11. C Programming for the Propeller

©

N = O

=S B N O

~

NN NN NN NN R e

o

}

/* incrementNumPtr - increment the value of a variable.

* args: *pn - a pointer to an int

* return: none

* effect: the variable pointed to by pn is incremented
*/

void incrementNumPtr (int *pn) {
// pn is a pointer to the int, and *pn is the int itself
xpn++; // * binds tightly, so parens (xpn)++ not needed.

}

11.2. Programming the Propeller in C

In order to program the propeller with C code, we have to recognize a few constraints
of the device. The first, and most critical, is that Hub memory is limited to 32KB and
that Cog RAM is limited to 2KB. Next, the propeller has eight cogs and the C compiler
and linker have to handle launching new cogs properly. In this book, I will discuss three
cases (cases that I think cover most of the likely projects)

e If the size of the C program (after compiling) is less than approximately 30KB,

132

then it will fit entirely in Hub memory. The compiler will place your code into Hub
along with a kernel (approximate size 2KB, for a total size of less than 32KB).
The kernel is a program that copies instructions from your code into a cog and
executes them. This is known as the Large Memory Model or LMM. The main
drawback of LMM is that every instruction resides in Hub and is copied to cog
before execution, slowing down the program. In almost every way, though, this
is a standard C program. Cogs can be launched and stopped; the counters and
special registers like ina and outa can be read and set; the locks can be used, etc.

If there is a need for higher speed from some part of the program, we can place
that C code in a cog-c file (with extension .cogc). This part of the code must
compile to Assembly code that is less than 2KB in size, and it will be placed into
cog RAM and will run at full speed. The rest of the program will continue to
operate under LMM mode. I call this Mized mode cog-c Model. The advantage is
that the program will run at full speed. The drawback is that the assembly code
produced by the compiler may not be as efficient as code that you write.

The final model is where the speed-critical code is written in PASM and is saved
on a cog. This cog is now fully under your control. You can optimize it for your
needs. (of course, as with the previous case, the code has to be less than 2KB
in size). The rest of the code continues to run under LMM. This is Mized mode
PASM model.

11.2. Programming the Propeller in C

11.2.1. SimplelDE

To write the code, compile and link it, download it to the propeller, and view the output,
we will use the SimpleIDE application (an Integrated Development Environment). This
is a cross-platform IDE (Windows, Linux, and Mac OS) that is aware of all three of
the models above and does the detailed work of compiling the programs correctly and
linking them in the right way.

The place to start with SimpleIDE is at learn.propeller.com where you can down-
load the program and step through a series of excellent tutorials on using the program
and developing LMM projects.

hello.side
hello.c

1/*

2 * This is a non-traditional hello demo for Propeller-GCC.

3 * The demo repeats printing every 100ms with the iteration.
4 * It uses waitcnt instead of sleep so it will fit in a COG.
5 */

6 #include <stdio.h>

7 #include <propeller.h>

8

9 int main(void)

10 {

11 int n = 1;

12 while(1l) {

13 waitcnt (CLKFREQ/10+CNT) ;

14 printf("Hello World %d\n", n);
15 n++;

16 }

17 return 0;

18 }

SimplelDE Version 1.0.:
Compiler Linker /Users/sak/Documents/SimplelDE/Learn/Simple Libraries
JUsers/sak/Documents/SimplelDE/ Updated on: 2 -10-24
e * QUICKSTART propeller-elf-gcc -v GCC 4.6.1 (propellergcc_vl_0_0_2097)
propeller-elf-gcc -I . -L . -0 Imm/hello.elf -Os -mImm -m32bit-doubles -fno-exceptions -
propeller-load -s Imm/hello.elf
r-elf-objdump -h Imm/hello.elf
Succeeded!

Compiler Type C

LMM Main RAM

Optimization -Os Size

9 Code Size 6,668bytes (7,334 total) 4, Building ... dF

Figure 11.2.: SimpleIDE window with Project Manager button, Build Window button
(at bottom of picture) and Build button (the hammer at the top of the picture)
highlighted.

There are three tabs in the Project Manager (at bottom left of Figure 11.2): the
Project Options tab, the Compiler tab, and the Linker tab. The settings shown for
each in Figure 11.3 are good for the examples in this book, so make sure you set them

properly.

11.2.2. Hello, World

After installing SimpleIDE, you will have a number of examples in the Propeller GCC
Demos folder (in the SimpleIDE workspace). One of those is called hello. Open the

133

learn.propeller.com

11. C Programming for the Propeller

Compiler Linker Project Options Linker Project Options Compiler

Board Type & QUICKSTART Simple printf All Warnings Math Lib Pthread Lib
N Tiny Lib
i 32bit Double No FCache
Compiler Type C . q
P L Exceptions Enable Pruning Create Project Library
Memory Model = LMM Main RAM Other Compiler Options Other Linker Options
Optimization -Os Size

Figure 11.3.: Settings for the Project Options, Compiler, and Linker tabs.

project file hello.side and build it; you should see messages in the Build Window
ending with “Build Succeeded!”. At the bottom of the window a message shows the size
of the program (in this case, about 7TKB). If the program successfully builds, you can
download and run it on the propeller and have the output displayed on a terminal by
pressing the icon at the top that shows a screen with an arrow.

The code itself is very straightforward:

Listing 11.3: Hello World program in C

#include <stdio.h>
#include <propeller.h>

int main(void) {
int n = 1;
while (1) {
waitcnt (CLKFREQ/10+CNT) ;
printf ("HelloWorld,%d\n", n);
n++;
}

return 0;

Lines 1-2 The stdio library has the printf function. However, because it is a complex
(and large) function, the Compiler tab includes the option to use a “Simple printf”
that reduces the size somewhat. The propeller library has the propeller-specific
functions such as waitcnt, waitpeq, and the special registers such as CNT, INA,
ete.

Lines 4-13 The main program is similar to the PUB MAIN method in Spin. This function
shouldn’t exit—it should initialize some variables and then enter an inifinite loop.

Line 5 Define the variable n and initialize it to one.
Line 6 Enter an infinite loop.

Line 7 waitcnt is similar to the waitcnt in Spin, but it only has one argument. The
processor will pause at this line until the counter value is equal to the argument
of waitcnt: in this case, the current count value + one-tenth of a second. The
variable CLKFREQ contains the number of counts in one second (generally 80

134

AW N e

11.2. Programming the Propeller in C

million at top speed, but it depends on the external crystal and the phase locked
loop value).

Line 8 The printf function prints a formatted string to the terminal. Look at the
manual page for printf for how to format numbers. In short, %d prints a decimal
number, %x prints the number in hexadecimal format, %f prints a floating point
value.

Line 9 Increment the value of n.

Running the program will result in the following in the terminal window:

Hello World 1
Hello World 2
Hello World 3

with a new message every tenth of a second.

11.2.3. Launching a new Cog

In order to launch a new cog in LMM mode, we must define a function and then pass
that function to the cogstart function.

Start a new C project (Open—New) named compr_cog0. Set the Project Options,
Compiler, and Linker as before.

For the purposes of display and discussion, I have split the file compr_cog0.c into
three separate parts below, but really all three parts are in one file. Every multi-cog
program will have these three parts.

Part 1 is the front matter where the libraries are included, the shared memory for the
stack and the shared variables is set aside, and the constants are defined.

Listing 11.4: Part 1: Front matter for file compr_cog0.c
/ *

compr-cog0l.c - start a new cog to perform compression.

*/

/* libraries x/
#include <stdio.h>
#include <propeller.h>

/* defines */

// size of stack in bytes
#define STACK_SIZE_BYTES 200
// compression constants
#define NSAMPS_MAX 128
#define CODEO8 O0bO1

#define CODE16 0b10

135

19

11. C Programming for the Propeller

#define CODE24 Obil1l

#define TWO_BYTES O0x7F // any diff values greater than this are 2
— bytes

#define THREE_BYTES Ox7FF // diff valus greater than this are 3
— bytes

/* global variables */
// reserved space to be passed to cogstart
static unsigned int comprCogStack [STACK_SIZE_BYTES >> 2];

// shared vars

volatile int nsamps;

volatile int ncompr;

volatile int sampsBuf [NSAMPS_MAX];

volatile char packBuf [NSAMPS_MAX<<2]; // 128 x 4
volatile int comprCodesBuf [NSAMPS_MAX>>4]; //128 / 16

Line 12 The stack is region of memory used by the kernel to store internal variables
and state. It should be at least 150 bytes plus four bytes per function call in the
cog.

Lines 14-19 Constants used by all cogs.
Line 24 Declare and reserve space for the stack here.

Lines 27-31 Shared variables have a volatile qualifier to signal the compiler not to
remove them during optimization. If the compiler thinks a variable is unused it
won’t reserve space for it. However, it is possible that a variable is used by a Spin
or PASM cog unknown to the compiler.

Part 2 is the code for the cog. Define a function that is called by the main cog. This
function (and any functions that it calls) will run in a separate cog from the main cog.
However, this cog will have access to the variables declared above. Those are global
variables and available to all functions in the file.

Listing 11.5: Part 2: Compression cog code in file compr_cog0.c.

/* cog code - comprCog
use nsamps and ncompr to signal with main cog
start compression when nsamps != 0

signal completion with ncompr > O
signal error with ncompr = 0
compress sampsBuf to packBuf - NOT DONE YET
populate comprCodesBuf - NOT DONE YET
- args: pointer to memory space PAR - UNUSED
- return: none
*/
void comprCog(void x*p) {

136

16

w N =

NN NN NN
=] ot > W 9

~

NN N
U o]

11.2. Programming the Propeller in C

int i, nc, nbytes, codenum, codeshift, code;
int diff, adiff;

while (1) {
if (msamps == 0) {
continue; // loop continuously while nsamps is O
} else {
// perform the compression here
if (nsamps > NSAMPS_MAX || nsamps < -NSAMPS_MAX) {
ncompr = 0; // signal error
nsamps = 0;
continue;

}
ncompr = 3; // signal completion
nsamps = 0; // prevent another cycle from starting

Line 11 Cog function definition: void comprCog() means that this doesn’t return any
value. The argument (void *p) means that an address is passed in—this is the
equivalent of PAR. However, because we are using the global variables to pass
information between cogs, we won’t use PAR.

Lines 12-13 Local variables used by the cog.
Line 15 Inifinite loop that contains the actual code that does the work of the cog.
Lines 16—18 If nsamps is set to non-zero by main, enter the section that does the work.

Lines 20-26 Error checking and finally, the work of this cog. Set ncompr to 3 and
nsamps to zero. (we will add code to do the actual compression later.)

Part 3 is the entry point for the program: the main function and the code that runs
first. Again, this cog has access to the global variables. It also starts the new cog and
interacts with it by setting and reading variables in those global variables.

Listing 11.6: Part 3: Main code in file compr_cog0.c.

/* main cog - initializes variables and starts new cogs.
* don’t exit - start infinite loop as the last thing.
*/

int main(void)

{

int comprCogId = -1;
int 1i;

nsamps = 0;
ncompr -1;

137

39

10

42
43
14

11.

C Programming for the Propeller

printf ("starting main\n");

* start a new cog with

* (1) address of function to run in the new cog

* (2) address of the memory to pass to the function
* (3) address of the stack

* (4) size of the stack, in bytes

*/

comprCogId = cogstart (&comprCog, NULL, comprCogStack,

— STACK_SIZE_BYTES);

if (comprCogld < 0) {

}

printf ("errorystarting,comprcog\n") ;
while (1) {;%}

printf ("started compression,cog,%d\n", comprCogId);

/* start the compression cog by setting nsamps to 1 x/

S

ampsBuf [0] = OxEFCDAB;

nsamps = 1;

/* wait until the compression cog sets ncompr to a non-neg

<~ number */

while (ncompr < 0) {

}

’

printf ("nsamps,=_,%d, ncompr_ =_,%d\n", nsamps, ncompr);
printf ("sampO,=,%x,upackBuf = %x %xu%x\n", sampsBuf [0], packBuf

— [0], packBuf[1], packBuf [2]);

while (1)

{

}

Line 20 This is the key in main. The cogstart function takes 4 arguments. The first is

138

the address of the function to place in the new cog: &comprCog. The ampersand
symbol ()&) in C is to obtain the address of a variable or function. The next
argument is the address of memory that will be passed to the cog in PAR (the
“locker number” in my analogy in Chapter 6). In this case, because we are using
global variables to exchange information, we won’t use PAR and can pass NULL
(which is, as it states, the null pointer). The third and fourth arguments are the
address of the reserved stack space and its length in bytes, respectively. The stack
is a region of memory that the kernel needs to store variables and counters.

11.2. Programming the Propeller in C

Line 30 Here we set nsamps=1, which signals the compression cog to begin its work.

Lines 33-35 The compression cog will set ncompr to a non-negative number when it
completes its work. The main cog waits in this loop until it sees that the compres-
sion cog is finished.

Lines 37-38 Print out the results. nsamps should now be zero, and ncompr should now
be non-negative.

Line 40 Enter an infinite loop, doing nothing.

The output from running this program is:

starting main

started compression cog 1
nsamps = 0, ncompr = 3

sampO = EFCDAB, packBuf = 0 0 0

We have shown that we can communicate with the compression cog. How fast is it?
In order to compare this to the Spin and PASM compression codes from the previous
chapters, let’s implement the compression code.

11.2.4. Compression code in C

We will edit the comprCog to include the packing. Replace the code with the following.
It forms the difference between successive samples and checks the length of the difference.
Depending on that length, it saves it either 1, 2, or 3 bytes of packBuf. (for simplicity
I haven’t included the part that populates the compression code comprCodesBuf).

/* cog code - comprCog
use nsamps and ncompr to signal with main cog
start compression when nsamps != 0

signal completion with ncmopr > 0
signal error with ncompr = 0
compress sampsBuf to packBuf
populate comprCodesBuf - NOT YET DONE
- args: pointer to memory space PAR - UNUSED
- return: none
*/
void comprCog(void x*p) {
int i, nc, nbytes, codenum, codeshift, code;
int diff, adiff;

while (1) {
if (msamps == 0) {
continue; // loop continuously while nsamps is O
} else {
// perform the compression here
if (nsamps > NSAMPS_MAX || nsamps < -NSAMPS_MAX) {

139

	Introduction
	Introduction
	The Propeller 8-Cog Processor
	Cogs
	Hub and Cog

	Memory Layout
	HUB memory
	Cog Memory

	Layout of this book

	Steim Compression
	Packing and compression of data
	Specification

	Introduction to Spin
	Memory layout
	Spin Template
	Hello, World
	Running the program

	PASM Template
	Template for PASM code in a separate file
	Summary

	Test Driven Development (TDD)
	Compression in Spin
	Structure of the Project
	First iteration
	Passing arrays to methods
	Testing
	Final Code
	Compression in Spin
	Decompression in Spin

	The need for speed
	Timing in PASM
	PASM timing estimate

	Spin and PASM
	Propeller Assembler: PASM
	Instructions in PASM
	The ADD instruction
	The mov instruction
	Variables
	Effects
	Literals
	Labels
	Conditional Evaluation
	Branching
	Reading the PASM manual

	Passing parameters to PASM
	Setting up steim_pasm
	Passing parameters in the cognew command
	Using PAR
	Using PAR some more...
	Using the addresses
	Starting the compression

	Passing parameters: method 2
	Summary

	Compression in PASM with TDD.
	Overall flowchart
	Test 1: Passing nsamps and ncompr
	Spin code
	PASM code

	Test 2: packing sample zero
	Spin code
	Memory layout of arrays and parameters
	PASM Code
	Subroutines in PASM
	Testing the compression of sample 0

	Packing differences for latter samples
	Testing compressing 2 samples!
	Test compressing an arbitrary number of samples

	Success?
	Summary

	Decompression in PASM
	Getting the sign right
	Overall flowchart
	Spin code
	PASM: main decompression loop
	Subroutines for unpacking
	Testing decompression of two sample
	Testing decompression of 128 samples

	Debugging PASM code
	Logging to a HUB array
	Spin code
	PASM code
	Bug fix

	Interacting with the world
	Outline
	Spin
	PASM
	Toggle a pin in PASM
	Monitor a switch

	Communication Protocols
	SPI logging
	Spin SPI read
	PASM SPI write
	Logging deadlock

	Locks
	Introduction to locks
	Using locks for logging

	Some common tasks
	Assignment
	Multiplication
	Division
	Loops
	Conditonals

	Maintenance
	Summary

	C Language
	C Programming for the Propeller
	The C language
	Programming the Propeller in C
	SimpleIDE
	Hello, World
	Launching a new Cog
	Compression code in C

	Summary

	Programming in Cog-C mode
	Cog-C Mixed Mode Programming
	Main cog code
	Compression Cog-C Code
	Header file compr_cogc.h
	Running the Cog-C code

	Summary

	Programming With C and PASM
	Compression with C and PASM
	C code for main cog
	PASM code.

	Summary

	Hardware I/O with C
	Referencing hardware in C
	simpletools library
	Using registers
	Set a pin
	Read a pin

	Implementing SPI in Cog C
	Main cog (controller)
	SPI Master
	SPI Slave (simulated data producing device)
	Running the SPI code

	Summary

	Using Inline Assembly Instructions in C code
	Inline Assembler
	spiSlave.cogc inline assembly
	Timing
	Summary

	Concluding thoughts

