
Parallax Gold Standard Checklist

1 Introduction
Parallax Semiconductor has a minimum set of requirements that an object written for
the Parallax Propeller must meet in order to be certified as a “gold object” and accepted
into the gold library. At a minimum, a Gold Standard object should implement well-
written code, include proper documentation, and function as described in the object’s
description. This checklist quantifies the functionality, readability, and consistency of a
submitted object.

2 Coding Best Practices
A gold object should employ professionally commented code. Each public method in
an object should begin with a document comment that describes the intended results of
that method call.

2.1 Launching a Cog
Any object that launches a cog should have a public start method that takes care of
any required initializations and a public stop method that shuts the running cog down
gracefully. An object should have the ability to stop any running cog that it starts.

Programs should dynamically launch a new cog with the cognew command, and save
the return value for later use when stopping the cog. Spin programs should use the
cogstop command with the cog’s saved ID. PASM code should use cogid to stop
itself. Once stopped, code should update its variables to reflect the termination of a
cog.

If a COG requires an initialization function to reset internal state data between calls, the
method should be named init and its usage properly documented.

2.2 Using Locks
An object that utilizes the Propeller’s lock features should make use of the locknew
command to dynamically check out a new lock. If an object is to reach a terminus
where the lock is no longer needed, it should use the lockret command to return the
checked out lock.

2.3 Pin assignments
If an object uses any I/O pins, these pins should be provided as arguments to the
start method. Any special considerations of the pin usage must be documented.
This includes restrictions such as contiguous grouping of pins or starting at a specific
number.

2.4 Clock Speed
Objects should not assume a particular clock speed. Instead, objects should
dynamically check the clock speed register clkfreq and adjust accordingly. Any
minimum or maximum clock speeds should be documented. If the object cannot be run
in RCSLOW or RCFAST for some reason, please include that in the documentation.

2.5 Required Hardware
You should include information detailing the specific hardware or development
environment needed to use your code. For example, if the code requires an SD card or
other special hardware, include that information. It is also recommended you provide
which Propeller based board the object and demos will run on, such as Propeller Demo
board, Quickstart, PPDB, or Propeller BOE. Any helpful information on successfully
duplicating your test environment is strongly suggested.

Item Score Max

Public start method, with any initializations included 5

cognew is used to start a new cog 5

Flags to indicate the running state of a cog 5

Public stop method that resets the object initializations 5

locknew and lockret are used safely 5

Hardware pins are start method arguments 5

Clock speed is dynamically checked and limitations noted 5

Required support and development board info included 5
Table 1.

3 Code Conventions

3.1 Method Naming
Method names should concisely reflect the function of the method. A method’s name
should always start with a capital letter and subsequent words should start with a capital
letter (this style is often called UpperCamelCase).

It is helpful when naming methods to keep a probable object name (nickname) in
mind for the object. For example, a simple object that lets a developer pause a cog’s
execution might be nicknamed time and call a method named PauseMS. The resulting
time.PauseMS(duration) call gives additional context to the developer as to the
functionality of the time object and PauseMS method, without requiring the developer
to look at the object’s source code to understand what the method call will do.

3.2 Variable Naming
Variable names should concisely reflect the use of the variable. A variable name should
be descriptive yet concise. Variable names should always start with a lower-case
character or underscore separator. If using more than one word in the variable name,
capitalize the first letter of following words or use an underscore separator to make each
word stand out. Capitalize the first letter of an acronym, except when the acronym starts
the variable name. For example: high_time_ms, numberOfRotations, ledArray,
or bigLed.

3.3 Commands and Reserved Keywords
All uses of reserved keywords and commands should remain in lower-case form, except
PUB, PRI, VAR, CON, OBJ, and DAT.

3.4 White Space and Indentations
Indentation in Spin code must be a minimum of two spaces or one tab per block level.
Within an object and it’s demos, the indentation amount should be consistent. In
Propeller Assembly, instructions should be indented enough to allow for label names,
instruction conditions, the instruction itself, and instruction effects to fit neatly on a line.
Each assembly instruction should be in line with the preceding instruction. Use white
space and indentations to keep the code functional and easily readable. Try to keep
large block comments limited to 92 characters wide as this makes paginating the object
convenient.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCamelCase&sa=D&sntz=1&usg=AFQjCNFjUucZqkI7WUU8mNtMrumu5jVIXw

3.5 Constant Declarations
Constant names should concisely reflect the use of the constant. Completely capitalize
all defined constants.

3.6 Code Width
You should make a best effort to ensure code and comments are less than 80
characters wide for users on smaller screens and PDF pagination.

Item Score Max

Method names are consistent and in UpperCamelCase 5

Variable names are consistent and in lowerCamelCase 5

Block keywords are CAPITALIZED 5

Keywords are lowercase 5

Block body code is correctly indented 10

Constants names are consistent and CAPITALIZED 5

Code and comments are not more than 80 characters wide 5
Table 3.

4 Documentation
Gold standard Objects must have proper documentation. You may include the
documentation embedded within the object, however you must also generate nicely
formatted documentation applicable for pagination and/or web use.

The Spin2Html tool is provided to allow you to generate external document files from
embedded documentation in SPIN files.

In source documentation:

● The beginning of the object should document overall functionality, inputs and
outputs, resources allocated, object history, and other relevant information. This
section should use the SpinDoc style. This section may contain:

○ Usage guidelines and short examples (hints about calling interface best
practices)

○ Resources allocated
■ Number of COGs required
■ Amount of HUB RAM required
■ Stack size required
■ I/O pin usage
■ Number of locks
■ Any special clock frequency requirements

○ I/O pin considerations (including alignment and direction)
○ External device part numbers, sources, and datasheet links
○ Object version history and authorship
○ The performance of the code

● Dependencies on other SPIN objects
● Methods must include SpinDoc style descriptions of the functionality, the

parameters (using the @param tag), the return value (using the @return
tag), and should contain example method calls (using the @example tag).
Any additional considerations (such as side effects, run time, etc.) should be
documented as well.

● Use code type comments ' or { } to provide additional information on a line-by-
line basis. Code type comments should be used when a line is important or
unclear (such as complex operations, algorithms, or operational nuances).

● If necessary, include a schematic drawing and a description of the required
connections needed to interface the Propeller with related hardware. Format the
schematic as schematic.jpg or schematic.gif. The associated description
should include an example of calling the start method that uses the pins in the
schematic.

Item Score Max

http://www.phipi.com/spin2html/
http://www.phipi.com/spin2html/
http://www.phipi.com/spin2html/

Method arguments and result 5

Purpose of method 5

Usage hints and best practices 5

Number of COGs used is enumerated 5

Amount of HUB RAM required [longs] 5

Stack size required [longs] 5

I/O pin usage [if any] 5

Number of locks [if any] 5

Clock frequency requirements [if any] 5

I/O pin alignment [eg: video, bulk data xfer] 5

Part numbers, datasheets for external devices [if any] 5

Dependencies on other SPIN objects [if any] 5
Table 4.

5 Demo Code
An object should include at least one demonstration program. At a minimum, the demo
program should illustrate a very simple example of how to properly use the object.
(i.e.: you hook it up like this, run this program, and these are the results you will see).
Additional demo programs can be included with the object to demonstrate advanced
features of the object. For all demo programs, connection references between the
Propeller and the external peripheral should remain consistent. Demo programs should
use a serial terminal (such as the Parallax Serial Terminal) as the standard method for
user input and program output.

All Demo programs must follow the same code practices outlined in other sections of
this document.

Item Score Max

Demo program available 100

Demo program uses a PC serial connection 10

Demo program is clearly and consistently commented 10
Table 5.

6 Licensing
Any object in the Gold Standard Library must be released under the MIT license or
Attribution 3.0 Unported license. If MIT licensed, please insert the complete text of the
MIT license at the bottom of the object in a DAT section. Code must have one, and only
one, type of license.

Item Y/N

Code is MIT licensed

Code is Attribution 3.0 Unported (CC BY 3.0) licensed

Each file (object, demo, ...) includes a licence copy
Table 6.

http://en.wikipedia.org/wiki/MIT_License
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

7 Submission
All Gold Standard submissions should be provided as a ZIP file of a directory containing
the object and supporting files.

If you have an object named foobotron then the ZIP file should contain a directory
named foobotron so that the object can be stored hierarchically in the library.

The archive should contain your object, schematic, any supporting files necessary
for the object, examples, and any additional documentation you may provide. The
schematic does not need to be provided in multiple formats, the example below simply
includes both for completeness.

Supplemental documentation should be provided in PDF, TXT, HTML, or Open
Document Text (ODT).

Additional files may also be included if you feel they are valuable, such as design files
from schematic capture packages, Gerber files, or other collateral.

Here is an example layout:
foobotron/

foobotron/foobotron.spin

foobotron/schematic.spin

foobotron/schematic.pdf

foobotron/example1.spin

foobotron/example2.spin

foobotron/documentation.odt

Item Y/N

Object provided in named directory

Object source code

Schematic

Example

Documentation
Table 7.

http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument

