky and not as transparent as doing it with 
IF…THEN commands. But this way of coding it is more compact. IF…THEN commands 
clutter up a program in their own way. It is an advanced technique for your bag of 
programming tricks!   

Memory in the BASIC Stamp, Revisited 

The data logger we developed in Chapters 4 and 5 had only 18 bytes of RAM memory. 
We could only have 9 records with 2 fields (temperature and light) in Chapter 4, or 6 
records with 3 fields (temperature, light, and conductivity) in Chapter 5. Not only that, 
the data all disappeared if we turned off the power or pressed the Reset button and it was 
gone for good! This would be a serious shortcoming in a data logger for use in 
environmental science. A scientist or an engineer may want to collect much more data 
than that, and he or she most likely won't want the data to disappear prematurely. It needs 
to be retrieved and stored safely in an archive file before it is erased from the logger. 
 
So we are going to switch over and store the data in the EEPROM memory instead of in 
the RAM, using 5 fields (ordinal record number, temperature from DS1620, temperature 
from AD592, light, and conductivity). Recall from Chapter 2 that there are 2048 bytes of 
EEPROM on the BASIC Stamp. We will reserve 250 bytes of that for our data log. That 
is lots more than we had available in RAM. We can reserve more than that, too, if need 
be for future experiments. Best of all, our data in EEPROM will survive resets and power 
outages. 
 
The way we go about storing data is different in RAM that it will be in EEPROM.  Here 
is the way it looked when recording temperature (T), light (L) and conductivity (C) in 
RAM: 
 
log (0) = TC TC=log(9) 
↓         ↑         
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T L C T L C T L C T L C T L C T L C  

Figure 6-7 
RAM log 
 

 
There is an array of 18 byte-size variables, from log(0) to log(17). We put data into 
bins with statements of the form, log(i)=TC, and we retrieve data from the bins with 
statements of the form, TC=log(i). The value in parentheses is a variable, a pointer. 
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Here is the difference with EEPROM, recording ordinal record number (#), temperature 
from DS1620 (T), temperature from AD592 (t), light (L), and conductivity (C): 
 
WRITE 1, TC READ 11, TC 

 ↓          ↑               
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 … 
# T t L C # T t L C # T t L C # T t L C 0 0 0 0 0 …  

 
Figure 6-8: EEPROM log  

 
TC is a byte-size quantity. As in RAM, we can use a pointer variable to reference the byte 
to write or to read. Recall that to write a temperature value into location 1 in the 
EEPROM, we use the statement:  
 

WRITE 1, TC 
 
…and to retrieve data from location 11 in EEPROM, we use the statement:  
 

READ 11, TC 
 

Reserving EEPROM Space 
The following program demonstrates a couple of ways to reserve space in the EEPROM.  
 
' Applied Sensors – EEPROMAllocation.bs2 
' Illustration of EEPROM allocation. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Pad     DATA      (32)               ' Reserve 32 bytes, undefined. 
Log     DATA      1(60)              ' Reserve 60 bytes, preset all = 1. 
Hey     DATA      72, 101, 121, 33,  ' Reserve 8 bytes specified. 
                  32, 66, 83, 50 
 
ptr     VAR       Byte               ' Byte for pointer. 
x       VAR       Byte               ' Byte for EEPROM data. 
 
FOR ptr=0 TO 7                       ' Point to 8 locations in a row. 
  READ ptr + Hey, x                  ' Read data from location. 
  DEBUG DEC x, " "                   ' Show it, with a space. 
NEXT 
 
DEBUG CR 
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√ Enter the program EEPROMAllocation.bs2. 
√ Run the program. 

 
When you run this, (or press Reset on your Board), you should see the 8 numbers from 
the Hey data appear in the Debug Terminal. 
 
This program sets aside space in EEPROM for data, 100 bytes of it to be exact. There are 
32 bytes of undefined data (not preset to any particular value) starting at address zero, 
then 60 bytes of defined data (all preset to one) starting at address 32, and 8 bytes of 
numerical data at locations 92 through 99. Each of these 100 EEPROM locations contains 
an 8 bit data pattern. The 8 bit pattern could represent a number such as a temperature or 
a light level, or it could represent a letter to print in the Debug Terminal, or it could be a 
pattern of Morse code, or any other thing you could imagine to fit into a pattern of digital 
bits. 
 
The FOR…NEXT loop reads and prints out the 8 numbers starting at EEPROM address 
Hey. We could have written it like this: 
 

FOR ptr=92 TO 99        '  explicit values for the pointer 
  READ ptr, x           '  read from those locations  
' and so on. 

 
But it is best to let the BASIC Stamp software keep track of the details of which number 
goes with which name. That makes future changes easier. 
 
√ Now make a simple change to the DEBUG statement, as follows: 

 
FOR ptr=0 TO 7           
  READ ptr + Hey, x                   
  DEBUG x            '  change this, leave out DEC and , " ". 

√ Run the modified program. 
 
Now the BASIC Stamp reads the same 8 bytes from the EEPROM memory. But the 
DEBUG statement sends them as is as single bytes to the Debug Terminal. The Debug 
Terminal interprets them as printable characters. For example "72" sent as a single byte is 
the ASCII code for the letter "H" (ASCII-American Standard Code for Information 
Interchange). With the DEC modifier, the DEBUG statement takes the single byte with 
numerical value 72, and sends it to the Debug Terminal as two ASCII codes, first the one 
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for "7" and then the one for "2" next. If you substitute one of the other numerical 
indicators, you can see the numbers in binary (72 = %1001000) or in hex (72 = $48): 
 
√ Modify and run EEPROMAllocation.bs2 3 more times, until you have used all of 

the variations of the DEBUG modifiers as shown below. 
 

DEBUG x                 ' Show as ASCII text. 
DEBUG DEC x, " "        ' Show decimal, with a space. 
DEBUG BIN x, " "        ' Show binary, with a space. 
DEBUG HEX x, " "        ' Show hex, with a space. 

 
The point is that the binary pattern that is stored in the EEPROM is the same in each 
case. It is only the interpretation by the DEBUG command and by the Debug Terminal that 
is different. Please bear with us if you already know this. This is a confusing point for 
many students. We are going to use the EEPROM to store numerical data, but we usually 
use DEBUG with the decimal modifier.   
 
We will store each point of data as one byte in the EEPROM. Each byte can represent a 
number from 0 to 255 decimal. Our logger will not store larger values. It is possible to do 
so, but it would take two EEPROM locations per point. 
The declarations: 
 

Pad     DATA   (32)       ' Reserve 32 bytes, undefined. 
Log     DATA   1(60)      ' Reserve 60 bytes, preset all=1. 

 
…are two other ways to reserve space for data in the EEPROM. The second form 
initializes the 60 bytes to have a value of 1, while the first form simply sets aside the 
bytes without specifying a value to store there. 
  
√ Now modify the central part of the program EEPROMAllocation.bs2 once more as 

follows, to print out the decimal value of all 100 locations in EEPROM: 
 

FOR ptr=0 TO 99         ' Read in all 100 bytes of data. 
  READ ptr + Pad, x     ' Starting at pad (Pad=0). 
  DEBUG DEC x, " "      ' Show data as decimal value. 
NEXT 

 
√ Run the modified program, and look at your Debug Terminal.   
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Now you should see 32 bytes of garbage, followed by 60 zeros, followed by the 8 bytes 
that have special meaning as ASCII text. Why do we say "garbage"? It is because the 32 
bytes you see first are simply stuff that was left over in your BASIC Stamp from earlier 
programs and experiments. The program reserves space, but it does not send any new 
data to the BASIC Stamp to put in those locations. 
 
The BASIC Stamp Editor has a very useful feature that lets you look directly at the 
allocation of the memory. It is an invaluable tool for program development.  
 
√ Close the Debug Terminal if it is active on your screen.  
√ Press CTRL-M (or choose Memory Map from the Run menu or from the tool bar).  

 
Three views appear in one window, and they are labeled RAM Map, Condensed 
EEPROM Map, and Detailed EEPROM Map.  
 

 

Figure 6-9 
Memory Map 
 
The left portion of the 
map is the EEPROM, 
your BASIC Stamp 
source code and extra 
EEPROM space. The 
right side of the map is 
variable storage, RAM. 
The lower right hand 
corner of the memory 
map defines the type of 
data by color that you are 
storing in EEPROM and 
RAM. 

 
√ Look at the RAM Map. It is the view at the upper right side.  

 
Recall that RAM is an acronym for Random Access Memory that is located inside the 
PIC microcontroller chip, and stores the program variables. There are 32 bytes, (16 
words, 256 bits) altogether. The first 6 bytes (3 words) are dedicated to the I/O pins of the 
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BASIC Stamp.  These variables bear the pre-assigned names, ins, outs and dirs.  This 
is visible in Figure 6-9 to the left of the top three lines on the RAM Map. These pin 
variables appear in red on your color computer monitor. That leaves 13 words, which is 
26 bytes, for the variables in our program. Program EEPROMAllocation.bs2 has only 
two variables, both of them defined as bytes. The RAM Map shows them in light blue 
color right below the pin variables. The rest of the RAM memory is not allocated in this 
program, and is shown in gray. Be aware that the RAM Map does not show you the 
actual values of the variables—that only happens when you run the program. 
 
√ Now look at the Condensed EEPROM Map. It is in the lower middle of the 

Memory Map window.  
 
Recall that the EEPROM memory is located in a separate chip, apart from the PIC 
microprocessor. There are 2048 bytes of EEPROM. At the top of the schema is the data 
in shades of blue, and at the bottom is the program code in red. Between the program and 
the data is empty space that will fill up as we write longer programs and reserve more 
space for data.  You might ask what will happen if the two areas collide in the middle? If 
you have used the DATA directive to reserve log space, the problem will be detected when 
the program tries to compile during download and an "Out of memory" error message 
will appear. (Be warned, if you are using the WRITE command, which is executed during 
"run time" rather than "compile time" you won't have this error message to warn you, and 
you can begin to overwrite your program with data.) Notice that the data area has two 
different shadings. The first 32 bytes in blue are the "undefined data" or "empty data" 
declared with the statement: 
 

Pad      DATA   (32) 
 
When you load your program into the BASIC Stamp, the loading process does not touch 
those bytes, and that is why there was still the "garbage" you saw when you last ran 
Program EEPROMAllocation.bs2. In contrast, the following statements create what is 
called "defined data." 
 

Log     DATA     1(60) 
Hey     DATA     72, 101, 121, 33, 32, 66, 83, 50 

 
When you run your program into the BASIC Stamp, specific bytes are loaded into the 
EEPROM along with the program itself. 
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√ Now look at the Detailed EEPROM Map.  
 
This view shows the contents of the EEPROM byte by byte. You first see 32 dark blue 
zeros, followed by 60 zeros, followed by the 8 specific bytes. The display shows HEX 
numbers (from 00 to FF). You can press ALT-A to view the data as ASCII text. 
 
Note that the BASIC Stamp Editor does not show you the "garbage." You only get to see 
that when you really run the program on the BASIC Stamp. You see, the BASIC Stamp 
gives you a lot of options on how to use the EEPROM resources. 
 
Now use your mouse to move down to the bottom of the Detailed EEPROM Map. When 
you are looking at the bottom, you will see the actual bytes of the program itself as it is 
stored in the EEPROM. The program EEPROMAllocation.bs2 occupies about 40 bytes 
of memory. The program code is stored in a very compressed form, so don't look for an 
easy correspondence between the bytes in the EEPROM and the text of the program. 
 
√ Close the window (ALT-C), to get back to the BASIC Stamp Editor.  

 
The purpose of this digression was to help you think about the organization of the 
memory on the BASIC Stamp, and also to illustrate a very useful feature of the BASIC 
Stamp programming software. 

Data Logger 

Now it's time to get down to business. There are several issues that need to be addressed 
to make a working data logger. Rather than deal with them piecemeal, here altogether 
now are the design objectives. 
 

• Pump Controller Capability: The data logger will also function as a pump 
controller, to keep the water level up in the cup.  Therefore, the data logger has 
to do both measurement and control. 

 
• Pushbutton Data Sampling: Clicking the pushbutton once will log 5 bytes in 

EEPROM as follows below. 
 
 

Ordinal 
1,2,3,. . . 50 

Temperature 
from DS1620 

Temperature 
from AD592 

Light from 
photodiode 

Conductance 
from probe 

…more 
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• Reconfigurable Automatic Timed Data Sampling: The data logger needs take 
readings at a programmed interval from seconds to hours.  For example, with 
hourly logging, and 50 records total, the unit could hold two days worth of data.   
The interval is set at the time of programming the BASIC Stamp.  

 
• 50 records of 5 Bytes Each:  Since we are going to set aside 250 bytes for the 

data log, and since each record has five fields, there will be room for 50 records 
in the file. The log file can be made smaller or larger as needed for different 
projects. 

 
• Resume Data Logging after Interrupt: The program can find its place in the 

data file even after pressing Reset, or a power outage. This is done by scanning 
the data file, where the next free data location will be tagged by a zero in the 
ordinal number field. 

 
• Pushbutton Data Retrieval: press and hold down the pushbutton for 1.2 

seconds to get into the routine to play back all the recorded data. This is like the 
RAM data logger in Chapters 4 and 5. After playback of the data, the logger can 
resume taking additional data where it left off. 

 
• Pushbutton Memory Erase: To erase the data and start over, press and hold 

down the pushbutton during reset. 
 

• Audio Feedback: Annunciate all the user interaction on the piezo transducer.  
 

• Visual Data Display: Show data on the Debug Terminal.  
 

• Optional Morse Code Data Output: Annunciate the logged data on the piezo 
transducer. The Morse code instructions are included in the program, but 
commented out.  To activate this feature, you must delete the "'" from in front of 
the two GOSUB Morse instructions. 

 
The final program used in this project is DataLogger.bs2, which is a compilation of 
portions of many programs you have already worked through. The starting point is 
program TwoChannelsThermometer.bs2, which you should have saved on disk. This 
program also uses code from program RAMDataLogger.bs2. If you wish, you can save 
yourself a little typing by cutting and pasting. The program is getting long, but we want 
to emphasize that it is built out of lots of pieces that you already know. This program just 
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brings them together in one place. The objective here is to give you a program you can 
use for further experiments. 
 
One strategy is to simply type in all the changes, and then deal with any typos and errors 
later. That isn't a bad strategy where you have reason to believe that the program is 
basically okay (and we hope that it is!). Another strategy is to type small segments and 
test as you go along. That is usually the best way if you are uncertain about the pieces. 
You would first verify your program TwoChannelsThermometer.bs2, then add the 
additional variables and constants and data declarations, then the light and conductivity 
sensors, then the pump control routines, then the routine put data in memory, and then the 
timed data logging, and finally the routine to read the data out from memory. 
 
√ Enter the program DataLogger.bs2. 
√ Enter your own calibration values as requested in the Constants section comments. 

The requested values were calculated on the following pages: 
 
Kal AD592 calibration constant from page 70 = ______ 
Lical calibration constant for indoor light from page 105 = ______  
Lical calibration constant for outdoor light from page 115 = ______  
Cntcal Duration calibration constant from page 132 = ______ 

 
' -----[ Title ]----------------------------------------------------------- 
' Applied Sensors – DataLogger.bs2 
' Temperature and light intensity logging in EEPROM, 
' with simultaneous control of water level. 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
' -----[ Constants ]------------------------------------------------------- 
' Morse code constants. 
Dit         CON     50                  ' Milliseconds for Morse dit. 
Dit2        CON     2*Dit               ' Constants related to Dit. 
Dah         CON     3*Dit               ' Ditto. 
 
' Sensor calibration constants. USE YOUR OWN calibration constants! 
Kal         CON     15300               ' For the AD592 in Kelvin with .22uF. 
Lical       CON     647                 ' For photodiode in lux with.01uf. 
Cntcal      CON     1333/10             ' For conductance in umho with .1uf. 
 
' Logging constants. 
Interval    CON     600                 ' Logging interval (tenths seconds). 
Nflds       CON     5                   ' Number of fields per record. 
Nrecs       CON     50                  ' Number of records in file. 
LogSiz      CON     Nflds * Nrecs       ' Size of the log file in bytes. 
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Pad         DATA    (16)                ' Pad to save wear and tear on memory. 
Log         DATA    0(LogSiz)           ' Bytes in EEPROM for data log file. 
 
' -----[ Declarations ]---------------------------------------------------- 
' General purpose variables. 
xm          VAR     Byte                ' Morse & EEPROM input variable. 
x           VAR     Byte                ' General purpose variable. 
n           VAR     Word                ' Variable for time counter. 
 
' Morse code variables. 
mc          VAR     Byte                ' Temporary for Morse pattern. 
j           VAR     Nib                 ' Index for digits to send. 
i           VAR     Nib                 ' Index for dits and dahs. 
 
' Sensor variables 
degC        VAR     Word                ' For Celsius temperature from DS1620. 
TK          VAR     Word                ' For Kelvin temperature from AD592. 
TC          VAR     Word                ' Celsius from AD592. 
rct         VAR     Word                ' For the RC timer. 
light       VAR     Word                ' Light level from the photodiode. 
cnt         VAR     Word                ' For the conductance probe. 
umho        VAR     Byte                ' Conductivity. 
mhoMax      VAR     Byte                ' Maximum value of conductivity. 
 
' Logging variable. 
ptr         VAR     Byte                ' Pointer to data in the log file. 
 
' -----[ Initializations ]------------------------------------------------- 
' Note: DS1620 has been preprogrammed for mode 2. 
' If not, uncomment the instructions on the next line on the first RUN 
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13 
 
OUTS=%0000000001000000                  ' Now specify the OUTS and DIRS. 
     'fedcba9876543210 
DIRS=%1111101111111101                  ' P0 is output for piezo 
                                        ' P1 is input for pushbutton 
                                        ' P3 low for pump 
                                        ' P5 is low output to discharge C 
                                        ' P6 is high output to discharge C 
                                        ' P9 is control of 555 ON-OFF 
                                        ' P10 is input for 555 
                                        ' P13-15 output for DS1620 SPI 
                                        ' all unused pins are low outputs. 
 
' -----[ Main Program ]---------------------------------------------------- 
' Program execution starts here out of reset. 
ptr = -5                                ' Pointer initialization. 
DO                                      ' Find next free location in EEPROM. 
  ptr = ptr + 5                         ' Point to a record. 
  READ ptr + Log, x                     ' Read byte. 
LOOP UNTIL (x=0 OR ptr>=LogSiz)         ' If x=0, this is a free record 
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                                        ' also test for full log, ptr=LogSiz 
                                        ' pass here when free record is found 
                                        ' ptr points to the next free record. 
 
ON IN1 GOSUB Erase_Log                  ' Erase log if button down at reset. 
 
DEBUG ? ptr                             ' Show the pointer & the base address. 
DEBUG "RESET+button=erase",CR           ' User message. 
 
FREQOUT 0, 20, 1900                     ' Beep to signal that it is running. 
 
 
' ----- Main Loop 
DO 
  n = 0                                 ' Initialize counter. 
  DO                                    ' Loop here until button or time. 
    GOSUB Pump                          ' Update the pump status. 
    n = n + 1                           ' Count time. 
  LOOP UNTIL (IN1=0 OR n=Interval)      ' Get data at intervals or button.                    
' Can press button to get data too. 
 
  FREQOUT 0,5,2550                      ' Tick for button down. 
 
  n = 0                                 ' Initialize counter. 
  DO                                    ' Loop to track pressing time. 
    PAUSE 100                           ' Time button in 0.1 sec increments. 
    n = n + 1                           ' Increment counter. 
  LOOP UNTIL (IN1=1 OR n>12)            ' Conditions to stop the loop. 
 
  IF (n>=12) THEN                       ' Long click? 
    GOSUB Playback 
  ELSE                                  ' Short click or time? 
    GOSUB Get_Data 
  ENDIF 
LOOP 
 
' -----[ Subroutines ]----------------------------------------------------- 
 
' ----- Subroutine Get-Data 
Get_Data:                               ' Come here to scan and log data. 
  FREQOUT 0, 20, 3400                   ' Got here! 
 
  LOW 3                                 ' Turn off pump, while scanning. 
  xm = ptr/5 + 1                        ' First put the ordinal record. 
  GOSUB Write_Data                      ' Write it in EEPROM! 
 
  DEBUG CR, "logging data!", CR,        ' Message and units. 
        "#", 32, "degC", TAB, 
        "degC", TAB, "lux", TAB, 
        "umho", CR, DEC xm, " " 
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  ' DS1620 temperature sensor code. 
  HIGH 13                               ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [238]      ' Send "start conversions" command. 
  LOW 13                                ' Finish the command. 
 
  PAUSE 450                             ' Delay for conversion. 
 
  HIGH 13                               ' Select the DS1620. 
  SHIFTOUT 15, 14, LSBFIRST, [170]      ' Send the "get data" command. 
  SHIFTIN 15, 14, LSBPRE, [x]           ' Get the data. 
  LOW 13                                ' End the command. 
 
  degC = x/2                            ' Convert the data to degrees C. 
 
  xm = degC                             ' Morse routine expects data in xm. 
  GOSUB Write_Data                      ' Write the degC data. 
 
  DEBUG DEC xm, TAB                     ' Show it on Debug Terminal. 
  ' GOSUB Morse                         ' Send it as morse code (optional). 
 
  ' AD592 temperature sensor code. 
  RCTIME 5, 0, rct                      ' Get the AD592 Count. 
  LOW 5                                 ' Pull input  low, discharge cap. 
 
  TK = Kal/rct*10 + (Kal//rct*10/rct)   ' Calculate Kelvin. 
 
  TC = TK-273                           ' Convert to degrees C. 
 
  xm = TC                               ' Morse routine expects data xm. 
  GOSUB Write_Data                      ' Write the data to EEPROM. 
 
  DEBUG DEC xm, TAB                     ' Show it on Debug Terminal. 
  ' GOSUB Morse                         ' Send it as Morse code (optional). 
 
  ' Photodiode sensor code. 
  RCTIME 6, 1, rct                      ' Read the photodiode. 
  HIGH 6                                ' Discharge photodiode capacitor. 
 
  light = 65535/rct */Lical             ' Calculate lux. 
 
  xm = light/2 MAX 255                  ' Ready to store it in EEPROM. 
  GOSUB Write_Data                      ' Store it in eeprom! 
 
  DEBUG DEC light, TAB                  ' Show it on Debug Terminal. 
 
  ' Conductance sensor code. 
  xm = mhoMax                           ' Store max. value from Pump. 
  GOSUB Write_Data                      ' Data to EEPROM. 
 
  DEBUG DEC xm, CR                      ' Show max conductance in umho. 
  mhoMax = 0                            ' Reinitialize the accumulator. 
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RETURN 
 
' ----- Subroutine Erase_Log 
Erase_Log: 
  FREQOUT 0, 400, 2550, 1900            ' Sound we got here. 
 
  FOR x=0 TO ptr STEP 5                 ' Step through all used records. 
    WRITE x + Log, 0                    ' Make them zero. 
  NEXT 
 
  DEBUG CLS, "data erased!", CR         ' Message on cleared screen. 
 
  ptr = 0                               ' Reset pointer after erasing data. 
 
  DO                                    ' Hold here until button released. 
  LOOP UNTIL IN1=1 
RETURN 
 
' ----- Subroutine Playback 
Playback: 
  LOW 3                                 ' Pump off unconditional. 
  FREQOUT 0, 50, 2550                   ' Sound we got here! 
  FREQOUT 0, 100, 3400 
  DEBUG CLS, "logged data!", CR,        ' Message and units. 
        "#", 32, "degC", TAB, 
        "degC", TAB, "lux", TAB, 
        "umho", CR 
 
  ptr = 0                               ' Point to start of data. 
 
  READ ptr + Log, x                     ' Read first record number. 
  DO WHILE (x<>0 AND ptr<LogSiz)        ' Meanwhile it's not zero or 
                                        ' last record: 
    DEBUG DEC x, " "                    ' show record number, 
    READ ptr + 1 + log, degC            ' read temperature (DS1620), 
    READ ptr + 2 + log, TC              ' read temperature (AD592), 
    READ ptr + 3 + log, light           ' read light, 
    READ ptr + 4 + log, umho            ' read conductance, 
    light = light*2                     ' restore light units, 
 
    DEBUG DEC degC, TAB, DEC TC,        ' show the values, 
          TAB, DEC light, TAB, 
           DEC umho, CR 
 
    ptr = ptr + 5                       ' point to next record, 
    READ ptr + Log, x                   ' and read next record number. 
  LOOP                                  ' Back to check conditions. 
 
  DO                                    ' Wait for button up 
    DEBUG REP "-"\31, CR                ' printing horizontal line. 
  LOOP UNTIL IN1=1 
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RETURN 
' ----- Subroutine Morse 
Morse:                                  ' Send xm in morse code. 
  FOR j=1 TO 0                          ' Send 2 digits, tens then ones. 
    mc = xm DIG j                       ' Pick off the (j+1)th digit. 
    mc = %11110000011111 >> mc          ' Set up pattern for Morse code. 
 
    FOR i=4 TO 0                        ' 5 dits and dahs 
      ' Send pattern from bits of mc. 
      FREQOUT 0, Dit2*mc.BIT0(i) + Dit, 1900 
      PAUSE Dit                         ' Short silence. 
    NEXT                                ' Next i, dit or dah of five. 
 
    PAUSE Dah                           ' Interdigit silence. 
  NEXT                                  ' Next j,digit of two. 
 
RETURN                                  ' Back to main. 
 
' ----- Subroutine Pump 
Pump: 
  HIGH 9                                ' Turn on the 555. 
  COUNT 10, 100, cnt                    ' Count the frequency. 
  LOW 9                                 ' Turn off the 555. 
 
  umho = cnt * Cntcal/100 MAX 255       ' Calculate umho. 
  mhoMax = umho MIN mhoMax              ' Keep the maximum value of umho. 
 
  IF umho>99 THEN LOW 3                 ' Threshold to turn pump off. 
  IF umho<50 THEN HIGH 3                ' Threshold to turn pump on. 
  ' OUT3=~(umho/(OUT3*49+50) MAX 1)     ' Control the pump,  alternate. 
RETURN                                  ' Back to main. 
 
' ----- Subroutine Write-Data 
Write_Data: 
  IF ptr<LogSiz THEN                    ' Check for end of log. 
    WRITE ptr + log, xm                 ' Write this field. 
    ptr = ptr + 1                       ' Point to next field. 
  ENDIF 
RETURN 

 
√ Run the program. 
√ Try a short data logging experiment to test your equipment. 

 
The logging interval is initially set to be about 1 minute (interval con 600) in tenths 
of a second. It should work pretty much like the RAM data logger you made in Chapters 
4 and 5. If you are working in a classroom setting, your teacher may have other 
suggestions for the interval and for the size and location of the log file. 
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√ Check the design objectives above for the details about how it is supposed to work. 
√ Refer to the Troubleshooting suggestions below, if necessary. 

Troubleshooting 

√ Check for program resets. If the program resets frequently, and seems like it never 
quite gets started, try to run it without the pump plugged in. 

 
√ Check the breadboard and DS1620 for heat by touching them carefully. The pump 

draws quite a bit of electrical power. The 10 Ω resistor that is in series with the 
motor on the breadboard will get warm. Expect the temperature of the DS1620 
temperature sensor to rise when you operate the pump for a long time. 

 
√ Check for a non-responsive DS1620. If the DS1620 stops responding you see only 

zeros in the second column on the Debug Terminal. Try increasing the delay in the 
DS1620 routine from 450 to a larger value. A delay is required after sending to the 
DS1620 the [238] code that starts the analog to digital conversion. If you compare 
carefully you will see that in TwoChannelsThermometer.bs2 that "start 
conversions" code was only sent once, early in the program. Unfortunately, the 
DS1620 is quite sensitive to noise generated by the pump. As a quick fix, we turn 
off the motor, and then issue the "start conversions" command. In a real 
engineering project, this behavior would be troublesome, and effort would be 
expended to isolate and resolve the problem. 

 
√ Check your calibration. Remember, if you change the timing capacitors, you also 

have to recheck the calibration.  
 
√ Check your capacitor circuits. Be sure you have the 0.22 µF capacitor for the 

AD592 temperature sensor, and the 0.01µF capacitor for the photodiode, and the 
0.1 µF capacitor for the conductance sensor. You may, for example, want to use 
the light sensor in outdoor sunlight, so you will have to change over to a 0.22 µf 
capacitor and also change Lical calibration constant.  

Program Notes 

Time-Critical Multitasking 
Note that the pump subroutine at the end of the listing is called in a couple of places. In 
particular, it is called repeatedly in the initial pushbutton up and pushbutton down loops. 
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That is because the operation of the pump is a time-critical task. This is what many kinds 
of complicated programs have to do. They have to perform multiple tasks at practically 
the same time. Here it is to both monitor the button and keep up the water level. The 
programmer has to be sure that both tasks are serviced in a timely manner. The 
conductance reading in the pump routine takes 1/10 of a second, and paces the whole 
process. The BASIC Stamp is a relatively slow computer compared to a PC, and it cannot 
do true "multitasking." The BASIC Stamp here is getting around to the pump and the 
pushbutton about 10 times per second. You can see the level in the cup drop when the 
program goes off to take readings from the sensors. Maybe even a one or two-second 
delay is acceptable here. But in other systems, it could matter a whole lot and you would 
want a faster microcontroller. Check out www.parallax.com for our full line of 
microcontrollers. 
 

Pump Power and Sensor Readings 
Note the LOW 3 command near the top of the Get_Data routine. The pump is turned off 
unconditionally while reading the sensors. Otherwise, the noise and heavy power supply 
drain of the pump would affect the readings. Try it to see what we mean. Comment out 
the LOW 3 command, and then run the program again. During an interval when the pump 
happens to be on, press the pushbutton and note the readings on the Debug Terminal. 
Then press the pushbutton again during an interval when the pump is off, and compare 
those readings with it on.  
 

Conductance Reading 
Why mhoMax? The conductance reading requires some explanation. The conductance is 
being used to control the water level. So the pump routine reads the conductance value 
often as part of the pump subroutine. That routine keeps track of the maximum value of 
conductance that it has detected.   
 

      mhoMax = umho MIN mhoMax 
 
What this says is, "let the new value of mhoMax be equal to whichever is greater, the 
conductance (umho) or the current value of mhoMax " (min, because mhoMax is the 
minimum value in the match). For example, if the current value of umho is 67, and the 
current value of mhoMax is 65, the new value of mhoMax will be 67. It is mhoMax that goes 
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into the data file in the conductance routine. mhoMax is then reset to zero so that it can 
accumulate a new and different maximum value during the next interval. 

Writing Data 
Figure 6-10 illustrates how the program uses the EEPROM. The Write_Data subroutine 
is called from several places in the Get_Data routine. First it is called to store the ordinal 
record number, and then once more for each sensor. At the end of the Get_Data routine, 
the pointer is left pointing to the next free byte, where the next record number will go the 
next time the interval passes or the next time the pushbutton is pressed. 
 

------1st record----- Next free byte 
↓ ↓ ↓ ↓ ↓ ↓                     
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …
1 T t L C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

 
Figure 6-10: Writing Data  

 
In professional data loggers, the record ordinal number field might be used to store the 
time and date. 
 

Scanning Data Storage 
The routine at the beginning of the program scans through all of the possible records in 
the data file, looking only at the locations reserved for record numbers:  (ptr = 0, 5, 10, 
15, ... ,245).  If it finds a zero in one of those locations, the program will begin writing the  
next record at that place. This scan takes place each time you press Reset on your Board, 
or when the power is turned on.  By putting tags in the data file, it can reconstruct where 
it was. Note that right after that is the instruction that tests to see if the pushbutton is 
being held down, just after reset. If so, the BASIC Stamp branches to the routine that 
"erases" the data file. What it really does is to put zeros in all of the ordinal number 
locations. That way the program starts over at the beginning of the log. The Erase_Log 
routine does not really erase all the data, just the ordinal number of each record.  This 
helps reduce the wear and increase the life of your BASIC Stamp module's EEPROM. 
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Data Playback 
Figure 6-11 illustrates that the routine that plays back the data is the reverse of the routine 
that puts it into the memory.  
 

------1st record----- Next record starts Next free location 
↑ ↑ ↑ ↑ ↑ ↑               ↓      
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 … 
1 T t L C 2 T t L C 3 T t L C 4 T t L C 0 0 0 0 0 …  

 
Figure 6-11: Reading Data  

 
The routine reads out 5 locations, and then leapfrogs the pointer up to the next group of 
five.  At the end of all the records, the pointer will be left pointing to the next free 
location, one containing a zero in the ordinal number field. 
 

Pushbutton Control 
The code that detects when you press and release the pushbutton should be very familiar 
to you by now. Here every time around the loop, while waiting for something to happen, 
the program checks the pump and turns if off or on as needed. The routine to read the 
conductivity takes about 0.1 second, so that paces the button loops too. 
 

Timing Calibration 
The timing interval for data logging is not very precise. You may want to calibrate it by 
changing the ballpark constants. To calibrate the timing, you need a stop watch. Set the 
interval for something like 1 minute, and time it (using the beeps for logging) to see how 
it turns out with interval = 6000. If the actual time turns out to be 1% too long, then to 
compensate, count for 1% less time, or interval = 5940. 
 

EEPROM Lifespan  
Can you ruin the EEPROM? Note that 16 bytes are set aside at the top of the memory. 
The purpose of this is to avoid overstressing those top bytes. Recall that EEPROM has a 
finite life in terms of the number of times it can be written to. It takes ten million or so 
rewrites to wear out a location. When using EEPROM for data logging, you have to 
remember this. It takes a long time to get to 10 million times, but don't get carried away 
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with rapid fire experiments with sub second timing! To check what is in memory, while 
in the BASIC Stamp Editor, press CTRL-M. Recall the discussion of the RAM Map and 
the EEPROM Map. This helps to visualize how the variables and EEPROM space are 
being used. What fraction of the EEPROM are the program and the data occupying? 

Other Investigations 

Pump Operational Limitations 
Design an experiment to study the flow rate from the pump, and the height of water it is 
capable of supporting. 
 

Solar Heater 

√ Make a solar heater by running water through black copper tubing under glass or in 
a bottle, out in the sun.   

√ Run the pump to bring water into a reservoir.  
√ Monitor the water temperature and the sunlight.  
√ Use the water temperature and the sunlight to decide when to turn on and off the 

pump automatically. 
 

Pump PWM 
Try to PWM the pump, that is, turn it rapidly on and off as follows: 
 

x    CON    5 
 
DO 
  HIGH 3 
  PAUSE x 
  LOW 3 
  PAUSE 10-x 
LOOP 

 
The constant 5 causes the pump to be on half the time and off half the time. This way the 
pump effectively pumps half as fast. The on and off states alternate so fast that you can't 
perceive a stop and start in the pumping action. Try varying the constant to see what 
happens at other ratios of ON to OFF time. You can also try the BASIC Stamp 2 built-in 
PWM command. 
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Challenge! 

1. Write a simple program that turns on the pump when the pushbutton is pressed 
once, and then lets it stay on until the pushbutton is pressed again.  (Push on, 
push off).   

 
2. You are in charge of a public fountain that is supposed to operate only in the 

daytime, and only when the sun is out and the temperature is greater than 70 
degrees Fahrenheit.  Write a program to control the fountain. 

 
3. Make a program that can draw a graph of conductance on the Debug Terminal.  

Let the program fill the cup to overflowing, and then let the level drop below the 
sensor tips, before starting up the pump again. All the while the conductivity 
reading should be graphing in the Debug Terminal. 

 
4. A fish farm must maintain the level of water in a tank and replenish it, and keep 

the water stirred, and monitor for conditions that could be deadly.  Write a 
program that keeps the water going up and down in the cup, but it will sound an 
alarm if the temperature of the water exceeds 80 degrees C, or if the water stops 
flowing for any reason, or if the conductivity of the water changes drastically. 

 
5. Sometimes in real-world settings it is desirable to know how long or what 

percentage of time a motor is running versus not running.  This helps with 
maintenance and with planning for energy efficiency.  Modify program 
PumpController.bs2 so that it displays the percentage of time that the pump stays 
on.  You could also add this to your data logging program, as an indication of 
how much water was used. 
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Appendix A: Parts Listing 
 

Required Hardware 
To complete the activities in Chapters 1 through 5 of this text, you will need the 
following equipment: 
 

• PC running Windows 98/2K/XP/Vista with an available serial or USB port 
• BASIC Stamp Editor v2.4 (or higher) software 
• Board of Education Full Kit (serial, #28103, or USB, #28803) 

-OR- a BASIC Stamp HomeWork Board and programming cable* 
• Applied Sensors Parts Kit (see Table A-1 on page 180) 
• Additional Household Items (see Table A-2 on page 181) 

 
*The Applied Sensors experiments are fully compatible with the HomeWork Board, 
which has a BASIC Stamp 2 built right in.  The economical HomeWork Board is 
included in the BASIC Stamp Activity Kit (#90005) and also in 10-packs (#28158).  
Please contact sales@parallax.com for assistance in outfitting your classroom. 
 
For free technical support, email support@parallax.com or call 1-888-99-STAMP from 
the United States. From outside the United States, call (916) 624-8333.  Or, visit our 
Stamps in Class forum at http://forums.parallax.com. 
 

Low-voltage Pump Circuit Not Included 
The optional activities in Chapter 6 require a low-voltage pump, transistor, and resistor, 
which are not included. The low-voltage pump used to develop the activities in Chapter 6 
is no longer available. The activities in Chapter 6 are optional and included for your 
reference and adaptation to commercially available low-voltage pumps.  As Parallax 
identifies sources of compatible and reasonably inexpensive low-voltage pumps, we will 
post links on the Applied Sensors product pages at www.parallax.com. 
 
We also invite our customers to submit information about low-voltage pump resources, 
or project adaptations to other types of pumps, to editor@parallax.com for potential 
posting on our website. 
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Applied Sensors Parts Kit 
This kit contains all of the electronic components for the activities in Chapters 1–5. For 
your convenience, these components are pictured with labels and Parallax part numbers 
on the last page of this text.  
 

Table A-1: Applied Sensors Parts Kit (#28126) 
Parts and quantities subject to change without notice 

Parallax Code# Description Quantity 
150-01011 100 Ω¼ watt 5% resistor 4 
150-01020 1 kΩ ¼ watt 5% resistor 1 
150-01030 10 kΩ ¼ watt 5% resistor 1 
150-01040 100 kΩ ¼ watt 5% resistor 2 
150-02210 220 Ω ¼  watt 5% resistor 2 
150-04710 470 Ω  ¼ watt 5% resistor 2 
200-01010 100 pF mono radial capacitor 2 
200-01031 0.01 µF 50 V capacitor 1 
200-01040 0.1 µF mono radial capacitor 3 
200-02240 0.22 µF 50 V capacitor 3 
28130 AD592 Temperature probe 1 
350-00001 LED, green 1 
350-00006 LED, red 1 
350-00012 Photodiode, blue enhanced (Photonic Detectors) 1 
400-00002 Pushbutton tact switch 1 
604-00002 DS1620 Digital Thermometer 1 
604-00009 555 timer, 8-pin DIP 1 
700-00020 2", 4-40 stainless steel machine screws 2 
700-00036 4-40 nylon nut 2 
700-00058 Cup spanner  1 
800-00016 3" jumper wires (bag of 10) 2 
800-00021 16" red jumper wire 1 
800-00022 16" black jumper wire 1 
900-00001 Piezospeaker (sound transducer) 1 
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Additional Items Required 
Some additional common items are needed to complete the activities in this text; those 
marked with an asterisk are required for the main experiments, and the others are used for 
optional activities and challenges. 
 

Table A-2: Additional Items Needed (* required item) 
Aluminum foil 
Crushed ice * 
Cup that can have a hole drilled or punched in it * 
Distilled water * 
Duct tape or wide electrical tape * 
Heavy cotton thread or string 
Graphite pencil 
Paper 
Paper towels 
Potted plant  
Protractor 
Rock salt 
Rubber band 
Spoon 
Spotlight - 50 watt R20, or 100 watt standard light bulb * 
Table salt * 
Tap water * 
Thermos, or Styrofoam cups and aluminum foil * 
Vinegar 
Waterproof nonmetal tray at least 1.5 inches deep * 
9 volt battery 
Low-voltage submersible water pump with flexible tubing (Chapter 6 only)* 
External power supply suited for the low-voltage pump selected (Chapter 6 only)* 
NPN Transistor suited for the low-voltage pump selected (Chapter 6 only)* 
Resistor suitable between transistor and low-voltage pump selected (Chapter 6 only)*  
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Appendix B: Building the ADS592 Temperature 
Probe  
 
The Applied Sensors experiments use the AD592 temperature probe. The part needs to be 
protected before being inserted into liquid. Parallax builds a custom temperature probe 
(#28130), but you can do this yourself from these plans. An abbreviated datasheet for the 
AD592 is included in Appendix D of this text. 

You'll need the following materials: 
(1)  AD592 Temperature Transducer in plastic TO-92 case (Newark Electronics) 
(2)  16" wires, one black and one red, stripped on both ends  
(2)  1" solder sleeves (Powell Electronics CWT-1502 or equivalent) 
(1) 1½" length of ¼" adhesive lined heat shrink tubing (Digi-Key #EPS3316NK-ND) 
(1)  heat gun   
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To build the probe: 
 

13 2

(NC) (+)(-)
 

Figure B-1 
Step #1 
 
Identify the AD592's (-), NC, 
and (+) pins from this picture 
as viewed from the bottom. 

 

AD592

bl
ac

k  

re
d

solder 
sleeves

 

Figure B-2 
Step #2 
 
Slip the solder sleeve over the 
black wire and pin 3 (-). Slip 
another solder sleeve over the 
red wire and pin 1 (+). Heat up 
the connections until the wires 
are joined. 
 
If you have no solder sleeves 
you can use heat shrink tubing. 

 
Clamp here 

AD592

Figure B-3 
Step #3 
 
Slip the heat shrink tubing over 
the entire package. Fasten the 
package with a heat gun, and 
while it's still hot clamp the top 
portion to ensure that it stays 
shut. 
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Appendix C: Resistor Color Code  

Resistor Color Code 
Most common types of resistors have colored bands that indicate their value.  Most of the 
resistors that we're using in this series of experiments are typically "1/4 watt, carbon film, 
with a 5% tolerance."  If you look closely at the sequence of bands you'll notice that one 
of the bands (on an end) is gold.  This is band #4, and the gold color designates that it has 
a 5% tolerance. 
 
The resistor color code is an industry standard in recognizing the value of resistance of a 
resistor. Each color band represents a number, and the order of the color band will 
represent a number value. The first two color bands indicate a number. The third color 
band indicates the multiplier, or in other words, the number of zeros. The fourth band 
indicates the tolerance of the resistor as  +/- 5, 10, or 20 %. 
 

Color 1st Digit 2nd Digit Multiplier Tolerance 
black 0 0 1  
brown 1 1 10  
red 2 2 100  
orange 3 3 1,000  
yellow 4 4 10,000  
green 5 5 100,000  
blue 6 6 1,000,000  
violet 7 7 10,000,000  
gray 8 8 100,000.000  
white 9 9 1,000,000,000  
gold    5% 
silver    10% 
no color    20%  

 



Page 186 · Applied Sensors 
 

A resistor has the following color bands: 
 
Band #1.  = Red 
Band #2.  = Violet 
Band #3.  = Yellow 
Band #4.  = Gold 
 
Looking at our chart above, we see that Red has a value of 2. 
 
So we write: "2". 
Violet has a value of 7. 
So we write: "27" 
 
Yellow has a value of 4. 
So we write: "27 and four zeros" or "270000". 
 
This resistor has a value of 270,000 Ω (or 270 kΩ) and a tolerance of 5%. 
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Appendix D: Data Sheets  
 
Appendix D consists of abbreviated data sheets for the key components used in these 
experiments. The full data sheets are available from the manufacturers' web sites shown 
below. This text includes the first two pages only of the data sheets. 
 

Table D-1: Datasheet Locator 
Component Manufacturer's Website 

Analog Devices 592 http://www.analogdevices.com  
Dallas Semiconductor 1620 http://www.maxim-ic.com 
Edmund Scientific Pump http://scientificsonline.com 
ZTX1049A NPN Transistor http://www.zetex.com/  
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1.3 volt threshold, 63 
1.3-volt threshold, 62 

          - 5 - 

555 timer, 127, 129, 134, 145 

          - A - 

AD592, 55, 66, 68, 80, 99, 106, 183 
calibration, 69 

air quality, 89 
Analog sensors, 56 
anemometer, 85 
annunciator, 2, 8, 28, 99 
argument, 7 
arithmetic, 38 
ASCII, 65 
ASCII text, 162 
astable multivibrator, 129 
automatic calibration, 76 

          - B - 

BASIC Stamp, 62 
1.3-volt threshold, 62 

built-in capacitance, 103 

multitasking, 174 

voltage threshold, 62 

BASIC Stamp Editor, 2 
BASIC Stamp math, 71 

bats, 46 
bees, 89 
bioluminescence, 89 

          - C - 

calibration, 81 
AD592 temperature sensor, 69 

and capacitors, 173 

automatic  calibration with EEPROM, 76 

automatic calibration, 76 

constants in EEPROM, 42 

data logging timing, 176 

DS1620 with AD592, 76 

final project, 173 

in ice bath, 69, 80 

light meter, full sun, 114 

calibration constant 
AD592, 70 

Cntcal, 173 

Duration, 132, 156 

indoor light, 105, 106 

Kal, 70, 173 

Lical, 106, 173 

light meter, 102 

outdoor light, 115 

calibration reference, 76 
candlepower, 103 
capacitance, 58, 69 
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capacitor, 57, 69, 92, 99, 102 
in light meter, 98 

Caracol, 89 
carriage return, 53 
Celsius, 21, 68, 70 
chip select, 16 
Cntcal, 167 
colorimeter, 98, 116 
communication error, 17 
comparator, 62 
condensation, 141 
conductance, 130, 131, 137, 174 

in water, 134 

vs conductivity, 137 

conductivity, 136 
and temperature, 142 

ground loop error, 144 

units of measurement, 136 

vs conductance, 137 

conductivity sensor, 1, 58, 59, 61, 62, 
66, 86, 120, 122, 123, 124, 126, 134, 
141, 142, 148, 149, 154, 155, 157 
assembly instructions, 58 

confounding variables, 136 
continuous conversion, 13 
CR, 53 
cricket, 32 
CTRL-R, 5 
cup spanner, 58 

          - D - 

DAQ, 27 
DATA, 39, 77 

data acquisition system, 27 
data logger, 27, 148 
data logging, 27, 107, 113, 119, 147, 

167, 172, 176, 178 
timing, 176 

data storage, 175 
DEBUG, 22, 31, 65, 161 

BIN modifier, 31, 162 

DEC modifier, 162 

HEX modifier, 162 

REP modifier, 65, 125 

SDEC modifier, 68 

debugging programs, 17 
DIG, 49 
DIR, 18 
DIRS, 18, 47, 110 
display, 110 
division, 71 
DO...LOOP UNTIL, 35 
DO…LOOP, 30 
double click, 36, 37 
DS1620, 11, 19, 20, 44, 73, 76, 80 

calibration reference, 76 

calibration with AD592, 76 

configuring, 13 

continuous conversion, 13 

one-shot conversion, 13 

operational limits, 22 

Duration calibration constant, 132, 155, 
156 
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          - E - 

EEPROM, 14, 15, 27, 28, 38, 39, 40, 
41, 42, 49, 53, 54, 55, 76, 77, 78, 81, 
107, 148, 159, 160, 161, 162, 163, 
164, 165, 175, 176 
durability, 39, 176 

El Niño, iii, 2, 119 
equilibrate, 70 
evaporation, 137 

          - F - 

Fahrenheit, 70 
farads, 58 
feedback, 147 
feedback loop, 154, 155 
field, 110 
fractional multiply, 105 
FREQOUT, 4, 6, 32, 57 

          - G - 

GOSUB, 76 
ground loop error, 143 
Guarantee, 2 

          - H - 

hardware not found, 5, 17 
HIGH, 56 
HomeWork Board, 149 

and power supply, 149 

hot probe anemometer, 84 
humidity, 142 
hysteresis, 156, 158 

          - I - 

I/O pins, 56 
ice, 70 

ice bath, 80 
ice bath preparation, 70 
ice point depression, 83 
illuminosity, 98 
impeller, 153 
index, 49 
infrared, 89 
INPUT, 56, 62 

          - K - 

Kal, 70, 74, 106, 167 
Kelvin, 68, 69, 70 

          - L - 

Langleys, 97 
least significant bit, 14 
least significant bit first, 19 
Lical, 106, 115, 167 

calibration in full sun, 114 

light, 89 
light attenuation, 90 
light indoor calibration constant, 105 
light sensor, 148 

calibration for full sun, 114 

Log, 40 
logarithm, 101 
LOW, 57 
LSBFIRST, 16 
LSBPRE, 21 
lux, 103, 104 

          - M - 

mc.BIT0(i), 51 
measuring 

air temperature, 17 

bright light, 97, 114 
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condensation, 141 

conductance, 174 

conductance in water, 134 

conductance using RC-time, 124 

conductance with the 555 timer IC, 126 

conductivity with 555 timer IC, 134 

dim light, 96, 103 

evaporation, 137 

humidity, 142 

incursion of salt water, 142 

light level, 90 

temperature and light together, 106 

temperature with the AD592, 68 

temperature with the DS1620, 18 

water level, 134, 155 

water temperature-ice water, 69 

Metrologists, 70 
mho, 130 
microampere, 56 
micro-environment, 55, 82 
microfarads, 58 
modifier, 51 

DEBUG. See DEBUG 

mc.BIT0(i), 51 

Morse code, 1, 4, 8, 9, 10, 27, 28, 33, 
44, 46, 47, 48, 50, 51, 53, 55, 76, 86, 
161, 168 
SOS, 10 

          - N - 

NCD, 101, 126 

node, 95 
numerical indicators,, 162 
numerical modifiers, 162 

BIN, 162 

DEC, 162 

HEX, 162 

          - O - 

ocean water, 136 
conductivity of, 136 

ohms, 133 
one-shot, 13 
OPTAscope 81M, 6 
OUT, 18 
OUTS, 18, 47, 110 

          - P - 

PAR, 114 
PAR meter, 98 
PBASIC operator, 49, 71, 106 

*/, 105, 114 

/, 71 

//, 71 

~, 158 

”not”, 158 

>>, 50 

DIG, 49 

fractional multiply, 105 

NCD, 101, 126 

PBASIC Reference, 6 
photocurrent, 91, 101 
photodetector, 91 
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photodiode, 89, 91, 92, 93, 96, 98, 101, 
102, 103, 104, 113, 114, 115, 165, 
173 

photometer, 98 
photoresistor, 90 
photosynthesis, 89 
picofarads, 58 
piezo transducer, 19, 28, 44, 93 
piezoelectric transducer, 2, 3 
Pluto, 116 
pointer, 49 
polarization, 126 
protractor, 112 
psychrometer, 83 
psychrometric chart, 83 
pump, 149 

control with feedback, 155 

current draw, 153 

impeller, 153 

on-off control, 151 

preparation, 149 

troubleshooting, 152 

pump control, 148 
pushbutton, 28, 30, 34, 176 
pyranometer, 84, 97 

          - Q - 

quanta, 98, 114 

          - R - 

RAM, 38, 40, 41, 107, 112, 130, 159, 
160, 163, 166, 172, 177 

RCTIME, 56, 57, 64, 68, 96, 99 
reaction time tester, 116 
READ, 27, 39, 40, 81 
record, 110 

relative humidity., 83 
REP, 65 
REP modifier, 65 
representative temperature, 18 
Reset button, 5 
resistance, 131 
resistor, 57 
resistors 

in series, 131 

parallel, 131 

resolution, 21, 73 
RETURN, 48 
reverse current., 91 

          - S - 

safety, 62 
salinity, 84, 136 
salt, 83 
SCADA, 27 
scanning data storage, 175 
SDEC modifier, 68 
SHIFTIN, 19, 57 
SHIFTOUT, 13, 14, 19, 20, 57 
siemen, 130 
siemens, 133, 134 
sine wave, 6 
single click, 37 
sling psychrometer, 83 
Small Computer Aided Data 

Acquisition, 27 
snippet, 37 
software required. See BASIC Stamp 

Editor 
solar heater, 177 
solar pane, 92 
spectrophotometer, 98 
static electricity, 3 
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Stonehenge, 89 
stridulation, 32 

          - T - 

TAB, 68 
talking thermometer, 73 
temperature, 1 

and conductivity, 143 

temperature probe, 55, 58, 68, 70, 76, 
82, 101, 111, 113, 141, 183, See 
AD592 

temperature resolution, 73 
temperature transducer, 11 
thermistor, 64 
thermometer, 46 
thermos, 70 
timing, 176 
transducer, 1 
transistor, 148, 153 
transmitter, 149 
troubleshooting 

debugging programs, 17 

program download, 5 

pump controller, 173 

          - U - 

ultraviolet, 89, 97 

          - V - 

variable 
modifier, 51 

variables, 38 
vinegar, 143 
voltage, 69 

          - W - 

water detector, 123 
wet bulb, 83 
wet bulb depression, 82 
Word modifier, 77 
WRITE, 27, 39, 40, 42, 81 
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Parts and quantities in the Applied Sensors kits are subject to change without notice.  
Parts may differ from what is shown in this picture.  If you have any questions about your 
kit, please contact stampsinclass@parallax.com.  
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