

Applied Sensors
Student Guide

VERSION 2.0

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2003-2008 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication: the
text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated only for educational
purposes when used solely in conjunction with Parallax products, and the user may recover from the student only the
cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot, SumoBot, Toddler, and SX-Key are registered
trademarks of Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(registered trademark) is a registered trademark of Parallax Inc." upon the first
appearance of the trademark name in each printed document or web page. HomeWork Board, Parallax, the Parallax
logo, Propeller, Penguin, and QuadRover are trademarks of Parallax Inc. If you decide to use trademarks of Parallax
Inc. on your web page or in printed material, you must state that "(trademark) is a trademark of Parallax Inc.", "upon
the first appearance of the trademark name in each printed document or web page. Other brand and product names
are trademarks or registered trademarks of their respective holders.

2.0.0-08.10.06-SCP

ISBN 978-1-928982-47-0

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

• Propeller Chip™ – This forum is for users of the multiprocessing Parallax Propeller chip.
• BASIC Stamp® – This forum is widely utilized by engineers, hobbyists and students who share their

BASIC Stamp projects and ask questions.
• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with

Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.
• Stamps in Class® – Created for educators and students, members discuss the use of the Stamps in

Class series in their courses. Students, educators and hobbyists are welcome to participate.
• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module

that is programmed using a subset of Sun Microsystems’ Java® programming language.
• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue

for robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot®, Toddler®, SumoBot®, PenguinTM, and Propeller QuadRoverTM robots are discussed
here.

• HYDRA – A place for enthusiasts of the Propeller-based HYDRA game development system.
• Parallax Educators – A private forum exclusively for educators and those who contribute to the

development of Stamps in Class. Parallax created this forum for educators to provide feed back and
to obtain, develop, and share teaching materials. Educators may email stampsinclass@parallax.com
for enrollment information.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page's free downloads for an errata file.

Table of Contents · Page i

Table of Contents

Preface..iii
Audience.. iv
Foreign Translations .. iv
Special Contributors .. iv

Chapter 1: Piezo and Temperature Transducer ..1
Preparation...2
Parts Required ...2
Building the Circuit ...2
Programming the Project ...4
Temperature Readings from the DS1620 ..10

Chapter 2: Data Logging..27
Parts Required ...28
Building the Circuit ...28
Programming the Project ...30
Advanced Topic: Detecting a Double-Click with the BASIC Stamp36
Learning to READ and WRITE, the Basics ..38
Talking Thermometer, Morse Code Revisited..44
Challenge! ..53

Chapter 3: Temperature Probe for Micro-Environments......................................55
BASIC Stamp Pins, Capacitors, Review of the BASICs ..56
Parts Required ...58
Building the Circuit ...58
Simple Resistance Detector...59
Resistance Detector using RCTIME ..63
Temperature Sensor Probe using the AD592 and RCTIME66
AD592 Calibration ..68
Talking Thermometer Revisited, Two Channels ..73
Automatic Calibration (Advanced Topic)...76
Some Field Research: Temperature Experiments ...82
Challenge! ..86

Chapter 4: Light on Earth and Data Logging...89
Parts Required ...90
Building the Circuit ...90
Photodiode and the BASIC Stamp as a Digital Light Meter100
Temperature and Light Meter...106
Light and Temperature Logger, using RAM Memory ...107
Experiments with the Data Logger ...112

Page ii · Applied Sensors

Challenge!..116
Chapter 5: The Liquid Environment ... 119

Parts Required ...120
Building the Circuit ...120
Measurement of Conductance using RCTIME ..124
Measurement of Conductance using the 555 Timer IC ...126
Conductance in Water ...134
Data Logging Continued: Drying of Soil ..137
Additional Experiments to Try ..141
Challenge!..145

Chapter 6: Measurement and Control.. 147
Parts Required ...148
Building the Circuit for the HomeWork Board ..149
On-Off Control of Pump ...151
Pump Control with Feedback...155
Memory in the BASIC Stamp, Revisited ..159
Data Logger ...165
Troubleshooting ...173
Other Investigations ...177
Challenge!..178

Appendix A: Parts Listing ... 179
Appendix B: Building the AD592 Temperature Probe.. 183
Appendix C: Resistor Color Code .. 185
Appendix D: Data Sheets .. 187
Index.. 195

Preface · Page iii

Preface

Interfacing sensors, the focus of the activities in this text, is integral to many types of
fieldwork. Think of yourself as a geologist, wanting to know more about El Niño, and
how this famous phenomenon in the waters off the coast of South America changes
weather patterns all over the world. You are going to need lots of measurements. Or,
think of yourself as the operator of a water treatment plant, where a city full of people is
counting on you to deliver pure water day and night. You are going to have to monitor
the water and operate a computer-controlled plant to pump it across the city. Or, think of
yourself as responsible for an orchard of apples. You need to keep close track of the
weather so that you will keep one step ahead on irrigation and pest control to bring a
healthy crop to market.

Think about home appliances such as clothes dryers, ovens and room thermostats. They
all use microcontrollers for measurement and control, as do instruments in the factory,
the laboratory, the hospital, and beyond earth out into space. The techniques of
measurement in these different settings are all similar. What you learn here will apply to
many fields.

About Version 2.0
This revision of Applied Sensors (formerly titled Earth Measurements) was necessary
because the low-voltage pump used to develop the activities in Chapter 6 is no longer
available. Though we no longer supply a pump or the related components in the Applied
Sensors Parts Kit v2.0, we have kept Chapter 6 in the book for your reference and
adaptation to commercially available low-voltage pumps. As Parallax identifies sources
of compatible and reasonably inexpensive low-voltage pumps, we will post links on the
Applied Sensors product pages at www.parallax.com. We also invite our customers to
submit information about low-voltage pump resources, or project adaptations to other
types of pumps, to editor@parallax.com for potential posting on our website.

Other typographical corrections and product reference updates have been made.
Pagination of Chapters 1 through 5 should be similar, if not identical, to Version 1.4.

Page iv · Applied Sensors

AUDIENCE
Applied Sensors was created for ages 17+ as a subsequent text to What's a
Microcontroller? Like all Stamps in Class texts, Applied Sensors teaches new techniques
and circuits with only minimal overlap between the other texts. New topics introduced in
this text are a closed-loop feedback control system, serial communication, use of the
BASIC Stamp EEPROM for data logging, calibration of sensors, conductivity in water,
and the use of a sound transducer for human feedback. Instructors are invited to
participate in the private Parallax Educators Forum to obtain support and additional
related educational materials for this text if they are available. Email
stampsinclass@parallax.com for enrollment instructions.

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission under
our Volunteer Translators Program. Please email translations@parallax.com for details.

SPECIAL CONTRIBUTORS
The Applied Sensors text was written by Tracy Allen Ph.D. Dr. Allen is with
Electronically Monitored Ecosystems, located in Berkeley, California
(http://www.emesystems.com). EME Systems designs and manufactures instruments for
environmental science. Some of their products are off-the-shelf, and others are
customized systems for individual clients. The commercially available OWL2C On-site
Weather Logger uses a BASIC Stamp 2 or 2pe microcontroller, providing programmable
capabilities for a customer who doesn't want to use the default program. Dr. Allen has
particular interest in programs that address integrated pest management on the farm,
efficient use of natural resources, and understanding of endangered species or
ecosystems. A recent project of Dr. Allen's consists of measuring the surface temperature
of dairy cows to evaluate milk productivity. Dr. Allen is a frequent contributor to the
Parallax forums, and Parallax is very appreciative of his continuing involvement with the
Stamps in Class program.

Thanks also go to everyone on the Parallax Team, for those who provided ideas and
content for this book, and in particular to Rich Allred for the technical graphics and to
Jen Jacobs for the cover graphics. Aristides Alvarez gets credit for updating the book
format to the Stamps in Class style, and for rewriting the programs to PBASIC 2.5. The
whole Parallax Team that designs, manufactures, accepts orders, and packages the
Stamps in Class products is recognized as integral to the success of the Stamps in Class
program.

 Chapter 1: Piezo and Temperature Transducer · Page 1

Chapter 1: Piezo and Temperature Transducer

Applied Sensors will guide you as you build, program, test, and calibrate a multi-sensor
instrument with a data logger. With this instrument you will measure ambient
temperature, water temperature, and light level. You will build and apply a conductivity
sensor to various materials, and detect salinity in a cup of water. In an optional final
experiment, you will maintain the water level in a cup with a pump and conductivity
sensor. Feedback about the operation of the BASIC Stamp will be conveyed to you
audibly with a piezo transducer, and collected data will be displayed on your computer
screen. If this sounds exciting, great! If this sounds intimidating, don't worry. You will
be introduced to each subsystem one at a time, and integrate them in small steps. The first
phase of this progressive experiment includes:

• A piezo transducer that converts electrical impulses from the BASIC Stamp into
musical tones

• Programming the BASIC Stamp to send Morse code via the piezo transducer
• A digital temperature sensor which is another transducer that converts

temperature into a coded form that the BASIC Stamp can understand
• Programming the BASIC Stamp to take temperature readings and display them

on the computer screen in the Debug Terminal

Temperature is of the first importance in any process. We all know from personal
experience that temperature is important to our well-being. You are probably sitting in a
comfortable room, in the range of 17 to 30 degrees Celsius (63 to 86 degrees Fahrenheit).
There may be a thermostat in the room that holds the temperature at that comfortable
value, using a heater or an air conditioner (or maybe not!?). What do you think the
temperature is right now where you are? How about outside? If you don't have a
thermometer, don't worry; you will have one before this experiment is over. We need
only a transducer to measure the temperature, and another transducer to convey the
temperature readings to our eyes and ears.

We live on a planet that is just the right distance from the sun and has the right kind of
atmosphere to offer temperatures conducive to life, as we know it. Through our human
technology and industry, from clothing and housing all the way through to modern
electronic environmental controls, we have extended the range of temperatures where we
can live.

Page 2 · Applied Sensors

It is not far-fetched to say that every process on earth depends on temperature in some
way. Think of erosion of mountains. Every year water seeps into cracks in the rocks,
freezes, expands, and breaks off pieces. Snow, rain, clouds, wind - nearly every aspect of
the weather depends critically on temperature. A few tenths of a degree change in the
temperature of the water in the South Pacific Ocean (El Niño) can affect the weather all
over the world. How apples grow on trees, how the worms grow in the apples, how
mosquitoes thrive in stagnant pools, how tadpoles survive to eat the mosquitoes,
everything relating to agriculture and biology is dependent on temperature. Add to that
the environment in factories, hospitals, laboratories, schools, homes, museums, and on
and on. Suffice it to say that if you want to go into any career related to microcontrollers,
you are going to have to know how to measure temperature.

Preparation

To complete the experiments in this text, you will need to have your BASIC Stamp
Editor v 2.4 or higher installed and running on your computer. Then, you will need to
hook up your BASIC Stamp 2 and Board of Education, or your BASIC Stamp
HomeWork Board, to your computer with a programming cable. If you are using a USB
board or USB to Serial Adapter, you will need to have the appropriate USB VCP drivers
installed on your computer as well. A complete listing of the components required for all
of the experiments can be found in Appendix A.

Parts Required

(1) Piezo transducer
(1) DS1620 Temperature Sensor
(1) 1 kΩ resistor (brown black red)
(1) 0.1 µF capacitor
(6) Jumper wires

Building the Circuit

It's always good to start out with a simple project, just to get into the swing of things.
That is going to be the pattern in this series of experiments. You will start out with a
warm-up project, and then move on to the main focus of the experiment. The warm-up to
start this experiment is simply a buzzer, a sound output device. In fancy terms, it is an
"annunciator" or a "piezoelectric transducer." It will be a big part of our user interface in
the projects to come in Applied Sensors. Sure, we can also see results on the computer
screen when your BASIC Stamp is hooked up to it via its serial cable. However, having

 Chapter 1: Piezo and Temperature Transducer · Page 3

the annunciator will allow us to stand up and walk away from the computer, around the
room, into the dark, outside into the sunlight, and still be able to "hear" what is going on.

Piezoelectric transducers Piezo comes from a Greek word that means "to squeeze or
press", and electric comes from a Greek word that refers to amber, a mineral that can
accumulate a charge of static electricity when rubbed. Crystals, such as quartz and also
some ceramic and plastic materials, generate electricity when they are flexed back and
forth. This is the piezoelectric effect. Electrical wires attached to the surface of such
materials can pick up that electricity. This is the basis of some kinds of microphones.

A microphone is a transducer (Latin for "lead across") that transforms sound into electricity.
The piezoelectric effect works in reverse too. If electricity is applied across some
piezoelectric materials, they bend in response. They can be fabricated as a thin disk, with
electrical connections on both faces, and wires attached. The disk is like a tiny drumhead.
When connected to a rapidly alternating electrical voltage, it flexes back and forth,
compressing the air which emits sound waves, and thereby becomes a piezo transducer. It
turns electricity into sound. The electrical voltage has to be in the right frequency range to
resonate with the natural tone of the tiny drumhead.

Sometimes a piezo transducer is packaged along with some electrical circuitry, so that all
you have to do is connect it to a battery or to a power supply and it will buzz at one preset
pitch. Such a device is called a piezo buzzer. The device we are using here is a simple
piezo transducer. It will not buzz if we connect it directly to a battery. It will only produce
sound when we provide audio frequency electrical impulses from the BASIC Stamp.

The piezoelectric transducer you will find in your parts kit is a black plastic cylinder with
two pins sticking out the bottom and a sound hole in the top. The top of the case above
one of the pins is labeled with a + sign.

√ Build the circuit shown by the schematic in Figure 1-1 and the wiring diagram in

Figure 1-2.
√ Verify that your piezo transducer is positioned the same as the one shown in the

wiring diagram in Figure 1-2.
√ Set aside the DS1620 Temperature Sensor, 1 kΩ resistor, 0.1 µF capacitor, and the

4 remaining jumper wires to use later in the chapter.

FOLLOW THE WIRING DIAGRAMS EXACTLY! The six experiments in this Applied
Sensors series will progress from unit to unit by adding new circuits onto the old ones
already built on your Board of Education or HomeWork Board. To avoid having to rewire
things later, please follow the suggested parts placement shown in each wiring diagram.

Page 4 · Applied Sensors

Vss

P0

Figure 1-1
Piezo Transducer Schematic

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

+

Figure 1-2
Piezo Transducer Wiring Diagram

• Position and orient the piezo transducer as
shown

• P0 connects to the + pin of the piezo.

• Other piezo pin wired to Vss (straight, or in
two steps if necessary)

Please note. The six experiments in this
Applied Sensors series will progress from unit to
unit by adding new circuits onto the old ones
already built on the Board of Education or
HomeWork Board. To avoid having to rewire
things later, please follow the suggested parts
placement.

Programming the Project

This experiment consists of three smaller sections that cover the piezo transducer, Morse
code, and temperature measurement. The project is progressive.

Piezo Transducer
Now, to make noise with the piezo transducer, the BASIC Stamp has to supply a high
frequency signal from P0. The PBASIC command to do this is FREQOUT. That's short for
"frequency output."

√ Start the BASIC Stamp Editor on your computer.
√ Enter the program FirstSound.bs2
√ Make sure the Board of Education or the HomeWork Board is connected by its

cable to the PC and to the power supply or battery.

 Chapter 1: Piezo and Temperature Transducer · Page 5

√ Download the program to the BASIC Stamp. You can do this in three ways: While
holding the CTRL key down, press the letter R, for Run, or press F9, or use the
mouse to click on the ► button on the BASIC Stamp Editor's tool bar.

' Applied Sensors - FirstSound.bs2
' One line Program. (This is a comment)
' {$STAMP BS2} (This is a compiler directive)
' {$PBASIC 2.5} (This is a compiler directive)

FREQOUT 0, 1000, 1900

If all is well, you should hear a high-pitch beep. Each time you press the Reset button on
the Board of Education or the HomeWork Board, you will hear it again. The reset button
is easily found on the board, and is clearly labeled Reset. You can press it as often as you
want, no worries. Pressing the button starts your program over again but will not erase it.

In case of difficulty during download: If RUN gives you a message about "hardware not
found" or "communication error", then check to be sure that the cable that connects the PC
to the Board of Education or the HomeWork Board is okay. Also check to be sure that the
Board has a good power supply and that the power supply indicator light on the Board is
glowing. If you need help, contact Parallax Tech Support for free at support@parallax.com,
or call 1-888-99-STAMP in the US, or (916) 624-8333 outside the US. Or, visit our Stamps
in Class forum at http://forums.parallax.com.

If you see a message indicating an error in your program, then check your typing. If the
program is okay and CTRL-R is accepted without an error message, but it simply won't
work, then check the wiring on your Board. Compare it to the wiring shown on the Wiring
Diagram.

As you know from What's a Microcontroller? the comments at the beginning of the
program are for the programmer's future reference. The compiler directives:

{$STAMP BS2}
{$PBASIC 2.5}

…identify the model of BASIC Stamp you are using and the language version. Beyond
these comments and directives, this program consists of only one line of code, using the
FREQOUT command.

Page 6 · Applied Sensors

There are three arguments in the FREQOUT command:

Freq1 selects an output frequency of 1900 Hertz.

Duration makes the tone last 1 second
(1000 milliseconds).

Pin uses P0 signal line for the tone.

We can observe the voltage on P0 during the FREQOUT command using an oscilloscope
such as the Parallax USB Oscilloscope (formerly the OPTAscope 81M). You will find
out that the voltage goes back and forth from 0 to 5 volts very rapidly, and what comes
out is fundamentally a 1900-Hertz sine wave that lasts for 1 second. To learn more about
FREQOUT or any other PBASIC commands, you may click on the book icon on the
BASIC Stamp Editor's tool bar, then select PBASIC Reference.

Figure 1-3 shows a screen capture of this signal taken with the Parallax USB
Oscilloscope. The characteristics of the signal can be measured with the cursors, which
are the red and blue lines at the peaks of the sine wave. In our actual measurement, the
frequency was around 1.86 KHz, which you can read in the Cursors display. If you want
to learn to use an oscilloscope, we recommend the Stamps in Class tutorial
Understanding Signals listed in the Further Investigation section at the end of this
chapter.

FREQOUT 0, 1000, 1900

 Chapter 1: Piezo and Temperature Transducer · Page 7

Figure 1-3
OPTAscope
Screen Capture

Argument: An argument is a number that governs the behavior of a command or a process.
In the FREQOUT command, the arguments of the command specify what pin to use, how
long the sound will be, and what the frequency will be.

Now it's time to experiment!

√ Modify the program by changing the Freq1 argument from 1900 to 3800, resulting

in a higher pitch:

FREQOUT 0, 1000, 3800

√ Download the modified program to your BASIC Stamp.
√ Pay attention that what you hear is a higher pitch.
√ Listen to it a couple of times, by re-running the program from the BASIC Stamp

Editor and by pushing the Reset button on your Board. Don't be afraid you are
going to wear out the BASIC Stamp by reprogramming it lots of times. You can
reprogram the BASIC Stamp at least a million times.

√ Now try changing the Duration argument to make the tone last longer:

Page 8 · Applied Sensors

FREQOUT 0, 2000, 3800

√ Change Freq1 back to 1900, and add the optional Freq2 argument to the FREQOUT

command to play two tones at once.

FREQOUT 0,2000,1900,2533

The number 2533 is equal to 1900 times 4/3, the musical interval "fourth."

√ And try the following frequency combination:

FREQOUT 0, 2000,1900,1903

√ How do you explain what you hear? Try changing Freq2 to 1901, then 1902, then

1903 again. Do you hear the pattern?

√ And try a very short duration, to make a click 2 ms long:

FREQOUT 0, 2, 1900, 3804

Feel free to experiment. By experimenting with individual BASIC Stamp commands, you
can become aware of possibilities that may be of use in programs later on.

Morse Code
An "audio annunciator" is a device that gives sound feedback about what is going on in a
system. Having an audio annunciator on the Board of Education or the HomeWork Board
is going to be very useful throughout these experiments in Applied Sensors. In Chapter 2,
we will program it to send numbers using Morse code, shown in Table 1-1, and use the
code to annunciate the temperature readings. Morse code is a fine way to send messages
using sound.

 Chapter 1: Piezo and Temperature Transducer · Page 9

Table 1-1: Morse Code Numerals
Numeral: Morse Code Binary

0 dah dah dah dah dah 11111
1 dit dah dah dah dah 01111
2 dit dit dah dah dah 00111
3 dit dit dit dah dah 00011
4 dit dit dit dit dah 00001
5 dit dit dit dit dit 00000
6 dah dit dit dit dit 10000
7 dah dah dit dit dit 11000
8 dah dah dah dit dit 11100
9 dah dah dah dah dit 11110

The Morse code is based on sending patterns of short and long sounds. The long sound is
always three times as long as the short sound. The short sound is called "dit" and the long
sound is called "dah." The numerals are all made up of five dits and dahs. The letters of
the alphabet have from one to four sounds, and the most common letters have the shortest
patterns (for example, e = dit, t = dah, s = dit dit dit, q = dah dah dit dah). Punctuation
marks have six sounds, e.g. period = dit dit dah dah dit dit. Within one letter or numeral,
the time between sounds is supposed to be the same length as the dit. The time between
different digits in a sequence like "50" is supposed to be the same length as a dah. The
"binary" column is there just to show how you might think of Morse code as a binary
number.

In these experiments, we will use only the numerals. TwoDigitMorse.bs2 is a program
that sends the two-digit number "50" as Morse code. You do not have to type in the
remarks, but you have to include the compiler directives. Recall that remarks are the
apostrophe (') and everything that follows it on the line.

√ Enter the program TwoDigitMorse.bs2. into your BASIC Stamp Editor.

' Applied Sensors - TwoDigitMorse.bs2
' Morse code two digits test.

'{$STAMP BS2}
'{$PBASIC 2.5}

Page 10 · Applied Sensors

Dit CON 70 ' Short span of time in milliseconds.
Dah CON 3*Dit ' Longer time, 3 times the above.
index VAR Nib ' Index.

FOR index=1 TO 5 ' Send 5 sounds.
 FREQOUT 0, Dit, 1900 ' Send a dit.
 PAUSE Dit ' Short silence.
NEXT

PAUSE Dah ' Longer silence between digits.

FOR index=1 TO 5 ' Send 5 sounds.
 FREQOUT 0, Dah, 1900 ' Send a Dah.
 PAUSE Dit ' Short silence.
NEXT

√ Run the program.
√ Press the Reset button on your board if you want to hear the number 50 again.

Can you modify your program to send the most famous Morse code message of all, SOS?

You should already be familiar with the FOR-NEXT loop from the What's a
Microcontroller? text. Think about how the program incorporates the rules of the Morse
code. Note how it starts off by defining a constant named Dit in milliseconds, and then
Dah is defined as a constant equal to three times Dit. PBASIC allows you to do that, to
define one constant mathematically in terms of another. That's convenient, because it
allows you to change the overall speed by changing only the Dit constant, and Dah will
fall into place.

√ Modify TwoDigitMorse.bs2 by changing the Dit constant from 70 to 140.
√ Do it again, changing Dit to 35.
√ Listen to the effect on the overall speed.

The important thing to note is that the ratio between the Dit and the Dah is always going
to be 1:3. This is only an introduction. We will write a serious Morse program in Chapter
2, to annunciate temperature readings.

Temperature Readings from the DS1620
Now for a complete change of pace! Let's move on to the main topic, acquiring some
temperature readings. In engineering, we usually use the word acquire, instead of get,

 Chapter 1: Piezo and Temperature Transducer · Page 11

when we refer to data or readings. Your Board of Education or your HomeWork Board is
going to become your data acquisition system.

The DS1620 is a modern temperature transducer (portions of the DS1620 data sheet are
included in Appendix D). There is that word transducer again. Here, it refers to a device
that transforms temperature into an electrical signal. The DS1620 takes temperature as its
input, and transduces that value into a digital code that the BASIC Stamp can understand.
The digital code represents the temperature of the DS1620 chip.

√ Disconnect the battery or power supply to your Board of Education or HomeWork

Board. A word to the wise: always do this before you change a circuit, as it is all
too easy to touch a wire in the wrong place and risk burning something out.

√ Locate the parts that you set aside at the beginning of this chapter: the DS1620
Temperature Sensor, 1 kΩ resistor, 0.1 µF capacitor, and the 4 remaining jumper
wires.

√ Build the circuit for the DS1620 as shown in Figure 1-4, following the positioning
for the wiring diagram shown in Figure 1-5. Please note that the piezo circuit built
previously remains in place in the schematic and wiring diagram, as it should on
your Board.

VssVss

Vdd

1

2

4

3

8

7

5

6RST

CLK

DQ

GND T(com)

T(lo)

T(hi)

Vdd

DS 1620
P15

P14

P13

1 kΩ

0.1 µF

Vss

P0

Figure 1-4
DS1620 Schematic

Schematic of the wiring diagram
depicted in Figure 1-5. Remember – the
piezo transducer portion of the circuit
has already been built.

Page 12 · Applied Sensors

P15
P14
P13

P0

P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1

X2

X3
Vdd VssVin

D
S1620

+

Figure 1-5
DS1620 Wiring Diagram

• Plug the DS1620 in at the edge of the
 breadboard, taking care to orient it properly.

• 0.1 µF capacitor from Vdd to Vss

• DS1620 pin 4 wired to Vss.

• DS1620 pin 8 wired to Vdd.

• 1 kΩ resistor connects P15 to DS1620 pin 1.

• DS1620 pin 2 wired to BASIC Stamp P14.

• DS1620 pin 3 wired to BASIC Stamp P13.

√ Make sure you lined up the DS1620 in at the very end of the breadboard when you

plugged it in, observing that there is an indicator at one end of the DS1620 package
to indicate where pin 1 is connected. Be careful not to reverse the power supply
connections!

√ Double check your wiring, or better yet, have someone else check it, before you
reconnect the power.

Which Way is Up? The DS1620 is an 8-pin DIP package. The
indicator denoting the DS1620's pin 1 is a small notch on top of the
chip. On parts like the DS1620 and BASIC Stamp, the pins are
always counted counterclockwise starting from the mark. The mark
can be a bump, round depression, notch, beveled edge, etc.

1

2

4

3

8

7

5

6
DS 1620

Now it's time to program the DS1620, literally. The DS1620 is itself a little computer.
More accurately, it's a smart sensor. It can remember certain settings and do some pretty
nifty tricks all on its own. Smart sensors are being used more and more in electronics and
in the fields of environmental and industrial monitoring and control.

√ Enter the program DS1620Configuration.bs2 into your BASIC Stamp Editor.

 Chapter 1: Piezo and Temperature Transducer · Page 13

' Applied Sensors - DS1620Configuration.bs2
' Configure the DS1620 for CPU continuous conversion.
'{$STAMP BS2}
'{$PBASIC 2.5}

LOW 13 ' Puts the DS1620 in the waiting state.
FREQOUT 0, 1000, 3800 ' Sound shows us the program is running.

HIGH 13 ' Tells the DS1620 a command is coming.
SHIFTOUT 15, 14, LSBFIRST, [12,2] ' Command to set DS1620 configuration 2.
LOW 13 ' Completes the command cycle.

END ' End of program.

√ Double-check your typing.
√ Download DS1620Configuration.bs2 into your BASIC Stamp and run it.

You will hear the one-second tone. That's all. But a lot has happened. The SHIFTOUT
command sends two bytes, 12 and 2, to the DS1620. The 12 is a command to the DS1620
to get ready for the configuration, and the 2 is the actual configuration. Here are the four
possible configurations:

 0: No CPU, continuous conversion
 1: No CPU, one-shot conversion
 2: Yes CPU, continuous conversion
 3: Yes CPU, one-shot conversion

What does that mean? By selecting configuration 2, we are telling the DS1620 that we
want it to send its readings to a CPU (Central Processing Unit—the BASIC Stamp). The
alternative is for it to sit there and monitor temperature on its own, and not send back any
readings. What good would that be? We asserted that the DS1620 is a smart sensor.
Those other pins we are not using on the DS1620 could be wired up to a fan or heater,
and set to regulate the temperature in a room or in a terrarium. The DS1620 also has a
command that allows you to set a desired temperature. You will hear more about
regulation of temperature in Chapter 6. But that is the way we are using it here, and we
have not connected anything to those pins.

By setting the CPU option as "Yes" the DS1620 will send data back on the serial line
when it receives commands. The term "continuous conversion" means that it will read
temperature over and over and always have a current value available. The term "one-
shot" (which we are not using) means that it will read the temperature once and then stop

Page 14 · Applied Sensors

until it receives a new command. The one-shot mode is used when an engineer needs to
get the best battery life.

Now that we have sent the configuration, the DS1620 will not forget the setting. It is
stored in memory inside the DS1620 in a kind of memory (EEPROM, like the BASIC
Stamp program memory) that is not lost when the power supply is turned off.

The heart of the DS1620Configuration.bs2 PBASIC program is the SHIFTOUT command.
The sequence is an example of synchronous serial communication. It will pay for you to
understand how it works. Lots of modern electronics found in everything from pagers to
satellites use these ideas. One main reason for this popularity is that devices that use
serial communication can be made very small, because there don't have to be many wires
connecting them. Here are the arguments of the command:

This is really part of it, the chip select.

Two bytes sent from the BS2 to the DS1620.
The bytes are sent least significant bit first.
P14 on the BASIC Stamp is the clock.
P15 is used to send the data bytes.

HIGH 13
SHIFTOUT 15, 14, LSBFIRST, [12,2]

LOW 13 This is part of it too, ends the session.

To explain how it works, I'll try an analogy using a stick figure dance. Please refer to
Figure 1-6. The BASIC Stamp is at the bottom and the DS1620 is at the top. The DS1620
starts off with a zero as its configuration in memory.

• The BASIC Stamp starts the SHIFTOUT dance by raising the left hand. That is a
wake-up call to the DS1620, and it means get ready, this message is for you.

• Then the BASIC Stamp taps out the first 8 beats on the clock pin with its foot.
• On each tap, the BASIC Stamp holds his right hand either low to signal a zero,

or high to signal a one. Those are the digits of a binary number, sent out, least
significant bit (LSB) first on the data pin.

• The DS1620 watches BASIC Stamp's right hand at each tap.
• After eight taps, DS1620 has the binary number 12 and recognizes it as a

command. The BASIC Stamp knows in advance that DS1620 will interpret 12 as
a command. (The command set is determined by the engineers at Dallas
Semiconductor, the manufacturer of this part).

 Chapter 1: Piezo and Temperature Transducer · Page 15

BA
SI

C
 S

ta
m

p
se

nd
in

g
D

S1
62

0
re

ce
iv

in
g

Start Command
0

0

Ready Command
001100

0

Command
0001100

0

Command
01100

0

Command
1100

11

Command
00

0

LSB

Command
00001100

0

MSB

=12

0 0 0 0 0 0

1 1

Start of Data

0

0

Data
10

1

Data
000010

0

Data
0000010

0

Data
00000010

00

Data
0010

0

Data
010

0

End of
Communication

2

Done

2

BA
SI

C
 S

ta
m

p
se

nd
in

g
D

S1
62

0
re

ce
iv

in
g

LSB MSB

=2

Configuration
“2” in memory

Figure 1-6: SHIFTOUT Dance

It isn't over yet!

• The DS1620 is now waiting for another binary number to follow the 12.
• The BASIC Stamp taps out 8 more beats.
• The DS1620 watches BASIC Stamp's right hand at each tap. This time it gets the

number 2.
• The DS1620 stores the 2 in its EEPROM memory. Now the DS1620 is

configured.
• The BASIC Stamp puts down its left hand to signal that the sequence is finished.
• The BASIC Stamp and the DS1620 are no longer in communication.

All that signaling is taken care of automatically, in less than 1/1000 second, by the
SHIFTOUT command. Figure 1-7 shows the same thing in a timing diagram as an engineer
might draw it.

Page 16 · Applied Sensors

time:

P13:

P14:

P15:

0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

one millisecond

CS

Clock

Data

command 12 data 2

bit 0
first out

(lsb)

bit 0
first out

(lsb)

bit 7
last out
(msb)

bit 7
last out
(msb)

(Left hand)

(Tapping)

(Right hand)

Right hand
(Data)

Tapping
(Clock)

Left hand
(CS)

Figure 1-7: Timing Diagram

Note that 12 decimal = 00001100 binary, and 2 decimal is 00000010 binary.

When reviewing the timing diagram from Figure 1-7 consider the following:

• P13 starts the exchange by going from 0 to 5 volts. The command ends when
P13 goes back down from 5 to 0 volts. P13 is often called the chip select or chip
enable.

• P14 is the clock and puts out a series of 16 pulses, 0 to 5 volts, in two groups of
8.

• P15 is the data line and puts out either 0 or 5 volts in each time slot,
synchronized with the clock pulses on P14. The first group forms the 12
(00001100 in binary), and the second group forms the 2 (00000010) in binary.

• Note the LSBFIRST argument for the SHIFTOUT command. The least significant
bit comes first in the time sequence.

• This whole transmission of 16 clock cycles takes about 1 millisecond, 1/1000 of
a second, and it happens automatically under the SHIFTOUT command.

If you want more explanation, please refer to the BASIC Stamp Manual where it
describes the SHIFTOUT command in detail, and where there is also an application note.
This is called synchronous serial communication, because the data is synchronized with
the clock ticks that come from the BASIC Stamp. The BASIC Stamp is commonly
referred to as the master and the DS1620 as the slave. That is because the clock pulses
and commands originate in the BASIC Stamp.

 Chapter 1: Piezo and Temperature Transducer · Page 17

Now for the main event: to read the room temperature from the DS1620.

√ Enter the program DS1620.bs2 into your BASIC Stamp Editor.
√ Download the program to your BASIC Stamp.

' Applied Sensors - DS1620.bs2
' Obtain temperature readings from the DS1620.
'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Byte ' General purpose variable, byte.
degC VAR Byte ' Variable to hold degrees Celsius.

' Note: DS1620 has been preprogrammed for mode 2.

OUTS=%0000000000000000 ' Define the initial state of all pins,
 'FEDCBA9876543210
DIRS=%1111111111111111 ' as low outputs.

FREQOUT 0, 20, 3800 ' Beep to signal that it is running.

HIGH 13 ' Select the DS1620.
SHIFTOUT 15, 14, LSBFIRST, [238] ' Send the "start conversions" command.
LOW 13 ' Do the command.

DO ' Going to display once per second.
 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command.
 SHIFTIN 15, 14, LSBPRE, [x] ' Get the data.
 LOW 13 ' End the command.

 degC = x / 2 ' Convert the data to degrees C.
 DEBUG ? degC ' Show the result on the PC screen.
 PAUSE 1000 ' 1 second pause.
LOOP ' Read & display temperature again.

In case of difficulty from an error in your program: If you get a message about an error
in your program, you may have typed something wrong. The BASIC Stamp Editor program
will position the cursor near where the error occurred, and will often display a message
giving you a hint as to the problem. Look for any error near the cursor. If the error message
you see is about "hardware not found" or "communication error", then be sure your Board
has power and that the cable to the PC is connected properly. If all that goes okay, but the
program does not work, then you will have to decide whether the problem is in the program
or in your wiring of the DS1620.

Page 18 · Applied Sensors

√ Look at the Debug Terminal to see the current temperature readings appear once
per second. The readings are in units of degrees Celsius.

√ Hold your finger on top of the DS1620 chip; you should see the temperature rise.
√ Put your Board under a lamp or in the sun, and observe the time it takes for it to

heat up some more.
√ Move it away from the heat source and watch it cool down.
√ Cool it down faster by fanning air across it.
√ Measure the temperature near the floor.
√ Measure the temperature on top of your PC.
√ Measure the temperature next to your body.
√ Use your new data acquisition device to find any other interesting warm or cool

spots near your computer, and measure those! Experiment!

Which one of these temperatures (if they are different) will be the one you call the room
temperature? Usually, HVAC engineers (Heating, Ventilation and Air Conditioning)
prefer to use a temperature reading that is taken in the shade at a position not too close to
sources of heat, like computers and bodies. This is called a representative temperature. In
the real world, there can be lots of variation over even small distances and short times.
You always have to make some choice about where and when is the best place and time
to make a measurement.

What is going on in the program? First a word about the OUTS and DIRS statements:

OUTS=%0000000000000000 ' Define the initial state of all pins
 'FEDCBA9876543210
DIRS=%1111111111111111 ' as low outputs.

When using the BASIC Stamp, or any microcontroller, there will be pins connected to the
outside world, and those pins can be either an input or an output, and if it is an output it
can be either output high or output low. You are already familiar with the OUT and DIR
variables from What's a Microcontroller? Here, with an "S" on the end, the statements
control all 16 I/O pins, numbered from 0 to F (Note the apostrophe in front of the "F"--
above that makes it a remark – and it is just there for reference.) The BASIC Stamp I/O
pins are numbered from P0 to P15, where A = 10,...,F = 15.

It is good programming practice to start off every serious program by putting all of the
microcontroller pins into a known, desirable state. When the BASIC Stamp is first turned
on or reset, all of the pins are configured by default as inputs. This is a fine state for a

 Chapter 1: Piezo and Temperature Transducer · Page 19

microcontroller to start up in. You, the designer, are in charge of making the pins outputs
as needed. On the other hand, if a pin is not connected to anything, it is not a good idea to
leave it as input. Unconnected inputs may cause the microcontroller to behave erratically
or to draw excessive power from the battery. The above instructions turn all of the pins
on the BASIC Stamp into low outputs. That is what we want at first for the piezo
transducer and for the DS1620. All the other pins are made low outputs just as a matter of
principle. Reasons to do otherwise will arise as we progress through these experiments.
For more information on the DIRS and OUTS command, please refer to the BASIC Stamp
Manual or the Help file in your BASIC Stamp Editor.

The main action in the temperature program comes from the SHIFTOUT and SHIFTIN
commands.

The first SHIFTOUT should look familiar. You see the familiar sequence: It sets P13 high,
and then sends one byte, 238, out to the DS1620, and then sets P13 low again to end the
sequence. Inside the DS1620, the 238 is a command that tells it to start converting
temperature into digital codes. The 238 command needs to be sent at least once after the
DS1620 is powered on. Unlike the configuration command, this one is not stored in the
permanent memory of the chip.

Next comes the heart of the routine, to read the temperature from the DS1620. Again you
see the familiar sequence: It sets P13 high, and then sends one byte, 170, out to the
DS1620. So far so good. The DS1620 interprets the 170 as a command for it to get the
current temperature reading and send it back to the BASIC Stamp. Now things get
interesting. The DS1620, in response to the 170 command, takes control of the data line.
The BASIC Stamp moves on to the SHIFTIN command. Here are the arguments:

Name of the variable to receive the data.
The bytes are received least significant bit first.
P14 on the BASIC Stamp is the clock.
P15 is used to receive the data bytes.

SHIFTIN 15, 14, LSBPRE, [x]

LOW 13 End the command.

Page 20 · Applied Sensors

BA
SI

C
 S

ta
m

p
se

nd
in

g
D

S1
62

0
re

ce
iv

in
g

Start Command
0

0

Ready Command
101010

1

Command
0101010

0

Command
01010

0

Command
1010

10

Command
10

1

LSB

Command
10101010

1

MSB

=170

2 2 22222222

0

1

0 0 0

1 1 1

Start of Data

0
Data
10

Data
110010

Data
0110010

Data
00110010

Data
0010

Data
010

End of
Communication

2

Done

2

BA
SI

C
 S

ta
m

p
re

ce
iv

in
g

D
S1

62
0

se
nd

in
g

LSB MSB

=50

Sensor reading
50 = 25 C°

0 0 0 1 1 0 01

0

1

0 0 0 0

1 1

22222 222

50

Figure 1-8: SHIFTIN Dance

P15 on the BASIC Stamp is now an input, whereas for SHIFTOUT it was an output. The
BASIC Stamp is now ready to receive data from the DS1620. This is pictured once in
Figure 1-8, and again as an engineering timing diagram in Figure 1-9.

Observe that the BASIC Stamp is still in charge of the timing. The BASIC Stamp is still
the master and the DS1620 is the slave.

 Chapter 1: Piezo and Temperature Transducer · Page 21

time:

P13:

P14:

P15:

0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0

one millisecond

CS

Clock

Data

command 170 data 50
BASIC Stamp to DS1620 DS1620 to BASIC Stamp

bit 0
first out

(lsb)

bit 0
first out

(lsb)

bit 7
last out
(msb)

bit 7
last out
(msb)

(Left hand)

(Tapping)

(Right hand)

Right hand
(Data)

Tapping
(Clock)

Left hand
(CS)

Figure 1-9: Timing Diagram for SHIFTIN

Each time the BASIC Stamp sends out a pulse on the clock line P14 (taps its foot), the
DS1620 signals the next bit of the temperature byte. It starts with the least significant bit
first. The LSBPRE means that the BASIC Stamp looks for the least significant bit before it
sends out the first clock pulse. It goes like this: get 1st bit, pulse clock, get second bit,
pulse clock, and so on until it has all 8 bits. The BASIC Stamp stores the data it receives
from the DS1620 in the variable, x.

If the temperature is 25 degrees Celsius, the DS1620 sends back the value 50, which is
two times the temperature. In binary, 50 is 00110010. The bytes that the DS1620 sends
out are always two times the temperature. If the temperature is 25.5 degrees C, then the
byte that the DS1620 sends back will be 51. Each step in x represents 0.5 degrees C.
That is the resolution, the smallest change in temperature that the sensor detects.

Our program then converts the raw value of x to temperature:

degC = x / 2 ' Convert the data to degree C.

The BASIC Stamp uses integer arithmetic. It throws away the 0.5 degree remainder.
Both 50/2 and 51/2 come out as degC = 25, and 52 and 53 both come out as degC = 26,
and so on. There are ways to keep the half degree resolution, but we won't pursue that
here. (But you can do so as a challenge!)

Page 22 · Applied Sensors

The temperature is sent to the Debug Terminal by this command:

DEBUG ? degC ' Show the result.

The "?" makes the BASIC Stamp send "degC =" and then the actual value of degC to the
Debug Terminal, with each entry on a new line.

What are the operational limits of the DS1620?

The DS1620 is perfectly capable of measuring temperatures below zero, down to -25
Celsius. That would be important if you were out doing research on snow in Alaska, or if you
were designing a control system for a freezer. The trouble is, the program we just wrote
does not handle negative temperatures correctly. When the temperature goes to -1 degrees
C, our reading would be degC = 127 instead of degC = -1. In order to read negative
temperatures, we would have to take a couple more steps, which would complicate the
program more than we want to get into at this time.

 As it stands, zero degrees Celsius is the operational limit on the low end of our sensor
circuit. Operational limits are everywhere in engineering, and they come up for all kinds of
reasons, both in the software and hardware and in the properties of materials. This particular
operational limit comes from a short cut we have taken in writing the software. That will be
justified so long as the temperature is above freezing, but becomes a "bug" if we try to go
below freezing. A famous software operational limit is the Y2K bug, where a software
shortcut taken in the latter half of the 20th century led to an operational failure or glitches in
the year 2000.

Now for a valuable experiment like this one, you should save the program you have just
typed in and debugged. In this series of experiments, we are going to build up a large
program, one piece at a time. This is the first piece you will be able to reuse. If you didn't
do so already, you may want to enter the remarks attached to the program. That will
reinforce your understanding, and it will also make it easier for you to pick up the
program the next time you look at it, in Chapter 2.

Decide what you want to name the program. Your instructor will have directions,
depending on how your class is set up to share the PCs. The program will have an
extension of "bs2." Let's say you decide to name the program "DS1620.bs2."

This is how you save the program in the Parallax BASIC Stamp Editor:

√ From the BASIC Stamp Editor menu bar, click File.
√ Click on Save from the drop-down menu.

 Chapter 1: Piezo and Temperature Transducer · Page 23

√ In the Save As window, navigate to the directory where you want to save the
program.

√ Type in the name of your program. The .bs2 file extension will be added
automatically unless you choose another option.

√ Click Save.

Your program can be re-opened and re-named from inside the BASIC Stamp Editor when
it comes time to add to it in the upcoming exercises.

Page 24 · Applied Sensors

Challenge!

1. Write a program using a sequence of FREQOUT commands to play a simple tune.
Look up the FREQOUT command in the BASIC Stamp Manual. You will find an
example of how to play Mary Had a Little Lamb. (Okay, you can try Stairway to
Heaven, or Beethoven's 5th, if you prefer. You will discover some of the high
fidelity limitations of the piezo transducer!) If you want to explore
microcontroller music more thoroughly, see What's a Microcontroller v2.0 or
later for details.

2. Define a variable degF for Fahrenheit. Display both degrees Celsius and degrees

Fahrenheit on the Debug Terminal. Use either formula:

degF = degC * 9 / 5 + 32 or degF = x * 9 / 10 + 32

Is one formula better than the other? Why? Observe how the readings change as
you gradually change the temperature of the DS1620 chip.

3. Display degrees Celsius resolved to 0.5 degrees. Recall that the result that

comes from the DS1620 is a binary number where each bit represents 0.5
degrees. To get degrees, we divided by 2 and lost a bit of information (literally,
one bit). You can display the result as 205 to represent 20.5 degrees C. Hint:
multiply by 5 instead of divide by 2.

4. If the temperature is greater than (you choose a value), play an alarm tone on the

piezo transducer. Make the alarm stop when the temperature goes back down.
Then modify it so that the alarm continues, even when the temperature goes back
down. Under what circumstances would each kind of alarm be appropriate?

Further Investigation

"What's a Microcontroller ?", Student Guide, Version 2.2, Parallax, Inc., 2004
Written by Andy Lindsay of Parallax, Inc., this text begins with detailed
instructions for setting up and using your BASIC Stamp and Board of Education
or HomeWork Board for the first time. Chapter 8 explores frequency and sound,
including microcontrolled music. It is available online from www.parallax.com.

 Chapter 1: Piezo and Temperature Transducer · Page 25

"Understanding Signals", Student Guide, Version 1.0, Parallax, Inc., 2003
Written by Doug Pientak, formerly of Optimum Designs, Inc., this introduction
to the basics of digital oscilloscopes features the Parallax USB Oscilloscope
(formerly the OPTAscope 81M). The student learns about signals through
building circuits that generate and manipulate different types of waveforms with
the BASIC Stamp 2, and then measures and analyzes them with the Parallax
USB Oscilloscope. The book and two software platforms for the Parallax USB
Oscilloscope are available online from www.parallax.com.

Page 26 · Applied Sensors

Chapter 2: Data Logging · Page 27

Chapter 2: Data Logging

The theme of the Data Logging experiment is best answered by the question: What is
data logging and why is it important when using sensors? During the activities in this
experiment you will:

• Design a user interface by adding a pushbutton to your existing setup on the
Board of Education or HomeWork Board, then implement single click, double
click and long click to do different things

• Learn the basics of READ and WRITE with the BASIC Stamp's EEPROM
• Implement a "talking (Morse code) thermometer"

Constancy punctuated by change: that is one prevalent view of the real world. In order to
understand and predict events, people often need to keep a record of variables that affect
the action. In laboratories, factories, and field research, the data logger, or data
acquisition system, or DAQ for short, is an essential tool. It is a machine that
automatically takes readings and stores them at regular intervals of time (or on some
other basis) into the memory of the machine for later retrieval.

Data is stored in a log file. The term comes from nautical history, where readings of
position and depth soundings on a ship were regularly noted in the Captain's log-book. In
fact, some data was collected by throwing a log (not the book!) off the bow of the boat
and counting the time it took for the log to reach the stern of the boat. Then they could
calculate speed.

These days, much logging is done by computers with sensors attached. Computers are
well suited to data logging - they never get bored or tired, and they can work reliably and
very rapidly if required. It can be difficult, boring, or downright impossible for a real
human being to exist in the place and time where data needs to be collected. Data loggers
are found out on buoys floating in the ocean, high on windy mountaintops, on spacecraft,
in collars on grizzly bears, in the stomachs of whales, out in orchards and vineyards, and
in innumerable industrial settings.

Another "buzz word" these days is SCADA, for Small Computer Aided Data Acquisition.
That usually refers to something fancier, a network of sensors and computers, but the
general idea is the same. Data loggers may even communicate to a central hub via
TCP/IP connections to the Internet, or via long-distance radio links.

Page 28 · Applied Sensors

In this experiment you will learn important details about the EEPROM memory in the
BASIC Stamp 2. This is in preparation for logging readings of temperature, light and
water level in the experiments to come. Also, you will improve on your DS1620
thermometer from the previous experiment, and make it talk (in Morse code). And as a
warm-up, you will work with one pushbutton and the piezo speaker, to make a user
interface.

Everyone who has a computer understands what you mean by a mouse, and the actions of
click, double-click, and click-and-hold. These actions are central to the modern
computer's user interface. Have you ever wondered how a program implements those
actions? How hard would it be to implement them on the BASIC Stamp? Well, it is not
too hard at all, and we are going to do it, to enable one button on your Board to perform
multiple tasks. There is not going to be room for multiple pushbuttons. One button, along
with feedback from the piezo transducer, is going to have to do it all for our user interface
when the Board is not docked to the PC.

Parts Required

The Applied Sensors experiments are progressive and build on the previous projects.
Therefore, you'll be adding parts to your Board of Education or HomeWork Board. This
experiment requires the following parts:

(1) Pushbutton
(1) 10 kΩ resistor
(1) 220 Ω resistor
(2) Jumper wires

Building the Circuit

In the What's a Microcontroller? Student Guide you learned how to use one or two
buttons to make decisions, and to control light emitting diodes. In this experiment you
will build on that project and on the previous Applied Sensors experiment. You already
have an audio annunciator for output. Now, let's install a pushbutton for input.

√ Build the circuit as shown in the schematic (Figure 2-1) and wiring diagram

(Figure 2-2).

Chapter 2: Data Logging · Page 29

VssVss

Vdd

1

2

4

3

8

7

5

6RST

CLK

DQ

GND T(com)

T(lo)

T(hi)

Vdd

DS 1620
P15

P14

P13

1 kΩ

0.1 µF

Vss

Vdd

P1
220 Ω

10 kΩ

Vss

P0

Figure 2-1
Data Logger Schematic

P15
P14
P13

P1
P0

P12
P11

P9
P8
P7
P6
P5
P4
P3
P2

P10

X2

X3
Vdd VssVin

D
S1620

+

Figure 2-2
Data Logger Wiring Diagram

Install the pushbutton at the very
edge of the breadboard.

Page 30 · Applied Sensors

Programming the Project

The wiring has a pushbutton connected to a pull-up resistor, and the junction between the
resistor and the switch connected to P1 on the BASIC Stamp, through a protective
resistor in series. When the pushbutton is not pressed, the voltage at the BASIC Stamp
pin is 5 volts (= Vdd) through the pull-up resistor. But when the button is pressed, the
voltage at the BASIC Stamp pin is low, zero volts (= Vss).

√ Enter the program TestPushbutton.bs2 into your BASIC Stamp Editor.

' Applied Sensors - TestPushbutton.bs2
' Test pushbutton wiring.
'{$STAMP BS2}
'{$PBASIC 2.5}

DO
 DEBUG BIN IN1
LOOP

√ Download the program to your BASIC Stamp.
√ Run it and observe the Debug Terminal as you push and release the pushbutton.

The program is going around and around the DO…LOOP, spewing out the level that it finds
at the input. The variable is IN1. It is either high = 1, or low = 0. The reading should go
to zero immediately when you press the pushbutton, and it should go to one when you
release it. Yes? Go on to the next step. No? Is the problem in the program, the connection
to the BASIC Stamp, or in the wiring of your pushbutton?

Chapter 2: Data Logging · Page 31

What's all this DEBUG stuff?

In these experiments, you will be seeing the DEBUG command very often, to put data on the
computer screen in the Debug Terminal. Its name comes from the notion of debugging. You
can put information on the screen that helps you see what is going on in your program.
Moreover, you can ask the DEBUG command to send any messages or data you want to the
Debug Terminal, it does not have to be especially for debugging.

The DEBUG command lets you display the data on screen in quite a few different ways,
using modifiers and screen control commands. Previously we used commands like this to
display temperature data:

DEBUG ? degC

That is a combination command that does 3 things: it prints the variable name and an equals
sign; it prints the decimal value of the variable; and it moves the cursor down to a new line.
The result looks something like this:

degC = 25

The current little program has a different form of the DEBUG command:

DEBUG BIN IN1

This prints the binary value of the variable IN1. Yes, IN1 is a variable, the state of input
pin P1, either low or high, 0 or 1. This form of the DEBUG command prints only the "0" or
the "1", and not the name " IN1 ", nor the "=", nor any spaces between the 1s and 0s, nor
does it move down to a new line (until it hits the full width of the screen). The result looks
something like this:

 11111111000000000001111111111111110000000

 0000001111111111111111111000000011111...

As we come to new forms, we will describe them briefly, and refer you to the BASIC Stamp
Manual. You may always look up commands in the BASIC Stamp Editor's Help file.

Now, let's make the pushbutton produce a continuous sound while it is pressed down.

√ Enter the program Buzzer.bs2.

' Applied Sensors - Buzzer.bs2
' Read pushbutton to control the piezospeaker.
'{$STAMP BS2}
'{$PBASIC 2.5}

DO ' Repeat forever.
 IF IN1=0 THEN FREQOUT 0, 8, 2500 ' Buzz if button is pressed.
LOOP

Page 32 · Applied Sensors

√ Run it, and press and release the pushbutton.

You should hear a sound that may remind you of a cricket chirping. What is going on? If
the button is up, nothing happens, because the IF statement sees a 0 in the input pin, so
FREQOUT is not executed and simply sends the program back to the top of the DO…LOOP
loop. If the button is down, the IF statement sees a zero on the input pin. The program
then executes the FREQOUT statement. Then it loops back to the top. So long as the button
stays down, the loop with the FREQOUT is executed over and over.

Recall that the argument 8 in the FREQOUT command is the duration of the tone in
milliseconds. The tone is 2500 Hertz, so in 8 milliseconds, there are 20 cycles of the tone
(0.008 seconds * 2500 cycles per second = 20 cycles). Then the tone stops briefly, while
the program goes back up to the top and tests the state of the P1 pin again. The tone is not
produced during that time, because the BASIC Stamp can only execute one command at
a time (This is an important fact to remember!). If the pin is still low, though, it soon is
back to the FREQOUT command.

So the sound looks something like this: ||||||||.||||||||.||||||||.||||||||.||||||||. What you hear is not the
pure 2500 Hertz tone, but a tone with repeated brief interruptions. These add the low sub-
tone you hear in the sound, at about 110 Hertz (about 9 milliseconds for the loop, 1/.009
= 111). This is indeed kind of like a cricket's stridulation (song), which is produced when
the insect rubs a file on one of its forewings against a ridge on the other forewing,
producing a high pitch, with brief pauses in the back and forth motion of the wings.

Let's try some variations on the above program:

√ Modify Buzzer.bs2. by changing the FREQUOT command's Duration argument to 1.
√ Download the modified program.
√ Press and release the pushbutton, observing the result.
√ Repeat this modification for Duration values of 4, 50, 500 and 5000.

After you have run the program each time and listened, can you explain why each
variation sounds as it does? At the long interval, 500 and especially 5000, note that the
tone can go on long after the pushbutton is released. Why is that? Why doesn't the tone
stop immediately when you release the pushbutton?

√ Modify Buzzer.bs2 once again by changing the FREQUOT command's Duration

argument back to 8.

Chapter 2: Data Logging · Page 33

√ Tap on the pushbutton to send the number 50, or the signal "SOS" in Morse code.
(dit dit dit dit dit= "5" and dah dah dah dah dah = "0", dit dit dit = "S", dah dah dah
= "O").

It is already a useful program - a Morse code keyer! Refer back to Table 1-1 if you want
to send other numeric messages.

√ Try inserting a PAUSE 6 command on the line after the IF command.

That gives a ||||||||......||||||||......||||||||......|||||||| pattern that may seem even more cricket-like.
Crickets, in addition to their "output transducer" (the wings), also have an "input
transducer" (an ear). It is a membrane located on their front legs! Crickets are very
sensitive to repeating patterns and pulses of sounds. It is their "Morse code." Their songs
are part of their courtship and male rivalry. Entomologists have studied insect
stridulations by reproducing sounds on speakers, and watching what arguments of the
sound evoke what behaviors from the crickets.

Sometimes you don't want an action to keep going all the time the button is down. You
want it to happen once and only once each time the button is pressed.

√ Modify the program so that is reads as SingleClickDown.bs2.

' Applied Sensors - SingleClickDown.bs2
' Single click on pushbutton, action on button down.
'{$STAMP BS2}
'{$PBASIC 2.5}

DO ' Repeat forever.

 DO ' Do nothing.
 LOOP UNTIL (IN1=0) ' until button is pressed.

 FREQOUT 0, 100, 2500 ' Buzz if button is pressed.

 DO ' Do nothing
 LOOP UNTIL (IN1=1) ' until button is released.

LOOP

As in the previous program, nothing happens until the button is pressed down. Then the
tone plays for 100 milliseconds. Then there is a second holding loop, where the program
stays looping until the pushbutton is released. This concept was introduced in the What's

Page 34 · Applied Sensors

a Microcontroller? Student Guide. When that occurs the program goes back up to the
top, ready for the button to be pressed again. One press, one action.

That is fine, but think about how a mouse click usually works. Most mouse clicks do not
perform their action until you release the mouse button. That's easy. Move the FREQOUT
down after the second "Do nothing" loop:

' Applied Sensors - SingleClickUp.bs2
' Single click on pushbutton, action on button up.
'{$STAMP BS2}
'{$PBASIC 2.5}

DO ' Repeat forever.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed.

 DO ' Do nothing.
 LOOP UNTIL (IN1=1) ' until button is released.

 FREQOUT 0, 50, 1900 ' Buzz when button is released
 FREQOUT 0, 100, 3800 ' and while we're at it, a better sound!

LOOP

Now a rising note should occur when the button is released. Logical, right? Be sure you
understand totally how this works.

Now let's make the pushbutton take one action if you click it, and a different action if you
hold it down for a long time. This is similar to the action of some computer menus that
only appear if you hold the mouse button down for a longer period of time. Or you may
have seen this in a car radio, where you press a preset button briefly to select a station,
but you hold the button down for a longer time (until you hear a beep), to program a
station you want into the preset memory. Appliances from wristwatches to VCRs, and
yes, instruments sold in catalogs, all use tricks like this to get to the configuration menus.

Such a program needs a variable to keep track of the time you hold down the button. Try
this:

√ Enter and download the program LongClick.bs2.

Chapter 2: Data Logging · Page 35

' Applied Sensors - LongClick.bs2
' Single click on pushbutton, actions on button up or long click.
'{$STAMP BS2}
'{$PBASIC 2.5}

n VAR Word ' Variable to keep the time.

DO ' Main loop.

 DO ' Do nothing
 LOOP UNTIL (IN1=0) ' until button is pressed.

 n = 0 ' Variable initialization.
 DO ' Loop to track pressing time.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1 OR n>500) ' Conditions to stop the loop.

 IF (n>=500) THEN
 FREQOUT 0, 5, 3800, 2533 ' Sound for long click.

 DO ' Do nothing.
 LOOP UNTIL (IN1=1) ' Until button is released.

 ELSE
 FREQOUT 0, 50, 1900 ' Buzz twice when button is released
 FREQOUT 0, 100, 3800 ' after a standard click.
 ENDIF

LOOP

√ Quickly press and release the button, noting the effect.
√ Now press and hold the button, noting a different effect.

How does this work? The program initializes the variable n after you press the button.
While the button is down, the program goes around and around incrementing the value of
n in the loop. The statement:

LOOP UNTIL (IN1=1 OR n>500)

…keeps the loop going repeatedly so long as the pushbutton remains down or the counter
variable remains smaller than or equal to 500. Each time around the loop, the timer
variable n increases by one. It is a race to see which happens first. Do you release the
button first, or does the timer reach 500 first? If the button is released first, well, that is
just a single click, as above. The program plays the tones and goes back up to the top to
await another button action. But if the timer n reaches 500 before you release the button,
the program executes the FREQOUT 0, 5, 3800, 2533 statement. There it plays one

Page 36 · Applied Sensors

short chirp, to let you know that you've gotten there, and then waits for you to release the
button. And then it goes back to the top.

Where does the magic number 500 come from? The simple answer is "trial and error."
The programmer (you!) tries different numbers until it feels right. Approximately how
long (in milliseconds) do you have to hold the button down before it is identified as a
long click? Try experimenting - substitute different values in place of 500.

Advanced Topic: Detecting a Double-Click with the BASIC Stamp

Can the BASIC Stamp detect a double click? Sure, it's not too hard. At the end of a single
click, the program has to wait a fraction of a second to see if you are going to press the
button again. If you do, then it is a double click. If you don't, it is a single click. The
interval of time is so short that you don't really notice it. The actual interval is determined
by trial and error, a "user preference." This too needs a timer variable. We will recycle
the same timer variable, n, from the last program. Just for fun, we also modified the
program so that it plays a constant chirp that continues until the button is released. Try
this:

√ Enter and download the program Doubleclick.bs2.

' Applied Sensors - DoubleClick.bs2
' Double and long click on pushbutton.
'{$STAMP BS2}
'{$PBASIC 2.5}

n VAR Word ' Variable to keep the time.

DO ' Main loop.

 DO ' Do nothing
 LOOP UNTIL (IN1=0) ' until button is pressed.

 n = 0 ' Variable initialization.
 DO ' Loop to track pressing time.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1 OR n>500) ' Conditions to stop the loop.

 ' First IF.
 IF (n>=500) THEN ' Long click?
 FREQOUT 0, 5, 3800, 2533 ' Sound for long click.

 DO ' Do nothing
 LOOP UNTIL (IN1=1) ' until button is released.

Chapter 2: Data Logging · Page 37

 ELSE ' Short click?
 n=0 ' Initialization to check double click.
 DO ' Loop to track double click.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=0 OR n>150) ' Conditions to stop the loop.

 ' Second IF.
 IF n>150 THEN ' Single click?
 FREQOUT 0, 50, 1900 ' Buzz twice when button is released
 FREQOUT 0, 100, 3800 ' after a single click.

 ELSE ' Double click?
 DO ' Wait until button is released.
 LOOP UNTIL (IN1=1)

 FREQOUT 0, 50, 3800 ' Play a unique falling sound
 FREQOUT 0, 50, 2533 ' indicating double click.
 FREQOUT 0, 50, 1900
 ENDIF ' End of the second IF.
 ENDIF ' End of the first IF.

LOOP

√ Give the pushbutton a single click. What do you hear?
√ Give the pushbutton a double click. What do you hear now?

If you press the pushbutton once and quickly release it, the program will generate the
increasing pitch tones. Now there is another race between the button and the timer. This
time the button is up to begin with. If you quickly press the pushbutton a second time
before the timer reaches 150, that means you intend a double click. But if the timer
reaches 150 first, that means you just want a single click (or you have slow fingers and
need to reset the preference to a longer time, say 200).

√ Save the program DoubleClick.bs2, (or rename it if requested by your instructor)

as we will be using "snippets" of what you learned here in programs to come.

What is a Snippet? You can "snip" an action from one program, and use it (with
changes?) in another. Pieces of programs that perform specific actions are called snippets.
Snippets often do not stand on their own as complete programs. Programmers often
exchange ideas in the form of snippets.

At this point we are expanding on what you learned in the What's a Microcontroller?
Student Guide. If you want, you could extend this logic to make a routine respond to a

Page 38 · Applied Sensors

triple click, like some word processing programs use to select an entire paragraph. We'll
let that be a challenge!

Now, let's move on.

The Basics of Learning to READ and WRITE

In this series of experiments, we are going to program the BASIC Stamp to collect
readings of temperature and other variables. We want to log them, that is, collect them at
regular intervals of time and store them in a file, and read them out later for comparisons,
charts and graphs. We'll take this a step at a time. First, it is important to understand how
the memory on the BASIC Stamp is organized.

You know from What's a Microcontroller? that the memory available in the BASIC
Stamp 2 is of two kinds, RAM and EEPROM. To understand the difference, it may help
you to think about these kinds of memory if you know where they are located physically.
Take a look at Figure 2-3, which shows a top view of the BASIC Stamp 2.

Voltage Regulator Resonator

24LC16B PIC16C57

Figure 2-3
BASIC Stamp Memory

The PIC16C57 chip is the BASIC
Stamp's RAM and central
processor. The 24LC16B is the
EEPROM, which holds your
PBASIC program and data we
will be storing.

Variables are created in the RAM (Random Access Memory). You store numbers in
RAM with statements like this, using named variables:

 x VAR Byte
 x = 76

Variables are very versatile. They can be added and subtracted and used in lots of other
kinds of arithmetic, and they can be arguments in all sorts of commands that are
described in the BASIC Stamp Manual. It is very fast to manipulate data in RAM (~200
microseconds per operation), and RAM does not wear out with use. Trouble is, there isn't
very much RAM available on the BASIC Stamp, only 26 bytes. It is not suitable for

Chapter 2: Data Logging · Page 39

storing lots of data. Also, the contents of RAM are lost when the BASIC Stamp loses
power, or when the Reset button is pressed. RAM is not suitable for storing "valuable"
data that you would want to survive when the power is disconnected.

Then there is EEPROM. A greater amount of EEPROM memory is available on the
BASIC Stamp: 2048 bytes. Although part of the EEEPROM is used for your PBASIC
program code, there will be some left over for data storage. One great advantage of
EEPROM is that it is semi-permanent. The EEPROM memory retains its contents with or
without power and through resets.

Two minor limitations of EEPROM are that it is relatively slow (~10 milliseconds to save
a byte of data), and, it will wear out after something like 10,000,000 changes at one spot.
To put this in perspective, if one certain location in EEPROM is reprogrammed over and
over, once per second, it would take you about 116 days to get near the 10,000,000 mark.
How many seconds are there in 116 days? On the other hand, at once per hour, it would
take 1142 years to reach that same mark. (How many hours are there in 1142 years?) It is
something to think about in planning. In Applied Sensors we may write to a single
location a hundred times at most, nowhere near ten million.

There are three instructions the BASIC Stamp 2 uses for interacting with EEPROM:
DATA, which stores initial values during a program download, WRITE, which stores
values during program run time, and READ, which retrieves values. Once you WRITE
data to the EEPROM, you must READ it into a variable again before using it in a
calculation or as an argument in a command. The main reason we use EEPROM is to
store larger quantities of data, if we won't have to change them too often, and to safely
store data it will stay as long as we want them to.

DATA, WRITE, and READ are most easily used to move byte at a time, as shown below
and in the following example programs. However, PBASIC 2.5 allows you to use the
Word modifier to handle word-sized variables, and also allows you to move multiple
variables in one line of code. To learn more about the power of these commands, read
about them in your BASIC Stamp Editor's Help file.

In PBASIC, the DATA directive reserves an area in the EEPROM, and gives it a name:

The value 7 is loaded into EEPROM at address, Log.

Log DATA 7

 Name for the address in EEPROM where the data is located.

Page 40 · Applied Sensors

READ retrieves a byte from an address (in EEPROM) and copies its value to a variable (in
RAM). The value of the byte in EEPROM is not affected by reading it.

RAM variable to receive the data.

READ Log, X

 Where in EEPROM to get the data.

WRITE may be used in a program to change the byte stored at an address in EEPROM.

Byte size value.

Log,WRITE 25

 Where in EEPROM to put it.

or, with a variable,

RAM variable.

Log, XWRITE

 Where in EEPROM to put it.

Do not confuse the address, Log in this case, with the data that is stored there!

√ Enter and download EEPROMExample.bs2.

' Applied Sensors - EEPROMExample.bs2
' Distinction of constant, data and variable.
' {$STAMP BS2}
' {$PBASIC 2.5}

Dit CON 70 ' Define a constant.

x VAR Byte ' Define two variables.
y VAR Byte

Log DATA 7 ' Reserve a byte in EEPROM, initially 7.
Worm DATA 240 ' Reserve a byte in EEPROM, initially 240.

READ Log, x ' Read data from EEPROM into the variables.
READ Worm, y

DEBUG ? Dit, ? Log, ' Show all quantities.
 ? x, ? Worm, ? y

Chapter 2: Data Logging · Page 41

The value of Dit is 70, an ordinary constant. The name Dit refers to the value itself. The
values of Log and Worm are constants too, but they have values of 0 and 1, not 7 and 240.
The names Log and Worm refer indirectly to the data. To read the 7 and the 240, there are
two READ commands in the program. One READ gets the 7 from EEPROM address Log =
0 and puts it in the RAM variable x, and the second READ gets the 240 from EEPROM
address Worm = 1 and puts it in RAM variable y. The labels Log and Worm have the
addresses 0 and 1 because PBASIC assigns addresses for data statements starting at 0.

Now, let's try a modified version of EEPROM.bs2 that has four more lines at the end.

√ Enter and download the program WriteEEPROM.bs2.

' Applied Sensors - WriteEEPROM.bs2
' Writing a variable.
' {$STAMP BS2}
' {$PBASIC 2.5}

Dit CON 70 ' Define a constant.

x VAR Byte ' Define two variables.
y VAR Byte

Log DATA 7 ' Reserve a byte in EEPROM, initially 7.
Worm DATA 240 ' Reserve a byte in EEPROM, initially 240.

READ Log, x ' Read data from EEPROM into the variables.
READ Worm, y

DEBUG ? Dit, ? Log, ' Show all quantities.
 ? x, ? Worm, ? y

x = x + 1 ' Make a new value for x.
y = y / 2 ' Make a new value for y.

WRITE Log, x ' Change the value stored at Log.
WRITE Worm, y ' Change the value stored at Worm.

√ Press the Reset button on your Board a couple of times with the Debug Terminal

active. You should see the values of x increase by 1 each time, and the value of y
halved each time.

√ Disconnect the power momentarily, and reconnect it. The first value you see on the
Debug Terminal should be the next one in the series, showing that the EEPROM
retains its data when the power is off.

Page 42 · Applied Sensors

What happened to the 7 and the 240 that were there when you first ran the program?
They are gone. The WRITE statement changed those values. The only way to restore the
initial condition is to download the program again from your computer.

√ Re-download the program WriteEEPROM.bs2 from the BASIC Stamp Editor.
√ Verify that the initial variables stored by the DATA directives have returned.

The EEPROM is often used to store settings and calibration constants that may need to be
changed occasionally. It might be a argument that tells how hot the temperature has to be
before turning on a fan, or how many seconds have to pass before recording data in a log
file. Here is a fun demo program that plays a musical scale when you single-click the
button. How many notes it plays depends on an argument that is stored in the EEPROM.

√ Enter and download the program SaveSetting.bs2.

' Applied Sensors - SaveSetting.bs2
' Saving a setting in EEPROM.
' {$STAMP BS2}
' {$PBASIC 2.5}

Dit CON 70 ' Define a constant.

many VAR Word ' RAM variable for number of sounds.
n VAR Word ' Multipurpose variable.
tone VAR Word ' Frequency of the sound.

How DATA 1 ' Initial number of sounds.

DO ' Main loop.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed.

 n = 500 ' Variable initialization.
 DO ' Loop to track pressing time.
 n = n - 1 ' Decrement the counter.
 LOOP UNTIL (IN1=1 OR n=0) ' Conditions to stop the loop.

 IF (n=0) THEN ' Code for long click.
 DO ' Repeat these actions.
 FREQOUT 0, 2, 3800 ' Short tick.
 PAUSE 400 ' Short delay (time for response).
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1) ' Until button is released.

 WRITE How, n ' Store the new argument.

Chapter 2: Data Logging · Page 43

 ELSE ' Code for short click.
 tone = 4519 ' Play tones, this is the first tone.
 READ How, many ' Get how many to play from EEPROM

 FOR n=1 TO many ' and play them.
 FREQOUT 0, Dit, tone ' Sound, duration Dit, frequency tone.
 PAUSE Dit ' Brief silence.
 tone = tone ** 61858 ' Next note of chromatic scale.
 NEXT ' End of FOR-NEXT.

 ENDIF

LOOP

√ Press and hold the pushbutton for a few moments, then release it.
√ Give the pushbutton a quick press-and release click.
√ Repeat several times, holding the button down for varying intervals.

What happened each time? Try to figure out how it works in detail. It consists of snippets
from the foregoing button and memory routines. (The mathematical formula, tone =
tone**61858, generates the chromatic scale, but you don't have to understand that here.)
Do understand the role of READ and WRITE. There is one READ command to fetch the
number of notes to play, and one WRITE command to store the new number selected by
the user.

To test your understanding, modify the program SaveSetting.bs2 as follows:

√ Add a DATA directive with a label of Dur and make 70 milliseconds its initial

value.
√ Change Dit from a constant to a byte variable named dit (because variables are

formatted to start with a lowercase letter).
√ At the outset of the program, use READ to move the value from Dur into the

variable dit. At this point, the program should run, just as it does now.
√ At the end of the long click routine, before the ELSE statement, have it wait for

you to press and release the button a second time.
√ During this second time the button is down, have it increment the value of n each

time around a loop.
√ When the button is released, write the value of n into the address Dur.
√ Verify that the program runs, and that it allows you to change both the number of

notes to be played, and the duration of the notes.

Page 44 · Applied Sensors

Talking Thermometer, Morse Code Revisited

We will begin this next activity by re-using the program DS1620.bs2 that you saved in
Chapter 1. This program reads the temperature from the DS1620 chip and displays it on
the Debug Terminal.

√ Open the program DS1620.bs2 (or whatever you named it).
√ Download and run it to make sure that it still works.

You never can be sure, maybe you accidentally bumped a wire on your breadboard, or
maybe someone was fooling around with your program on disk. It is a wise practice to
start each step of building a complex system at a point where you know everything is
working.

As it stands, the program displays the temperature on the Debug Terminal once per
second. Let's modify it to make the piezo transducer send the temperature using Morse
code. The Morse code in the first experiment of Applied Sensors was an introduction - it
only sends the number 50. We need a subroutine that can sound out any arbitrary two-
digit number we throw at it. We'll also change the program so that your new pushbutton
will initiate the temperature reading. Starting with the program from Chapter 1, we
developed the next program.

√ Save your program under the new name DS1620MorseCode.bs2.
√ Enter the new name and description in the Title section of your program in the

BASIC Stamp Editor.
√ Continue entering the new code, being careful to note that elements of the old

program have been separated into different sections, and following the hints in the
new comments.

' -----[Title]---
' Applied Sensors - DS1620MorseCode.bs2
' Talking thermometer, using Morse code.
'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[Constants]---
Dit CON 70 ' Milliseconds for Morse dit.
Dit2 CON 2*Dit ' Constants related to Dit.
Dah CON 3*Dit ' Ditto.

' -----[Declarations]--
mc VAR Byte ' Temporary for Morse pattern.

Chapter 2: Data Logging · Page 45

xm VAR Byte ' Morse input variable.
j VAR Nib ' Index for digits to send.
i VAR Nib ' Index for dits and dahs.

x VAR Byte ' General purpose variable, byte.
degC VAR Byte ' Variable to hold degrees Celsius.

' -----[Initializations]---
' Note: DS1620 has been preprogrammed for mode 2.
' If not, uncomment the instructions on the next line on the first RUN
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13

OUTS=%0000000000000000 ' Define the initial state of all pins
 'FEDCBA9876543210
DIRS=%1111111111111101 ' as low outputs,
 '^--------------- except P1, an input for pushbutton.

FREQOUT 0, 20, 3800 ' Beep to signal that it is running.

HIGH 13 ' Select the DS1620.
SHIFTOUT 15, 14, LSBFIRST, [238] ' Send the "start conversions" command.
LOW 13 ' Do the command.

' -----[Main Routine]--
DO ' Start of the main loop.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed

 DO
 LOOP UNTIL (IN1=1) ' Loop here until button is released

 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command.
 SHIFTIN 15, 14, LSBPRE, [x] ' Get the data.
 LOW 13 ' End the command.

 degC = x / 2 ' Convert the data to degrees C.
 DEBUG ? degC ' Show the result on the PC screen.
 xm = degC ' Morse routine expects data in xm.
 GOSUB Morse ' To the subroutine.

LOOP ' Back to wait for button again.

' -----[Subroutines]---
Morse: ' Emits byte xm as Morse code.
 FOR j=1 TO 0 ' Send 2 digitS, Tens then ones.
 mc = xm DIG j ' Pick off the (j+1)th digit.
 mc = %11110000011111 >> mc ' Set up pattern for Morse code.
 FOR i=4 TO 0 ' 5 dits and dahs.
 ' Send pattern from bits of mc.

Page 46 · Applied Sensors

 FREQOUT 0, Dit2*mc.BIT0(i) + Dit, 1900

 PAUSE Dit ' Short silence.
 NEXT ' Next I, dit or dah of five.

 PAUSE Dah ' Interdigit silence.
 NEXT ' Next j, digit of two.
RETURN ' Back to main program.

√ Double-check your work against the program in the text above.
√ Run the program and try it by clicking the button.
√ Heat up the DS1620 with your fingertip or a lamp, and then cool it off by fanning

it.
√ Listen to the Morse code as you make the temperatures go up and down.
√ Watch the numbers display simultaneously in the Debug Terminal.
√ Save the program DS1620MorseCode.bs2 on a disk, or under the name and

directory given by your instructor.

If you are not a ham or Navy radio operator, you may need a little practice to hear the
numbers of the Morse code, but it shouldn't take long. This talking thermometer is a
useful instrument already. A visually impaired person could use it. Or, how about a
biologist doing research on bats in a dark cave? (You would need to listen on an
earphone—bats are very sensitive to high-frequency sound!) Can you think of other
situations where this device might be useful?

Now let's look at the program step by step. Several variables and constants are defined at
the top of the program. Some of these you will recognize from Chapter 1, where they
appeared in the routine to send the number 50 as Morse code. There is the basic length of
the Dit in milliseconds, and the Dah, which is defined as three times the length of the
Dit, and a new one, Dit2, which is defined as twice the length of the Dit. There are a
couple of other variables, too, xm and mc, that we'll talk about in connection with the
Morse subroutine below.

P1 is now an input, for the pushbutton. P1 is set to input by making its bit in DIRS equal
to zero. The following statements fix the input and output state of all 16 pins of the
BASIC Stamp.

Chapter 2: Data Logging · Page 47

OUTS=%0000000000000000 ' Define initial state of all pins
 'FEDCBA9876543210
DIRS=%1111111111111101 ' as low outputs.
 ' ^------ this is now an input for the button

Note the single change from the original program. If we do not set that bit in DIRS equal
to zero, then the program cannot read the pushbutton. If you don't believe it, try it and see
what happens. You may wonder about the programs in the first part of this experiment,
where we were reading the state of the pushbutton very well with neither a DIRS nor an
OUTS command. The reason is that the BASIC Stamp always starts up with all its pins as
inputs. As a matter of good programming, we are turning them all into outputs, except the
ones we truly need to be inputs. When we make a pin like P1 into an input, it doesn't
matter what the state of the corresponding OUTS bit is. The OUTS bit has no effect when
the pin is defined as an input.

The central idea of the Morse subroutine is held in the binary pattern,
%11110000011111. The % sign marks it as a binary number. This is the pattern of zeros
and ones as they are actually stored in binary brain of the BASIC Stamp. This binary
number does have a standard numerical value (it happens to be 15391), but the numerical
value is not important here. Quite often in computer science, you have to think of
computer data as something other than a standard numerical value. Think of this as a
pattern on an audio tape. If you put a playback head (by analogy) at the far left and play
back 5 bits moving to the right, you come up with 11110. This is going to translate in
Morse code to dah dah dah dah dit, a nine. (It is not a binary number nine, which would
be 1001 - instead, it is a pattern for Morse code number 9 - there are many ways to
represent numbers!) Take a look at the way the different digits overlap in the binary
pattern in Figure 2-4. Depending on where you start on the "tape" different code patterns
result, in fact, the total pattern is arranged to give the code patterns for the Morse code
numerals numbers in order. It's a trick.

Page 48 · Applied Sensors

11110000011111

11110, dah dah dah dah dit 9

11100, dah dah dah dit dit 8

11000, dah dah dit dit dit 7

10000, dah dit dit dit dit 6

00000, dit dit dit dit dit 5

00001, dit dit dit dit dah 4

01111, dit dah dah dah dah 1

00111, dit dit dah dah dah 2

00011, dit dit dit dah dah 3

11111, dah dah dah dah dah 0

Figure 2-4
Morse Code Binary Pattern

Now let's take a closer look at how the Morse code elements fit into the program. First,
you have to recognize that there is a subroutine that starts with the label Morse, and ends
with the RETURN command. By writing the Morse section as a subroutine, we will be able
to use it over again at different points in our progressive program, as it develops.

The Morse subroutine is called from within the Main Routine section. The Main Routine
section begins by monitoring for a pushbutton press. A pushbutton release is followed by
SHIFTOUT and SHIFTIN instructions which acquire the temperature reading from the
DS1620, and put it into the variable x. Next, x is divided by 2 to give us the variable
degC, and the DEBUG command sends this value to the Debug Terminal so we can read
the temperature in degrees Celsius on the PC screen. Then, the variable xm is assigned
the value of degC. This is necessary because xm is the variable that will be recognized
by the Morse subroutine code we designed earlier. GOSUB Morse sends the program to
that subroutine, where xm is converted to Morse code and played on the piezospeaker
with a FREQOUT instruction. The RETURN command at the end of this subroutine sends
the program back to the final LOOP in the Main Routine section, causing the program to
go back to DO at the top, where it will begin monitoring for a another pushbutton press.

Let's look closer at the Morse subroutine. The variable xm is the one that will be sounded
out as Morse code. In the Morse subroutine itself there are two FOR…NEXT loops, one
inside the other. The outside loop has an index j:

Morse:
 FOR j=1 TO 0
 mc = xm DIG j
 mc = %11110000011111 >> mc

Chapter 2: Data Logging · Page 49

 'Inner FOR…NEXT loop here
 NEXT
RETURN

What is an Index, and what is a Pointer? An index is a variable that steps through a
sequence of values. For example, j in the for-next loop steps through the values of 1 and 0.
A pointer is a variable that specifies where in memory, or where in some ordered set, to
retrieve information. For example, the variable j is both an index and a pointer. It points to a
digit in the variable xm. The index i in this same program is a pointer to the bits (binary
digits) of the variable mc. In experiments to come, we will use indices and pointers to refer to
the data in the EEPROM log, as in, 1st reading, 2nd reading, and so on.

When the program first arrives at the Morse subroutine, it sets j equal to 1, and then
continues with j = 1 all the way through the outer loop (including everything in the
inner FOR…NEXT loop). The keyword NEXT in the outer loop, is the trigger that makes the
program jumps back up to the corresponding outer FOR, sets j = 0, and executes all the
way through again, back to the outer NEXT. Note that the BASIC Stamp knows how to
count backwards! After j has taken on the values 1 and 0, that's it, the loop ends, and the
program returns to the Main routine.

There are two math statements in this outer FOR…NEXT loop. The first one is:

 mc = xm DIG j

This DIG is a PBASIC operator, the way "plus" and "divided by" are operators. Short for
digit, DIG returns a digit from a given position within a larger number. In our program
DIG sits between two numbers, xm and j, and returns the (j+1)th digit of xm, reading
from right to left. It is easiest to illustrate with a specific example: Suppose the value of
xm = 25. On the first time through the loop, the value of j is 1, which gives us j+1 = 2.
Therefore, (mc = 25 DIG 1) will return the 2nd digit from the right, in the tens column,
which is a 2. So the instruction (mc = 25 DIG 1) will produce (mc = 2). On the second
time through the loop, the result of (mc = 25 DIG 0) will be (mc = 5), because 5 is the
1st digit from the right, in the ones column. The logic of this can be extended to larger
numbers, for example, j = 3 would point to the thousands digit. However, in this
program we will only need 2 digits. Check out your Basic Stamp Editor's Help file for
the full description of DIG.

Page 50 · Applied Sensors

Now we have a number between 0 and 9 inclusive in the variable mc. The next statement
sets up the pattern for the Morse code.

 mc = %11110000011111 >> mc

The symbol >> is another operator that goes between two numbers. The constant,
%11110000011111, is the binary pattern we were talking about above. The >> operator is
one that operates specifically on binary patterns. It is called a shift operator. (Shifts are
very important in computer science.) It shifts the binary pattern to the right a certain
number of places (mc places) and drops that same number of bits off the right end. Let's
continue using the example from above, that had the initial value mc = 25. Continuing
with first time through the loop, the digit is 2 when the program arrives at this command:

 mc = 11110000011111 >> 2 ' Shifting bits instruction
' mc = 111100000111 pattern shifted two to the right
' \11 two bits dropped
' ^^^^^-----> 5 bits are the Morse pattern for "2"

And the second time through the loop, the digit is 5:

 mc = 11110000011111 >> 5 ' Shifting bits instruction
' mc = 111100000 pattern shifted 5 to the right
' \11111 five bits dropped
' ^^^^^-----> 5 bits are the Morse pattern for "5"

What has happened is that the Morse code pattern has ended up in bits 4 to 0 of the
variable mc. In the example, 00111 represents 2 in Morse code, and 00000 represents 5.
Earlier we talked about moving a "playback head" over the "tape"; here we have moved
the "tape" over the "playback head," ready to play back the five bits on the right.

Now the Morse code pattern is in position, and we come to the inner FOR…NEXT loop:

 FOR i=4 TO 0
 FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900
 PAUSE Dit
 NEXT
 PAUSE Dah

The index here is i, and it runs through 5 values, counting backwards from 4 to zero.
The FREQOUT command plays a dit or dah for each time around the inner loop. Between
each sound, there is a short pause equal in width to a Dit. After the 5 dits and dahs of the

Chapter 2: Data Logging · Page 51

tens-column digit are played, there is a longer pause, equal in width to a Dah. Then, the
program loops back to get the ones-column digit from the DIG operation, then plays its
five-bit Morse code equivalent in the same way.

The FREQOUT command is familiar, except here the Duration argument is neither a
constant nor a simple variable. It is an expression. PBASIC lets you do that. The
expression is:

 Dit2*mc.BIT0(i) + Dit
 ' ^^^^^^^^^^-------this has a value of either 0 or 1.

Let's start out by stating that mc.BIT0(i) is a variable that has a value of either zero or
one. So the statement reduces with simple multiplication and addition to either:

 Dit2 * 0 + Dit ==> Dit
 …or

 Dit2 * 1 + Dit ==> 3*Dit ==> Dah

The FREQOUT command plays a dit or a dah, depending on the value of the mystery
variable.

So what exactly is mc.BIT0(i)? One powerful feature of PBASIC is that it allows you
easy access to individual bits in that byte. The byte, mc, has 8 bits. The notation, mc.BIT0
is called a modifier of the byte variable mc. It is really just name for the least significant
bit of that byte. The second bit is mc.BIT1, and so on until mc.BIT4, is the 5th bit. It is
simply a way of naming the bits, a syntax that is built into the PBASIC language.

There is still another way to refer to those same bits, using a variable as a pointer to bits
in the byte. This notation is mc.BIT0(i). For example, mc.BIT0(4) and mc.BIT4 both
refer to the same bit. Literally it means, "the fourth bit up from mc.BIT0." See the BASIC
Stamp Manual, for more explanation. Figure 2-5 illustrates the way it works:

Figure 2-5
Five lower bits of the byte variable mc.

00111

mc.BIT0 or mc. 0(0)BIT

mc. 1 or mc. 0(1)BIT BIT

mc. 2 or mc. 0(2)BIT BIT

mc. 3 or mc. 0(3)BIT BIT

mc. 4 or mc. 0(4)BIT BIT

Page 52 · Applied Sensors

The variable i is the pointer. The power of this indirect, or array, method of naming, is
that the program loop (for i = 4 to 0) can step through the bits of the byte variable, mc,
one by one, and pick off the binary 0 or 1 values of the individual bits. Those are the bits
that need to be sounded out as 0 → dit and 1→ dah. Here is another way we could have
played the five dits and dahs, without using a FOR…NEXT loop:

 FREQOUT 0, Dit2*mc.BIT0+Dit, 1900 ' first bit
 PAUSE Dit ' short silence
 FREQOUT 0, Dit2*mc.BIT1+Dit, 1900 ' second bit
 PAUSE Dit ' short silence
 FREQOUT 0, Dit2*mc.BIT2+Dit, 1900 ' third bit
 PAUSE Dit ' short silence
 FREQOUT 0, Dit2*mc.BIT3+Dit, 1900 ' fourth bit
 PAUSE Dit ' short silence
 FREQOUT 0, Dit2*mc.BIT4+Dit, 1900 ' fifth bit
 PAUSE Dit ' short silence

You see, this method refers directly to each bit, one at a time. But it comes out much
shorter and more elegant using the FOR…NEXT loop and the index as a pointer to the bits.

Whew! That was a lot of explanation for a short stretch of program. But it contains some
advanced ideas: how to interpret a number as a pattern, using an index and a pointer, and
how to extract decimal digits. We covered the DIG and shift (>>) operators, how to use
an expression as an argument, and how to use array modifiers of PBASIC variables.
These are the stuff of programming a microcontroller!

Chapter 2: Data Logging · Page 53

Challenge!

1. Hook up an LED to P5, so that HIGH 5 will turn it on. Write a program to turn
the led ON when you click the button once, and OFF when you click the button
again. (Push on, push off action). Hint: although there are several ways to do
this, the TOGGLE command may help. See the BASIC Stamp Manual for more
information.

2. Write a program for your BASIC Stamp 2 that prints "working" on the Debug

Terminal, and plays a sound, once each time you click a pushbutton. Hint: print a
message on the Debug Terminal using commands like DEBUG "working", CR
(CR stands for "carriage return").

3. Then program it so that if you hold the button down while you press and release

Reset on the Board of Education or the HomeWork Board, it will not go
immediately to the "working" routine. Instead it will print "I await your
instructions" on the Debug Terminal, play a different sound, and delay until you
click the button again. (Think about printers, how some will print a "test page" if
you hold down some button on the front panel as you turn the printer on.)

4. The program DS1620MorseCode.bs2 measures the temperature in degrees

Celsius. Modify the program so that it displays degrees Fahrenheit, and plays it
in Morse code.

5. Modify the Morse subroutine so that it will play three digits instead of just two,

in case the Fahrenheit temperature goes above 99 degrees.

6. Advanced - after accomplishing #5 above, make it so that it will not play
leading zeros, that is, if the reading is 76 degrees F, it will play "7","6", not
"0","7","6").

7. Then try this: start with a byte of data, initially zero, stored in EEPROM. Each

time the button is single-clicked, increment the byte in EEPROM by one (READ,
increment, WRITE), and display the current value on the Debug Terminal. When
the value reaches 7, print the words "access denied" on the Debug Terminal, and
make a sound and blink the led on and off repeatedly. At that point, if you reset
the BASIC Stamp or remove the power and then restore it, the "alarm" should
come on right away (READ & decision at top of program.).

Page 54 · Applied Sensors

8. Advanced – After accomplishing #7 above, think of a way, using a special action
on the button, like holding it down for a long time, to reset the value in
EEPROM to zero. That will allow access so you can click the button 7 more
times before the alarm re-sounds and locks you out.

9. Write a program that plays a unique sound if you triple click the pushbutton.

Chapter 3: Temperature Probe for Micro-Environments · Page 55

Chapter 3: Temperature Probe for Micro-
Environments

The theme of Applied Sensors Chapter 3 is to connect a temperature probe mounted at the
end of a cable that can reach out away from the Board of Education or the HomeWork
Board, to monitor micro-environments. A well-calibrated sensor, with good resolution,
will achieve the most accurate results. The specific activities of this experiment include:

• Using a capacitor with the RCTIME command
• Temperature measurement using an AD592 probe, with calibration in an ice bath
• Comparison of calibration with the DS1620 at room temperature
• Automatic calibration using the BASIC Stamp's EEPROM
• Talking (Morse code) temperature experiments featuring solar radiation, wet-

bulb/dry bulb techniques and wind chill

Analog Temperature Sensor
It is often important to extend sensors out away from the recording instruments, so that
measurements can be made in micro-environments. In the natural world there can be
much variation from place to place and time to time. For example, the temperature of a
leaf on a plant in the sun can be significantly different from the surrounding air
temperature. The leaf forms its own micro-environment. And as plants grow, they create
a unique micro-environment under their canopy. Often measurements are needed in
several places at once and are fed back to one centrally located instrument. For example,
an agricultural weather station will measure wind high above the ground, soil moisture
underground, and other arguments at points in between. This means that sensors have to
be mounted on cables to reach all those separate micro-environments.

In Chapter 1 you learned about the DS1620 smart temperature sensor. One nice thing
about that sensor is that it returns readings directly as digital numbers. But one
disadvantage it has is that it is a chip with 8 pins, hard to turn into a probe that can be
used apart from a circuit board. In this experiment you will learn about a different kind
of temperature sensor, the AD592. It is easy to incorporate into a probe mounted on a
single pair of wires. This AD592 is an analog temperature sensor. Analog means that its
signal is a continuous electrical value (microamps), proportional to temperature. Analog
is the opposite of digital; digital readings are returned as a code of discrete values (zeros
and ones). The AD592 is a "classic" technology that has been proven through many

Page 56 · Applied Sensors

years. Many of the signals you will encounter in science, or in many fields of engineering
for that matter, are analog signals. Chips like the DS1620 have analog sensors at their
heart, and engineers have worked very hard to give the DS1620 its digital smarts.

Analog temperature sensor: The microampere current produced by the AD592 is what is
called an "analog" of temperature. Microamps is not the same as temperature, just as
apples are not the same as oranges. Considering an analogy between a capacitor and a
water tank, here the analogy is between the temperature and electrical current. This is the
basis of "analog" sensors. Other temperature transducers may transduce temperature to
voltage or resistance or capacitance. The signals on both sides of the analogy are of a
continuous nature, with infinite gradations of strength from low to high. Analog is the
opposite of digital, where the signals are transmitted as digital codes of zeros and ones.

Analog sensors require a different kind of interface to the BASIC Stamp 2. In this
experiment you will learn about the RCTIME command. You may know about analog-to-
digital converters, a kind of electronic chip that is dedicated to doing those conversions.
The RCTIME command is a rudimentary analog-to-digital converter that is built into the
BASIC Stamp. To introduce the RCTIME command, you will connect a capacitor to the
BASIC Stamp input and review the properties of capacitors. Once you have the RCTIME
command reading the temperature sensor, you will learn how to calibrate it, so that it will
read the correct temperature, despite variations in the parts that are provided to build the
circuit.

Once you have the probe on a cable, you can extend it out to measure temperature in
micro-environments in your surroundings.

BASIC Stamp Pins, Capacitors, Review of the BASICs

You probably already understand that the 16 general purpose I/O pins on the BASIC
Stamp can be in one of three distinct states at any given time. As shown in Figure 3-1,
this is like three-position switch:

1. HIGH: The switch is connected to Vdd = +5 volts, as shown here, output is high.
Current can flow out of the pin, sourcing from the +5 volt (Vdd) power supply.

2. INPUT: The switch is connected as an input. Zero current flows in or out of the

pin. As an input, the internal BASIC Stamp circuitry monitors the voltage at the
I/O pin. Levels less than 1.3 volts are interpreted as low, or 0, those greater than
1.3 volts are seen as high, or 1.

Chapter 3: Temperature Probe for Micro-Environments · Page 57

3. LOW: The switch is connected to Vss = 0 volts, output is low. Current can flow
into the pin, sinking current to ground (Vss).

Vss=0 volts

Vdd=5 volts

? input

BS2

1
2

3

P0-P15

Figure 3-1
BASIC Stamp I/O Pins

Three positions exist in this switch:
(1) Vdd +5V; (2) input to act as low
or high; and (3) switch is connected
to Vss +0V.

The simple commands HIGH 5 or LOW 5 or INPUT 5 put the named I/O pin instantly into
the correlating state. Many of the commands in the PBASIC language work by playing
fancy games with the pins. For example, the FREQOUT command makes a sound by
flipping the internal switch rapidly between the high and low output states. The SHIFTIN
and SHIFTOUT commands work by coordinating the activity on several pins at once, some
as outputs jumping from high to low, and others as inputs synchronized to the action.
Here we will be introducing the RCTIME command, which works by switching a pin from
an output to an input, and then timing how long it takes for the voltage at the I/O pin to
cross the 1.3-volt threshold level.

The change in voltage is brought about by external circuitry, usually a resistor (R) and a
capacitor (C). The important point we want to emphasize here is that practically zero
current flows when the pin is an input—it just looks.

First, a brief review of capacitors. Please bear with us if you already understand how
capacitors work. The analogy is a tank of water, with an inlet pipe and an outlet pipe. The
tank stores water, analogous to how the capacitor stores electrical charge. Figure 3-2 and
Figure 3-3 demonstrate this point.

Vss=0 volts

Vth=1.3 volts

Vdd=5 volts

Figure 3-2
Analogy, capacitor charging

Water flows (amps) into the tank and the level (volts)
rises. Higher inflow means higher rate of rise. The
flow through the pipe can be limited by resistance
(ohms) in the pipe, or by the water pressure at the
other end of the pipe.

Page 58 · Applied Sensors

Vss=0 volts

Vth=1.3 volts

Vdd=5 volts

Figure 3-3
Analogy, capacitor discharging

Flow (amps) discharges from the tank and the level
(volts) falls. The flow can be slow, a trickle, or fast, a
deluge. If both inflow and outflow are zero, then the
level stays constant. There can be unintentional
flows, called leakage (amps).

Capacitors come in a wide range of sizes, measured in picofarads up to farads. This does
not refer to physical size, but to the capacity to store charge, which depends on the
material of which the capacitor is composed. Two capacitors of exactly the same physical
size can have vastly different capacitances. We will be using values in this experiment
that are 0.01 to 0.22 microfarads (μF).

Parts Required

Throughout this chapter, leave all parts from the previous experiments in place on the
Board of Education or the HomeWork Board, as well as those you add in each activity.
The following additional parts are required:

(1) AD592 temperature probe. See Appendix B if you would prefer to build your own.
(1) 0.1 µF monolithic capacitor
(2) 0.22 µF film capacitor
(2) 100 Ω resistor
(2) 100 kΩ
(1) Jumper wire
(2) 2-inch 4/40 stainless steel screws
(2) 16-inch pluggable jumper wires (1 red, 1 black)
(2) 2 4/40 nylon nuts
(1) Cup spanner

Building the Circuit

The first activity requires the pre-assembly of a conductivity sensor.

√ From the Parts List on the preceding page, gather the 2-inch stainless steel screws,

the 16-inch pluggable jumper wires, the nylon washers and the cup spanner.
√ Begin by dropping the two screws through the two holes in the middle of the cup

spanner.

Chapter 3: Temperature Probe for Micro-Environments · Page 59

√ Fasten them from the other side with the nylon nuts, but do not tighten them yet.
√ Wrap one bare end of each jumper wire around a screw between the cup spanner

and the screw head.
√ Now tighten the nylon washers to keep the wires in place and in firm contact with

the screw heads.

The conductivity sensor will later be placed over the rim of a cup with the screw ends
hanging down inside, and the other ends of the jumper wires will plug into the
breadboard.

Simple Resistance Detector

√ From the Parts List, gather the 0.1 μF capacitor, the 100 Ω resistor, and the
conductivity sensor you just assembled.

√ Build the circuit shown in the schematic (Figure 3-4) and the wiring diagram
(Figure 3-5).

√ Double check your circuits, using the hints next to the wiring diagram.

Page 60 · Applied Sensors

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P0

1 kΩ

Vss

0.1 µF

P1

Vdd

Vss

220 Ω
10 kΩ

100 Ω

Vss

P10

Vdd

Conductivity
sensor

1.3 V

0.1 µF

Figure 3-4
Simple Resistance
Detector Schematic

Chapter 3: Temperature Probe for Micro-Environments · Page 61

P15
P14
P13

P10

P1
P0

P12
P11

P9
P8
P7
P6
P5
P4
P3
P2

X2

X3
Vdd VssVin

D
S1620

+

Figure 3-5
Simple Resistance Detector
Wiring Diagram

• The 100 Ω resistor connects
 P10 to the 0.1 µF capacitor
 and one lead of the
 conductivity sensor.

• The capacitor connects to Vss
 via the same row (node) as pin
 4 of the DS1620.

• The other lead of the
 conductivity sensor connects
 directly to Vdd.

√ Enter the program CapacitorDemo.bs2.
√ Let the conductivity sensor rest on a nonconductive surface, such as a pad of paper.
√ Run the program, letting the circuit run through its DO…LOOP for a minute or two

while leaving the conductivity sensor undisturbed.

' Applied Sensors - CapcitorDemo.bs2
' Simple demo of a capacitor on a BS2 pin.
' {$STAMP BS2}
' {$PBASIC 2.5}

v VAR Bit ' Bit-size variable for input state.

DO ' Beginning of the program.
 LOW 10 ' Discharge the capacitor to 0 volts.
 FREQOUT 0, 5, 3500 ' Signal event.
 DEBUG CR ' New line on screen.
 INPUT 10 ' Make the pin an input.

 DO ' Beginning of a loop.
 v = IN10 ' Read the input.
 DEBUG BIN v ' Show it.
 PAUSE 99 ' 0.1 second pacing.
 LOOP UNTIL (v=1) ' Repeat until the input is >1.3 V.

LOOP ' Back to the beginning of the program.

Page 62 · Applied Sensors

Do you hear beeps or see any 1s in the Debug Terminal? No? The first instruction in the
program discharges the capacitor to zero volts. The capacitor discharges very fast, like a
big pipe dumping water from the tank out onto the earth. Current from the PIC
microcontroller on the BASIC Stamp can discharge the capacitor through the 100 ohm
resistor in about 25 microseconds, which is much less than the Duration argument of the
FREQOUT command. Then comes the INPUT 10 instruction. P10 instantly becomes an
input. Don't be surprised that the capacitor stays discharged, because there is no source of
current to charge it. All those zeros on the screen mean that the capacitor stays
discharged.

√ Now touch the two leads of the conductivity sensor at the same time with your

fingers as shown in Figure 3-6
√ Experiment! Your finger short-circuits the capacitor. The result should depend on

how sweaty or wet your fingers are (a lie detector?), and how hard you pinch.
There are leakage paths through the moisture on your fingers, and through your
skin and tissue.

√ Try dipping the conductivity sensor in water.
√ Touch it to wet paper, or
√ Touch it to a heavy pencil line drawn on paper.
√ Substitute the 100 kΩ resistor for the 100 Ω resistor, and test the same objects over

again.

Figure 3-6
Short-Circuit

Touch the two screws that
comprise the conductivity
sensor. Your finger will short-
circuit the capacitor.

We need to say a word here about safety. The voltage and current in this circuit are very
small, five volts and a few microamperes. If you are ever unsure about a circuit, always
err on the side of safety!

The input pin on the BASIC Stamp is acting as a "comparator." This is a technical term in
electronics for this device that gives a yes or no answer, 1 or 0, to the question, "is the
voltage level at P10 greater than or less than 1.3?" This 1.3-volt threshold is fixed by the
PIC microcontroller in the BASIC Stamp 2, and there is nothing we can do to change it.
Figure 3-7 shows how this works.

Chapter 3: Temperature Probe for Micro-Environments · Page 63

Time
0 V

1.3 V

+5 V

Charging rate
Fast Slow

Figure 3-7
Capacitor Discharge

Over and over, the capacitor is discharged to
zero volts, and then more or less rapidly
charges back up to the 1.3 volt threshold. By
varying the resistance of the probe, you are
affecting how fast the voltage level rises.

If the voltage level on the capacitor rises to 1.3 volts, then variable v will become equal
to 1. This will allow the program to exit the DO…LOOP UNTIL and go back up to the
beginning, discharge the capacitor to zero volts, make a tone, and print a line return on
screen. Otherwise, the program remains inside the inner DO…LOOP UNTIL, where it
continues to read the input and print zeros on the Debug Terminal.

Resistance Detector using RCTIME

√ Now enter and run the program RCTIMEDemo.bs2,

' Applied Sensors - RCTIMEDemo.bs2
' Simple demo of the RCTIME command.
' {$STAMP BS2}
' {$PBASIC 2.5}

rct VAR Word ' Word variable to track time.
n VAR Byte ' Variable for the bar graph.

LOW 10 ' Discharge the capacitor.

DO ' Beginning of the main routine.
 RCTIME 10, 0, rct ' Time for the volts to rise to 1.3V.
 LOW 10 ' Discharge the capacitor to 0 volts.
 DEBUG ? rct ' Show the time.
 n = (rct - 1) / 2048 + 1 ' Calculate length of bar graph.
 DEBUG REP "*"\n, CR ' Display ASCII art bar graph.
 PAUSE 50 ' Slows down the program.
LOOP ' Back to the beginning of main routine.

√ As before, experiment by varying pressure and wetness of different materials.

What sorts of rct values do you observe?

Page 64 · Applied Sensors

Here is a commented snippet of our RCTIME command:

 RCTIME 10, 0, rct ' Original instruction
' ^^^----> variable to hold the result (2μs units)
' ^---------> starts with in10=0, ends when in10=1
' ^^------------> use pin 10 for this RCTIME command

You may know the RCTIME command from the What's a Microcontroller? Student Guide,
but we are going to refresh it here. The RCTIME command measures the time that it takes
for the capacitor to charge up from zero to the 1.3 volt threshold. The program makes pin
10 low to start off, and that discharges capacitor to zero volts. The RCTIME command then
turns P10 into an input, and immediately starts looking for the voltage at the I/O pin to
cross the 1.3 volt threshold, while at the same time it counts up the elapsed time. The
RCTIME command counts up in two-microsecond intervals. If the voltage at the pin does
cross the 1.3 volt threshold, then the RCTIME command wraps up and puts the elapsed
time into the variable rct, and the program continues with the instruction after the
RCTIME. Here that is a LOW 10, which discharges the capacitor back to zero. If the voltage
at the pin does not cross the 1.3 volt threshold within a tenth of a second (0.13107
second, to be exact), the RCTIME command gives up. It puts zero into the variable rct (to
indicate overflow) and then the program continues with the next instruction after the
RCTIME.

RCTIME counts in units of 2 microseconds (μs), and the maximum value of the count is
65,535 (the maximum value that will fit in a sixteen bit word), so it follows that the
maximum time is 131,070 μs (2 μs x 65,535) = 0.13107 seconds. See the BASIC Stamp
Manual for more information about RCTIME. To reiterate, if nothing happens within
0.13107 second, the RCTIME puts zero in the variable rct, to indicate an overflow
condition.

The RCTIME command is useful for measuring many different things. Electrically, the
circuit can be arranged so that the measured time depends on resistance, capacitance,
voltage or current. Many transducers output one of those electrical quantities. For
example, the temperature sensor coming up is a transducer that transduces temperature
into an electrical current. A simple formula will allow us to convert the value returned by
RCTIME immediately into temperature. Another type of temperature sensor that is well
suited for use with the RCTIME command is the thermistor. It has a resistance that varies
with temperature. It is not so convenient, because it is harder to calibrate.

Chapter 3: Temperature Probe for Micro-Environments · Page 65

Finally an explanation of the ASCII art bar graph in the RCTIMEDemo.bs2. This is a
continuing education into the capabilities of the DEBUG command. Before the advent of
computer graphic displays and printers, these ASCII graphs were the only way to produce
a graphical output!

 n = (rct - 1) / 2048 + 1 ' Calculate length of bar graph
 DEBUG REP "*"\n, CR ' Display ASCII art bar graph

When rct has a value between 0 and 65535, the value computed for n will be between 1
and 32. Note that 65535/2048 = 31. That defines the maximum value, and lower values
fall into place. We scale it to 32 maximum simply so that the graph will fit neatly on the
width of the Debug Terminal. Subtracting 1 from rct is a refinement. Recall that the
RCTIME command only waits around for 0.13107 second, and then returns rct = 0 to
show that the time was longer than that. If we just graph that, then the longest overflow
times end up having the shortest length on the graph. By subtracting 1, rct = 0 becomes
(rct - 1) = 65535. (That is how unsigned binary 16 bit math works--zero minus one
equals 65535!). The graph makes more sense that way. The DEBUG command then uses
the REP modifier to print n stars in the Debug Terminal, followed by a line return. See the
BASIC Stamp Manual for more information about the REP modifier of the DEBUG
command.

Page 66 · Applied Sensors

Temperature Sensor Probe using the AD592 and RCTIME

√ Now, remove the conductivity sensor circuit that was shown in Figure 3-4 Figure
3-5, leaving all of the other circuits in place.

√ From the Parts Required List, gather together the AD592 temperature probe, the
100 Ω resistor, the 0.22 µF film capacitor, and 1 jumper wire. Note: if you are
making your own probe, see Appendix B.

√ Build the circuit shown by the schematic Figure 3-8 and the wiring diagram in
Figure 3-9.

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P5

P0

Vdd

Vss

1 kΩ

100 Ω

Vss

0.1 µF

0.22 µF

AD592 Temperature
probe

P1

Vdd

Vss

220 Ω
10 kΩ

Figure 3-8
AD592 Temperature
Sensor and RC-time
Schematic

Chapter 3: Temperature Probe for Micro-Environments · Page 67

P15
P14
P13

P5

P1
P0

P12
P11

P8
P7

P4

P2

P10
P9

P6

P3

X2

X3
Vdd VssVin

D
S1620

+

Figure 3-9: AD592 Temperature Sensor and RC-time Wiring Diagram

√ Enter and run the program AD592.bs2.

' Applied Sensors - AD592.bs2
' Reading the AD592 temperature sensor using the RCTIME command.
' {$STAMP BS2}
' {$PBASIC 2.5}

Kal CON 15300 ' Constant to be determined.

rct VAR Word ' A word variable.
TK VAR Word ' Kelvin temperature.
TC VAR Word ' Degrees Celsius.

DO ' Loop forever.
 LOW 5 ' Discharge the capacitor.
 RCTIME 5, 0, rct ' Time for the volts to rise to 1.3 V.
 TK = Kal/rct*10 + (Kal//rct*10/rct) ' Calculate Kelvin
 TC = TK - 273 ' and Celsius.
 DEBUG DEC rct, TAB, DEC TK, ' Show the results.
 TAB, SDEC TC, CR
 PAUSE 50 ' Slows down the program.
LOOP ' Back to the beginning of the loop.

Page 68 · Applied Sensors

The display on the Debug Terminal should show three columns, rct, which is raw count
time (in units of two microseconds) from RCTIME, and the calculated Kelvin and Celsius
temperatures.

√ Heat up the temperature probe in your hand or by some other means and verify that

the rct reading on the Debug Terminal goes down as the temperature goes up.

The TK and TC readings should go up with temperature, but do not pay attention to the
exact values yet. You still need to "calibrate" the sensor, which we will do shortly.

Displaying decimal values, negative numbers and numbers in columns: This form of
the DEBUG command separates the decimal values of the variables with TAB characters to
put them in columns. The SDEC modifier allows for the display of negative numbers.

A word about what sort of device the AD592 transducer is, electrically. It is a current
source. The equation that governs its behavior is exceedingly simple:

Output = 1 microamp / Kelvin

That is, at 273 Kelvin (freezing, 0 °C), it produces 273 μA. At 373 Kelvin (boiling,
100 °C), it produces 373 μA. At absolute zero it would produce zero microamps,
although that is actually outside its operational limit of -40 degrees Celsius.

If you look at the AD592 in terms of the analogy with a water tank, it is like a flow
regulator on the input pipe. The flow does not depend on the level in the tank, nor does it
depend on the pressure (voltage) that supplies the current on the other side of the
regulator. This is very different from a resistor or wet fingers, where the current depends
on several factors. The name RCTIME comes from R for resistance, C for capacitance, and
the time it takes for a resistor to charge the capacitor. A current source is a very special
kind of regulated resistor, one that makes the calculations relatively easy, lucky for us!

AD592 Calibration

The formula that relates the temperature to the time measured by RCTIME is a reciprocal:
in this case TK is Kelvin temperature.

 rct = constant/TK or TK = constant/rct

Chapter 3: Temperature Probe for Micro-Environments · Page 69

See the box for the theory regarding the rate of change of voltage on a capacitor. The
constant will be around 153,000 when the capacitor is 0.22 µF. But it will not be exactly
that value due to variations in the component values. That is why it needs to be
calibrated.

Theory governing the rate of change of voltage on the capacitor

The equation governing the rate of change of voltage on the capacitor is:

dV/dt = I/C

where I is the current and C is the capacitance. If you know calculus, and assume that I and
C are constant, you can easily solve for elapsed time in terms of the change in voltage and
the capacitance and the current:

t = C * V / I

where t is in seconds, C is in farads, V is in volts, and I is in amps. If we substitute TK in
Kelvin for microamps, 0.22 µf for C, 1.3 for the voltage, and 2*rct for the time in
microseconds, and taking care for the units, we come up with the formula in the text:

rct = constant / TK

The constant is 153,000, when those ideal values are plugged into the formula. In reality, the
capacitor will not be exactly 0.22 μF, the threshold will not be exactly 1.3 volts, and the
AD592 will not have an output of exactly 1 microamp per Kelvin. Nevertheless, since there
is only one free constant, we will need just one point of calibration.

In order to calibrate the sensor, we need to find the constant for this particular setup. To
do this, the AD592 sensor must be put in a location where you know the temperature
exactly. A good choice is an ice bath at 0 C, 273 K. With an ice bath reference, TK = 273,
the constant will be (rearranging the previous equation):

 constant = 273 * rct

We have to put the probe into an ice bath, let it stabilize, read the value of rct, and
multiply to find the constant.

√ Prepare an ice bath. For tips on making an effective ice bath, please see the

information box below.

Page 70 · Applied Sensors

Ice bath preparation for calibration:

The melting point of ice made with pure water is a physical constant: zero degrees Celsius,
32 degrees Fahrenheit, 273 Kelvin (Or 273.14 if you want to push the precision). You can
get the best results if the ice and water mixture is:

 made with crushed ice made from distilled water;

 is held in a vacuum thermos bottle with a narrow mouth;

 stirred gently while making the measurement; and

 at least 5 cm of wire is submersed above the sensor probe tip.

Lacking a thermos bottle, you can substitute a well-insulated foam container. Careful
preparation is very important if you want to achieve good results in the calibration! Watch
until the reading settles down to a steady value, to equilibrium.

Metrologists (not meteorologists!) are scientists who advance the science of accurate
measurements. They have to think about all possible factors that could influence the
measurements.

√ Place the AD592 temperature probe into the ice bath.
√ Run the program AD592.bs2.
√ Watch the Debug Terminal until the readings equilibrate (become steady).
√ Record the reading for rtc.

rtc = ___________.
√ Take that number and multiply it times 273. This is your AD592 calibration

constant.
rtc x 273 = ___________.

Be aware that this constant is specific for this sensor, this BASIC Stamp, and this
capacitor.

√ Now round off the constant to the nearest 10, and drop the final digit (a zero). This

should be a five-digit number. This will be the value of Kal you need to substitute
in the program.
Kal = __________.

√ Put this value in your AD592.bs2 program in place of the 15300 "default" value.
√ Re-run the program. You should see TK and TC show the temperature of the

calibration bath; 273 Kelvin, 0 Celsius.

Chapter 3: Temperature Probe for Micro-Environments · Page 71

Now, to explain the peculiar formula needed to calculate TK. Unlike big computers,
where the computer language has lots of fancy math available, you will need to stretch
the BASIC Stamp's math brain. The reason we need the trick is that the constant,
~153000 (or whatever you found) is larger than the highest possible number that the
BASIC Stamp can work with (2^16=65536).

Recall how you did long division in elementary school. This is the same thing, really, but
the notation is a little different. Here are examples of the two essential elements in
BASIC Stamp math:

BASIC Stamp
Notation:

..meaning

1432/524 = 2 Single slash means INTEGER DIVISION (524
goes twice into 1432) and there is a remainder.

1432//524 = 384
Double slash means remainder after INTEGER
DIVISION: 1432-(2*524) = 384. Remainder
always less than divisor, 384< 524.

Observe that:

(2 x 524) +384 = 1432, that is, the quotient times the divisor, plus the remainder is equal
to the original number. That is really the definition of division.

Now, think how you would solve the problem of 143220/524, using elementary school
arithmetic:

Page 72 · Applied Sensors

Equation: Steps in elementary school arithmetic

524

27

143220
14148
 174

First step in a long division. 524 goes 27 times
into 14322, and the remainder is 174. The BS2
knows how to divide into numbers that have
numerators less than 65536, so it has no trouble
in figuring out that 14322/524 = 27 in one step.

524

273

143220
14148
 1740
 1572
 168

Next step, the zero is brought down to the right of
the 174 remainder. That effectively multiplies the
174 times 10. Then 1740 is divided by 524, and
the result, 3 is put after the quotient, which
becomes 273. This too effectively multiplies the
27 times 10, as it moves up by one significant
figure. The fractional remainder, 168/524, is
dropped.

Here is how the BASIC Stamp 2 denotes the same problem:

 TK = 14322/524*10 + (14322//524*10/524)
 '^^^^^^^^^^^^----------------------first step of division
 '^^^^^^^^^^^^^-----the remainder times ten
 '^^^-div. to get next digit
 '^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^-quotient is 273
 'final remainder 168 is dropped

The result is that the BASIC Stamp has calculated 143220/524 = 273.

If you like math, great, you understand or can figure out how it works. If you are one of
those who draws a blank when you see math, or you don't have the time to sit down and
think it through, well, just take the formula, use it, and turn the crank. A lot of math in
computer science is like that. It comes in libraries you just use without thought when you
write programs. You assume that the wizards in the tower have gotten it right.
Nonetheless, understanding it can be helpful and rewarding, or a career, if you are good
at it.

What is the smallest change in temperature that we can detect? Look at Table 3-1 for
some typical rct values and TK values, if the constant is 143000.

Chapter 3: Temperature Probe for Micro-Environments · Page 73

Table 3-1: Temperature Resolution
Raw

Conversion Real Kelvin Celsius

143000/484 = 295.5 295 22
143000/485 = 294.8 294 21
143000/486 = 294.2 294 21
143000/487 = 293.6 293 20
143000/488 = 293.0 293 20
143000/489 = 292.4 292 19

The real temperature resolution is about 0.6 Kelvin. That is, each step in rct is at best a
step of 0.6 Kelvin in temperature. We are rounding it off to 1 Kelvin, losing a little bit of
information, but with knowledge beforehand.

If we were to use a larger capacitor (say 0.33µF) in the circuit, the constant would be
larger, and the resolution would be improved. On the other hand, with a smaller capacitor
(like 0.1µF), the resolution would be worse.

In the next experiment, you will check on the calibration of the AD592 probe in
comparison with the DS1620 from Chapters 1 and 2.

Resolution: Suppose you are measuring a quantity that can take on any value between
zero and 100. If your instrument can only tell the difference between "greater than 50" and
"less than 50" then it has one bit of resolution, that is, the measurement is a sort of "yes/no."
On the other hand, if your instrument can tell the difference between 1 and 2 and 3 and so
on up to 100, then the resolution is 1%, or about 7 bits (7 bits, because 2^7 = 128).
Resolution is not the same thing as accuracy. If your instrument reads 50 when the true
value is 52.3, then it is not accurate, or at least it needs to be calibrated. That is true whether
it has one bit or 7 bits or more of resolution.

Talking Thermometer Revisited, Two Channels

Now let's combine this new sensor with the DS1620 talking thermometer. The next
program you will use is a variation of DS1620MorseCode.bs2, which you may have
saved from Chapter 2. If you are careful, you can reload that program, rename it and
make the modifications so it matches TwoChannelsThermometer.bs2 shown below. Look
for new variables in the Declarations section, one line of code in the Initializations
section, and a routine for the AD592 within the Main Routine section.

Page 74 · Applied Sensors

The first thing you are going to test is to see if the AD592 probe and the DS1620 have the
same reading at "room temperature" so you will want them to be at the same temperature.

√ Position the AD592 probe in contact with the DS1620 on your Board of Education

or HomeWork Board.
√ Enter the program TwoChannelsThermometer.bs2.
√ In place of the Kal value shown in the program, enter value you calculated above.

' -----[Title]---
' Applied Sensors - TwoChannelsThermometer.bs2
' Talking thermometer, two channels.
'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[Constants]---
Dit CON 70 ' Milliseconds for Morse dit.
Dit2 CON 2*Dit ' Constants related to Dit.
Dah CON 3*Dit ' Ditto.

' -----[Declarations]--
mc VAR Byte ' Temporary for Morse pattern.
xm VAR Byte ' Morse input variable.
j VAR Nib ' Index for digits to send.
i VAR Nib ' Index for dits and dahs.

x VAR Byte ' General purpose variable, byte.
degC VAR Byte ' Variable to hold degrees Celsius.

rct VAR Word ' Reading from RCTIME.
TK VAR Word ' Kelvin temperature.
TC VAR Word ' Degrees Celsius.

Kal CON 15300 ' Constant to be determined.

' -----[Initializations]---
' Note: DS1620 has been preprogrammed for mode 2.
' If not, uncomment the instructions on the next line on the first RUN.
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13

OUTS=%0000000000000000 ' Define the initial state of all pins.
 'FEDCBA9876543210
DIRS=%1111111111111101 ' As low outputs
 '^---------------- except P1, an input for a pushbutton.

FREQOUT 0, 20, 3800 ' Beep to signal that it is running.

HIGH 13 ' Select the DS1620.
SHIFTOUT 15, 14, LSBFIRST, [238] ' Send the "start conversions" command.

Chapter 3: Temperature Probe for Micro-Environments · Page 75

LOW 13 ' Do the command.
LOW 5 ' Discharge the capacitor.

' -----[Main Routine]--
DO ' Start of the main loop.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed.

 DO
 LOOP UNTIL (IN1=1) ' Loop here until button is released.

DS1620: ' DS1620 temperature sensor code.
 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command.
 SHIFTIN 15, 14, LSBPRE, [x] ' Get the data.
 LOW 13 ' End the command.
 degC = x / 2 ' Convert the data to degrees C.
 DEBUG ? degC ' Show the result on the PC screen.
 xm = degC ' Morse routine expects data in xm.
 GOSUB Morse ' to the subroutine.

 PAUSE 100

AD592: ' AD592 temperature sensor code.
 RCTIME 5, 0, rct ' Get the AD592 count.
 LOW 5 ' Discharge the capacitor.
 TK = Kal/rct*10 + (Kal//rct*10/rct) ' Calculate Kelvin
 TC = TK - 273 ' and Celsius.
 DEBUG DEC rct, TAB, DEC TK, ' Show the results.
 TAB, SDEC TC, CR
 PAUSE 50 ' Slows down the program.

LOOP ' Back to wait for button again

' -----[Subroutines]---
Morse: ' Emits byte xm as Morse code.
 FOR j=1 TO 0 ' Send 2 digits, tens then ones.
 mc = xm DIG j ' Pick off the (j+1)th digit.
 mc = %11110000011111 >> mc ' Set up pattern for Morse code.
 FOR i=4 TO 0 ' 5 dits and dahs.
 ' Send pattern from bits of mc.
 FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900
 PAUSE Dit ' Short silence.
 NEXT ' Next i, dit or dah of five.

 PAUSE Dah ' Interdigit silence.
 NEXT ' Next j, digit of two.
RETURN ' Back to main.

Page 76 · Applied Sensors

√ If the Morse code becomes obnoxious to you or your classmates, simply unplug
the wire from P1 to turn off the buzzer, or put an apostrophe in front of the GOSUB
Morse and turn it into a comment.

√ Run this with the AD592 probe in direct contact with the DS1620 on your Board
(and no direct sunlight). If you have some, you can put some heat sink compound
(thermally conductive grease) between the two to improve the contact.

√ Be sure the readings are constant, and record the readings in degrees Celsius:

 DS1620 :__________
 AD592 :__________

They should be pretty close to one another. You just calibrated the AD592 in an ice bath,
and the DS1620 data sheet specifies that its reading will be within ±0.5 degree.

Save the program TwoChannelsThermometer.bs2 on disk, following your teacher's
instructions.

Automatic Calibration (Advanced Topic)

One feature of many modern instruments is automatic calibration. For example, since we
know that the DS1620 has ±0.5 degree accuracy, we might like to skip the preparation of
an ice bath, which, after all, requires quite a few materials and effort to do it right. We
could use the DS1620, at room temperature, as the calibration reference. You could
attach a new AD592 temperature probe to the Board of Education or HomeWork Board,
put it in contact with the DS1620, and let it sit for a few minutes, and then press a button
to enter the calibration value. Voilá! The BASIC Stamp would calculate the correct
calibration value and stores it in EEPROM for you.

The program ThermometerCalibration.bs2 can do just that. The program also directs you
storing and retrieving word-size data in the EEPROM. You can modify
TwoChannelsThermometer.bs2 using the instructions below, and the complete program
ThermometerCalibration.bs2 is also listed for your reference.

√ Open TwoChannelsThermometer.bs2.
√ Save as ThermometerCalibration.bs2.
√ Remove the calibration constant:

 Kal CON 15300

Chapter 3: Temperature Probe for Micro-Environments · Page 77

√ Replace the calibration constant you just removed with:

EKal DATA Word 15300 ' constant to be determined
kal VAR Word ' for calibration constant

The value EKal points to a value in the EEPROM, and that value will be transferred to
and from the variable kal, using the BASIC Stamp's READ and WRITE statements. The
calibration constant is a word value, but the EEPROM stores only bytes. PBASIC 2.5
automatically stores words in two successive bytes of EEPROM when you follow the
DATA directive with the Word modifier. This also works with READ and WRITE.

√ Enter the following line in the program, just before the RCTIME instruction.

READ EKal, Word kal ' Get calibration constant
 '^^^^------------- read from location EKal
 ' ^^^^^^^^--- word variable kal

√ Also add the section to the Main Routine so that if you hold the button down for a
long time, it will branch to a special calibration routine. (Do you recognize this
from the LongClick.bs2 program from Chapter 2?)

 x = 0 ' Counter initialization.

 DO ' Loop beginning.
 PAUSE 100 ' 0.1 second pacing.
 x = x + 1 ' Increment counter.
 IF x>30 THEN GOSUB Calibrate ' Calibrate if long click.
 LOOP UNTIL (IN1=1) ' Until button is released.

√ Finally, add the following subroutine at the end of the program:

Calibrate:
 FREQOUT 0, 5, 3400 ' Show we got here.

 DEBUG "The probe should be in contact", CR
 DEBUG "with the DS1620",CR

 TK = degC + 273 ' Kelvin from DS1620.
 kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round kal.

 DEBUG ? kal ' Show value of kal.

Page 78 · Applied Sensors

 WRITE EKal, Word kal ' Write kal on EEPROM.

 FREQOUT 0, 5, 1900 ' Show finished.

 x = 0 ' Reset counter.

RETURN ' Back to main program.

√ Check your work against the program ThermometerCalibration.bs2 below.

' -----[Title]---
' Applied Sensors - ThermometerCalibration.bs2
' Talking thermometer, two channels, with calibration.
'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[Declarations]--
Dit CON 70 ' Milliseconds for Morse dit.
Dit2 CON 2*Dit ' Constants related to Dit.
Dah CON 3*Dit ' Ditto.

mc VAR Byte ' Temporary for Morse pattern.
xm VAR Byte ' Morse input variable.
j VAR Nib ' Index for digits to send.
i VAR Nib ' Index for dits and dahs.

x VAR Byte ' General purpose variable, byte.
degC VAR Byte ' Variable to hold degrees Celsius.

rct VAR Word ' Reading from RCTIME.
TK VAR Word ' Kelvin temperature.
TC VAR Word ' Degrees Celsius.
kal VAR Word ' Calibration constant.
EKal DATA Word 15300 ' Initial value of Constant on EEPROM.

' Note: DS1620 has been preprogrammed for mode 2.
' If not, uncomment the instructions on the next line on the first RUN.
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13

OUTS=%0000000000000000 ' Define the initial state of all pins.
 'FEDCBA9876543210
DIRS=%1111111111111101 ' As low outputs
 '^---------------- except P1, an input for a pushbutton.

FREQOUT 0, 20, 3800 ' Beep to signal that it is running.

READ EKal, Word kal ' Get calibration constant.
LOW 5 ' Discharge the capacitor.

Chapter 3: Temperature Probe for Micro-Environments · Page 79

HIGH 13 ' Select the DS1620.
SHIFTOUT 15, 14, LSBFIRST, [238] ' Send the "start conversions" command.
LOW 13 ' Do the command.

' -----[Main Routine]--
DO ' Start of the main loop.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed.

 x = 0 ' Counter initialization.
 DO ' Loop to track pressing time.
 PAUSE 100 ' 0.1 second pacing.
 x = x + 1 ' Increment counter.
 IF x>30 THEN GOSUB Calibrate ' Calibrate if button held > 3 seconds.
 LOOP UNTIL (IN1=1) ' Loop here until button is released.

DS1620: ' DS1620 temperature sensor code.
 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command.
 SHIFTIN 15, 14, LSBPRE, [x] ' Get the data.
 LOW 13 ' End the command.
 degC = x / 2 ' Convert the data to degrees C.
 DEBUG ? degC ' Show the result on the PC screen.
 xm = degC ' Morse routine expects data in xm.
 GOSUB Morse ' To Morse subroutine.

 PAUSE 100

AD592: ' AD592 temperature sensor code.
 RCTIME 5, 0, rct ' Get the AD592 count.
 LOW 5 ' Discharge the capacitor.
 TK = kal/rct*10 + (kal//rct*10/rct) ' Calculate Kelvin
 TC = TK - 273 ' and Celsius.
 DEBUG DEC rct, TAB, DEC TK, ' Show the results.
 TAB, SDEC TC, CR
 PAUSE 50 ' Slows down the program.

LOOP ' Back to wait for button again

' -----[Subroutines]---
Morse: ' Emits byte xm as Morse code.
 FOR j=1 TO 0 ' Send 2 digits, tens then ones.
 mc = xm DIG j ' Pick off the (j+1)th digit.
 mc = %11110000011111 >> mc ' Set up pattern for Morse code.
 FOR i=4 TO 0 ' 5 dits and dahs.
 ' Send pattern from bits of mc.
 FREQOUT 0, Dit2*mc.BIT0(i)+Dit, 1900
 PAUSE Dit ' Short silence.
 NEXT ' Next i, dit or dah of five.

Page 80 · Applied Sensors

 PAUSE Dah ' Interdigit silence.
 NEXT ' Next j, digit of two.
RETURN ' Back to main program.

Calibrate:
 FREQOUT 0, 5, 3400 ' Signal to show we got here.

 DEBUG "The probe should be in contact", CR
 DEBUG "with the DS1620",CR

 TK = degC + 273 ' Kelvin temperature of DS1620.
 kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round off kal.

 DEBUG ? kal ' Show value of kal.

 WRITE EKal, Word kal ' Write kal on EEPROM.

 FREQOUT 0, 5, 1900 ' Show finished.

 x = 0 ' Reset counter.

RETURN ' Back to main program.

When you first run the program, the temperatures returned from the AD592 will be
incorrect, due to incorrect default value of EKal.

√ Run the program ThermometerCalibration.bs2.
√ Put the AD592 in contact with the DS1620. IMPORTANT: make good contact

between the AD592 and the DS1620, using a wire to hold them together, and
improve the contact with silicone heat sink grease if you have some. Be sure there
are no nearby sources of heat.

√ Click the button and watch the reading until you see that it has settled down.
√ When ready, press and hold the button until you hear the calibration click.

When you release the button, the readings should suddenly become correct in comparison
to the DS1620. The AD592 probe can now be extended out to measure other
temperatures. This kind of auto-calibration capability is especially important for
instruments that read things like conductivity or pH (acidity), where the sensors need
frequent recalibration.

Let's verify that the calibration routine worked, by taking the temperature in the ice bath.

√ Place your AD592 probe in the ice bath.

Chapter 3: Temperature Probe for Micro-Environments · Page 81

√ DO NOT press the calibration button.
√ Read the temperature in the Debug Terminal.

It should read close to zero, within the ±1 degree resolution of your Board of Education
or HomeWork Board measurement system. Remember, the calibration routine depends
on having the AD592 at the same temperature as the DS1620! With this auto-calibration
routine, do not press the calibration button when the probe is in the ice bath!

The calibration constant comes from the equation:

 constant = (true Kelvin temperature) * rct

We are assuming that the DS1620 gives us the "true" temperature. Suppose the DS1620
is at 25 degrees Celsius, 298 Kelvin. Suppose the value of rct is 591. So,

 constant = (298 * 591) = 176134,

. . .and the value that must go into the EEPROM is the top five digits of that, rounded off
as before. The trick is to get this result on the BASIC Stamp without overflowing 16 bits.
It takes two steps, rewriting the reference temperature as:

 298 = 29 * 10 + 8

…or in the notation of the BS2, for any Kelvin temperature:

 TK = (TK/10)*10 + (TK//10)
' ^^^^^^^^^^------------Integer division,
' ^^^^^^^^-plus remainder.

Multiplying both sides by rct, then dividing by ten (to get the top 5 digits of the product)
we end up with the formula in the program:

 kal = TK/10*rct + (TK//10*rct+5/10) ' Compute and round kal

The 5 added before the final division is for rounding. Think it through.

The WRITE statement stores the word kal in the location, EKal. Subsequently, the READ
command retrieves the calibration value in exactly the same way. The calibration
constant stays there unchanged in EEPROM until (1) you press the calibration button

Page 82 · Applied Sensors

again, or (2) until you re-download the program again by running it from within the
BASIC Stamp Editor.

Some Field Research: Temperature Experiments

Investigate the temperatures you find around and about your environment. Your
instructor may have specific instructions. Measure the temperature in:

√ Hot and cold tap water
√ An aquarium
√ Out in the open sun
√ Under trees or bushes
√ Underground

Note that it is possible to extend the length of the temperature probe, if you want, simply
by adding more wire. Look for those micro-environments. Where are the sources of heat
that lead to variation in temperatures in microenvironments?

Here are a few specific experiments you can try. These merely illustrate how a
temperature probe can be used to measure more than just temperature.

The Psychrometer: Measuring Humidity

√ Measure and record the air temperature in the shade.
Dry bulb temperature:__________.

√ Wrap wicking, gauze, cloth or a piece of paper towel around the temperature
sensor and hold it in place with rubber bands or wire. Try to make the wrapping
tight and compact, and not too much of it!

√ Make the covering wet.
√ Fan air across the wet sensor, or spin the probe rapidly around on its wire. It will

cool down to its final value quicker if you have constructed a compact wet bulb.
√ Measure an record the new final temperature:

Wet bulb temperature:__________.
√ Subtract the wet measurement from the dry measurement.

You might expect 4 or 5 degrees Celsius of wet bulb depression in a room at 50% relative
humidity. Everyone knows that a wet body cools off in the breeze. The cooling effect is
greatest in dry air. This is called the wet bulb depression. It depends mainly on the
relative humidity in the air, and on wind speed. At higher wind speeds it depends only on

Chapter 3: Temperature Probe for Micro-Environments · Page 83

relative humidity. An instrument to measure humidity using a wet and a dry thermometer
in this fashion is called a "psychrometer" (from the Greek root, psychros, meaning
"cold"). By spinning the wet bulb through the air, it becomes a "sling psychrometer."
Psychrometric charts are where you would go to look up the humidity as a function of the
dry and wet bulb temperatures. Try this both inside and out of doors. For interest, an
example of a psychrometric chart is shown in Figure 3-10. This chart was designed by
Hong Kong University in order to classify building comfort zones.

• "y" axis on the right side is absolute humidity.
• "x" axis is dry-bulb temperature (°C).

Figure 3-10: Example of Psychrometric Chart

Ice Point Depression in Salt Water: Measuring Salinity
You have an ice bath from your calibration of the temperature probe. When ordinary
table salt is mixed with ice water, what happens to the temperature of the mixture? Think
about the role of salt water in relation to ice cream makers, icy roads and icebergs.

Page 84 · Applied Sensors

√ Set up your ice bath again, if necessary.
√ Design and complete a quantitative experiment that features varying amounts of

the same type of salt added to the ice bath.
√ Design and complete an experiment that compares different types of salt added to

the salt bath.

Be sure to use a well-insulated container for best results. What conclusions can you draw
about the relationship between salinity and the freezing point of water?

The Pyranometer: Measuring Solar Radiation

√ Wrap a cylinder of aluminum foil around the temperature sensor, twisted at the
end.

√ Tie a thread to the foil so that you can pull it put it off the probe.
√ Put it in the sun, inside a clear plastic or glass jug to cut down the wind.
√ Record the temperature reading when it settles down.

Reading with foil wrap: _________.
√ Use the thread to pull off the foil.
√ Let the temperature re-equilibrate.
√ Record the new temperature reading with and without the foil.

Reading with black sensor: _________.
√ Compare the difference between the two readings.

Everyone knows that dark objects can get hot in the sun. A device that measures radiation
by looking at the temperature difference between a black and a white surface is called a
"black and white" pyranometer. (Pyr is a Greek root that means "fire" but you already
knew that!)

The Hot Probe Anemometer: Measuring Wind Speed

√ Allow the black temperature sensor to become hot in the sun.
√ Record the temperature _________.
√ Slowly spin the probe around on the end of its wire for 30 seconds.
√ Record the "slow spin" temperature _________.
√ Allow the temperature sensor to heat up in the sun to its previously recorded

temperature.
√ Quickly spin the probe around on the same length of wire for 30 seconds.
√ Record the "quick spin" temperature _________.

Chapter 3: Temperature Probe for Micro-Environments · Page 85

√ Find the difference between your "slow spin" and "quick spin" temperature
measurements.

Everyone knows that warm bodies cool off in the breeze. This shows that temperature
can be used to measure winds speed. "Hot wire anemometers" use a platinum wire both
as the sensing element (its resistance changes with temperature) and as the heating
element (electrical current passing through it makes it heat up).

Page 86 · Applied Sensors

Challenge!

1. Hook up a circuit as in Figure 3-5, except use 100 kΩ resistor and a 0.22 µF
capacitor. Measure the rct value, and insert it in the center cell of the table
below. You have two 0.22 μF capacitors in your kit, and two 100 kΩ resistors.
By making parallel and series connections of those parts, you can fill in the rest
of the entries in the chart.

2.

2 R Ω R/2 Ω C/2 µF 2C µF
RCTIME vs. R and C 50 kΩ 100 kΩ 200 kΩ

0.11 µF
0.22 µF
0.44 µF

3. Modify the program AD592.bs2 so that it shows its result in degrees Fahrenheit

and degrees Rankine, instead of degrees Celsius and Kelvin. (Rankine =
Kelvin*1.8.). Do not just convert Kelvin to degrees Rankine though. Calculate a
new constant for Rankine = constant/rct.

4. Pushbutton application: sometimes the Morse code sound may be annoying. You

can unplug the wire from P0 to shut it off. But the challenge here is to make a
way to turn it off in software. Think of a way using the pushbutton to toggle the
sound on and off.

5. Hook up a 0.1 μF capacitor and 100 Ω resistor to P10, as in Figure 3-5, with the

conductivity sensor. Also hook up an LED and resistor to P8, so that the BASIC
Stamp can turn the LED on and off. Then (a) make a program that turns on the
LED only when the probe is dipped in water; (b) Make a program that pauses for
10 seconds, then tests the input and blinks the led if the probe was dipped in
water anytime during the 10 second pause. Then recharge the capacitor, turn the
pin to an input, then go back to the pause; and (c) Modify the program so that it
counts up how many times you dip the probe in water, one count possible for
each pause. This program shows how the capacitor helps to monitor things like

Chapter 3: Temperature Probe for Micro-Environments · Page 87

rain gages and traffic counters–switches that close unpredictably for short
periods of time. The capacitor is used as a "memory" remembering the event
until the BASIC Stamp gets around to looking at the input.

Page 88 · Applied Sensors

Chapter 4: Light on Earth and Data Logging · Page 89

Chapter 4: Light on Earth and Data Logging

The theme of the Light on Earth and Data Logging experiment is "light, and its
importance for everything under the sun." To demonstrate this, we'll build a light
meter/data logger. The activities we'll perform in this experiment include:

• A light sensor photodiode using RCTIME, and observations of the orders of
magnitude scales of intensity

• A combined temperature and light meter
• A pushbutton data logger for temperature and light
• A couple of experiments using the light meter/data logger

The sun is the driving force of most of the weather and physical processes on earth.
Where would we be without photosynthesis? People have been taking measure of the sun
since the dawn of prehistory. At Stonehenge, at the Caracol of Chichen Itza, and around
the world, the ancients took the measure of the solar cycle of the seasons in relation to
agriculture and to temporal and spiritual life.

Temperature is a relatively simple variable in comparison to light. Light comes in a
spectrum of colors, both visible and invisible, and the spectrum extends out to fuzzy
limits of wavelength. It has polarization and direction. Many aspects of light have special
significance. Certain wavelengths are responsible for sunburn; other wavelengths are
special for the ripening of fruit. There are subtle patterns of light. For example, bees can
see patterns of deep blue on flowers in the ultraviolet range that the human eye cannot
perceive, and hummingbirds' vision extends farther into the red, infrared, than our own.
Light is important to us in a tremendous range of intensities, from solar energy for
electricity and heating, to bioluminescence of creatures in the deep oceans.

Like temperature, light is often used to measure other things. For example, instruments
for detecting air quality and CO2 are often based on lasers, or on the fact that gases
absorb light at characteristic wavelengths. Astronomers use the spectra to deduce the
chemical composition of the stars and interstellar gasses. On the other end of the scale of
size, light is used to probe chemical processes in DNA and the mechanisms of the living
cell. In a practical arena, light is used for motion detectors, for indicators, and of course
for illumination, which is in itself a whole specialty of engineering.

Page 90 · Applied Sensors

One fundamental law is that the intensity of light from a point source falls off with the
square of the distance. That is, at double the distance from a light bulb (or from the sun),
the light intensity will be 1/4 of its value at the first location. The same amount of energy
is spread over 4 times the area. Using the light meter you build in this lesson, you will
have a tool to investigate that law, as well as to explore light variation in your
environment. This concept of light attenuation is illustrated in Figure 4-1

R

2R

Figure 4-1
Light Attenuation

At twice the distance from a
bulb (or from the sun), the light
intensity will be 1/4 of its value
at the first location. We'll
investigate this law with our
microcontroller-based light
meter.

Parts Required

For this experiment we'll be leaving parts on the Board of Education or HomeWork
Board that we installed in Chapter 3. The following parts are required for Chapter 4:

(1) Photodiode
(4) 100 Ω resistor (brown black brown)
(2) 0.01 μF poly capacitor
(1) 0.22 μF poly capacitor
(2) 100 pF ceramic capacitor (101)
(1) Red LED
(1) Green LED
(1) 9 V battery (not included)
A 50 watt R20 spotlight, if available, for experiments (not included)

Building the Circuit

Photodiode as a Light Transducer
What's a Microcontroller? introduced one kind of light-responsive sensor called a
photoresistor, which has a cadmium sulfide-coated surface that becomes less resistant to
current as it is exposed to brighter light. In this lesson, we will use a different type of

Chapter 4: Light on Earth and Data Logging · Page 91

photodetector, a photodiode. A photodiode passes an electrical current (in amps) that is
directly proportional to light intensity. This characteristic makes it especially well suited
for quantitative measurements.

You may also be familiar with the light emitting diode (LED), which turns electrical
current into light. The LED emits light when the current flows in the direction of the
diode arrow. You may know that electrons (negative charges, e-) actually flow in the
opposite direction. But in an accident of historical interpretation, in electronics we
usually think of current as if it were carried by positive charges. Again, the LED emits
light when the (positive) current flows in the direction of the arrow.

Light

e
10 mA

Figure 4-2
LED

The LED emits light when the
(positive) current flows in the
direction of the arrow.

It also works in reverse. Light falling on a diode produces electricity. If you connect a
voltmeter to a diode exposed to light, you will measure a fraction of a volt, with the
polarity as indicated. Electrons accumulate at the cathode end.

Light

0.4-0.5 V
- - - -

+ + + +

Figure 4-3
Photodiode

A photodiode produces
electricity with light.

When you connect the photodiode into a circuit loop with a wire, current flows around
the loop. The amount of current is proportional to the intensity of the light. This is
fundamental. It is the light that generates the charges that make the current. The only way
they can get back together is to flow around the external circuit. Observe that the
electrons flow clockwise around the circuit, as shown in Figure 4-4. The conventional
current (positive charges) flows in the opposite direction, against the direction of the
diode arrow. This is called a photocurrent, and it is a reverse current. Compare this to the
forward current that lights up an LED. This business of the arrow can be confusing, but in
electricity, it is all relative. In this circuit, the voltage across the diode is zero–it is short-
circuited.

Page 92 · Applied Sensors

e

- - - -

+ + + +

e

e

e

µA

Light

e
e

Figure 4-4
Photocurrent

Photocurrent occurs when
conventional current (the positive
charges) flow in the opposite
direction, against the direction of
the diode arrow.

Sensitivity to light is a fundamental property of transistors and diodes. In most places,
that would be an undesirable side effect. Transistors and integrated circuits are usually
potted in a plastic, ceramic or metal case, and one reason to do that is to keep out light
that would greatly affect their performance. Photodiodes are made especially to
accentuate the sensitivity to light. Look at the photodiode in your kit. It has a clear epoxy
top, and underneath that you can see a small black square of silicon, with wires attached
at the sides. Electrical charge builds up on the top and the bottom, where the wires pick it
up. The difference between a solar panel and a photodiode is largely in the area of the
diode. Solar panels have huge areas, square feet or square meters, so they can intercept a
lot of light and produce lots of current and power, measured in amps and watts. The
photodiode is made of especially pure material for measurement, not for energy
production.

One thing that makes photodiodes very useful for measurement is that a simple equation
governs their behavior as a transducer:

i = constant * light intensity

The sensor is linear. That means that if the light level increases, say, by a factor of 1000,
then the current through the diode will also increase by that same factor. For the
photodiode, this holds true over several orders of magnitude, over several powers of ten.
It is that characteristic that makes it so useful for measurement.

The simple equation also holds true when the diode is hooked up in a reverse voltage
circuit as in Figure 4-5. At the same light intensity, the amount of current is exactly the
same here as it would be in the short circuit of Figure 4-4. The current through the
photodiode charges the capacitor. The charge accumulates on the capacitor as shown, and
the voltage across the capacitor gradually increases. The BASIC Stamp 2 program will

Chapter 4: Light on Earth and Data Logging · Page 93

measure the time it takes for the voltage at P6 to fall from 5 V down to 1.3 V as shown in
Figure 4-5.

Vss

Vdd

P6

1.3 - 5 V

e µA

Current
depends
on light

Figure 4-5
Photodiode Circuit

With this circuit the BASIC Stamp can measure
the time it takes for the charge to fall from 5 V to
1.3 V. This is called a resistor/capacitor circuit.

√ From the Parts Required list above, gather together the 0.01 µF capacitor, the

photodiode, and a 100 Ω resistor.
√ Add the circuit to your breadboard as shown in the schematic (Figure 4-6) and

wiring diagram (Figure 4-7).
√ Add an optional resistor between the piezo transducer and BASIC Stamp PO to

quiet down the speaker if your instructor requests it.

Page 94 · Applied Sensors

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P5

P0

Vss

Vdd

Vdd

Vss

1 kΩ

100 Ω

100 Ω

Vss

0.1 µF

0.01 µF

P6
Photodiode

0.22 µF

AD592 Temperature
probe

P1

Vdd

Vss

220 Ω
10 kΩ

Figure 4-6
Photodiode Light
Transducer Schematic.

Chapter 4: Light on Earth and Data Logging · Page 95

P15
P14
P13

P10
P9

P6
P5

P3

P1
P0

P12
P11

P8
P7

P4

P2

X2

X3
Vdd VssVin

P15
P14
P13

P6
P5

P1
P0

P12
P11

P8
P7

P4

P2

P10
P9

P3

X2

X3
Vdd VssVin

D
S1620

+

Figure 4-7: Photodiode Light Transducer Wiring Diagram

Node: A node consists of all the points in a circuit that are connected together. Each row of
5 holes on the Board of Education or the HomeWork Board is a node, because all of the
holes are connected electrically. One node in Figure 4-7 is the row where the diode, the
capacitor and P6 (via the resistor) meet.

√ Enter the program LightMeter.bs2.

' Applied Sensors – LightMeter.bs2
' Sound out light levels from the photodiode.
' {$STAMP BS2}
' {$PBASIC 2.5}

rct VAR Word ' Variable for RCTIME.

HIGH 6 ' Discharge the capacitor.

DO
 DO
 RCTIME 6, 1, rct ' Time for volts to fall to 1.3V.
 HIGH 6 ' Discharge the capacitor.
 LOOP UNTIL (rct<>0) ' No sound if RCTIME overflows.
 FREQOUT 0, 1, 3400 ' Make a click.
LOOP ' Repeat the main loop again.

Page 96 · Applied Sensors

√ Download and run the program.
√ Expose the light sensor to dim light, such as under your desk, and brighter light,

such as a lamp.
√ Read the next couple of paragraphs before you get too carried away.

Light levels can vary tremendously in the natural environment. Our eyes have an amazing
capability to accommodate both dim and bright light. Sensitivity is the amount of light
that it takes to get a response. Sometimes we need a sensitivity adjustment, or a switch
for "high" and "low" sensitivity. Cameras and eyes have an iris that opens or closes to
adjust the amount of incoming light, to extend the range of sensitivity.

Observe that the program jumps back to the top without making a sound, if the value of
rct is equal to zero. That is at the dim end of the range. You may have to cover the
sensor with a box or something to make it dark enough to see this effect. The capacitor
takes too long to charge and the RCTIME command does not see a transition from 1 to 0 at
P6 within its 0.13107-second limit. At the other extreme, in bright light, the clicking
becomes very high-pitched and bunched up, so you can't distinguish differences.

√ Find your 0.22 µ capacitor and your 100 pF capacitor.
√ Replace the 0.01 µF capacitor with 100 pF capacitor to make it more sensitive and

responsive in dim light.
√ Try taking measurements in dim light again.
√ Try fastening a piece of tissue paper, if available, over the photodiode to decrease

its sensitivity.
√ Try taking measurements back in brighter light.
√ Take out the 100 pF capacitor, and put in a 0.22 µF capacitor.
√ Take measurements in brighter light again.

Now that you have figured out when to swap out capacitors to obtain the proper
sensitivity to the given light conditions you are measuring, let's explore your
surroundings. Have fun with this!
√ Disconnect your Board of Education or HomeWork Board from the programming

cable.
√ Power your board with a 9-volt battery.
√ Carry along the 100 pF and a 0.22 µF capacitor and change the sensitivity

whenever you feel it is necessary.
√ Explore your surroundings, indoors and outside, if possible:

Chapter 4: Light on Earth and Data Logging · Page 97

o Try pointing the sensor both up and down, to detect the direct light and
the reflected light and patterns of light and shade.

o Try scanning close across the objects on a desk, both shiny and dull.
o Try scanning close to the bold pattern on a curtain or clothing.
o Try scanning the flickering pattern on your computer screen or TV set.
o Try scanning a relatively dark place using the 100 pF capacitor.
o Try scanning outside in sunlight, if available, using the 0.22 µF

capacitor.

More about Measuring Light Intensity
A Pyranometer quantifies light intensity by the light energy hitting a surface per unit
time. This is the right measurement if you are designing a solar panel system or a solar
water heater, or if you are an architectural engineer thinking about the energy efficiency
of a building. This kind of light intensity is measured in watts per square meter. The
power input from the sun at the earth's surface, on a clear summer day, is a little over
1000 watts per square meter, or 75 watts per square foot. The solar energy input above
the atmosphere is nearly 1400 watts per square meter, which is often given in other units
as 2 Langleys per minute. (1 Langley = 1 calorie per square centimeter). Sometimes we
are interested only in the energy of certain wavelengths. For example, ultraviolet light at
about 300 to 320 nanometers causes sunburn, not only in people, but in other life on earth
too, like coral in the ocean. This UVB light can be separated out and measured. It
amounts to less than 0.1% of the total, less than 1 watt per square meter. But it is a very
significant 0.1%. More and more UVB is getting down to the earth as the ozone in the
upper atmosphere is depleted, due it seems to human activity, the use of certain CFC
chemicals.

Page 98 · Applied Sensors

A Photometer quantifies light intensity as our eyes see it. This is the subject of
illumination engineering, and of physiology. How does an owl see? Our eyes are most
sensitive to bright light in the yellow-green range, and the sensitivity falls off in the red
and the blue. The question of light intensity is still one of energy per unit area per unit
time, but now it includes only energy at the wavelengths we can see. It is measured in
special units, lux or foot-candles. The light intensity looking at full sunlight is about
110,000 lux, but of course, looking at direct sunlight is not something that we do. It is too
intense. In contrast, a 100 watt light bulb, viewed from 1 meter distance, is about 100 lux.
That too is perceived as bright. Normal room lighting is measured in 10s of lux. There is
a tremendous range of values that sensors, including our eyes, have to deal with – around
7 or 8 orders of magnitude. But that is nothing compared to the range of light levels
arriving from celestial objects, which is detectable in over 20 orders of magnitude.

A PAR meter quantifies light intensity as it affects the growth of plants. This is of great
interest to farmers, and aquaculturists, and botanists. Photosynthesis occurs in special
band of wavelengths, called the photosynthetic action spectrum. PAR stands for
Photosynthetically Active Radiation. Measurement of PAR allows botanists to estimate
how much growth would be possible for a given plant, if light were the limiting factor.
Light comes in packets of energy, called quanta, and each unit of photosynthesis takes
one quanta of light. The units of PAR are micromoles of quanta per square meter per
second. Full sun illuminosity is about 2000 moles per square meter per second. A lot of
plant biology has to with plant adaptations to light levels.

A Spectrophotometer is the most versatile of the bunch. It tells you how much light
energy is in each narrow band of wavelengths across the spectrum. In contrast, the
photocurrent in your photodiode is due to the convolved effect of many different
wavelengths. The spectrophotometer can be used to characterize and calibrate almost any
of the other light measuring instruments, but, needless to say, it can be a much more
complicated and expensive instrument. An economical version of this is a colorimeter
that you might find in a paint store for matching colors.

How LightMeter.bs2. Works

Let's go back to our own light meter, and talk more about the BASIC Stamp program that
makes it work. Note that one side of the capacitor is connected to Vdd (+5) instead of
being connected to Vss (ground) as it was in the AD592 temperature sensor circuit. Here,
LightMeter.bs2 starts off with HIGH 6 to discharge the capacitor. This might seem

Chapter 4: Light on Earth and Data Logging · Page 99

strange, making the pin high to discharge the capacitor, but note that a capacitor is said to
be "discharged" when the voltage from one side to the other is equal to zero. The top of
the capacitor is connected to +5 volts, so HIGH 6 makes both sides equal to +5 volts, so it
is discharged. Figure 4-8 illustrates the time course of the voltage at P6.

Time
0 V

1.3 V

+5 V

Charging rate
Low High

rct

Figure 4-8
Resistor/Capacitor Discharge

Light strikes the photodiode, causing it to sink
current from the discharged capacitor. As the
capacitor charges, the voltage at P6 decays
from nearly 5 V down to 1.3 V. The RCTIME
command holds P6 as an input during that time.
As soon as the RCTIME detects the 1.3 volt
level, the program moves to the HIGH 6 and
quickly discharges the capacitor, and the
voltage at P6 quickly returns to +5 volts.

Look carefully at the RCTIME command in LightMeter.bs2. The second argument is now
a 1. That argument was 0 in the programs in Chapter 3 with the AD592 temperature
transducer. This instructs the RCTIME routine to count time while P6 is equal to one, and
to stop when P6 makes the transition to zero. Try changing the second argument from 1
to 0. It doesn't work, does it? That is, is it sensitive to light? Do you hear a very high
tone, a very low tone, or no tone at all? For debugging, it is good to think these "what
if..." kinds of questions.

The BASIC Stamp accepts both forms of the command, with the second argument either
0 or 1, because there are situations where one or the other will be the best, or the only,
choice. For example, the AD592 temperature sensor works fine in the circuit of Chapter
3, but it would fail to work in this one. That has to do with the voltage requirements of
the AD592. We can't go into all the advantages and disadvantages of one circuit over the
other, but it is good to be aware of this flexibility when you get down to the fun of
designing your own serious projects.

Observe that the pitch of the tone from the annunciator goes higher in brighter light.
Why is that, when the time to discharge the capacitor, rct, goes lower in brighter light?
Be sure you understand the reason, which is that with lower values of rct, the program
loop cycles faster, which sounds a higher tone. (Note that this program is using a constant
for the FREQUOT command's Freq1 argument – it is the more rapid cycling that causes the

Page 100 · Applied Sensors

tone to sound higher in pitch, but the frequency generated by the BASIC Stamp remains
the same.)

Photodiode and the BASIC Stamp as a Digital Light Meter

The previous program was an analog meter, because the audible frequency output was an
analog of the light input. Both go up and down in a similar manner. Analog meters are
great conveying information directly to our senses. This time, let's look at the actual
numbers on the Debug Terminal. This is the digital connection.

√ Enter and download the program DigitalLightMeter.bs2

' Applied Sensors – DigitalLightMeter.bs2
' Numerical light levels from the photodiode.
' {$STAMP BS2}
' {$PBASIC 2.5}

rct VAR Word ' Variable for RCTIME.
light VAR Word ' Variable light intensity.

HIGH 6 ' Discharge the capacitor.

DO

 RCTIME 6, 1, rct ' Time for volts to fall to 1.3V.
 HIGH 6 ' Discharge the capacitor.

 light = 65535 / rct ' Calculating light.

 DEBUG DEC rct, TAB, ' Display values.
 DEC light, TAB,
 BIN light, CR

 PAUSE 400 ' Slow things down.

LOOP ' Repeat the main loop again.

The constant 65535 is arbitrary. The important thing is that the light is proportional to
1/rct. The exact value of the proportionality constant will be determined when we
calibrate the sensor against a light source of known intensity, like the sun, or a standard
light bulb.

Chapter 4: Light on Earth and Data Logging · Page 101

The Theory Behind it:

For those of you who are interested, the theory here is the same as for Chapter 3. The
voltage across the capacitor here must change by 3.7 volts (see Figure 4.8), instead of 1.3
volts (see Figure 3.7). The formula is:

2*rct = C * 3,700,000 / i

(2*rct) is in microseconds, C is in microfarads, and i is in microamps. This shows the
theoretical inverse relation between the photocurrent, i, and the rct variable that comes out
of the RCTIME command. The photocurrent is proportional to the light intensity falling on
the photodiode. However, unlike the AD595 temperature probe, where the calibration
constant is 1 µA/K, there is not an exact equality between standard units of light and
photocurrent. But it doesn't matter. All the constants can be lumped into one that can be
determined at the time of calibration:

rct = constant / (light level) or light level = constant / rct

√ Run the program.
√ Expose the light meter to dim light.
√ Now expose it to bright light.

Notice how the numbers in the second column in the Debug Terminal increase in bright
light. Notice also that the numbers in the first column decrease as the capacitor charges
more rapidly from the larger photocurrent.

The final column is included, not so much so you can see the binary value of the light
level, but because the length of the binary number, from 1 to 15 binary digits, is
proportional to the logarithm of the light level. One digit is added for every doubling of
the light intensity. Try taking your light meter from very dim to very bright to see what
we mean.

Logarithms are useful for dealing with phenomena that vary over huge ranges. As another
example, the VU meter on a stereo sound system shows you a logarithmic graph of sound
level. Our ears, like our eyes, can accommodate a tremendous range of sound levels. In
technical terms, the length of the binary number shows the integer part of the logarithm to
base 2. The same is true for the decimal number in the second column; it adds one digit
for each factor of 10 in the increase in light level, but that is harder to perceive. You can
try replacing BIN light in the DEBUG statement with REP 42\ NCD light. This prints a
string of stars, instead of the actual binary number. The NCD operator is the closest thing
the BASIC Stamp has to a logarithm function.

Page 102 · Applied Sensors

Let's look now at the effect of the capacitor on the reading:

√ Start with a 0.01 µF capacitor in your light meter circuit.
√ Place your Board in a place where the light level is constant, and note the reading.
√ Now find the second 0.01 µF capacitor.
√ Install it on your breadboard in parallel with the first one, as shown in Figure 4-9.
√ Now (with the same light level as before) observe the rct and the light level

readings.

The rct reading should be about twice what it was before, and the light reading in the
second column should be about 1/2 of what it was. This is because the value of the
capacitor enters into the calculation of the calibration constant, as shown in the theory
box. If the current from the photodiode is constant, then doubling the capacitor value also
doubles the time it takes for the capacitor to charge down to the threshold.

P15
P14
P13

P10
P9

P6
P5

P3

P1
P0

P12
P11

P8
P7

P4

P2

X2

X3
Vdd VssVin

P15
P14
P13

P6
P5

P1
P0

P12
P11

P8
P7

P4

P2

P10
P9

P3

X2

X3
Vdd VssVin

D
S1620

+

Figure 4-9
Parallel
Capacitors

By adding the
second capacitor
in the circuit in a
parallel fashion,
the rct reading
will double from
what we've
measured before.
The value of the
capacitor enters
into the
calculation of the
calibration
constant.

The capacitors we are using are of a type called "polyester film" capacitors. They are
desirable because of their stability. Temperature changes do not affect their capacitance.
We need a stable capacitor like that, so that the RCTIME value will only depend on the
current from the photodiode.

Chapter 4: Light on Earth and Data Logging · Page 103

√ Now remove both of the 0.01 µF capacitors, so that there is no capacitor at all in
the photodiode circuit. (Be sure you are getting the photodiode capacitors, not the
temperature capacitor).

√ Expose the light meter to very dim light.

It still works! The actual numbers don't mean anything, but you should find that it acts
just as if there were a capacitor in the circuit. It will be sensitive to very low levels of
light. As a matter of fact, there is a capacitor in the circuit. The input gate on the PIC
16C57 microcontroller on the BASIC Stamp has a built-in capacitance of about 50 pF
(picofarads). In addition to that, the wiring of the white block breadboard contributes
capacitance. Remember, capacitance exists whenever electrical conductors come close to
one another, intended or not. This is called stray capacitance, because it was not really
intended to be there as part of your circuit. The combination of the PIC input capacitance
and the capacitance of the white block wiring add up to the equivalent of about 250 pF of
stray capacitance.

√ Put in a 100 pF capacitor where you removed the 0.01 μF capacitor.
√ Check the reading in the same dim light.

The reading will not change too much. The capacitance has only gone from about 250 pF
to 350 pF, not from zero to 100 pF as you might have expected.

√ Put a second 100 pF capacitor in parallel with the first.
√ Check you reading again.

The readings will not change by a factor of 2, because the capacitance has gone from
about 350 pF up to 450 pF, not from 100 pF to 200 pF. Often when things do not turn out
the way you expect, it is due to stray circuit elements for which you are not accounting.

√ Now remove the two 100 pF capacitors.
√ Restore the single 0.01 µF capacitor in the light meter circuit.
√ Hold the light meter in a bright light source. If you have it, use a 50-watt R20

spotlight (the kind used in track lighting). If you don't have this type of bulb an
alternative would be a 100 watt bulb. The light intensity of such a light source
facing the center of the beam at one-meter distance is about 425 lux (40
candlepower).

Page 104 · Applied Sensors

If you tried to write down the light reading you see in the second column in the Debug
Terminal, you might be waiting there forever it to settle on a value. You may find that it
fluctuates up and down quite a bit, making it hard to decide what the "reading" really is.
These fluctuations come from a couple of different sources. Not the least of them is that
the light level really is fluctuating very fast, faster than your eye can perceive it. The
intensity of the lamp depends on the power line voltage, so we should really emphasize
again that its intensity is approximately 425 lux at one meter. The AC line voltage that
drives the lamp goes from zero to 170 V, 120 times per second. As this happens, the
intensity flickers. The filament in the lamp stays glowing hot, due to its thermal mass, but
the output does fluctuate on a time scale of 1/120th of a second, about 10 milliseconds.
Along comes the photodiode and the BASIC Stamp, to sample the light in less than one
millisecond. Sometimes it samples the highs, and sometimes it samples the lows.

Make a rough estimate of your average value:

√ Look at the readings for a bit to note a minimum value.

Raw Reading Minimum: ________.
√ Now scan the readings for a maximum value

Raw Reading Maximum: ________.
√ Average them to make an estimate halfway in between.

Reading Mean: _________.
√ Now, see if you can find a scale factor so that the program displays the numerical

value in standard units of 425 lux, instead of the raw value in arbitrary units, when
the sensor is in position in front of the lamp.

(Reading Mean) * (scale factor) = 425 lux

For example, if your Raw Reading Mean happens to be 168, then on a calculator you
would multiply that times 2.53. That number is found by using

(scale factor) = 425/ Reading Mean
(scale factor) = 425/168 = 2.53

Subsequently you can move the light meter into an unknown area and find the actual light
level there in units of lux, because the light meter is calibrated.

(new light level in lux) = (new raw reading) * (scale factor)
(new light level in lux) = (new raw reading) * 2.53

Chapter 4: Light on Earth and Data Logging · Page 105

The trouble is, the BASIC Stamp (like most microcontrollers) uses integer math. It does
not have fractions. Well, not quite true. The BASIC Stamp 2 has a peculiar math operator
called */ that is called fractional multiply. The catch is that the fraction has to be one of
these specific values: 0, 1/256, 2/256 and so on, up to 256/256 (unity) and so on:
257/256 (one + 1/256th), up to 65535/256 (255 + 255/256ths). All these fractions have a
denominator of 256. The factor that goes on the right side of the */ is the numerator of the
fraction, and the denominator of 256 is implied. Here are some examples:

Y = X */ 256 ' is the same as Y = X, because 256/256=1
Y = X */ 128 ' is the same as Y = X*1/2, because 128/256 = 1/2
Y = X */ 384 ' is the same as Y = X*3/2, because 384/256=3/2
Y = X */ 647 ' is the same as Y = X*647/256 ...

It so happens that 647/256 is close to 2.53, which is the scale factor we need. Try it:

647/256 = ______ 168 * (647/256) = ______
close to 2.53? close to 425?

Here is an example of how to find the value to put after the */. You have your own
Reading Mean, say it is 168. You have the known value of light intensity, nominally 425
lux. Then the factor to put after the */ is 425*256/168 = 647.

425 * 256 / (Reading Mean) = calibration constant for indoor light
425 * 256 / 168 = 647

The equation to use in the DigitalLightMeter.bs2 program now becomes:

light = 65535/rct*/647 ' Computes light from left to right

√ Use your own Reading Mean to calculate your calibration constant for indoor light.
√ Insert the numerical value you found for your calibration constant for indoor light

in the appropriate line of code in the DigitalLightMeter.bs2 program.
√ Re-download and run the program.
√ Take a reading from the same light source at the same distance you used to obtain

your Minimum and Maximum readings.

The Debug Terminal should display 425 in the second column, when the sensor is placed
one meter in front of the calibration source you originally used. Now, as you take the
light meter around the room, the reading will be displayed in standard units of lux. This is

Page 106 · Applied Sensors

a "ballpark" calibration. But it demonstrates the idea, and how the */ operator can help
with the math See the BASIC Stamp Manual for the full details on PBASIC operators.
Calibration of analog sensors often involves multiplying a raw reading times a fraction,
so understanding how to use the */ operator can be a great help.

Temperature and Light Meter

Do you still have your temperature sensor probe hooked up? We hope so. If not, hook it
back up as shown in Figure 3-9.

√ Enter the program LightTemperature.bs2.
√ Enter your own calibration constant for indoor light value in place of 647 in Lical

CON 647.
√ Enter your own constant, Kal, for the AD592 temperature sensor, from page 70.

That number goes in the place of the 15068 in Kal CON 15086.

' Applied Sensors – LightTemperature.bs2
' Light intensity and temperature meter.
' {$STAMP BS2}
' {$PBASIC 2.5}

Kal CON 15068 ' Calibration constant for AD592.
Lical CON 647 ' Calibration constant for photodiode.
 ' Use Your Own Calibration Constants!!
rct VAR Word ' Variable for RCTIME.
light VAR Word ' Variable light intensity.
TC VAR Word ' Variable for degrees Celsius from AD592.

LOW 5 ' Discharge AD592 capacitor.
HIGH 6 ' Discharge photodiode
DO
 RCTIME 5, 0, rct ' Read temperature probe.
 LOW 5 ' Discharge AD592 capacitor.

 ' Calculate Celsius.
 TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273

 RCTIME 6, 1, rct ' Read photodiode.
 HIGH 6 ' Discharge photodiode capacitor.

 light = 65535 / rct */ Lical ' Calculate lux.

 DEBUG DEC TC, " C", TAB, ' Display values.
 DEC light, " lux", CR
 PAUSE 400 ' Slow things down.
LOOP ' Repeat the main loop again.

Chapter 4: Light on Earth and Data Logging · Page 107

Now you have both temperature (first column) and light readings (second column) in the
Debug Terminal, with units. That's progress!

√ Compare the two RCTIME instructions that go with the temperature and the light

level.
√ Be sure you understand why the two instructions are different, in relation to how

the circuits are set up.
√ Get this working before you proceed to the next section.

Light and Temperature Logger, using RAM Memory

Now let's make the program store up a bunch of readings. We have already discussed in
earlier lessons why data logging is important. It's time to get down and do some of it. The
ultimate goal is to log data in the EEPROM memory of the BASIC Stamp. But for now to
keep it simple we will log data in the RAM memory of the chip. Recall from Chapter 1
that there are 26 bytes of RAM available for our general purpose use in the BASIC Stamp
2. We will set aside 18 bytes of that for the data log shown in Figure 4-10.

log (0) = TC n=9 log (n)
↕ ↕
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T L T L T L T L T L T L T L T L T L

Figure 4-10
Allocation of
Memory for Log
File

The instruction to reserve 18 bytes in RAM will be:

log VAR Byte(18)

These bytes are like 18 bins in a row, numbered from 0 to 17, and we are going to store
temperature values in the even numbered bins and light intensity values in odd numbered
bins. In the program, will refer to these bins by using an index inside parentheses:

log(0)=TC ' stores temperature reading in first bin
light=log(9) ' retrieves light reading from 10th bin.
light=log(n) ' bin number is held in a variable, n.
 ' when n=9, retrieves the light value
 ' from the 10th bin.

On signal from the pushbutton, the program will acquire a temperature and a light level
reading, and it will store the numbers in the next two available bins. When all the bins are
full, the program will make a special protest beep to annunciate the fact, "memory full."

Page 108 · Applied Sensors

When you make a special long press on the pushbutton, all of the values in the 18 bytes
will be displayed on the Debug Terminal. To erase the data and start over, all you have to
do is press the reset button. That "re-zeros" all the bins and the pointer.

√ Enter the program LightTemperatureLogger.bs2.

' -----[Title]---
' Applied Sensors – LightTemperatureLogger.bs2
' Temperature and light intensity logging in RAM.
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Constants]---
Kal CON 15068 ' Calibration constant for AD592.
Lical CON 647 ' Calibration constant for photodiode.
 ' Use Your Own Calibration Constants!!
' -----[Declarations]--
log VAR Byte(18) ' 18 bytes reserved for the log file.
rct VAR Word ' Variable for RCTIME.
light VAR Word ' Variable light intensity.
TC VAR Word ' Variable for degrees Celsius from AD592.
n VAR Byte ' Counter for the pushbutton.
ptr VAR Byte ' Pointer to next entry in data log file.

' -----[Initializations]---
OUTS=%0000000001000000 ' Now put in the outs and dirs statements.
 'fedcba9876543210
DIRS=%1111111111111101 ' All are low outputs
 ' ^----------------- except P6 is high output to discharge C
 ' ^------------ and P1 is input for pushbutton.
DEBUG CLS
DEBUG "Ready to log data!", CR
FREQOUT 0, 200, 2550
FREQOUT 0, 400, 3400
ptr = 0 ' Pointer initialization.

' -----[Main Routine]--
DO ' Main loop.

 DO
 LOOP UNTIL (IN1=0) ' Loop here until button is pressed

 n = 0 ' Variable initialization.
 DO ' Loop to track pressing time.
 PAUSE 100 ' Time the button in 0.1 sec increments.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1 OR n>12) ' Conditions to stop the loop.

 IF (n>=12) THEN ' Long click?

Chapter 4: Light on Earth and Data Logging · Page 109

 GOSUB Long_Click
 ELSEIF ptr>17 THEN ' Short click but memory full?
 GOSUB Memory_Full
 ELSE ' Short click instructions.
 GOSUB Get_Data
 ENDIF

LOOP ' Jump to the main loop.

' -----[Subroutines]---
Long_Click:
 FREQOUT 0, 50, 2550 ' Feedback sound.
 FREQOUT 0, 100, 3400

 ' Message on screen print units of measurement
 DEBUG CLS, "logged data!", CR, "degC",TAB,"Lux",CR

 FOR n=0 TO 16 STEP 2 ' Will show 9 records.
 TC = log(n) ' Get temperature.
 light = log(n+1) * 2 ' Get light.
 DEBUG DEC TC, TAB, ' Display.
 DEC light, CR
 NEXT ' Next record of 9.

 DO ' Do nothing
 LOOP UNTIL (IN1=1) ' Until button is released

 DEBUG CR, "press RESET to erase data", CR
RETURN

Memory_Full:
 DEBUG CR, "memory full" ' Message.
 FREQOUT 0, 50, 3400 ' Audio indication.
 FREQOUT 0, 200, 2000, 2100
RETURN

Get_Data:
 FREQOUT 0, 10, 1900 ' Sound to show we got here.

 RCTIME 5, 0, rct ' Read temperature probe.
 LOW 5 ' Discharge AD592 capacitor.

 ' Calculate Celsius.
 TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273

 log(ptr) = TC ' Store temperature.
 ptr = ptr + 1 ' Point to next bin.

 RCTIME 6, 1, rct ' Read photodiode.
 HIGH 6 ' Discharge photodiode capacitor.

Page 110 · Applied Sensors

 ' Calculate lux.
 light = 65535 / rct */ Lical

 log(ptr) = light/2 MAX 255 ' Store light intensity/2.
 ptr = ptr + 1 ' Point to next bin.

 DEBUG DEC TC, " C", TAB, ' Display values.
 DEC light, " lux", CR

 PAUSE 400 ' Slow things down
RETURN

√ Run the program.
√ Press the pushbutton 9 times to collect 9 records of temperature and light level.
√ Listen for the program to make a "memory full" beep.
√ Hold down the button for >1.2 seconds to make all 9 of the records display in the

Debug Terminal.

You can leave the Debug Terminal open on the screen, and go off and do an experiment
to collect 9 records, and then come back to the computer to play them back. When you
are ready to start over, press the Reset button on your Board.

Records and fields: Each line, or row, of data is a record. Each reading across is a field.
The first field here is temperature in units of degrees Celsius; the second field is light in units
of lux. The fields line up in columns. The file here consists of up to 9 records. This
terminology is commonly heard in relation to spreadsheets and databases

How LightTemperatureLogger.bs2 Works

We'll comment on the program itself, then move on to some experiments you might want
to try.

This program starts off with the OUTS and the DIRS statements. They replace the HIGH 5
and LOW 6 that were in previous programs. Note that the sixth position in the OUTS
statement is 1, and the fifth position is zero. That makes P6 high and P5 low, as is
required to discharge the two capacitors. The P1 position in the DIRS statement is a zero,
which makes P1 an input. The other pins on the BASIC Stamp are all set to be low
outputs, as a matter of good programming practice.

Chapter 4: Light on Earth and Data Logging · Page 111

The program starts off with familiar single click and long click code for the pushbutton,
so you should recognize the code. When the button is down, there is a race between the
timer and the button. If the timer passes the 1.2 second mark, then the program jumps to
the Long_Click subroutine.

But if the button is released before the 1.2 seconds, then the program goes right into the
Get_Data subroutine. There, it reads the temperature probe and the light probe just as in
program LightTemperature.bs2. Then it puts the temperature value in the bin that is
pointed to by the variable ptr, then ptr is increased by one. Next it puts the value of
light/2 into this next bin. Again, ptr is increased by one to point to the next empty
bin.

Before jumping to the Get_Data subroutine, the program tests the value of the pointer,
and jumps to the memory full message if the pointer is greater than 17. The program does
not allow itself to collect more data than will fit in the allotted space. You might try
taking out this condition, just to observe what sort of error will occur!

Why log the value of light divided by 2, instead of simply light as it is? The bins only
hold byte-size quantities, less than or equal to 255. That is fine for Celsius, which will be
in the range of 0-100. But the light level might get higher than that. It was calibrated at
425 lux. By dividing by 2, light values of up to 511 lux can be stored. The downside is a
loss of resolution, but it is not significant in light of our "ballpark" calibration. When we
read the light values from the log, we will multiply them by two to get back the original
value. Note that light/2 is followed by max 255. The 255 is a signal that your data is
out of range.

The Long_Click routine uses a FOR…NEXT loop to step through all 9 records.

 for n=0 to 16 step 2 ' Will show 9 records

The "step 2" makes the value of the index, n, take on the even values, 0,2,4,6,...,16.
That is a total of 9 steps. The value of temperature is read first from log(0), and light
from log(1), and these values are displayed in the Debug Terminal. Note that light is
multiplied by 2 to reconstruct the original value. Then the FOR…NEXT loop bumps up the
value of the index to 2, and fetches and displays log(2) and log(3), and so on up
through log(16) and log(17).

Page 112 · Applied Sensors

Why does the program use n as the pointer, instead of ptr? First, understand that it
doesn't matter what variable goes in parentheses after the log(). The only thing that
matters is the numerical value of what is in the parentheses. By using "n" as the pointer,
the value of "ptr" is not disturbed. Let's say you have already acquired 5 readings, and
then you do the long click to read out what you already have for those 5. You can then
continue where you left off and collect readings 6 to 10, and then do the long click to
read them all out. It is just a small refinement.

At the end of the playback routine, the program reminds you that you have to press the
Reset button on your Board in order to start over with a clean slate.

This program uses every single RAM variable available in the BASIC Stamp. Two bytes
each are used for the word variables, rct, TC and light, and one byte each for the
indexes n and ptr, and 18 bytes for the log file. That adds up to 26. If you tried to add
one more variable to the program, you would get an error message, "out of variable
space" when you ran it.

Experiments with the Data Logger

Verification of 1/r2 dependence for the light source

√ Prepare a string with knots at one meter, 1.5 meters, 2 meters, 2.5 meters and so on
up to 4 meters.

√ Connect the string to the side of the fixture holding the 50 watt, R20 spotlight.
√ Press Reset on your Board to clear the data log.
√ Collect data at each distance from the light source, taking care to stay in the center

of the beam.
√ Upload your data to the Debug Terminal.
√ Graph the readings as a function of position.
√ Verify that the intensity of light falls off as 1/r2.

This is a "ballpark" experiment. Think of some factors that might make the results less
than perfect. Don't forget about the fluctuations we discussed earlier!

Investigation of the light distribution from the spotlight

√ Set up a protractor with the string and spotlight from the previous experiment.
√ Using your ingenuity, design and execute an experiment that involves holding the

light sensor at 10 different angles around the center of the beam from the spotlight.

Chapter 4: Light on Earth and Data Logging · Page 113

√ Collect the readings and graph them.

Rate of heating and cooling, timed logging

√ Hold the temperature probe a few inches from the lamp, and press the button at
regular 15 second intervals.

√ Then take the sensor away from the light and take 4 more readings at the same rate.
√ Upload the data and graph the temperature as a function of time.

Wouldn't it be nice to have the data logger press the button for you, at regular intervals?
Easily done! Change the first nested DO…LOOP in the Main Routine section of the
LightTemperatureLogger.bs2 program as follows:

DO ' Changes to program
 n = 0 ' Initialize the time counter
 DO ' Loop here until button or time
 PAUSE 1000 ' One second pacing.
 n = n + 1 ' Count time
 LOOP UNTIL (n=15 OR in1=0)' Get data at 15 second intervals
 ' Can press button to get data too.
 n = 0 ' ... and so on as in the original

√ Download the modified program.
√ Press Reset on your Board to start your experiment.

The routine still accepts clicks for data logging. The number n can be up to 65535
seconds–more than 18 hours between readings–if you care to start a long term
experiment!

Alternative Scale for the Light Sensor in Bright Light, Easy Method
If you want to measure brighter light, outdoors in sunlight for example, here is an easy
"ballpark" way to go about it.

√ Insert the 0.22 µF capacitor in place of the 0.01 µF capacitor in the photodiode

circuit.
√ Put a factor of 22 in the three lines that calculate the light intensity:

light = log(n+1)*44 ' Get light.

…and

Page 114 · Applied Sensors

' Calculate lux
light = 65535/rct*/Lical*22

…and
log(ptr)= light/44 MAX 255 ' Store light intensity/44

This works because the new capacitance is 22 times the old capacitance. The rct value
that used to be produced at 100 lux is now produced at 2200 lux. Recall the effect of
doubling the capacitance earlier in this lesson. The old range of measurement was 0 to
512 lux. That is now 0 to 11264 lux.

Alternative Scale for the Light Sensor, Calibration in Full Sun
This will give a light sensor reading in PAR, which are units of micromoles of quanta per
square meter per second. If you read the section about light intensity, you know that this
is the measurement used for plant growth. This is again a ballpark calibration! Our
photodiode does not have the filters that would limit it to the wavelengths best for plant
growth.

√ Put the 0.22 µF capacitor in place of the 0.01 µF capacitor.
√ Temporarily make the constant Lical equal to 256 and take out the divide and

multiply factors in the light calculations:

Lical CON 256 ' Calibration constant for photodiode
log(ptr) = light MAX 255 ' Store raw light intensity.
light = log(n+1) ' Get light.

Recall that in using the */ operator, */256 is like doing nothing. It is the fraction 256/256,
unity. Recall also that when we calculated a calibration constant for units in lux, we
assumed a known value of 425 lux at one meter from our spotlight. Now we will assume
a known value of 2000 PAR in full direct sunlight.

√ Place the photodiode sensor directly facing the outdoor sun. Of course, you may

have to go outside with your Board running on the battery on a sunny day to do
this! You can log data by pressing the button, or by using the timed data mode,
depending on how you have your current program configured.

√ Upload the data to the Debug Terminal. (Note: if the light readings are 255, that
means it is out of range, too bright. Put a piece or two of tissue paper over the
sensor held with a rubber band, and try again.)

√ Record the raw value of light shown in the Debug Terminal in the second column.

Chapter 4: Light on Earth and Data Logging · Page 115

√ Multiply the raw value times 2000, and then divide by 256. Insert this as the new
value for Lical. For example, given a raw value of 188:

2000*256/188 = 2723.

Lical CON 2723 ' Cal. Constant for photodiode

√ Change this line of code again so that when it is stored, it is reduced to a byte-sized

value by dividing by 10:

log(ptr) = light/10 MAX 255 ' Store PAR/10

√ And change this line of code so that when it is retrieved for use, it is re-multiplied

by 10.

light = log(n+1)*10 ' Get PAR

Of course, we lose some resolution, because the final digit used will always be a zero
regardless of our initial measurement.

√ Also, change the units of measurement in the DEBUG CLS statement from "lux" to

"PAR."

Now, when the light sensor is in full sun, it should log a reading of about 2000 PAR.

Use your logger to explore the temperatures and light levels in the outdoor
environment!

√ Modify your program to log readings automatically once every two hours (7200
seconds).

√ Come back in 18 hours to see what happened to light levels and temperature while
you were away!

Page 116 · Applied Sensors

Challenge!

1. Do you understand energy per unit area? A certain laser puts out a total energy
of one milliwatt into a beam with a cross sectional area of one square millimeter.
How does the intensity of that light compare with the intensity of sunlight, which
is about 1000 watts per square meter?

2. Assignment: Pluto. You are planning to visit the planet Pluto, and you want to

know how bright the light will be there. Guess–would it be enough to read this
page comfortably?

a. Estimate Pluto's daytime illumination in lux. (The earth is 149,500,000

kilometers from the sun, while Pluto averages 5,920,000,000 kilometers
from the sun. On Earth, with the sensor pointed directly at the sun, we
measure about 110,000 lux. Approximately what value in lux will you
measure when you point the light meter at the sun from Pluto?

b. Using your calibrated BS2 light meter, find a place in your environment
where the ambient light level falling on this page would be comparable
to what you will experience outdoors on the sunny side of Pluto.

3. Reaction Time Tester Install a light emitting diode and 470 ohm resistor on

your Board so that a HIGH 9 instruction can turn it on, and LOW 9 can turn it off.
Write a program that does the following to test your reaction time. When you
press and hold down the pushbutton, the program waits a random amount of time
from 1 to 15 seconds, and then turns on the LED. Then you have to release the
pushbutton as fast as you can. The program should use the RCTIME instruction to
measure the time it takes to release the button. Then it displays your reaction
time in milliseconds on the Debug Terminal, turns off the LED, and goes back to
the top to await another round. The program should test to see if you released the
button before the LED goes on, and call you a "cheater" if you do.

4. Colorimeter In your kit you have a red and a green light emitting diode. Not

only can these diodes emit light, they can also act as photodiodes to receive light.
That is, the reverse current in the LED is proportional to light level hitting it.
They respond best at the same color they emit. So a red LED responds most to
red light, and green to green. Hook up the red and the green LEDs as shown in
Figure 4-5 except use BASIC Stamp I/O pins P8 and P9, and use 100 pF
capacitors. The current produced by the LEDs is very small. You may reverse

Chapter 4: Light on Earth and Data Logging · Page 117

the position of the diodes and the capacitors to get more sensitivity if needed.
Write a program that reads the output of both sensors in succession and displays
the result on the Debug Terminal. With the sensors in bright white light, the two
readings will be different, because two diodes will have different natural
sensitivities. Adjust the amount of light reaching the diodes, or adjust the scaling
in the program, so that both readings are the same in white light. Then try putting
red and green filters in front of the diodes. Have the diodes look at different
colors of paper or through different filters, or at the light from a prism.

Page 118 · Applied Sensors

Chapter 5: The Liquid Environment · Page 119

Chapter 5: The Liquid Environment

The theme of the Liquid Environment experiment is "level and conductivity of water as
examples of sensors of the liquid environment." This is a more difficult kind of sensor,
but we'll continue with the data logging experiments. The activities associated with this
experiment consist of:

• Conductivity using ON-OFF input or RCTIME
• Adding a 555 oscillator as an input to your Board of Education or HomeWork

Board
• Using the 555 oscillator for measurement of conductivity in water using stainless

steel probes
• Adding a conductivity measurement to the data logger from Chapter 3

The view of Earth from our moon in 1969 cleared up for once and for all that we live on a
water planet. Scientists, farmers, emergency response agencies, the general public,
everybody needs to know some "how, when, or why" about water. When is it going to
rain? How deep is it? How cold, how hot, how clear, how clean? What minerals, what
organic materials does it contain? How fast is it moving? How much is underground?
How long has it been there? How much water is in the ice caps, the oceans, the rivers, in
living tissue? How do raindrops form? What makes an El Niño event? What happens
inside a cloud when it snows? Is there danger of landslides, droughts, floods, or famines?
Can a cactus survive here? Can a frog, or a mouse? Can I drink it? Are our wetlands
disappearing? Should we care?

So, water will be the third variable we get to in this book. What can you measure about
water? I am sure that you can think of hundreds of things right off the bat. We will
concentrate on a couple. The first is to detect its presence, or its level. This is the sort of
measurement that is needed in order to monitor or control the level of water in a stream,
or a fish farm, or a water treatment plant, or when it is a question of when to irrigate a
field or a potted plant. The second type of measurement will be the electrical conductivity
of water. This is a measurement that is used to detect the presence of salt and minerals in
water, and it is also used to assess the quality of drinking water or to study the mixing of
fresh and salt water in a tideland or an estuary. There are many kinds of water
measurements that require different sensors, like how acidic it might be, or how clear it
might be. It is a big field, with lots of research going into the development of sensors that
can detect the quality of water.

Page 120 · Applied Sensors

Measurements in the liquid medium are more problematic than measurements of
temperature or light. The sensor probes that detect temperature or light do not actually
have to contact the medium electrically. In contrast, wetness sensors often do have to
come in direct contact and are subject to corrosion and all sorts of electrical interactions
with metals, ions and currents in the liquid medium itself.

Following that observation, we want to make an IMPORTANT precautionary note.
Water and electricity don't mix, usually, without planning. Do not, we repeat, do not, by
any mistake, spill water on your Board of Education or HomeWork Board! And always
be careful about your own safety when working around electricity and water.

Parts Required

The following parts are required for this experiment:

(1) LMC555 CMOS timer
(4) Jumper wires
(2) 0.1 µF capacitor
(1) 100 Ω resistor
(2) 100 kΩ resistor
(1) Conductivity sensor
(1) Cup (not included)
Water
Salt

Building the Circuit

Wetness Alarm
In Chapter 3 you experimented with the conductivity sensor in your kit, as a way of
introducing the RCTIME command. We removed it from your breadboard after that
experiment, but now we will be using it again.

√ Build the circuit shown in the schematic (Figure 5-1) and wiring diagram (Figure

5-2.

Chapter 5: The Liquid Environment · Page 121

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P5

P0

Vss

Vdd

Vdd

Vss

1 kΩ

100 Ω

100 Ω

Vss

0.1 µF

0.01 µF

P6
Photodiode

100 Ω

Vss

P10

Vdd

0.22 µF

AD592 Temperature
probe

P1

Vdd

Vss

220 Ω
10 kΩ

Conductivity
sensor

1.3 V

100 kΩ

Figure 5-1
Conductivity Sensor
Schematic

Page 122 · Applied Sensors

Figure 5-2: Conductivity Sensor Wiring Diagram

√ Now enter the program WetnessAlarm.bs2.

' Applied Sensors – WetnessAlarm.bs2
' Wetness alarm.
' {$STAMP BS2}
' {$PBASIC 2.5}

DO
 DEBUG BIN IN10
 IF IN10=1 THEN FREQOUT 0, 6, 2550
 PAUSE 50
LOOP

√ Fill your cup with water to within 2 inches of the rim.
√ Leave the conductivity sensor on a non-conducting surface.

Chapter 5: The Liquid Environment · Page 123

√ Run the program. Did you hear anything?
√ Now place the sensor over your cup of water, with the two probes (screws)

hanging into the water while the cup spanner rests on the rim.
√ Run the program again. What did you hear this time?

This is your basic water detector and alarm. When you run the program, you will not hear
anything until you dip the probes in the water. The program here is like the pushbutton
routines you studied in Chapter 2, where pushing down the button made the "cricket"
sound. Here, the conductivity sensor's probes in water take on the role of the pushbutton.

√ Recall the discussion of the conductivity sensor as a variable resistor in Chapter 3.
√ Explain what is going on by adding remarks to program WetnessAlarm.bs2.
√ Try replacing the IN10=0, with IN10=1, and see what happens.
√ Think of a situation where that flavor of alarm might be useful.

Why is a 100 kΩ resistor chosen for the circuit? The resistor sets the sensitivity. With
higher resistance values, we would run the risk of the circuit saying "wet!" even if a little
condensation forms on the wiring. With lower resistance values, that type of error
becomes less likely, but on the other hand, the sensor might fail to say "wet" when it
should, if the water happens to be especially pure and non-conductive. It comes down to
trial and error.

√ Remove the 100 kΩ resistor from the conductivity sensor circuit.
√ Replace it with a 1 kΩ resistor.
√ See how much moisture across the probes is needed to trigger the sensor.

You will find that you have to get the probes much wetter than before, to get the alarm.
This kind of wetness alarm is used to train toddlers not to wet their bed. A pad absorbs
urine and sets off the alarm. A similar circuit is used to set off the alarm in industrial
plants if there is a spill.

Imagine expanding this circuit to control water level. If the water is spilled, we could turn
on a pump clean it up. Then when sensor tells us the level is down, we turn the pump off.
That is how a sump pump works, to keep water out of someone's basement, or a bilge
pump to keep water out of a boat. But we are getting ahead of the game. That is the topic
for Chapter 6. At this point the game is to look into quantitative analog measurements,
not just "yes/no" but "how much water" and "water of what quality?"

Page 124 · Applied Sensors

Measurement of Conductance using RCTIME

√ Remove the 1 kΩ resistor (where the 100 kΩ resistor used to be) from the
conductivity sensor circuit.

√ Replace it with a 0.1 µF capacitor. This is now precisely the circuit shown in
Figure 3-4 Figure 3-5.

√ Enter the program Conductivity.bs2.

' Applied Sensors – Conductivity.bs2
' RCTIME measures conductivity.
' {$STAMP BS2}
' {$PBASIC 2.5}

rct VAR Word ' Word variable for RCTIME.
n VAR Byte ' Variable for the bar graph.

LOW 10 ' Discharge the capacitor to 0 volts.

DO
 RCTIME 10, 0, rct ' Time for the volts to rise to 1.3V.
 LOW 10 ' Discharge the capacitor to 0 volts.

 rct = rct – 1 ' Calculate length of bar graph.

 DEBUG DEC rct, TAB, ' Display ASCII art bar graph.
 REP "*"\NCD rct, CR

 PAUSE 1000 ' Slow it down to 1 per second.
LOOP

√ Run the program. Now you have a digital output that reflects the resistance of the

water between the probes.
√ Hold the conductivity sensor's probes in the water to the depths indicated in Table

5-1. You will have to figure out how to determine the depth in the water. Maybe
you can put marks on the side of the cup, or on the sensor itself.

√ Measure and record your findings in Table 5-1.
√ Observe how the numbers change as you change the depth of the probe in the

water.

Chapter 5: The Liquid Environment · Page 125

Table 5-1: Depth/Resistance Relationship
Probe Location RC-time Reading

Probe not in water
Probe tip only touching water

Probe 1cm in water
Probe 2cm in water
Probe 3cm in water

Do you see a trend?

√ Try repeating the measurements a few times, and write down the numbers.
√ Allow the probe to sit at depth for a minute or two in the water.

Are the readings repeatable? That is, do you get the same result each time?

Here are a couple of program notes. First, why include the formula, rct=rct-1? The
reason is to make the graph look better. As you pull the probe out of the water, the
number rct gets larger and larger, but suddenly when the probe leaves the water, rct
suddenly goes back to zero. That is due to a peculiarity of the RCTIME command, which
returns the value "0" as a kind of error message when it runs over its maximum value.
By putting in the formula rct=rct-1, we are in effect making "aces high."

When you subtract 1 from zero in integer arithmetic, you get 65535. When you use
microcontrollers, or really, when you program any computer, you often have to
compensate for the little peculiarities of the commands available to you.

How about the graph? It uses a DEBUG modifier:

 REP "*"\NCD rct

You know rct is the variable. REP is short for "repeat." It repeats printing the character
"*" on the Debug Terminal, and the number of times it repeats is given by the number
after the "\" For example:

 DEBUG REP "*"\12

Page 126 · Applied Sensors

would print 12 stars in a row in the Debug Terminal. You could also program that as:

 DEBUG "************"

But doing it with REP is more concise. And the number after the "\" can be a variable,
which can be very useful. Here the variable after the "\" is actually an expression that
results in a number. The expression is NCD rct. The NCD is a math operator unique to the
BASIC Stamp. The result is just the length of the number rct in binary form. For
example, if rct=35 in decimal, its binary form is rct=%100011. The length of that binary
number is 6 binary digits. Run that through the NCD operator, and NCD rct returns the
value, 6, and six stars are printed on the Debug Terminal. Maybe you will never have to
use that command! But there it is, to add to your bag of programming tricks. The number
of stars increases by one for each doubling of the value of rct.

We will take one more measurement series for the above table, with the electrical
connection to the conductivity sensor reversed:

√ Take out the probe wire that connects to Vdd.
√ Place it in the breadboard where the other probe wire normally belongs.
√ Connect the probe wire you just removed from the breadboard to Vdd instead.
√ Make the series of measurements again as listed in Table 5-1.

You will probably find that the numbers are a little different. The difference is due to
what is going on in the liquid medium, as electricity passes through it from one probe to
the other.

The effect you are seeing is called "polarization." Chemical reactions are actually
changing the electrode. This is not a big deal for the simple on-off kind of sensor, but it is
a disaster for quantitative measurements. Polarization occurs because the electrical
current is constantly moving in one direction through the probe. It is direct current, DC.
The simple cure is to drive the sensor with current first one direction and then other. That
is alternating current, AC. Many of these chemical reactions are reversible, up to a point,
so the alternating current leads to much more stable readings. The BASIC Stamp can't
supply the necessary AC signal. An external chip can help here.

Measurement of Conductance using the 555 Timer IC

√ Remove the conductivity sensor circuit.

Chapter 5: The Liquid Environment · Page 127

√ From the Parts Required list at the beginning of the chapter, gather a 100 Ω
resistor, a 100 kΩ resistor, a 0.1 µF capacitor, the jumper wires, and the 555 timer
IC chip.

√ Install the 555 timer IC circuit shown in the schematic (Figure 5-3).
√ Be attentive to follow the parts placement in the wiring diagram (Figure 5-4) since

the wiring is getting tight!

Page 128 · Applied Sensors

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P5

P0

Vss

Vdd

Vdd

Vss

1 kΩ

100 Ω

100 Ω

Vss

0.1 µF

0.01 µF

P6
Photodiode

1

2

4

3

8

7

5

6

Res

Out

Trig

GND

Con

Thres

Dis

Vcc

555 Timer

X nc

X nc

100 Ω

Vss

P9

P10

100 kΩ

Vdd

0.1 µF

0.22 µF

AD592 Temperature
probe

P1

Vdd

Vss

220 Ω
10 kΩ

Figure 5-3
Conductance Using the
555 Timer Schematic

Space on the
breadboard is
becoming very limited.
Follow the wiring
diagram below exactly
to make the project fit
on the breadboard.

Chapter 5: The Liquid Environment · Page 129

P15
P14
P13

P10
P9

P6
P5

P1
P0

P12
P11

P8
P7

P4

P2
P3

X2

X3
Vdd VssVin

D
S1620

555

+

Figure 5-4
Conductance
Using the 555
Timer IC Wiring
Diagram

This circuit is an astable multivibrator. That is terminology held over from the early days
of electronics. All it means is that the circuit output (pin 3 of the 555 timer) alternates
from high to low repeatedly on its own. The resistor from pin 3 to pin 2, along with the
capacitor from pin 2 to pin 1, determine the frequency of oscillation. P10 on the BASIC
Stamp will be configured as an input so that it can monitor the frequency produced by the
555 timer. I/O pin 9 will be configured as an output that can turn the 555 timer ON or
OFF. When P9 is high, the 555 timer is ON. There are several ways to hook up the 555
timer chip, in fact, there are entire books devoted to nothing but the 555 timer!

√ Enter and run the Test555.bs2 program:

Page 130 · Applied Sensors

' Applied Sensors – Test555.bs2
' Test of the 555 oscillator.
' {$STAMP BS2}
' {$PBASIC 2.5}

cnt VAR Word ' Word variable for count.

HIGH 9 ' Turn on the 555 oscillation.

DO
 COUNT 10, 1000, cnt ' Count for one second.
 DEBUG DEC cnt, CR ' Show values.
LOOP

Here are the arguments of the BASIC Stamp 2 COUNT command:

RAM variable for the result of counting.
Count this long in milliseconds, duration.

COUNT 10,1000,cnt

 Pin to use for counting, a BASIC Stamp input.

√ When the Duration argument is 1000, the reading you see in the Debug Terminal

should be about 75. Write down your reading.

cnt = ________ for COUNT Duration of 1000, 100 kΩ resistor, 0.1 µF capacitor

√ Now place a second 100 kΩ resistor in parallel with the first, side by side in your

breadboard. The parallel combination of two 100 kΩ resistors is a resistance of 50
kΩ (the series combination gives 200 kΩ). The frequency should be about double.

√ Enter the value in Table 5-2 below.
√ Now put the two 100 kΩ resistors in series from pin 2 to pin 3 of the 555. The

frequency should now by 1/2 of the original value.
√ Also record this value in Table 5-2.
√ Calculate the value of 1/R, which is called the conductance, and has units of

siemens (an older, more colorful term for conductance is the mho, or ohm spelled
backwards: 1 siemen = 1 mho).

√ Make a quick graph of the frequency versus resistance, and a graph of frequency
vs. conductivity in the space provided below.

Chapter 5: The Liquid Environment · Page 131

Table 5-2: 555 Timer Test
R, resistance,

ohms
G, conductance,

mho (= 1/R)
cnt, from BASIC Stamp

COUNT command
50 k

100 k
200 k

You'll need to calculate G = 1/R, and measure cnt from Test555.bs2

Frequency versus Resistance Frequency versus Conductivity

(fill in your values) (fill in your values)

cnt

ohms

cnt

Mhos

√ Observe which graph is more linear.

Why do we have to have to talk about both resistance and conductance, if one is just the
inverse of the other? Get used to it! There is a separate term for the inverse of everything
in electronics. In electronics it is more common to talk about resistance. However, in
materials science, chemistry, and environmental instrumentation, it is more common to
hear the term conductance. Maybe that is because in the liquid medium there are many,
many different paths between any two points. The different paths are like many resistors
in parallel, and changes in the liquid medium tend to change those parallel elements. So it
is easier to talk about conductance, where conductances add in parallel. Figure 5-5 shows
how resistors are placed in series and parallel to measure resistance I and conductance
(G).

Page 132 · Applied Sensors

R + R ohms 1 / (1/R + 1/R) ohms

1 / (1/G + 1/G) mhos G + G mhos

Figure 5-5
Resistance and
Conductance Formulas

Resistance R, and conductance G, of
series and parallel resistors
(conductance). The formula for parallel
resistors is easier in terms of
conductance.

√ Restore your circuit to the original single 100 kΩ resistor.
√ Modify the program Test555.bs2 by changing the Duration argument from 1000

ms to 500 ms.
√ Run the modified program and observe the reading.
√ Now repeat with a Duration of 2000 milliseconds.

Did you see that the reading changes by a factor of close to 2 each way?

Let's look at this another way. Just above you wrote down a value of cnt, the value that
came out when a 100 kΩ resistor and a 0.1 µF capacitor were in the circuit, and the
duration argument was equal to 1000 in the COUNT command. What Duration argument
would you have to put in the COUNT command in order to make the reading come out at
100 instead of at 75 (or your reading)? Well, you just have to make the Duration
argument proportionately longer. A longer Duration gives you a higher count, right?

√ So calculate:

Duration = 1000 * (100/75) = 1333, but you need to use your own reading:

Duration = 1000 * (100/) =_______ (use your reading to obtain the result)

That is your Duration calibration constant. You will need it again.

√ Modify Test555.bs2 again, using your Duration calibration constant as the COUNT

command's Duration argument.
√ Run the program and observe the results.

Now when you run the program with 10-5 siemens (100 kΩ) in the circuit, it should
display 100 in the Debug Terminal instead of the original value. The point of this is that

Chapter 5: The Liquid Environment · Page 133

the Duration argument in the COUNT command can be used to scale the result, so that it
appears directly in siemens. We want you to think quantitatively!

Now let's change the DEBUG command so that it shows the units. And while we're at it we
might as well calculate the resistance in ohms and display that too. The resulting new
program is given below.

√ Enter the program Calibrate555.bs2.

' Applied Sensors – Calibrate555.bs2
' Calibration of the 555 oscillator.
' {$STAMP BS2}
' {$PBASIC 2.5}

cnt VAR Word ' Word variable for count.
R VAR Word ' Word variable for resistance.

HIGH 9 ' Turn on the 555 oscillation.

DO

 COUNT 10, 1333, cnt ' Count for about one second.
 '^^^^-------- You use your own constant here!!!
 R = 50000/cnt*2 ' Calculate resistance R = 1/G.

 DEBUG DEC cnt, "E-7", ' Show values.
 TAB, DEC R, "00", CR

LOOP

√ Run the program and observe the results.

The display should now show 100E-7 (for 100*10-7 siemens), and in the second column
it should show 100000 (for Ω).

√ Verify the calibration by putting the extra 100 kΩ resistor in parallel to with the

first again to get a resistance value of 50 kΩ back in the circuit.
√ Run the program again and observe the change in your readings.

The display should show 200E-7 siemens and 50000 Ω. Notice that the resistance reading
appends two zeros to the value of R, to make it come out in Ω.

Page 134 · Applied Sensors

Theory behind using a 555 timer to measure conductivity:

There are many references that talk about how the 555 timer circuit works, and how to apply
it, even whole books on nothing but the 555 timer! The important point for measuring
conductivity is that the current through the resistor in this circuit goes back and forth, first
one direction and then the other direction, equal and opposite. As we discussed above, that
is what we are looking for in a probe to put in the liquid medium. There is a balance of
current flow in each direction, to forestall corrosion, plating, and polarization. The theory for
the 555 timer is very similar to the theory for RCTIME, but we don't want to get into it here.
The equation for the output frequency is approximately: f = 3/4*R*C. With R = 100000 Ω
and C=0.1µF, that comes out to 75 hertz.

Conductance in Water

Now it is time to dive in!

√ Gather up a cup full of water if you don't have one now, and keep a spoon and a

couple of pinches of table salt handy.
√ Re-install the conductivity sensor. Figure 5-6 shows how to connect the probe to

the 555 timer on your breadboard.
√ Leave the Duration calibration constant you calculated for your setup in place for

the COUNT command's Duration argument.

555, pin 2

555, pin 3

Figure 5-6
Conductivity Sensor

Replace the 100 kΩ resistor with
the conductivity sensor.

√ With the conductivity sensor in the circuit, run program Calibrate555.bs2 again.
√ Place your fingers across the probe to see if you get a reading in siemens and in Ω.
√ Wet your fingers and take another reading. How do you explain the result in terms

of conductances?
√ Without touching the probe with your fingers, touch the probe to the leads of the

100 kΩ resistor, to confirm that the meter still reads correctly. It should read 100E-
7 siemens, 100 kΩ.

√ Immerse the probes in the center of the cup of tap water to a depth of 4 cm.
√ Read the conductance from the Debug Terminal.

Chapter 5: The Liquid Environment · Page 135

√ Record the reading in Table 5-3.
√ Repeat and record the conductance measurements at depths of 3, 2, and 1 cm,

completing Table 5-3.

 Table 5-3: Distilled or Tap Water Conductance vs. Depth
Water level Conductance

1 cm
2 cm
3 cm
4 cm

√ Keeping the sensor at one constant depth, move it over until it is near the side of

the cup.
√ Look for a change in the conductivity reading.

What happens to the reading, and can you explain why in terms of conductances in
parallel?

√ Move the sensor back to the center of the cup.
√ Note the reading.
√ Bring a metal object such as the back of a metal spoon up near the sensor probe.
√ Look for a change in the conductivity reading.

How does that affect the reading, and why is it different from bringing the probe near the
side of the cup?

√ Drop a pinch of salt crystals into the cup, but do not stir.
√ Look at the conductivity reading.
√ Stir to disperse and dissolve the salt crystals.
√ Look at the reading again. Surprised?
√ Hold the probes in the saltwater at a depth of one centimeter.
√ Observe and record the reading in Table 5-2.
√ Repeat the measurements for each depth until Table 5-2 is completed.

Can you see the pattern emerging? How do you think this may be useful?

Page 136 · Applied Sensors

Table 5-4: 555 Timer Test
Pinch of Salt Dissolved in Water, Conductance versus Depth

Water level Conductance
1 cm
2 cm
3 cm
4 cm

Conductivity is often used to determine the salinity of water (how much salt it contains
per unit volume), or more generally, how much mineral content is present. If you used tap
water, you might try the experiment again using distilled water. By holding the depth
constant, you could use this probe to measure salinity, which is closely related, through a
rather complicated formula, to conductivity.

Note that in each case the conductance is proportional to depth, either in the tap water, or
in the salt water. You can use this device to measure the depth of water.

However, the two measurements are confounded. To use the device to measure depth,
you have to be sure that the amount of salt in the water is going to be constant, or you
have to acquire a separate measurement of conductivity in order to compensate. On the
other hand, in order to measure conductance, you have to be careful to keep the sensor at
a constant depth.

Design of professional instruments is largely concerned with overcoming or
compensating for the effects of confounding variables. For conductivity measurements,
great care is taken to confine the solution to a fixed volume, and to use stable electrode
materials, and to monitor the temperature at the point of measurement. Professional water
depth meters are seldom based on the conductance principle because of these difficulties.

The conductivity of water in the natural environment spans many orders of magnitude.
Conductivity is measured in units of siemens per centimeter. Ocean water may have a
conductivity of 50000 siemens per cm, whereas pure distilled water may have a
conductivity of mere microsiemens per cm.

Chapter 5: The Liquid Environment · Page 137

H O2

1 cm3

Conductivity

I I I I I I I I

Figure 5-7
Conductivity Measurement

Conductivity is measured, in theory, with a block
of material, 1 centimeter on a side. Electrodes
are fastened to two opposite faces of the block,
and the conductance is measured. Since the
sample block is one cm long, the conductivity is
in units of siemens per cm. Conductivity
measurements are reported as if they were
made in this setup, but the actual measuring
setup is a lot more complicated!

To calibrate a conductivity instrument, you would need to have a standard salt solution
that lets you make the leap from conductance (measured by your BASIC Stamp across its
particular sensor) to conductivity (a property of the water being measured, independent of
peculiarities of the measuring instrument). You have to find a constant, called the "cell
constant" or the "instrument constant" that accounts for the actual geometry of the probe
you are using. It is a constant of proportionality. We leave the calibration to the
exercises that follow this experiment.

What is the difference between conductance and conductivity?

Conductivity is a property of materials. Materials that conduct electricity well, like metals,
have a high conductivity, while insulators have low conductivity. If you take a thin wire one
meter long, it will have a certain resistance from end to end, and its conductance will be
simply one over the resistance. A thicker wire made of the same material and of the same
length will have a lower resistance and a higher conductance. The conductivity of the wire is
the same in both cases. It is a property of the material itself, not the quantity of the material.

Data Logging Continued: Drying of Soil

In the natural world, the phenomenon of evaporation is very important. Water evaporates
from the soil, and water is also lost in the transpiration of plants. The rate of evaporation
and other mechanisms of water loss depend on the solar intensity, the wind speed, the
temperature, the humidity and the ground cover. You can use your BASIC Stamp-
controlled data logger to study evaporation. On a practical basis, you can use your logger
to tell you when to water your houseplants or your garden!

√ Enter the program RAMDataLogger.bs2 (which is a modification of

LightTemperatureLogger.bs2) as shown below.

Page 138 · Applied Sensors

' -----[Title]---
' Applied Sensors – RAMDataLogger.bs2
' Temperature and light intensity logging in RAM.
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Constants]---
Kal CON 15068 ' Calibration constant for AD592.
Lical CON 647 ' Calibration constant for photodiode.
CondCal CON 1333 ' Calibration constant for conductance.
' Use Your Own Calibration Constants!!
Interval CON 10 ' Get data once per ten seconds
 ' you can choose whatever interval you need.
' -----[Declarations]--
log VAR Byte(18) ' 18 bytes reserved for the log file.
rct VAR Word ' Variable for RCTIME.
light VAR Word ' Variable light intensity.
TC VAR Word ' Variable for degrees Celsius from AD592.
n VAR Byte ' Counter for the pushbutton.
ptr VAR Byte ' Pointer to next entry in data log file.
cnt VAR rct ' Variable for conductivity ALIAS of rct.

' -----[Initializations]---
OUTS=%0000000001000000 ' Now put in the OUTS and DIRS statements.
 'fedcba9876543210
DIRS=%1111101111111101 ' All are low outputs.
 ' ^ ^ ^------------- except P1 is input for pushbutton
 ' ^ ^------------------ P6 is high output to discharge C
 ' ^---------------------- and P10 is input for conductivity (555).

ptr = 0 ' Pointer initialization.
DEBUG CLS
DEBUG "Ready to log data!", CR,
 "degC", TAB, ' Display units.
 "lux", TAB, "siemens", CR
FREQOUT 0, 200, 2550 ' Initialization sound.
FREQOUT 0, 400, 3400

' -----[Main Routine]--
DO ' Main loop.

 n = 0 ' Initialize counter.
 DO ' Loop here until button or time.
 PAUSE 1000 ' One second pacing.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=0 OR n=Interval)' Time out or button pressed.

 FREQOUT 0, 5, 3400 ' Tick for button down or time out.

 n = 0 ' Initialize counter.
 DO ' Loop to track pressing time.

Chapter 5: The Liquid Environment · Page 139

 PAUSE 100 ' Time the button in 0.1 sec increments.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1 OR n>12) ' Conditions to stop the loop.

 IF (n>=12) THEN ' *Long click?
 GOSUB Long_Click
 ELSEIF ptr>17 THEN ' *Short click or time out
 GOSUB Memory_Full ' but memory full?
 ELSE ' *Short click or time out?
 GOSUB Get_Data
 ENDIF

LOOP ' Jump to the main loop.

' -----[Subroutines]---
Long_Click:
 FREQOUT 0, 50, 2550 ' Feedback sound.
 FREQOUT 0, 100, 3400

 ' Message on screen print units of measurement
 DEBUG CLS, "logged data!", CR, "degC", TAB,"Lux", TAB, "mho", CR

 FOR n=0 TO 15 STEP 3 ' Will show 6 records.
 TC = log(n) ' Get temperature.
 light = log(n+1) * 2 ' Get light.
 cnt = log(n+2) ' Get conductivity.
 DEBUG DEC TC, TAB, ' Display.
 DEC light, TAB,
 DEC cnt, CR
 NEXT ' Next record.

 DO ' Do nothing
 LOOP UNTIL (IN1=1) ' until button is released.

 DEBUG CR, "press RESET to erase data", CR
RETURN

Memory_Full:
 DEBUG CR, "memory full" ' Message.
 FREQOUT 0, 50, 3400 ' Audio indication.
 FREQOUT 0, 200, 2000, 2100
RETURN

Get_Data:
 FREQOUT 0, 10, 1900 ' Sound to show we got here.

 ' Temperature.
 RCTIME 5, 0, rct ' Read temperature probe.
 LOW 5 ' Discharge AD592 capacitor.

 ' Calculate Celsius.

Page 140 · Applied Sensors

 TC = Kal / rct * 10 + (Kal // rct * 10 / rct) – 273

 log(ptr) = TC ' Store temperature.
 ptr = ptr + 1 ' Point to next bin.

 ' Light.
 RCTIME 6, 1, rct ' Read photodiode.
 HIGH 6 ' Discharge photodiode capacitor.

 ' Calculate lux.
 light = 65535 / rct */ Lical

 log(ptr) = light/2 MAX 255 ' Store light intensity/2.
 ptr = ptr + 1 ' Point to next bin.

 ' Conductivity.
 HIGH 9 ' Turn on the 555.
 PAUSE 100 ' Delay for it to get up to speed.
 COUNT 10, CondCal, cnt ' Count the frequency.
 ' use your scale factor!!!
 LOW 9 ' Turn off the 555.

 log(ptr) = cnt ' Store the conductivity.
 ptr = ptr + 1 ' Point to next bin.

 ' Display values.
 DEBUG DEC TC, TAB, DEC light,
 TAB, DEC cnt, "E-7", CR
RETURN

This adds conductivity to the mix. Now you will be able to store 6 readings in memory
and read them out later. The total number of bytes available for logging is 18. With 3 per
record, that means we are limited to 6 records total.

Recall from Chapter 4 that we ran out of variables for that program. We used 18 bytes for
the data log file, and the rest of the available variables for the program. In this program
we reuse the variable rct for the COUNT function for conductivity. We call it cnt, and
define it in a variable alias statement at the top of the program. That means the cnt and
rct are really the same physical variable. Changing one of the variables changes them
both, simply because they are physically the same.

There is nothing unusual about this program. It is a straightforward expansion of the one
from Chapter 4. It seems to be getting longer, but each piece has its special part to play.

Chapter 5: The Liquid Environment · Page 141

In this program the OUTS and DIRS statements are modified to take account of the new
pins. P10 is an input for the COUNT operations. P9 is an output to turn the 555 timer on
and off. The new quantity Interval is a constant for the number of seconds between
readings (0-65535). The new program has the code necessary for the conductivity probe.
We have made a modification to the Long_Click routine to play back the conductivity
data

√ Get this program running, and tested at 10 second intervals.
√ Insert the temperature probe and the conductivity sensor in a cup or flower pot full

of vermiculite or other potting medium.
√ Place the whole set-up in the sun, with the light sensor set for outdoor light.
√ Leave it for 6 hours.
√ Look at your data. Is the time interval appropriate?

If you are doing this in a classroom, different groups can do the experiment with
variations. For example, some in the sun, some in the shade, some with ventilation, some
not. Use a real potted plant. Experiment – that's the way you learn how to use
microcontrollers!

Alternatively, for a quicker experiment, drape a wet paper towel over the conductivity
sensor probe. Follow and log the conductivity and temperature of the paper towel as it
dries out.

Additional Experiments to Try

Condensation Sensor

√ Press a piece of dry plastic or glass up against the screws on the sensor. Note the
conductivity reading.

√ Place the glass or plastic surface near your face, and exhale on it slowly to fog it
up.

√ Retake the conductivity reading.

When the glass is dry, it is an insulator, and the conductivity is low. But if you breathe
heavily on the glass, it will deposit condensation that will conduct electricity. Depending
on the temperature and humidity, you may have to chill the surface before condensation
will form. This kind of sensor is useful in agriculture, where condensation forming on

Page 142 · Applied Sensors

leaves of plants can lead to infection by fungus and scab diseases.

Humidity Sensor

√ Find a length of heavy thread or light-weight cotton twine.
√ Soak it in salt water (a pinch of salt will do).
√ Wrap it around the stainless steel screws of the conductivity sensor.
√ Dry it off with a hair dryer and observe the conductivity while you do this.
√ Let the string come back to atmospheric moisture.
√ Exhale slowly on it, and see if the conductivity will increase.

The NaCl has a transition point at about 75% humidity where it picks up lots of water.
Below 75% humidity, NaCl tends to give up water to the atmosphere. Above 75%
humidity, NaCl tends to absorb moisture from the atmosphere. The conductivity follows
along. Different salts respond at different humidity levels.

Surface Explorer

√ Create a shallow pool of water in a large shallow plastic or glass tray or dish.
√ Carefully put some pieces of rock salt in the dish, but do not stir.
√ Use the conductivity sensor's probe to explore the diffusion of salt into your

"aquifer."

Incursion of salt water into fresh water marshes and aquifers is a big problem in areas
where the fresh water is drawn off for uses in industry and agriculture.

√ Scribble in an area on a piece of paper with heavy pencil or artist's charcoal.
√ Drag the conductivity sensor across the surface.

The variation in conductivity can be used to explore the thickness and resistivity of the
pattern and the density of the markings.

Temperature Dependence of Conductivity
The conductivity of salt solutions in water depends on the type of salt, and also on
temperature.

Chapter 5: The Liquid Environment · Page 143

√ Dissolve some table salt in a cup of water.
√ Log both temperature and conductance at a constant depth as you heat the water.

Graph the result of your experiment.
√ Repeat the same experiment with a different type of salt (say KOH).
√ Repeat the experiment again with a weak acid solution made with vinegar.

You will find that each solution has its own characteristic temperature dependence.
Commercial conductivity sensors always measure both temperature and conductivity.
From temperature and conductivity, they can then calculate the concentration of the salt.
Can you figure out how to do that calculation? Chemistry reference books, like the
Handbook of Chemistry and Physics, contain this kind of information. Look and see. You
have to know in advance what type of salt or salt mixture is in solution.

Quantitative Calibration of the Conductivity Sensor, using a Standard
Solution
In order to calibrate this sensor to measure conductivity (property of the material) instead
of conductance (an electrical quantity), you would have to prepare a standard solution
that has a known conductivity. Such standard solutions can be purchased, or you can
make them yourself in the classroom, by adding a known amount of potassium chloride
(KCl) to a known amount of water. Tables of conductivity are found in chemistry or in
water quality handbooks, or in references such as the Handbook of Chemistry and
Physics.

Once you have the standard solution, you measure its conductance with your BASIC
Stamp-controlled instrument. That gives you a constant of proportionality between your
conductance reading and the conductivity of the solution. This constant is called the
instrument constant. It has to do with the geometry of the electrodes and the cup. You
also measure the temperature of the solution. With this information in hand you can
proceed to measure the conductivity (and the concentration) of unknown water samples.

Ground Loop Error

√ Connect a long piece of hookup wire to Vss (zero volts) on your Board of
Education or Homework Board.

√ Drop the free bare end of the wire into a cup of water where the conductivity probe
is operating and showing its readings in the Debug Terminal.

√ Watch as you do this to see if the reading changes.

Page 144 · Applied Sensors

This is due to the extra ground path provided by the wire. This kind of situation is
common in large instrumentation systems, say, in a fish farm or in an industrial plant. But
it is sometimes hard to track down where the interaction is coming from. There can be
unplanned connections between points in the system. To avoid this problem, engineers
often design "isolated" sensors, which means that signals are passed across an optical link
or other barrier of that sort, so that there will be no direct electrical connection. This is
also extremely important in situations where safety and shock hazard are an issue, such as
in medical instrumentation.

Environmental Explorer
This experiment requires you to measure the conductivity of several samples of the same
volume of water collected from various places. Be prepared to do some fieldwork to
collect your samples!

√ Measure the conductivity of a sample of distilled water at a depth of 2 cm.
√ Record your reading.
√ Repeat with the same volume of tap water.
√ Repeat with the same volume of pond or lake water.
√ Repeat with the same volume of ocean water (or beg a sample from the owner of a

salt-water aquarium!).
√ Rank your samples by conductivity.
√ Begin with your sample of distilled water, and add ¼ teaspoon of salt at a time,

stirring and then measuring the conductivity between each addition.
√ Determine how much salt you had to add to your distilled water to give it the same

conductivity as your ocean water sample.
√ Use this information (the volume of your water sample, and the volume of salt

used) to calculate the volume of salt you have to add to one liter of distilled water
to make it as salty as the ocean.

Are you surprised at your answer?

Chapter 5: The Liquid Environment · Page 145

Challenge!

1. Write a program that counts the number of times you press the pushbutton in 5
seconds. The BASIC Stamp should sound a "start" tone, and then count the
number of button presses, play a "finish" tone, display the result in the Debug
Terminal, pause for 3 seconds, and then do it again.

2. Install a red and a green LED on your breadboard, so that your BASIC Stamp

can use P7 and P8 to turn them on or off. Modify the program that measures
temperature, light and conductivity as follows:

a. It should turn on the green LED if the measurements are all within

normal operating range (you decide what that range is).
b. If they go outside the normal range, the green LED should turn off, and

the red LED should turn on.
c. If they then return to normal, the green LED should come back on, but

the red light should stay on to show that there has been a "problem."
d. If the readings get way out of range, turn on the "alarm siren."

3. With the circuit of Figure 5-3, the frequency of oscillation is proportional to

1/RC, where R is the resistance, and C is the capacitance. In your kit, you have 2
of the 100 kΩ resistors and 2 of the 0.1 µF capacitors. You can put resistors in
series to make 200 kΩ, and in parallel to make 50 kΩ. You can put two of the
capacitors in series to make 0.05 µF, and in parallel to make 0.2 µF. Write a
program to show you the frequency in Hertz for each value of resistance and
capacitance in the following table:

Frequencies from 555 timer 0.05 µF 0.1 µF 0.2 µF
50 KΩ-20E-6 mho
100 KΩ-10E-6 mho
200 KΩ-5E-6 mho

This will test your understanding of how the white block is connected
underneath! Does it seem to be true that frequency = constant/RC? Graph
frequency vs. conductivity. Graph frequency vs. resistance. Which is linear?

Page 146 · Applied Sensors

Chapter 6: Measurement and Control · Page 147

Chapter 6: Measurement and Control

Editor's Note: The low-voltage pump used to develop the activities in Chapter 6 is no
longer available. Though we no longer supply the pump circuit components in the
Applied Sensors Parts Kit v2.0, we have kept Chapter 6 in the book for your reference
and adaptation to commercially available low-voltage pumps.

The theme of the Measurement and Control experiment is that the BASIC Stamp
microcontroller can do both measurement and control, closing the feedback loop. The
final activities in this text will explore:

• Feedback to control the level of water in a cup using a pump, and a conductivity
sensor as the level detector

• Simultaneous measurement and control of 4 variables

Measurement and data logging are often combined with control. Not satisfied to simply
sit there and watch, your BASIC Stamp-controlled instrument reaches out and does
something that affects the conditions in the outside world. It might open a door in
response to an approaching pedestrian. Or it might function as a thermostat, to control a
heater or a fan when the temperature gets too hot or too cold. In industry, on the farm, in
public works, in scientific research, all manner of processes need to be controlled and
regulated based on measurements to achieve a desired result. Some instruments may
themselves require internal measurement and control. Imagine what goes on in a
machine like the automated Mars rover, where robot arms and chemistry laboratories and
instruments of all kinds have to function as an integrated measurement and control
system far from human interaction. Many modern instruments, like DNA analyzers or
automated water quality analyzers, are marvels of measurement and control.

In this experiment, you will turn on a pump to regulate the water level in a cup, or to keep
up the moisture in the soil around a potted plant. You might think of this as smaller
versions of a fish farm, or a water treatment plant, or a full-scale irrigation system for a
vineyard.

Feedback is important here. It is possible to have control without feedback. If you have
an automated system pour one cup of water on a potted plant every day, regardless of the
condition of the plant, there is no feedback in that. You are in danger of over-watering the
plant, and wasting water and fertilizer besides. It might not matter with one small plant in

Page 148 · Applied Sensors

well-drained soil, but imagine a dry-land farm, or a large greenhouse operation. If the
condition of the soil or the plant is first measured, and from that decision is made of
whether or not to irrigate, that is feedback at work. The result can be a happier plant as
well as more efficient use of resources. This is especially important in places and times
where water is scarce. Feedback can take on many forms, and involve a combination of
measurements in the control decisions.

The final project in Applied Sensors will be a data logger that combines the two
temperature sensors (the DS1620 and the AD592), the light sensor, the conductivity
sensor, and the pump control in one program. The data will be stored in the BASIC
Stamp's EEPROM memory. This data logger can also be used for a variety of
experiments of your own design to undertake as class projects or on your own initiative.
Thank you for sticking with it!

Parts Required

The following parts are required to complete this experiment.

(1) 100 Ω resistor
(2) 16" jumper wires, one red and one black
(1) Cup, in which a ¼" hole can be punched or drilled near the bottom (not included)
(1) Watertight tray or shallow dish made of glass or plastic (not included)
Duct tape or extra-wide electrical tape (not included)
(1) 10 Ω, 1 watt resistor, heavy-duty heat-resistant (brown-black-black)*
(1) TX1049A NPN "superbeta" transistor (marked ZTX 104 9A)*
(1) 3V Submersible water pump with 1/4" tubing (not included)*
(1) 5 VDC 300 mA external power supply (not included)*

* Editor's note: The datasheets for the pump and transistor used in the development of
this kit are included in Appendix D: Data Sheets for your reference. If you choose to use
a pump with different specifications, be sure to select a transistor, resistor, and external
power supply adequate for the pump. Be sure to protect the BASIC Stamp with a
minimum 100 Ω, ¼ watt resistor between P3 and the transistor base.

For this experiment, and external power supply is used as a precaution in case the pump
selected has a current draw that exceeds the capacity of the 500 mA regulator on the
Board of Education (all revisions) or BASIC Stamp HomeWork Board (rev C or higher).
The HomeWork Board revisions A – C have a 50 mA regulator.

Chapter 6: Measurement and Control · Page 149

Figure 6-1 shows the preparation of the pump. The lead wires from the pump are fragile,
and the pump cannot tolerate water inside the motor, so we suggest these precautions:

√ Take a piece of duct tape or extra-wide electrical tape and wrap it around the

plastic pump housing where the wire leads are connected.
√ Pinch the tape together at the top to provide strain relief for the wires and protect

the pump from splashed water.
√ Connect the 16" jumper wires to the leads of the pump, by laying them ends-

together and twisting the bare portions.
√ Wrap the connections with tape for waterproofing and to provide strain relief.

Tape

Pump

Tape

Figure 6-1
Pump Preparation

Wrap a piece of duct tape around the top of the
pump to protect the wires and prevent water
from getting into the pump. Join and tape the
pump's wires with the long red and black wires
that are included in the kit.

Building the Circuit

√ Disconnect your board's wall-mount power supply or 9 V battery.
√ Follow the schematic in Figure 6-2 and the wiring diagram in Figure 6-3 to add the

transistor and pump circuit to your board.
√ Be sure to orient the transmitter so that the printed face is directed away from the

BASIC Stamp.
√ As shown in the schematic in Figure 6-3, connect the collector of the transistor to

the external regulated 5 VDC 300 mA power supply.
√ The ground from the external 5 VDC 300 mA power supply must be connected to

any ground pad on your Board of Education or HomeWork Board. When using
split power supplies it is always important to tie the grounds together.

√ For the moment, lay the conductivity sensor aside, but it will rest across the rim of
the cup as shown in Figure 6-3 later on in the experiment.

√ Plug in your board's original wall-mount power supply or 9 V battery.

Page 150 · Applied Sensors

X

X

X

1

2

4

3

8

7

5

6

GND

RST

CLK

DQ

T(com)

T(lo)

T(hi)

Vdd

DS1620

nc

nc

nc

Vdd

VssVss

P15

P14

P13

P5

P0

Vss

Vdd

Vdd

Vss

1 kΩ

100 Ω

100 Ω

Vss

0.1 µF

0.01 µF

P6
Photodiode

1

2

4

3

8

7

5

6

Res

Out

Trig

GND

Con

Thres

Dis

Vcc

555 Timer

X nc

X nc

100 Ω

Vss

P9

P10

100 kΩ

Vdd

0.1 µF

Conductivity
sensor

0.22 µF

AD592 Temperature
probe

100 Ω

External Vdd

Vss

Pump

10 Ω
1 watt

P3

P1

Vdd

Vss

220 Ω
10 kΩ

NPN
transistor

C
B

E

Figure 6-2
Pump Control with
Transistor Wiring Diagram
(for both Board of
Education and HomeWork
Board).

• Transistor collector to
external 5 VDC 300 mA
regulated power supply

• Transistor base through
a 100 ohm resistor to P3

• Transistor emitter to the
10 ohm , 1 watt resistor

• 10 ohm 1 watt resistor
the red pump wire

• Black pump wire to
common Vss.

Chapter 6: Measurement and Control · Page 151

On-Off Control of Pump

Now that your circuit is assembled, it is time to prepare the environment in which your
instrument will work. The pump will raise the water level in the cup, but the water will
drain back out when the power is off.

√ Drill or punch a ¼ " hole in the side of your cup near the base.
√ Insert the pump tube into this hole; it should fit snugly.
√ Place the pump and the cup into your watertight tray.
√ Fill the tray with tap water to cover the base of the pump. There needs to be

enough water in the tray to fill the cup to the level of the conductivity probe.
√ Keep more water and also a scoop or sponge on hand, to adjust the total water in

your environment as may be necessary.

After building the circuits and setting up our water environment, we jump into the
programming.

√ Enter and run the program PumpTester.bs2.

Figure 6-3: Pump Control with Transistor Wiring Diagram

Page 152 · Applied Sensors

' Applied Sensors – PumpTester.bs2
' Pump tester.
' {$STAMP BS2}
' {$PBASIC 2.5}

DO
 HIGH 3
 PAUSE 5000
 LOW 3
 PAUSE 2000
LOOP

Ideally, the pump should turn on for 5 seconds and off for 2 seconds, and repeat until you
interrupt. If it works, great! If not, here are a couple of suggestions for troubleshooting.

√ Kick the pump, but not literally! But sometimes the impeller becomes stuck if it

has dried out in a way that leaves mineral deposits inside, so give it a tap.
√ Look at the bottom of the pump, and you will see a hole and the vanes of the

impeller inside. You can loosen them with the tip of a paper clip.
√ Also, look to be sure that the tube that emerges from the side of the pump housing

is not pushed in too far. If it is pushed into far it can prevent the impeller from
turning.

√ Use a wire to jump directly from the collector to the emitter of the transistor on
your Board. That bypasses the program control of the pump, so you can tell if the
problem is your pump or your program.

√ If the pump still does not operate, then disconnect the pump from your breadboard
and touch the pump wires to a 1.5 volt flashlight battery. That way you can tell if
it is your pump or your breadboard circuit.

√ If that doesn't do it, check the wires that connect to the pump for loose connections.
√ If it still doesn't work, your pump may be defective or broken.

If the pump does work, but the circuit does not respond to the program, recheck the
wiring.

√ Be sure that the transistor is oriented correctly in the circuit and that the base is

connected to P3.
√ One end of the 10 Ω resistor should be in the same row as the emitter of the

transistor.
√ The wiring is getting tight. You have to check the connections carefully to be sure

there is not a short circuit with one of the other parts on the Board.

Chapter 6: Measurement and Control · Page 153

Impeller: Inside the plastic housing at the bottom of the motor is a rapidly rotating disk with
radial vanes. The vanes pull in water at the center through a hole you can see in the bottom
of the housing, and throw the water out along the edge and force it to flow through the exit
tube. The water is pulled through by the action of centrifugal force. The spinning disk with
vanes is called an impeller.

Figure 6-4 shows an impeller, the rotating disk within the pump.

Figure 6-4
Pump Impeller

The motor in the pump draws about 300 milliamps of current at 3 volts. That is lots more
than the pins of the BASIC Stamp are capable of supplying. It is necessary to use a
transistor to amplify the current available from the BASIC Stamp. There are several ways
to use transistors. The one here is called an "emitter follower." The voltage at the emitter
of the transistor "follows" the voltage at the base. When P3 is low, at zero volts, the
emitter of the transistor is also at zero volts and the motor is off. But when P3 goes high,
to +5 volts, the emitter follows along (4.4 volts when P3 is at +5 volts) and the pump is
turned on. The 300 milliamps needed by the pump comes through the transistor from the
external power supply, not from pin P3.

Figure 6-5
Transistor Action

e = emitter
b = base
c = collector

Vss

External Vdd

P3

M

0 or 5V Icontrol

Imain

C
B

E

Page 154 · Applied Sensors

√ Now modify the program to look like PumpTesterButton.bs2.

' Applied Sensors – PumpTesterButton.bs2
' Testing the pump with the pushbutton.
' {$STAMP BS2}
' {$PBASIC 2.5}

OUTPUT 3

DO
 OUT3=~IN1
LOOP

Now the pump will be on only when you hold the pushbutton down. Maybe you were
expecting a longer program? Look at the statement, OUT3=~IN1. What that says is,
"make the output the opposite of the state of the pushbutton input." The symbol "~"
means "not." If IN1 is zero, pushbutton down, then the state of the pump will become 1,
ON. If IN1 is equal to 1, pushbutton up, then the state of the pump will become 0, OFF.

√ Try it. Mark a level on the side of the cup a little above the hole.
√ Hold down the button until the pump raises the water level in the cup to reach your

mark.
√ Then release the button, and the water will begin to drain out.
√ Try to press and release the button so that you hold the water level close to the

mark.

You are now part of a feedback loop. And soon you are going to be replaced by
automation. The conductivity sensor is going to do the looking and turning the pump on
and off. I think this is one job you would just as soon have automated.

A further word about the program: another way to write it would be to use IF…THEN
statements, something like PumpTesterButtonIF.bs2, below.

' Applied Sensors – PumpTesterButtonIF.bs2
' Testing the pump with the pushbutton,
' Then selecting action with IF instruction.
' {$STAMP BS2}
' {$PBASIC 2.5}

DO
 IF IN1=0 THEN HIGH 3
 IF IN1=1 THEN LOW 3
LOOP

Chapter 6: Measurement and Control · Page 155

That is a fine way to write the program. It shows very well what is going on. If the
pushbutton is down, the pump turns on. If the pushbutton is up, the pump turns off. The
program has to take one or the other course of action, because IN1 has to be either 0 or 1.

√ Enter PumpTesterButtonIF.bs2, and give it a try.

You may try to find other different ways to write the code. It is always good to know that
there are different ways of accomplishing a task. The goal may be to make the code as
compact as possible, or to make it run as fast as possible, or to make the program as easy
as possible to follow in documentation. There is rarely just one solution.

Pump Control with Feedback

The objective now is to operate the pump until the water comes up to the level of the
conductivity sensor's probe, and then to hold the level there, automatically, using the
conductivity sensor as the level detector. In the above exercise you were using your eye
as the level sensor and your finger on the pushbutton as part of the feedback loop. Now
the BASIC Stamp will do the job.

√ Place the conductivity sensor on your cup so that the spanner rests on the rim and

the end of the screws are above the resting water level.
√ Enter the program PumpController.bs2.
√ Use your own Duration calibration constant from page 132, divided by 10, for the

COUNT command's Duration argument.

' Applied Sensors – PumpController.bs2
' Pump controller.
' {$STAMP BS2}
' {$PBASIC 2.5}

cnt VAR Word

DO
 HIGH 9 ' Turn ON the 555.
 COUNT 10, 133, cnt ' Count pulses.
 '^^---------------- ' USE YOUR CONSTANT divided by 10.
 LOW 9 ' Turn OFF the 555.

 DEBUG DEC cnt, " umho", CR ' Display micromho.

 IF cnt > 36 THEN LOW 3 ' Level too high, turn pump off.
 IF cnt < 30 THEN HIGH 3 ' Level too low, turn pump on.
LOOP ' Do it again.

Page 156 · Applied Sensors

The Duration calibration constant makes the reading come out in units of micro-mho (or
micro-siemens, µS, in cgs units). What does that mean? If you take the reading from the
Debug Terminal and divide it into 106, the result will be the resistance in ohms. It is not
so important here to have real units for control of the level, but on general principles we
like to remind you that there are accepted units of measurement for conductance.

√ Run the program.

The water should rise up to the level of the sensor, and then the pump should turn off.
The water level drops until it no longer hits the sensor, and then the pump turns on.
Remember, the count is higher as the probe is deeper in the water.

√ Observe the action: How often does the pump come on? What is the ratio of the

"on" time to the "off" time?

This isn't a very efficient system, because the water leaks back out through the pump
when the pump is off.

The critical level chosen for the water, the point where the pump changes from off to on
and vice versa, is called the "set point." There are two set points in this program, one for
on and one for off. The pump turns on when the value of cnt is less than 30, and it turns
off when the value of cnt is greater than 36. Think about what happens in the program
code when the value of cnt is 30 or 36. Neither of the IF statements is true, so the
program goes around the loop without taking any action to change the state of the pump
motor. If the motor was off, it stays off. If the motor was on, it stays on.

This kind of control, where the two set points are offset in such a way so that the effect
lags behind the change, is called hysteresis. This program has 7 units of hysteresis, from
30 to 36 inclusive. This is a desirable feature in some kinds of feedback systems. For
example, there are some kinds of motors and equipment that suffer if they are cycled on
and off too often. It is better to let the liquid reach the upper set point, and then let the
motor rest until the liquid drops below the lower set point before turning the motor back
on again. That saves wear and tear on mechanical parts. Other times it is a requirement
of the system, say, to let a plant dry out between waterings, or to create a surge in the
water level in a fountain.

The hysteresis built into our program is expressed by the diagram in Figure 6-6. The
vertical axis is the water level, or the conductance, since higher water level causes higher

Chapter 6: Measurement and Control · Page 157

conductance. The horizontal axis is the state of the pump, on or off. On the left, the water
is low, and the pump is on. On the right, the water is high, and the pump is off. In
operation, the system spends most of its time going around the square of hysteresis: ON
up to the upper set point, then OFF, and falling down to the lower set point.

OFF &
falling

30ON &
rising

36

Figure 6-6
Hysteresis

You can experiment with the value of the high and the low set points by changing their
values in the IF cnt > and IF cnt < instructions.

√ Increase the upper set point in the IF cnt > instruction by 1 until you can make

the water reach a high level on the conductivity sensor, without overflowing the
cup.

√ Observe the value of cnt on the Debug Terminal.
√ Observe how often the pump cycles on and off.
√ Now reduce the upper set point in the IF cnt > instruction by 1 (starting at 35)

and observe how often the pump cycles on and off, as you approach IF cnt >
31.

What will happen to the actual level if the conductivity of the water changes?

√ Return the program to the original IF values.
√ Add a pinch of salt to the water.
√ Observe how the behavior of the pump and the water level changes.

You can see that this is not a professional level sensor!

Here is an alternative way to program it that avoids the use of the IF…THEN statements.
This is a matter of programming style. Try it!

√ Enter and run the program PumpControllerEquation.bs2

Page 158 · Applied Sensors

' Applied Sensors – PumpControllerEquation.bs2
' Pump controller with equation.
' {$STAMP BS2}
' {$PBASIC 2.5}

cnt VAR Word ' Variable for count.

LOW 3

DO

 HIGH 9 ' Turn on the 555.
 COUNT 10, 200, cnt ' Count pulses.
 LOW 9 ' Turn off the 555.

 DEBUG DEC cnt, CR

 OUT3 = ~(cnt/36 MAX 1)

LOOP ' Do it again.

When the value of the COUNT is less than the set point of 36, the value of cnt/36 will be
zero. Remember, this in integer math, and the result of cnt/36 is always an integer.
When cnt is greater than or equal to 36, then the value of cnt/36 will be 1 or greater.
The additional operation, MAX 1, limits the value to 1 at most. There is a "not" operator,
"~" in front of the whole expression in parentheses. The result is that when cnt is less
than the set point, OUT3 is high, and the pump is on. But when cnt is greater than or
equal to the set point, then OUT3 is low and the pump is off. Note that this program starts
off with a command, LOW 3, that turns P3 into a low output. Otherwise P3 would be an
input.

This program PumpControllerEquation.bs2 does not have any hysteresis. The pump is on
for all values of the count less than 36, and off for all values greater than or equal to 36.
However, we can alter the equation to add a little bit of hysteresis:

√ Modify the OUT3 instruction so it reads:

OUT3=~(cnt/(30+(OUT3*6)) MAX 1)

√ Run the modified program.

The pump stays on until the water level reaches 36 or above, but once the pump is off, it
does not turn back on until the level falls back below 30. The hysteresis is added here by

Chapter 6: Measurement and Control · Page 159

mixing the state of the output into the right-hand side of the formula. The BASIC Stamp
can do that. OUT3 is a variable like any other variable, and your program can either read
or set its value. Think this through. It is tricky and not as transparent as doing it with
IF…THEN commands. But this way of coding it is more compact. IF…THEN commands
clutter up a program in their own way. It is an advanced technique for your bag of
programming tricks!

Memory in the BASIC Stamp, Revisited

The data logger we developed in Chapters 4 and 5 had only 18 bytes of RAM memory.
We could only have 9 records with 2 fields (temperature and light) in Chapter 4, or 6
records with 3 fields (temperature, light, and conductivity) in Chapter 5. Not only that,
the data all disappeared if we turned off the power or pressed the Reset button and it was
gone for good! This would be a serious shortcoming in a data logger for use in
environmental science. A scientist or an engineer may want to collect much more data
than that, and he or she most likely won't want the data to disappear prematurely. It needs
to be retrieved and stored safely in an archive file before it is erased from the logger.

So we are going to switch over and store the data in the EEPROM memory instead of in
the RAM, using 5 fields (ordinal record number, temperature from DS1620, temperature
from AD592, light, and conductivity). Recall from Chapter 2 that there are 2048 bytes of
EEPROM on the BASIC Stamp. We will reserve 250 bytes of that for our data log. That
is lots more than we had available in RAM. We can reserve more than that, too, if need
be for future experiments. Best of all, our data in EEPROM will survive resets and power
outages.

The way we go about storing data is different in RAM that it will be in EEPROM. Here
is the way it looked when recording temperature (T), light (L) and conductivity (C) in
RAM:

log (0) = TC TC=log(9)
↓ ↑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T L C T L C T L C T L C T L C T L C

Figure 6-7
RAM log

There is an array of 18 byte-size variables, from log(0) to log(17). We put data into
bins with statements of the form, log(i)=TC, and we retrieve data from the bins with
statements of the form, TC=log(i). The value in parentheses is a variable, a pointer.

Page 160 · Applied Sensors

Here is the difference with EEPROM, recording ordinal record number (#), temperature
from DS1620 (T), temperature from AD592 (t), light (L), and conductivity (C):

WRITE 1, TC READ 11, TC

 ↓ ↑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …
T t L C # T t L C # T t L C # T t L C 0 0 0 0 0 …

Figure 6-8: EEPROM log

TC is a byte-size quantity. As in RAM, we can use a pointer variable to reference the byte
to write or to read. Recall that to write a temperature value into location 1 in the
EEPROM, we use the statement:

WRITE 1, TC

…and to retrieve data from location 11 in EEPROM, we use the statement:

READ 11, TC

Reserving EEPROM Space
The following program demonstrates a couple of ways to reserve space in the EEPROM.

' Applied Sensors – EEPROMAllocation.bs2
' Illustration of EEPROM allocation.
' {$STAMP BS2}
' {$PBASIC 2.5}

Pad DATA (32) ' Reserve 32 bytes, undefined.
Log DATA 1(60) ' Reserve 60 bytes, preset all = 1.
Hey DATA 72, 101, 121, 33, ' Reserve 8 bytes specified.
 32, 66, 83, 50

ptr VAR Byte ' Byte for pointer.
x VAR Byte ' Byte for EEPROM data.

FOR ptr=0 TO 7 ' Point to 8 locations in a row.
 READ ptr + Hey, x ' Read data from location.
 DEBUG DEC x, " " ' Show it, with a space.
NEXT

DEBUG CR

Chapter 6: Measurement and Control · Page 161

√ Enter the program EEPROMAllocation.bs2.
√ Run the program.

When you run this, (or press Reset on your Board), you should see the 8 numbers from
the Hey data appear in the Debug Terminal.

This program sets aside space in EEPROM for data, 100 bytes of it to be exact. There are
32 bytes of undefined data (not preset to any particular value) starting at address zero,
then 60 bytes of defined data (all preset to one) starting at address 32, and 8 bytes of
numerical data at locations 92 through 99. Each of these 100 EEPROM locations contains
an 8 bit data pattern. The 8 bit pattern could represent a number such as a temperature or
a light level, or it could represent a letter to print in the Debug Terminal, or it could be a
pattern of Morse code, or any other thing you could imagine to fit into a pattern of digital
bits.

The FOR…NEXT loop reads and prints out the 8 numbers starting at EEPROM address
Hey. We could have written it like this:

FOR ptr=92 TO 99 ' explicit values for the pointer
 READ ptr, x ' read from those locations
' and so on.

But it is best to let the BASIC Stamp software keep track of the details of which number
goes with which name. That makes future changes easier.

√ Now make a simple change to the DEBUG statement, as follows:

FOR ptr=0 TO 7
 READ ptr + Hey, x
 DEBUG x ' change this, leave out DEC and , " ".

√ Run the modified program.

Now the BASIC Stamp reads the same 8 bytes from the EEPROM memory. But the
DEBUG statement sends them as is as single bytes to the Debug Terminal. The Debug
Terminal interprets them as printable characters. For example "72" sent as a single byte is
the ASCII code for the letter "H" (ASCII-American Standard Code for Information
Interchange). With the DEC modifier, the DEBUG statement takes the single byte with
numerical value 72, and sends it to the Debug Terminal as two ASCII codes, first the one

Page 162 · Applied Sensors

for "7" and then the one for "2" next. If you substitute one of the other numerical
indicators, you can see the numbers in binary (72 = %1001000) or in hex (72 = $48):

√ Modify and run EEPROMAllocation.bs2 3 more times, until you have used all of

the variations of the DEBUG modifiers as shown below.

DEBUG x ' Show as ASCII text.
DEBUG DEC x, " " ' Show decimal, with a space.
DEBUG BIN x, " " ' Show binary, with a space.
DEBUG HEX x, " " ' Show hex, with a space.

The point is that the binary pattern that is stored in the EEPROM is the same in each
case. It is only the interpretation by the DEBUG command and by the Debug Terminal that
is different. Please bear with us if you already know this. This is a confusing point for
many students. We are going to use the EEPROM to store numerical data, but we usually
use DEBUG with the decimal modifier.

We will store each point of data as one byte in the EEPROM. Each byte can represent a
number from 0 to 255 decimal. Our logger will not store larger values. It is possible to do
so, but it would take two EEPROM locations per point.
The declarations:

Pad DATA (32) ' Reserve 32 bytes, undefined.
Log DATA 1(60) ' Reserve 60 bytes, preset all=1.

…are two other ways to reserve space for data in the EEPROM. The second form
initializes the 60 bytes to have a value of 1, while the first form simply sets aside the
bytes without specifying a value to store there.

√ Now modify the central part of the program EEPROMAllocation.bs2 once more as

follows, to print out the decimal value of all 100 locations in EEPROM:

FOR ptr=0 TO 99 ' Read in all 100 bytes of data.
 READ ptr + Pad, x ' Starting at pad (Pad=0).
 DEBUG DEC x, " " ' Show data as decimal value.
NEXT

√ Run the modified program, and look at your Debug Terminal.

Chapter 6: Measurement and Control · Page 163

Now you should see 32 bytes of garbage, followed by 60 zeros, followed by the 8 bytes
that have special meaning as ASCII text. Why do we say "garbage"? It is because the 32
bytes you see first are simply stuff that was left over in your BASIC Stamp from earlier
programs and experiments. The program reserves space, but it does not send any new
data to the BASIC Stamp to put in those locations.

The BASIC Stamp Editor has a very useful feature that lets you look directly at the
allocation of the memory. It is an invaluable tool for program development.

√ Close the Debug Terminal if it is active on your screen.
√ Press CTRL-M (or choose Memory Map from the Run menu or from the tool bar).

Three views appear in one window, and they are labeled RAM Map, Condensed
EEPROM Map, and Detailed EEPROM Map.

Figure 6-9
Memory Map

The left portion of the
map is the EEPROM,
your BASIC Stamp
source code and extra
EEPROM space. The
right side of the map is
variable storage, RAM.
The lower right hand
corner of the memory
map defines the type of
data by color that you are
storing in EEPROM and
RAM.

√ Look at the RAM Map. It is the view at the upper right side.

Recall that RAM is an acronym for Random Access Memory that is located inside the
PIC microcontroller chip, and stores the program variables. There are 32 bytes, (16
words, 256 bits) altogether. The first 6 bytes (3 words) are dedicated to the I/O pins of the

Page 164 · Applied Sensors

BASIC Stamp. These variables bear the pre-assigned names, ins, outs and dirs. This
is visible in Figure 6-9 to the left of the top three lines on the RAM Map. These pin
variables appear in red on your color computer monitor. That leaves 13 words, which is
26 bytes, for the variables in our program. Program EEPROMAllocation.bs2 has only
two variables, both of them defined as bytes. The RAM Map shows them in light blue
color right below the pin variables. The rest of the RAM memory is not allocated in this
program, and is shown in gray. Be aware that the RAM Map does not show you the
actual values of the variables—that only happens when you run the program.

√ Now look at the Condensed EEPROM Map. It is in the lower middle of the

Memory Map window.

Recall that the EEPROM memory is located in a separate chip, apart from the PIC
microprocessor. There are 2048 bytes of EEPROM. At the top of the schema is the data
in shades of blue, and at the bottom is the program code in red. Between the program and
the data is empty space that will fill up as we write longer programs and reserve more
space for data. You might ask what will happen if the two areas collide in the middle? If
you have used the DATA directive to reserve log space, the problem will be detected when
the program tries to compile during download and an "Out of memory" error message
will appear. (Be warned, if you are using the WRITE command, which is executed during
"run time" rather than "compile time" you won't have this error message to warn you, and
you can begin to overwrite your program with data.) Notice that the data area has two
different shadings. The first 32 bytes in blue are the "undefined data" or "empty data"
declared with the statement:

Pad DATA (32)

When you load your program into the BASIC Stamp, the loading process does not touch
those bytes, and that is why there was still the "garbage" you saw when you last ran
Program EEPROMAllocation.bs2. In contrast, the following statements create what is
called "defined data."

Log DATA 1(60)
Hey DATA 72, 101, 121, 33, 32, 66, 83, 50

When you run your program into the BASIC Stamp, specific bytes are loaded into the
EEPROM along with the program itself.

Chapter 6: Measurement and Control · Page 165

√ Now look at the Detailed EEPROM Map.

This view shows the contents of the EEPROM byte by byte. You first see 32 dark blue
zeros, followed by 60 zeros, followed by the 8 specific bytes. The display shows HEX
numbers (from 00 to FF). You can press ALT-A to view the data as ASCII text.

Note that the BASIC Stamp Editor does not show you the "garbage." You only get to see
that when you really run the program on the BASIC Stamp. You see, the BASIC Stamp
gives you a lot of options on how to use the EEPROM resources.

Now use your mouse to move down to the bottom of the Detailed EEPROM Map. When
you are looking at the bottom, you will see the actual bytes of the program itself as it is
stored in the EEPROM. The program EEPROMAllocation.bs2 occupies about 40 bytes
of memory. The program code is stored in a very compressed form, so don't look for an
easy correspondence between the bytes in the EEPROM and the text of the program.

√ Close the window (ALT-C), to get back to the BASIC Stamp Editor.

The purpose of this digression was to help you think about the organization of the
memory on the BASIC Stamp, and also to illustrate a very useful feature of the BASIC
Stamp programming software.

Data Logger

Now it's time to get down to business. There are several issues that need to be addressed
to make a working data logger. Rather than deal with them piecemeal, here altogether
now are the design objectives.

• Pump Controller Capability: The data logger will also function as a pump
controller, to keep the water level up in the cup. Therefore, the data logger has
to do both measurement and control.

• Pushbutton Data Sampling: Clicking the pushbutton once will log 5 bytes in

EEPROM as follows below.

Ordinal
1,2,3,. . . 50

Temperature
from DS1620

Temperature
from AD592

Light from
photodiode

Conductance
from probe

…more

Page 166 · Applied Sensors

• Reconfigurable Automatic Timed Data Sampling: The data logger needs take
readings at a programmed interval from seconds to hours. For example, with
hourly logging, and 50 records total, the unit could hold two days worth of data.
The interval is set at the time of programming the BASIC Stamp.

• 50 records of 5 Bytes Each: Since we are going to set aside 250 bytes for the

data log, and since each record has five fields, there will be room for 50 records
in the file. The log file can be made smaller or larger as needed for different
projects.

• Resume Data Logging after Interrupt: The program can find its place in the

data file even after pressing Reset, or a power outage. This is done by scanning
the data file, where the next free data location will be tagged by a zero in the
ordinal number field.

• Pushbutton Data Retrieval: press and hold down the pushbutton for 1.2

seconds to get into the routine to play back all the recorded data. This is like the
RAM data logger in Chapters 4 and 5. After playback of the data, the logger can
resume taking additional data where it left off.

• Pushbutton Memory Erase: To erase the data and start over, press and hold

down the pushbutton during reset.

• Audio Feedback: Annunciate all the user interaction on the piezo transducer.

• Visual Data Display: Show data on the Debug Terminal.

• Optional Morse Code Data Output: Annunciate the logged data on the piezo
transducer. The Morse code instructions are included in the program, but
commented out. To activate this feature, you must delete the "'" from in front of
the two GOSUB Morse instructions.

The final program used in this project is DataLogger.bs2, which is a compilation of
portions of many programs you have already worked through. The starting point is
program TwoChannelsThermometer.bs2, which you should have saved on disk. This
program also uses code from program RAMDataLogger.bs2. If you wish, you can save
yourself a little typing by cutting and pasting. The program is getting long, but we want
to emphasize that it is built out of lots of pieces that you already know. This program just

Chapter 6: Measurement and Control · Page 167

brings them together in one place. The objective here is to give you a program you can
use for further experiments.

One strategy is to simply type in all the changes, and then deal with any typos and errors
later. That isn't a bad strategy where you have reason to believe that the program is
basically okay (and we hope that it is!). Another strategy is to type small segments and
test as you go along. That is usually the best way if you are uncertain about the pieces.
You would first verify your program TwoChannelsThermometer.bs2, then add the
additional variables and constants and data declarations, then the light and conductivity
sensors, then the pump control routines, then the routine put data in memory, and then the
timed data logging, and finally the routine to read the data out from memory.

√ Enter the program DataLogger.bs2.
√ Enter your own calibration values as requested in the Constants section comments.

The requested values were calculated on the following pages:

Kal AD592 calibration constant from page 70 = ______
Lical calibration constant for indoor light from page 105 = ______
Lical calibration constant for outdoor light from page 115 = ______
Cntcal Duration calibration constant from page 132 = ______

' -----[Title]---
' Applied Sensors – DataLogger.bs2
' Temperature and light intensity logging in EEPROM,
' with simultaneous control of water level.
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Constants]---
' Morse code constants.
Dit CON 50 ' Milliseconds for Morse dit.
Dit2 CON 2*Dit ' Constants related to Dit.
Dah CON 3*Dit ' Ditto.

' Sensor calibration constants. USE YOUR OWN calibration constants!
Kal CON 15300 ' For the AD592 in Kelvin with .22uF.
Lical CON 647 ' For photodiode in lux with.01uf.
Cntcal CON 1333/10 ' For conductance in umho with .1uf.

' Logging constants.
Interval CON 600 ' Logging interval (tenths seconds).
Nflds CON 5 ' Number of fields per record.
Nrecs CON 50 ' Number of records in file.
LogSiz CON Nflds * Nrecs ' Size of the log file in bytes.

Page 168 · Applied Sensors

Pad DATA (16) ' Pad to save wear and tear on memory.
Log DATA 0(LogSiz) ' Bytes in EEPROM for data log file.

' -----[Declarations]--
' General purpose variables.
xm VAR Byte ' Morse & EEPROM input variable.
x VAR Byte ' General purpose variable.
n VAR Word ' Variable for time counter.

' Morse code variables.
mc VAR Byte ' Temporary for Morse pattern.
j VAR Nib ' Index for digits to send.
i VAR Nib ' Index for dits and dahs.

' Sensor variables
degC VAR Word ' For Celsius temperature from DS1620.
TK VAR Word ' For Kelvin temperature from AD592.
TC VAR Word ' Celsius from AD592.
rct VAR Word ' For the RC timer.
light VAR Word ' Light level from the photodiode.
cnt VAR Word ' For the conductance probe.
umho VAR Byte ' Conductivity.
mhoMax VAR Byte ' Maximum value of conductivity.

' Logging variable.
ptr VAR Byte ' Pointer to data in the log file.

' -----[Initializations]---
' Note: DS1620 has been preprogrammed for mode 2.
' If not, uncomment the instructions on the next line on the first RUN
' HIGH 13: SHIFTOUT 15,14,[12,2]: LOW 13

OUTS=%0000000001000000 ' Now specify the OUTS and DIRS.
 'fedcba9876543210
DIRS=%1111101111111101 ' P0 is output for piezo
 ' P1 is input for pushbutton
 ' P3 low for pump
 ' P5 is low output to discharge C
 ' P6 is high output to discharge C
 ' P9 is control of 555 ON-OFF
 ' P10 is input for 555
 ' P13-15 output for DS1620 SPI
 ' all unused pins are low outputs.

' -----[Main Program]--
' Program execution starts here out of reset.
ptr = -5 ' Pointer initialization.
DO ' Find next free location in EEPROM.
 ptr = ptr + 5 ' Point to a record.
 READ ptr + Log, x ' Read byte.
LOOP UNTIL (x=0 OR ptr>=LogSiz) ' If x=0, this is a free record

Chapter 6: Measurement and Control · Page 169

 ' also test for full log, ptr=LogSiz
 ' pass here when free record is found
 ' ptr points to the next free record.

ON IN1 GOSUB Erase_Log ' Erase log if button down at reset.

DEBUG ? ptr ' Show the pointer & the base address.
DEBUG "RESET+button=erase",CR ' User message.

FREQOUT 0, 20, 1900 ' Beep to signal that it is running.

' ----- Main Loop
DO
 n = 0 ' Initialize counter.
 DO ' Loop here until button or time.
 GOSUB Pump ' Update the pump status.
 n = n + 1 ' Count time.
 LOOP UNTIL (IN1=0 OR n=Interval) ' Get data at intervals or button.
' Can press button to get data too.

 FREQOUT 0,5,2550 ' Tick for button down.

 n = 0 ' Initialize counter.
 DO ' Loop to track pressing time.
 PAUSE 100 ' Time button in 0.1 sec increments.
 n = n + 1 ' Increment counter.
 LOOP UNTIL (IN1=1 OR n>12) ' Conditions to stop the loop.

 IF (n>=12) THEN ' Long click?
 GOSUB Playback
 ELSE ' Short click or time?
 GOSUB Get_Data
 ENDIF
LOOP

' -----[Subroutines]---

' ----- Subroutine Get-Data
Get_Data: ' Come here to scan and log data.
 FREQOUT 0, 20, 3400 ' Got here!

 LOW 3 ' Turn off pump, while scanning.
 xm = ptr/5 + 1 ' First put the ordinal record.
 GOSUB Write_Data ' Write it in EEPROM!

 DEBUG CR, "logging data!", CR, ' Message and units.
 "#", 32, "degC", TAB,
 "degC", TAB, "lux", TAB,
 "umho", CR, DEC xm, " "

Page 170 · Applied Sensors

 ' DS1620 temperature sensor code.
 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [238] ' Send "start conversions" command.
 LOW 13 ' Finish the command.

 PAUSE 450 ' Delay for conversion.

 HIGH 13 ' Select the DS1620.
 SHIFTOUT 15, 14, LSBFIRST, [170] ' Send the "get data" command.
 SHIFTIN 15, 14, LSBPRE, [x] ' Get the data.
 LOW 13 ' End the command.

 degC = x/2 ' Convert the data to degrees C.

 xm = degC ' Morse routine expects data in xm.
 GOSUB Write_Data ' Write the degC data.

 DEBUG DEC xm, TAB ' Show it on Debug Terminal.
 ' GOSUB Morse ' Send it as morse code (optional).

 ' AD592 temperature sensor code.
 RCTIME 5, 0, rct ' Get the AD592 Count.
 LOW 5 ' Pull input low, discharge cap.

 TK = Kal/rct*10 + (Kal//rct*10/rct) ' Calculate Kelvin.

 TC = TK-273 ' Convert to degrees C.

 xm = TC ' Morse routine expects data xm.
 GOSUB Write_Data ' Write the data to EEPROM.

 DEBUG DEC xm, TAB ' Show it on Debug Terminal.
 ' GOSUB Morse ' Send it as Morse code (optional).

 ' Photodiode sensor code.
 RCTIME 6, 1, rct ' Read the photodiode.
 HIGH 6 ' Discharge photodiode capacitor.

 light = 65535/rct */Lical ' Calculate lux.

 xm = light/2 MAX 255 ' Ready to store it in EEPROM.
 GOSUB Write_Data ' Store it in eeprom!

 DEBUG DEC light, TAB ' Show it on Debug Terminal.

 ' Conductance sensor code.
 xm = mhoMax ' Store max. value from Pump.
 GOSUB Write_Data ' Data to EEPROM.

 DEBUG DEC xm, CR ' Show max conductance in umho.
 mhoMax = 0 ' Reinitialize the accumulator.

Chapter 6: Measurement and Control · Page 171

RETURN

' ----- Subroutine Erase_Log
Erase_Log:
 FREQOUT 0, 400, 2550, 1900 ' Sound we got here.

 FOR x=0 TO ptr STEP 5 ' Step through all used records.
 WRITE x + Log, 0 ' Make them zero.
 NEXT

 DEBUG CLS, "data erased!", CR ' Message on cleared screen.

 ptr = 0 ' Reset pointer after erasing data.

 DO ' Hold here until button released.
 LOOP UNTIL IN1=1
RETURN

' ----- Subroutine Playback
Playback:
 LOW 3 ' Pump off unconditional.
 FREQOUT 0, 50, 2550 ' Sound we got here!
 FREQOUT 0, 100, 3400
 DEBUG CLS, "logged data!", CR, ' Message and units.
 "#", 32, "degC", TAB,
 "degC", TAB, "lux", TAB,
 "umho", CR

 ptr = 0 ' Point to start of data.

 READ ptr + Log, x ' Read first record number.
 DO WHILE (x<>0 AND ptr<LogSiz) ' Meanwhile it's not zero or
 ' last record:
 DEBUG DEC x, " " ' show record number,
 READ ptr + 1 + log, degC ' read temperature (DS1620),
 READ ptr + 2 + log, TC ' read temperature (AD592),
 READ ptr + 3 + log, light ' read light,
 READ ptr + 4 + log, umho ' read conductance,
 light = light*2 ' restore light units,

 DEBUG DEC degC, TAB, DEC TC, ' show the values,
 TAB, DEC light, TAB,
 DEC umho, CR

 ptr = ptr + 5 ' point to next record,
 READ ptr + Log, x ' and read next record number.
 LOOP ' Back to check conditions.

 DO ' Wait for button up
 DEBUG REP "-"\31, CR ' printing horizontal line.
 LOOP UNTIL IN1=1

Page 172 · Applied Sensors

RETURN
' ----- Subroutine Morse
Morse: ' Send xm in morse code.
 FOR j=1 TO 0 ' Send 2 digits, tens then ones.
 mc = xm DIG j ' Pick off the (j+1)th digit.
 mc = %11110000011111 >> mc ' Set up pattern for Morse code.

 FOR i=4 TO 0 ' 5 dits and dahs
 ' Send pattern from bits of mc.
 FREQOUT 0, Dit2*mc.BIT0(i) + Dit, 1900
 PAUSE Dit ' Short silence.
 NEXT ' Next i, dit or dah of five.

 PAUSE Dah ' Interdigit silence.
 NEXT ' Next j,digit of two.

RETURN ' Back to main.

' ----- Subroutine Pump
Pump:
 HIGH 9 ' Turn on the 555.
 COUNT 10, 100, cnt ' Count the frequency.
 LOW 9 ' Turn off the 555.

 umho = cnt * Cntcal/100 MAX 255 ' Calculate umho.
 mhoMax = umho MIN mhoMax ' Keep the maximum value of umho.

 IF umho>99 THEN LOW 3 ' Threshold to turn pump off.
 IF umho<50 THEN HIGH 3 ' Threshold to turn pump on.
 ' OUT3=~(umho/(OUT3*49+50) MAX 1) ' Control the pump, alternate.
RETURN ' Back to main.

' ----- Subroutine Write-Data
Write_Data:
 IF ptr<LogSiz THEN ' Check for end of log.
 WRITE ptr + log, xm ' Write this field.
 ptr = ptr + 1 ' Point to next field.
 ENDIF
RETURN

√ Run the program.
√ Try a short data logging experiment to test your equipment.

The logging interval is initially set to be about 1 minute (interval con 600) in tenths
of a second. It should work pretty much like the RAM data logger you made in Chapters
4 and 5. If you are working in a classroom setting, your teacher may have other
suggestions for the interval and for the size and location of the log file.

Chapter 6: Measurement and Control · Page 173

√ Check the design objectives above for the details about how it is supposed to work.
√ Refer to the Troubleshooting suggestions below, if necessary.

Troubleshooting

√ Check for program resets. If the program resets frequently, and seems like it never
quite gets started, try to run it without the pump plugged in.

√ Check the breadboard and DS1620 for heat by touching them carefully. The pump

draws quite a bit of electrical power. The 10 Ω resistor that is in series with the
motor on the breadboard will get warm. Expect the temperature of the DS1620
temperature sensor to rise when you operate the pump for a long time.

√ Check for a non-responsive DS1620. If the DS1620 stops responding you see only

zeros in the second column on the Debug Terminal. Try increasing the delay in the
DS1620 routine from 450 to a larger value. A delay is required after sending to the
DS1620 the [238] code that starts the analog to digital conversion. If you compare
carefully you will see that in TwoChannelsThermometer.bs2 that "start
conversions" code was only sent once, early in the program. Unfortunately, the
DS1620 is quite sensitive to noise generated by the pump. As a quick fix, we turn
off the motor, and then issue the "start conversions" command. In a real
engineering project, this behavior would be troublesome, and effort would be
expended to isolate and resolve the problem.

√ Check your calibration. Remember, if you change the timing capacitors, you also

have to recheck the calibration.

√ Check your capacitor circuits. Be sure you have the 0.22 µF capacitor for the

AD592 temperature sensor, and the 0.01µF capacitor for the photodiode, and the
0.1 µF capacitor for the conductance sensor. You may, for example, want to use
the light sensor in outdoor sunlight, so you will have to change over to a 0.22 µf
capacitor and also change Lical calibration constant.

Program Notes

Time-Critical Multitasking
Note that the pump subroutine at the end of the listing is called in a couple of places. In
particular, it is called repeatedly in the initial pushbutton up and pushbutton down loops.

Page 174 · Applied Sensors

That is because the operation of the pump is a time-critical task. This is what many kinds
of complicated programs have to do. They have to perform multiple tasks at practically
the same time. Here it is to both monitor the button and keep up the water level. The
programmer has to be sure that both tasks are serviced in a timely manner. The
conductance reading in the pump routine takes 1/10 of a second, and paces the whole
process. The BASIC Stamp is a relatively slow computer compared to a PC, and it cannot
do true "multitasking." The BASIC Stamp here is getting around to the pump and the
pushbutton about 10 times per second. You can see the level in the cup drop when the
program goes off to take readings from the sensors. Maybe even a one or two-second
delay is acceptable here. But in other systems, it could matter a whole lot and you would
want a faster microcontroller. Check out www.parallax.com for our full line of
microcontrollers.

Pump Power and Sensor Readings
Note the LOW 3 command near the top of the Get_Data routine. The pump is turned off
unconditionally while reading the sensors. Otherwise, the noise and heavy power supply
drain of the pump would affect the readings. Try it to see what we mean. Comment out
the LOW 3 command, and then run the program again. During an interval when the pump
happens to be on, press the pushbutton and note the readings on the Debug Terminal.
Then press the pushbutton again during an interval when the pump is off, and compare
those readings with it on.

Conductance Reading
Why mhoMax? The conductance reading requires some explanation. The conductance is
being used to control the water level. So the pump routine reads the conductance value
often as part of the pump subroutine. That routine keeps track of the maximum value of
conductance that it has detected.

 mhoMax = umho MIN mhoMax

What this says is, "let the new value of mhoMax be equal to whichever is greater, the
conductance (umho) or the current value of mhoMax " (min, because mhoMax is the
minimum value in the match). For example, if the current value of umho is 67, and the
current value of mhoMax is 65, the new value of mhoMax will be 67. It is mhoMax that goes

Chapter 6: Measurement and Control · Page 175

into the data file in the conductance routine. mhoMax is then reset to zero so that it can
accumulate a new and different maximum value during the next interval.

Writing Data
Figure 6-10 illustrates how the program uses the EEPROM. The Write_Data subroutine
is called from several places in the Get_Data routine. First it is called to store the ordinal
record number, and then once more for each sensor. At the end of the Get_Data routine,
the pointer is left pointing to the next free byte, where the next record number will go the
next time the interval passes or the next time the pushbutton is pressed.

------1st record----- Next free byte
↓ ↓ ↓ ↓ ↓ ↓
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …
1 T t L C 0 …

Figure 6-10: Writing Data

In professional data loggers, the record ordinal number field might be used to store the
time and date.

Scanning Data Storage
The routine at the beginning of the program scans through all of the possible records in
the data file, looking only at the locations reserved for record numbers: (ptr = 0, 5, 10,
15, ... ,245). If it finds a zero in one of those locations, the program will begin writing the
next record at that place. This scan takes place each time you press Reset on your Board,
or when the power is turned on. By putting tags in the data file, it can reconstruct where
it was. Note that right after that is the instruction that tests to see if the pushbutton is
being held down, just after reset. If so, the BASIC Stamp branches to the routine that
"erases" the data file. What it really does is to put zeros in all of the ordinal number
locations. That way the program starts over at the beginning of the log. The Erase_Log
routine does not really erase all the data, just the ordinal number of each record. This
helps reduce the wear and increase the life of your BASIC Stamp module's EEPROM.

Page 176 · Applied Sensors

Data Playback
Figure 6-11 illustrates that the routine that plays back the data is the reverse of the routine
that puts it into the memory.

------1st record----- Next record starts Next free location
↑ ↑ ↑ ↑ ↑ ↑ ↓
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …
1 T t L C 2 T t L C 3 T t L C 4 T t L C 0 0 0 0 0 …

Figure 6-11: Reading Data

The routine reads out 5 locations, and then leapfrogs the pointer up to the next group of
five. At the end of all the records, the pointer will be left pointing to the next free
location, one containing a zero in the ordinal number field.

Pushbutton Control
The code that detects when you press and release the pushbutton should be very familiar
to you by now. Here every time around the loop, while waiting for something to happen,
the program checks the pump and turns if off or on as needed. The routine to read the
conductivity takes about 0.1 second, so that paces the button loops too.

Timing Calibration
The timing interval for data logging is not very precise. You may want to calibrate it by
changing the ballpark constants. To calibrate the timing, you need a stop watch. Set the
interval for something like 1 minute, and time it (using the beeps for logging) to see how
it turns out with interval = 6000. If the actual time turns out to be 1% too long, then to
compensate, count for 1% less time, or interval = 5940.

EEPROM Lifespan
Can you ruin the EEPROM? Note that 16 bytes are set aside at the top of the memory.
The purpose of this is to avoid overstressing those top bytes. Recall that EEPROM has a
finite life in terms of the number of times it can be written to. It takes ten million or so
rewrites to wear out a location. When using EEPROM for data logging, you have to
remember this. It takes a long time to get to 10 million times, but don't get carried away

Chapter 6: Measurement and Control · Page 177

with rapid fire experiments with sub second timing! To check what is in memory, while
in the BASIC Stamp Editor, press CTRL-M. Recall the discussion of the RAM Map and
the EEPROM Map. This helps to visualize how the variables and EEPROM space are
being used. What fraction of the EEPROM are the program and the data occupying?

Other Investigations

Pump Operational Limitations
Design an experiment to study the flow rate from the pump, and the height of water it is
capable of supporting.

Solar Heater

√ Make a solar heater by running water through black copper tubing under glass or in
a bottle, out in the sun.

√ Run the pump to bring water into a reservoir.
√ Monitor the water temperature and the sunlight.
√ Use the water temperature and the sunlight to decide when to turn on and off the

pump automatically.

Pump PWM
Try to PWM the pump, that is, turn it rapidly on and off as follows:

x CON 5

DO
 HIGH 3
 PAUSE x
 LOW 3
 PAUSE 10-x
LOOP

The constant 5 causes the pump to be on half the time and off half the time. This way the
pump effectively pumps half as fast. The on and off states alternate so fast that you can't
perceive a stop and start in the pumping action. Try varying the constant to see what
happens at other ratios of ON to OFF time. You can also try the BASIC Stamp 2 built-in
PWM command.

Page 178 · Applied Sensors

Challenge!

1. Write a simple program that turns on the pump when the pushbutton is pressed
once, and then lets it stay on until the pushbutton is pressed again. (Push on,
push off).

2. You are in charge of a public fountain that is supposed to operate only in the

daytime, and only when the sun is out and the temperature is greater than 70
degrees Fahrenheit. Write a program to control the fountain.

3. Make a program that can draw a graph of conductance on the Debug Terminal.

Let the program fill the cup to overflowing, and then let the level drop below the
sensor tips, before starting up the pump again. All the while the conductivity
reading should be graphing in the Debug Terminal.

4. A fish farm must maintain the level of water in a tank and replenish it, and keep

the water stirred, and monitor for conditions that could be deadly. Write a
program that keeps the water going up and down in the cup, but it will sound an
alarm if the temperature of the water exceeds 80 degrees C, or if the water stops
flowing for any reason, or if the conductivity of the water changes drastically.

5. Sometimes in real-world settings it is desirable to know how long or what

percentage of time a motor is running versus not running. This helps with
maintenance and with planning for energy efficiency. Modify program
PumpController.bs2 so that it displays the percentage of time that the pump stays
on. You could also add this to your data logging program, as an indication of
how much water was used.

Appendix A: Parts Listing · Page 179

Appendix A: Parts Listing

Required Hardware
To complete the activities in Chapters 1 through 5 of this text, you will need the
following equipment:

• PC running Windows 98/2K/XP/Vista with an available serial or USB port
• BASIC Stamp Editor v2.4 (or higher) software
• Board of Education Full Kit (serial, #28103, or USB, #28803)

-OR- a BASIC Stamp HomeWork Board and programming cable*
• Applied Sensors Parts Kit (see Table A-1 on page 180)
• Additional Household Items (see Table A-2 on page 181)

*The Applied Sensors experiments are fully compatible with the HomeWork Board,
which has a BASIC Stamp 2 built right in. The economical HomeWork Board is
included in the BASIC Stamp Activity Kit (#90005) and also in 10-packs (#28158).
Please contact sales@parallax.com for assistance in outfitting your classroom.

For free technical support, email support@parallax.com or call 1-888-99-STAMP from
the United States. From outside the United States, call (916) 624-8333. Or, visit our
Stamps in Class forum at http://forums.parallax.com.

Low-voltage Pump Circuit Not Included
The optional activities in Chapter 6 require a low-voltage pump, transistor, and resistor,
which are not included. The low-voltage pump used to develop the activities in Chapter 6
is no longer available. The activities in Chapter 6 are optional and included for your
reference and adaptation to commercially available low-voltage pumps. As Parallax
identifies sources of compatible and reasonably inexpensive low-voltage pumps, we will
post links on the Applied Sensors product pages at www.parallax.com.

We also invite our customers to submit information about low-voltage pump resources,
or project adaptations to other types of pumps, to editor@parallax.com for potential
posting on our website.

Page 180 · Applied Sensors

Applied Sensors Parts Kit
This kit contains all of the electronic components for the activities in Chapters 1–5. For
your convenience, these components are pictured with labels and Parallax part numbers
on the last page of this text.

Table A-1: Applied Sensors Parts Kit (#28126)
Parts and quantities subject to change without notice

Parallax Code# Description Quantity
150-01011 100 Ω¼ watt 5% resistor 4
150-01020 1 kΩ ¼ watt 5% resistor 1
150-01030 10 kΩ ¼ watt 5% resistor 1
150-01040 100 kΩ ¼ watt 5% resistor 2
150-02210 220 Ω ¼ watt 5% resistor 2
150-04710 470 Ω ¼ watt 5% resistor 2
200-01010 100 pF mono radial capacitor 2
200-01031 0.01 µF 50 V capacitor 1
200-01040 0.1 µF mono radial capacitor 3
200-02240 0.22 µF 50 V capacitor 3
28130 AD592 Temperature probe 1
350-00001 LED, green 1
350-00006 LED, red 1
350-00012 Photodiode, blue enhanced (Photonic Detectors) 1
400-00002 Pushbutton tact switch 1
604-00002 DS1620 Digital Thermometer 1
604-00009 555 timer, 8-pin DIP 1
700-00020 2", 4-40 stainless steel machine screws 2
700-00036 4-40 nylon nut 2
700-00058 Cup spanner 1
800-00016 3" jumper wires (bag of 10) 2
800-00021 16" red jumper wire 1
800-00022 16" black jumper wire 1
900-00001 Piezospeaker (sound transducer) 1

Appendix A: Parts Listing · Page 181

Additional Items Required
Some additional common items are needed to complete the activities in this text; those
marked with an asterisk are required for the main experiments, and the others are used for
optional activities and challenges.

Table A-2: Additional Items Needed (* required item)
Aluminum foil
Crushed ice *
Cup that can have a hole drilled or punched in it *
Distilled water *
Duct tape or wide electrical tape *
Heavy cotton thread or string
Graphite pencil
Paper
Paper towels
Potted plant
Protractor
Rock salt
Rubber band
Spoon
Spotlight - 50 watt R20, or 100 watt standard light bulb *
Table salt *
Tap water *
Thermos, or Styrofoam cups and aluminum foil *
Vinegar
Waterproof nonmetal tray at least 1.5 inches deep *
9 volt battery
Low-voltage submersible water pump with flexible tubing (Chapter 6 only)*
External power supply suited for the low-voltage pump selected (Chapter 6 only)*
NPN Transistor suited for the low-voltage pump selected (Chapter 6 only)*
Resistor suitable between transistor and low-voltage pump selected (Chapter 6 only)*

Page 182 · Applied Sensors

Appendix B: Building the AD592 Temperature Probe · Page 183

Appendix B: Building the ADS592 Temperature
Probe

The Applied Sensors experiments use the AD592 temperature probe. The part needs to be
protected before being inserted into liquid. Parallax builds a custom temperature probe
(#28130), but you can do this yourself from these plans. An abbreviated datasheet for the
AD592 is included in Appendix D of this text.

You'll need the following materials:
(1) AD592 Temperature Transducer in plastic TO-92 case (Newark Electronics)
(2) 16" wires, one black and one red, stripped on both ends
(2) 1" solder sleeves (Powell Electronics CWT-1502 or equivalent)
(1) 1½" length of ¼" adhesive lined heat shrink tubing (Digi-Key #EPS3316NK-ND)
(1) heat gun

Page 184 · Applied Sensors

To build the probe:

13 2

(NC) (+)(-)

Figure B-1
Step #1

Identify the AD592's (-), NC,
and (+) pins from this picture
as viewed from the bottom.

AD592

bl
ac

k

re
d

solder
sleeves

Figure B-2
Step #2

Slip the solder sleeve over the
black wire and pin 3 (-). Slip
another solder sleeve over the
red wire and pin 1 (+). Heat up
the connections until the wires
are joined.

If you have no solder sleeves
you can use heat shrink tubing.

Clamp here

AD592

Figure B-3
Step #3

Slip the heat shrink tubing over
the entire package. Fasten the
package with a heat gun, and
while it's still hot clamp the top
portion to ensure that it stays
shut.

Appendix C: Resistor Color Code · Page 185

Appendix C: Resistor Color Code

Resistor Color Code
Most common types of resistors have colored bands that indicate their value. Most of the
resistors that we're using in this series of experiments are typically "1/4 watt, carbon film,
with a 5% tolerance." If you look closely at the sequence of bands you'll notice that one
of the bands (on an end) is gold. This is band #4, and the gold color designates that it has
a 5% tolerance.

The resistor color code is an industry standard in recognizing the value of resistance of a
resistor. Each color band represents a number, and the order of the color band will
represent a number value. The first two color bands indicate a number. The third color
band indicates the multiplier, or in other words, the number of zeros. The fourth band
indicates the tolerance of the resistor as +/- 5, 10, or 20 %.

Color 1st Digit 2nd Digit Multiplier Tolerance
black 0 0 1
brown 1 1 10
red 2 2 100
orange 3 3 1,000
yellow 4 4 10,000
green 5 5 100,000
blue 6 6 1,000,000
violet 7 7 10,000,000
gray 8 8 100,000.000
white 9 9 1,000,000,000
gold 5%
silver 10%
no color 20%

Page 186 · Applied Sensors

A resistor has the following color bands:

Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold

Looking at our chart above, we see that Red has a value of 2.

So we write: "2".
Violet has a value of 7.
So we write: "27"

Yellow has a value of 4.
So we write: "27 and four zeros" or "270000".

This resistor has a value of 270,000 Ω (or 270 kΩ) and a tolerance of 5%.

Appendix D: Data Sheets · Page 187

Appendix D: Data Sheets

Appendix D consists of abbreviated data sheets for the key components used in these
experiments. The full data sheets are available from the manufacturers' web sites shown
below. This text includes the first two pages only of the data sheets.

Table D-1: Datasheet Locator
Component Manufacturer's Website

Analog Devices 592 http://www.analogdevices.com
Dallas Semiconductor 1620 http://www.maxim-ic.com
Edmund Scientific Pump http://scientificsonline.com
ZTX1049A NPN Transistor http://www.zetex.com/

Page 188 · Applied Sensors

Appendix D: Data Sheets · Page 189

Page 190 · Applied Sensors

Appendix D: Data Sheets · Page 191

Page 192 · Applied Sensors

Appendix D: Data Sheets · Page 193

Page 194 · Applied Sensors

Index · Page 195

Index

 - % -

%, 47

 - 1 -

1.3 volt threshold, 63
1.3-volt threshold, 62

 - 5 -

555 timer, 127, 129, 134, 145

 - A -

AD592, 55, 66, 68, 80, 99, 106, 183
calibration, 69

air quality, 89
Analog sensors, 56
anemometer, 85
annunciator, 2, 8, 28, 99
argument, 7
arithmetic, 38
ASCII, 65
ASCII text, 162
astable multivibrator, 129
automatic calibration, 76

 - B -

BASIC Stamp, 62
1.3-volt threshold, 62

built-in capacitance, 103

multitasking, 174

voltage threshold, 62

BASIC Stamp Editor, 2
BASIC Stamp math, 71

bats, 46
bees, 89
bioluminescence, 89

 - C -

calibration, 81
AD592 temperature sensor, 69

and capacitors, 173

automatic calibration with EEPROM, 76

automatic calibration, 76

constants in EEPROM, 42

data logging timing, 176

DS1620 with AD592, 76

final project, 173

in ice bath, 69, 80

light meter, full sun, 114

calibration constant
AD592, 70

Cntcal, 173

Duration, 132, 156

indoor light, 105, 106

Kal, 70, 173

Lical, 106, 173

light meter, 102

outdoor light, 115

calibration reference, 76
candlepower, 103
capacitance, 58, 69

Page 196 · Applied Sensors

capacitor, 57, 69, 92, 99, 102
in light meter, 98

Caracol, 89
carriage return, 53
Celsius, 21, 68, 70
chip select, 16
Cntcal, 167
colorimeter, 98, 116
communication error, 17
comparator, 62
condensation, 141
conductance, 130, 131, 137, 174

in water, 134

vs conductivity, 137

conductivity, 136
and temperature, 142

ground loop error, 144

units of measurement, 136

vs conductance, 137

conductivity sensor, 1, 58, 59, 61, 62,
66, 86, 120, 122, 123, 124, 126, 134,
141, 142, 148, 149, 154, 155, 157
assembly instructions, 58

confounding variables, 136
continuous conversion, 13
CR, 53
cricket, 32
CTRL-R, 5
cup spanner, 58

 - D -

DAQ, 27
DATA, 39, 77

data acquisition system, 27
data logger, 27, 148
data logging, 27, 107, 113, 119, 147,

167, 172, 176, 178
timing, 176

data storage, 175
DEBUG, 22, 31, 65, 161

BIN modifier, 31, 162

DEC modifier, 162

HEX modifier, 162

REP modifier, 65, 125

SDEC modifier, 68

debugging programs, 17
DIG, 49
DIR, 18
DIRS, 18, 47, 110
display, 110
division, 71
DO...LOOP UNTIL, 35
DO…LOOP, 30
double click, 36, 37
DS1620, 11, 19, 20, 44, 73, 76, 80

calibration reference, 76

calibration with AD592, 76

configuring, 13

continuous conversion, 13

one-shot conversion, 13

operational limits, 22

Duration calibration constant, 132, 155,
156

Index · Page 197

 - E -

EEPROM, 14, 15, 27, 28, 38, 39, 40,
41, 42, 49, 53, 54, 55, 76, 77, 78, 81,
107, 148, 159, 160, 161, 162, 163,
164, 165, 175, 176
durability, 39, 176

El Niño, iii, 2, 119
equilibrate, 70
evaporation, 137

 - F -

Fahrenheit, 70
farads, 58
feedback, 147
feedback loop, 154, 155
field, 110
fractional multiply, 105
FREQOUT, 4, 6, 32, 57

 - G -

GOSUB, 76
ground loop error, 143
Guarantee, 2

 - H -

hardware not found, 5, 17
HIGH, 56
HomeWork Board, 149

and power supply, 149

hot probe anemometer, 84
humidity, 142
hysteresis, 156, 158

 - I -

I/O pins, 56
ice, 70

ice bath, 80
ice bath preparation, 70
ice point depression, 83
illuminosity, 98
impeller, 153
index, 49
infrared, 89
INPUT, 56, 62

 - K -

Kal, 70, 74, 106, 167
Kelvin, 68, 69, 70

 - L -

Langleys, 97
least significant bit, 14
least significant bit first, 19
Lical, 106, 115, 167

calibration in full sun, 114

light, 89
light attenuation, 90
light indoor calibration constant, 105
light sensor, 148

calibration for full sun, 114

Log, 40
logarithm, 101
LOW, 57
LSBFIRST, 16
LSBPRE, 21
lux, 103, 104

 - M -

mc.BIT0(i), 51
measuring

air temperature, 17

bright light, 97, 114

Page 198 · Applied Sensors

condensation, 141

conductance, 174

conductance in water, 134

conductance using RC-time, 124

conductance with the 555 timer IC, 126

conductivity with 555 timer IC, 134

dim light, 96, 103

evaporation, 137

humidity, 142

incursion of salt water, 142

light level, 90

temperature and light together, 106

temperature with the AD592, 68

temperature with the DS1620, 18

water level, 134, 155

water temperature-ice water, 69

Metrologists, 70
mho, 130
microampere, 56
micro-environment, 55, 82
microfarads, 58
modifier, 51

DEBUG. See DEBUG

mc.BIT0(i), 51

Morse code, 1, 4, 8, 9, 10, 27, 28, 33,
44, 46, 47, 48, 50, 51, 53, 55, 76, 86,
161, 168
SOS, 10

 - N -

NCD, 101, 126

node, 95
numerical indicators,, 162
numerical modifiers, 162

BIN, 162

DEC, 162

HEX, 162

 - O -

ocean water, 136
conductivity of, 136

ohms, 133
one-shot, 13
OPTAscope 81M, 6
OUT, 18
OUTS, 18, 47, 110

 - P -

PAR, 114
PAR meter, 98
PBASIC operator, 49, 71, 106

*/, 105, 114

/, 71

//, 71

~, 158

”not”, 158

>>, 50

DIG, 49

fractional multiply, 105

NCD, 101, 126

PBASIC Reference, 6
photocurrent, 91, 101
photodetector, 91

Index · Page 199

photodiode, 89, 91, 92, 93, 96, 98, 101,
102, 103, 104, 113, 114, 115, 165,
173

photometer, 98
photoresistor, 90
photosynthesis, 89
picofarads, 58
piezo transducer, 19, 28, 44, 93
piezoelectric transducer, 2, 3
Pluto, 116
pointer, 49
polarization, 126
protractor, 112
psychrometer, 83
psychrometric chart, 83
pump, 149

control with feedback, 155

current draw, 153

impeller, 153

on-off control, 151

preparation, 149

troubleshooting, 152

pump control, 148
pushbutton, 28, 30, 34, 176
pyranometer, 84, 97

 - Q -

quanta, 98, 114

 - R -

RAM, 38, 40, 41, 107, 112, 130, 159,
160, 163, 166, 172, 177

RCTIME, 56, 57, 64, 68, 96, 99
reaction time tester, 116
READ, 27, 39, 40, 81
record, 110

relative humidity., 83
REP, 65
REP modifier, 65
representative temperature, 18
Reset button, 5
resistance, 131
resistor, 57
resistors

in series, 131

parallel, 131

resolution, 21, 73
RETURN, 48
reverse current., 91

 - S -

safety, 62
salinity, 84, 136
salt, 83
SCADA, 27
scanning data storage, 175
SDEC modifier, 68
SHIFTIN, 19, 57
SHIFTOUT, 13, 14, 19, 20, 57
siemen, 130
siemens, 133, 134
sine wave, 6
single click, 37
sling psychrometer, 83
Small Computer Aided Data

Acquisition, 27
snippet, 37
software required. See BASIC Stamp

Editor
solar heater, 177
solar pane, 92
spectrophotometer, 98
static electricity, 3

Page 200 · Applied Sensors

Stonehenge, 89
stridulation, 32

 - T -

TAB, 68
talking thermometer, 73
temperature, 1

and conductivity, 143

temperature probe, 55, 58, 68, 70, 76,
82, 101, 111, 113, 141, 183, See
AD592

temperature resolution, 73
temperature transducer, 11
thermistor, 64
thermometer, 46
thermos, 70
timing, 176
transducer, 1
transistor, 148, 153
transmitter, 149
troubleshooting

debugging programs, 17

program download, 5

pump controller, 173

 - U -

ultraviolet, 89, 97

 - V -

variable
modifier, 51

variables, 38
vinegar, 143
voltage, 69

 - W -

water detector, 123
wet bulb, 83
wet bulb depression, 82
Word modifier, 77
WRITE, 27, 39, 40, 42, 81

Page 202 · Applied Sensors

Parts and quantities in the Applied Sensors kits are subject to change without notice.
Parts may differ from what is shown in this picture. If you have any questions about your
kit, please contact stampsinclass@parallax.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

