
The content and copyrights of the attached
 material are the property of its owner.

Distributed by:

www.Jameco.com ✦ 1-800-831-4242

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 1

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallaxinc.com
Technical: stamptech@parallaxinc.com
Web Site: www.parallaxinc.com
Educational: www.stampsinclass.com

Parallax Line Follower Module (#29115)

Introduction

Welcome to one of the most exciting and important aspects of robotics: line following. Line following
robots help automate thousands of factories around the world, making the delivery of mail, packages and
materials fast and efficient. And line following is not just for small robots or those that work in factories.
Scientists and engineers have been experimenting with snow plows and even passenger cars that can
follow magnetic lines in “smart” highways. These robotic vehicles can sense the road, obstacles and each
other, eliminating traffic snarls and making our highways safer and easier to travel. Someday we’ll simply
tell our cars where to take us and line following circuitry will help get us there safely and without effort.
With the Parallax Line Follower module, you can experiment with this technology today using your BOE-
Bot.

Features

The Parallax Line Follower module comes pre-assembled and ready to attach to your BOE-Bot. It uses a
multi-sensor array over which you have complete programmatic control. This level of control allows you
to develop line following algorithms that are very simple to those that are very advanced. Since the
module uses reflective sensors, it contains a threshold adjustment that can tune the sensor array to the
ambient light conditions. The Line Follower module connects to the BOE-Bot AppMod socket with a
simple ribbon cable and male-male header.

Packing List

The Parallax Line Follower Module (#29115) package should include the following parts (the source code
included in this documentation is only available for download from www.parallaxinc.com/linefollower):

• Documentation (these pages)
• Pre-assembled Line Follower module
• Ribbon cable assembly
• 2x10 dual-row header
• (2) 1” female-female hex standoff
• (4) 4/40 x 3/8” screw
• (2) Nylon washer
• Parallax screwdriver

jmendiola
Jameco Part Number 202340

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 2

Setting Up

Follow these steps to attach the Parallax Line Follower module to the BOE-Bot (see Figure 1):

1. Clear any program currently in the BASIC Stamp of your BOE-Bot. All pins should be made
inputs (Dirs = 0).

2. Disconnect the power source from your BOE-Bot.
3. With the Line Follower module sensors facing up, place a 4/40 screw into one of the mounting

holes.
4. Holding the screw in place with a finger, turn the module over. Place a nylon washer over the

screw, then thread a 1” hex stand-off onto the screw. Tighten finger-tight.
5. Repeat steps 3 and 4 for the second mounting hole.
6. Carefully place the BOE-Bot on a work surface with the bottom side up.
7. Place the Line Follower module onto the bottom of the BOE-Bot so that the mounting posts are

facing forward as the BOE-Bot faces. This will allow the module to rest on the BOE-Bot servo
motors and the mounting posts to mate with slots at the front of the BOE-Bot chassis.

8. Holding the Line Follower module in place with your hand, turn the BOE-Bot over. You should
see the Line Follower stand-offs through the mounting slots in the BOE-Bot chassis. Use the
other two 4/40 screws to secure the Line Follower Module to the BOE-Bot.

9. Holding the BOE-Bot in your hand, turn it over so the bottom side faces up. Hold the ribbon
cable in your other hand so that the connector sockets are facing away from you and that the red
stripe is on the left.

10. Carefully align the top ribbon connector with the header on the Line Follower module. Press the
connector onto the Line Follower header.

11. Make a 90 degree bend to the right in the ribbon cable by folding it under itself. This will allow
the ribbon cable to pass behind the BOE-Bot drive wheel.

12. Place the BOE-Bot on a work surface, top side up.
13. Insert the 2x10 dual-row male-male header into the BOE-Bot AppMod socket.
14. Make a 90 degree bend to the left in the ribbon cable by gently folding it under itself. Carefully

align the ribbon cable connector with the header in the AppMod socket. Press the ribbon
connector onto the header.

15. You may wish to secure the ribbon cable to the side of the robot with a piece of double-sided
foam tape.

16. Reconnect power to your BOE-Bot. The Line Follower module is now ready for testing.

Example code with programming explanations are shown on the following pages. Source code for each of
these projects is available for download from www.parallaxinc.com/linefollower.

Figure 1: The Mounted Line Follower Module

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 3

How It Works

The Parallax Line Follower module is composed of two distinct sections: an IR emitter/detector array and
a threshold comparator circuit. A simplified diagram of each emitter/detector is shown in Figure 2.

Figure 2: IR Emitter/Detector Circuit

The IR LED is activated by making the associated BASIC Stamp output pin low (see Figure 4 for
connections). The active-low configuration is used because the BASIC Stamp can sink more current per
pin than it can source. When the LED is active, reflected IR light from the course surface will strike of
the IR detector transistor, affecting the current flow through it. More reflected IR causes greater current
to flow through the transistor.

Notice that the IR transistor is placed in series with a 10 kΩ fixed resistor and that the IR Detect output is
taken at collector of the transistor. As the current flow through the transistor increases the voltage
across the 10 kΩ resistor also increases, causing the voltage at the output to decrease. The greater the
reflected IR, the lower the output voltage.

This circuit forms a voltage divider with the output dependant on current flow through the transistor.
The greater the IR reflection from the course surface, the greater the current flow through the transistor.
This causes the voltage at the output to go lower because it “looks” like a smaller resistance. When
there is little or no reflection, the current flow through the transistor is reduced making it look like a very
large resistance in the circuit, causing the output voltage to increase.

The second portion of the Line Follower circuit is the threshold comparator (see Figure 3). The purpose
of this circuit is to compare the output from the IR detector with the level setting on the threshold
potentiometer.

Figure 3: Threshold Comparator Circuit

 Page 4

The comparator will output will be high (1) or low (0), depending on which of the two input pins has the
higher voltage. If the minus input (voltage from IR detector) is higher than the plus input, the
comparator output will go low. If the plus input (threshold pot) is higher than the minus input, then the
output will go high. The purpose of the threshold potentiometer is to allow you to adjust for course
reflectivity and ambient lighting conditions.

When a detector “sees” a highly reflective surface, the current flow through the transistor is high so the
voltage goes low. If it falls below the threshold pot setting, the comparator will output a low (0). If the
detector is over a surface that absorbs the IR light from the LED, the current through the transistor will
be low, causing detector output voltage to increase. If the output voltage goes higher than the threshold
pot setting, the comparator will output a high (1).

In review, reflective surfaces will cause the Line Follower module to output a low (0); non-reflective
surfaces will output a high (1). We can modify this behavior with PBASIC code to suit the type of “track”

Important Note: The IR LEDs are under direct control of the BASIC Stamp. It is the programmer’s
responsibility to ensure that only one LED is lit at a time. Allowing multiple LEDs to light will cause
inaccurate and unpredictable results. Figure 4 shows the connections between the BASIC Stamp and the
Line Follower module.

Figure 4: Line Follower Module Connections to the BASIC Stamp

LF Function Stamp Pin Direction
Outer Right LED P2 Output
Inner Right LED P3 Output
Center LED P4 Output
Inner Left LED P5 Output
Outer Left LED P6 Output
Line Detect P9 Input

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 5

Testing And Calibration

Load and run the program called LF_TEST.BS2 (see Listing 1, starting on page 8). The purpose of this
program is to read and display what the Line Follower module “sees” in a DEBUG window. Using this
program we can test and calibrate the Line Follower module.

On screen will be a small representation of the BOE-Bot with the detector activity displayed in real time.
A “1” indicates the presence of the line under the corresponding detector. Of course, you’ll need a test
track for the program (see to page 14 for instructions).

Or you can print this page and use the test strip below:

You should be able to move the BOE-Bot back and forth across this line and see the corresponding
detector bit change on the DEBUG screen. Be careful not to lift the BOE-Bot off the paper. The
emitter/detector pairs are focused devices and the mounting of the Line Follower module to the BOE-Bot
places them at the correct height above the surface for optimal reflectivity.

If output does not change, follow these steps to calibrate the Line Follower module:

1. Using a small screwdriver, turn the threshold pot completely counter-clockwise.
2. Carefully center the middle detector over a solid black line on white paper.

(the DEBUG screen should read: “11111”)
3. Turn the threshold pot clockwise just past the point where the middle sensor detects the line

(the DEBUG screen should read: “00100”)

Repeat the test and recalibration as necessary until all sensors accurately detect the line with no false
positives (detection when no line is present).

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 6

Test Program Analysis

Even though the program is simple in its design and purpose, it holds an important piece of code that will
be used in all other projects: the reading of the Line Detector module bits.

The program starts by defining some useful constants. Using constant values is a very good habit as it
increases code readability and allows a program to be modified easily and more reliably – especially if the
same value is used in several places in the program. Constant definitions have been created for LEDon
and LEDoff that will make the program easier to read. In this case LEDon has a value of zero since the
circuit is configured to turn LEDs on by making the corresponding output pin low.

The next set of values have to do with the kind of course that the BOE-Bot is running. Most of the time
the BOE-Bot will follow a black line drawn on a white course. The difficulty with this kind of course,
however, is that the large white surface can reflect a lot of additional light – including IR – onto the
detectors, causing them to be less sensitive than required to reliably detect the line. For this reason,
many robot clubs create line following courses that use a white line on a black background. See page XX
for tips on making your own course and dealing with excess light on the sensors.

For this program, the value of LFmode (line following mode) is se to BLine (black line) which gives it a
value of one. The LFmode value will be used with the Line Detector output to return the correct value
for the specified course type.

The final constant value is called MoveTo and has a value of 2. This is a little-used, yet very useful code
to use with DEBUG. MoveTo allows the cursor to be moved to a specific x/y character coordinate in the
DEBUG window. This technique is great for creating advanced displays.

The Line Follower is initialized by making sure that all of its LEDs are OFF. This is done by setting bits
two through six in register OutL to one. As soon as the same bits are set in DirL, the pins will be made
outputs and will go high, causing the LEDs to stay off. Notice that the output bits are set before setting
the direction bits. This eliminates any glitches on the outputs when the Stamp is reset and runs the
initialization sequence.

The next section of code creates a BOE-Bot diagram in the DEBUG window. This diagram will the Line
Follower bits in real time and in relation to the correct orientation of the BOE-Bot.

Once in the main body of code, the first thing the program does is call the subroutine
Read_Line_Follower. This is the heart of the program and will be used by all other line following
experiments.

Read_Line_Follower:
 lfBits = 0 ' clear last reading
 FOR ledPos = 2 TO 6
 OutL.LowBit(ledPos) = LEDon ' turn the LED on
 PAUSE 1 ' allow sensor to read
 lfBits.LowBit(ledPos) = In9 ^ LFmode ' record the sensor reading
 OutL = OutL | %01111100 ' turn LEDs off
 NEXT
 lfBits = lfBits >> 2 ' shift bits to zero index
 RETURN

The subroutine starts by clearing the old reading. This is important because lfBits is eight bits wide but
only five are used. The core of the routine uses a FOR...NEXT loop to cycle through all five sensors.
The first line of the loop code turns on an LED by setting the corresponding output pin low.

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 7

This line of code demonstrates that any nibble, byte or word variable can be treated as an array of bits.
Using .LowBit(index) modifier allows the access (read or write) of any bit in the variable. In this case,
the variable is OutL since the LEDs are connected to Stamp pins P2 through P6. Figure 5 shows the
relationship between the bits in OutL and the LEDs in the Line Follower module.

Figure 5: Line Follower LED Control Bits in OutL (P0...P7)

With the LED lit, the program will PAUSE for one millisecond to give the IR detector time to respond.
The output of the Line Follower module (on P9) is placed into appropriate bit of the variable lfBits. Note
that the Exclusive OR (^) operator is used on the bit before it is saved. What this does is allow the
program to see the line – be it black-on-white or white-on-black – as a “1.” If no line is detected, the
output bit will be zero.

After each bit is recorded, the LEDs are switched off. Note that the current value of OutL is OR’d (|)
with %01111100 (all LEDs off). This technique allows the program to uses pins 0, 1 and 7 as outputs
without being affected by this subroutine. Before returning to the main loop, the value of lfBits is
shifted two bits to the right. While not required, this process does make display of lfBits and its use in
some algorithms simpler. Figure 6 shows the bits in lfBits at the end of the Read_Line_Follower
subroutine.

Figure 6: lfBits After Shifting

Back in the main code loop, the MoveTo character is used to position the cursor in the DEBUG window,
then the lfBits value is displayed with the BIN5 (binary output, five digits) modifier. With the current
Line Follower bits displayed, GOTO returns the program to Main and process starts over.

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 8

Listing 1

' -----[Title]--
'
' File...... LF_TEST.BS2
' Purpose... Line Follower Test and Calibrate
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com

' { $STAMP BS2 }

' -----[Program Description]--
'
' This program is used to test and calibrate the BOE-Bot Line Follower module.

' -----[Revision History]---
'
' 01 DEC 2001 - Version 1.0

' -----[I/O Definitions]--
'

' -----[Constants]--
'
LEDon CON 0 ' LF LEDs are active low
LEDoff CON 1

WLine CON 0 ' white line on black field
BLine CON 1 ' black line on white field
LFmode CON BLine ' set pgm for black line

MoveTo CON 2 ' move to position character

' -----[Variables]--
'
ledPos VAR Nib ' LED position in lfBits
lfBits VAR Byte ' line follower input bits

' -----[EEPROM Data]--
'

' -----[Initialization]---
'
Initialize:
 OutL = %01111100 ' all LF LEDs off
 DirL = %01111100 ' make pins outputs

Draw_Output_Screen:
 PAUSE 200
 DEBUG "Line Follower Test", CR
 DEBUG CR
 DEBUG " ------- ", CR
 DEBUG " | | | | ", CR
 DEBUG " +-| |-+ ", CR
 DEBUG " | | | | ", CR
 DEBUG " | | ", CR

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 9

 DEBUG " | | ", CR
 DEBUG " -- O -- ", CR

' -----[Main Code]--
'
Main:
 GOSUB Read_Line_Follower ' read the Line Follower
 DEBUG MoveTo, 4, 3, BIN5 lfBits ' display LF reading
 GOTO Main
 END

' -----[Subroutines]--
'
Read_Line_Follower:
 lfBits = 0 ' clear last reading
 FOR ledPos = 2 TO 6
 OutL.LowBit(ledPos) = LEDon ' turn the LED on
 PAUSE 1 ' allow sensor to read
 lfBits.LowBit(ledPos) = In9 ^ LFmode ' record the sensor reading
 OutL = OutL | %01111100 ' turn LEDs off
 NEXT
 lfBits = lfBits >> 2 ' shift bits to zero index
 RETURN

Notes:

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 10

Simple Line Follower Program

Now that a method has been developed to detect a line, it’s a matter of processing and decoding this
information in order to cause the BOE-Bot to follow the line. Listing 2 (starts on page 11) is a simple
program that will cause the BOE-Bot to follow a ¼” line around a closed course.

The program logic is straightforward:

1. Read the Line Follower module
2. Adjust motor speed (steering) based on Line Follower input
3. Save last Line Follower reading
4. Go to Step 1

Line Following Program Analysis

This line following code uses great deal of the material developed in the test and calibration program.
Pin definitions for the BOE-Bot servo motors have been added, as well as speed control values for the
servos in the Constants section. These values were determined empirically by running a BOE-Bot in a
straight line (both motors at the same speed) and timing a measured distance. By independently
controlling motor speed, the BOE-Bot can be caused to move forward, backward or to turn1.

A single line has been added to the Initialization code; a line that is very important. In the main body of
program, the last sensor reading is saved. This will be used to guide the BOE-Bot in the event that an
invalid value is returned from the Line Follower module and will keep the BOE-Bot moving in the last
known direction. At the beginning of the program there have been no readings, so the value of lastBits
is initialized to %00100. This will cause the BOE-Bot to go straight, even if it is started off the line.

The function of the main loop is to read the Line Follower module and decode its bits, determining the
appropriate steering input to give the BOE-Bot. The decoding process is done with the NCD operator.
NCD returns the highest set (“1”) bit of a given number, or zero if no bits are set. A non-zero value will
be the highest set bit position plus one. Using NCD, the value of steer will fall between zero and five.
Then BRANCH is used to direct control to the motor control (steering) routines. Once the servos have
been updated, the program saves the current reading and continues from the top.

If the BOE-Bot starts -- or somehow manages to roam – off the line (this can happen in very sharp
corners), the value returned in lfBits will be zero. This will cause the BRANCH table to send it to the
label at Off_Line. This section of code restores the last valid sensor reading, then jumps back to the
steering control. This will keep the BOE-Bot moving and should allow it to find the line and resume on
course.

Programmers with some BOE-Bot experience may notice a lack of any loop padding – time between servo
motor updates (typically 20 to 30 ms). The reason is that the Read_Line_Follower subroutine takes
about 17 milliseconds to execute2. This time, combined with other program overhead, provides sufficient
delay between servo updates. Keep in mind that adding additional code to the main program loop will
tend to slow the BOE-Bot.

1 Refer to Robotics!, Chapter 2, for a complete discussion on BOE-Bot motor control and steering.
2 Refer to The Nuts & Volts of BASIC Stamps, Column #44, for a routine for code timing.

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 11

Listing 2

' -----[Title]--
'
' File...... LF_SIMPLE.BS2
' Purpose... Simple Line Follower
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com

' { $STAMP BS2 }

' -----[Program Description]--
'
' This program uses a very simple approach to follow a thin black line on
' a white field. A test track can be created using a large sheet of white
' construction paper and a wide-tipped black marking pen. The line width
' should be just as wide as one sensing element.

' -----[Revision History]---
'
' 01 DEC 2001 - Version 1.0

' -----[I/O Definitions]--
'
LMotor CON 15 ' servo motor connections
RMotor CON 14

' -----[Constants]--
'
LEDon CON 0 ' LF LEDs are active low
LEDoff CON 1

WLine CON 0 ' white line on black field
BLine CON 1 ' black line on white field
LFmode CON BLine ' set for black line

MStop CON 750 ' motor stop
Speed100 CON 125 ' full speed
Speed075 CON 50 ' three-quarter speed
Speed050 CON 40 ' half speed

' -----[Variables]--
'
ledPos VAR Nib ' LED position in lfBits
lfBits VAR Byte ' line follower reading
lastBits VAR Byte ' previous reading
steer VAR Nib ' steering control

' -----[EEPROM Data]--
'

' -----[Initialization]---
'
Initialize:
 OutL = %01111100 ' all LF LEDs off
 DirL = %01111100 ' make pins outputs

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 12

 lastBits = %00100 ' assume starting straight

' -----[Main Code]--
'
Main:
 GOSUB Read_Line_Follower ' read the Line Follower

Steer_Robot:
 steer = NCD lfBits ' get highest "on" bit
 BRANCH steer,[Off_Line, Hard_Right, Right, Straight, Left, Hard_Left]

Save_Last:
 lastBits = lfBits ' save last reading
 GOTO Main

' -----[Subroutines]--
'
Read_Line_Follower:
 lfBits = 0 ' clear last reading
 FOR ledPos = 2 TO 6
 OutL.LowBit(ledPos) = LEDon ' turn the LED on
 PAUSE 1 ' allow sensor to read
 lfBits.LowBit(ledPos) = In9 ^ LFmode ' record the sensor reading
 OutL = OutL | %01111100 ' turn LEDs off
 NEXT
 lfBits = lfBits >> 2 ' shift bits to zero index
 RETURN

Off_Line:
 lfBits = lastBits ' get last known position
 GOTO Steer_Robot

Hard_Right:
 PULSOUT LMotor, MStop + Speed075 ' slow a bit on left
 PULSOUT RMotor, MStop ' stop right motor
 GOTO Save_Last

Right:
 PULSOUT LMotor, MStop + Speed100 ' full speed on left
 PULSOUT RMotor, MStop - Speed050 ' slow right motor
 GOTO Save_Last

Straight:
 PULSOUT LMotor, MStop + Speed100 ' both motors forward
 PULSOUT RMotor, MStop - Speed100
 GOTO Save_Last

Left:
 PULSOUT LMotor, MStop + Speed050 ' slow left motor
 PULSOUT RMotor, MStop - Speed100 ' full speed on right
 GOTO Save_Last

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 13

Hard_Left:
 PULSOUT LMotor, MStop ' stop left motor
 PULSOUT RMotor, MStop - Speed075
 GOTO Save_Last

Notes:

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 14

Contest Line Follower Program

Line Following competitions are very popular with robotics clubs. A typical contest course consists of a
curvy line that moves across the playing surface, with start and end points are marked with a “T” (see the
photo on page 18). Listing 3 (starts on page 15) is a contest-ready line following program.
Contest code logic:

1. Read the Line Follower module
2. If lfBits = %00100 then BOE-Bot is on course
3. If lfBits = %11111 and BOE-Bot has been on course, then stop
4. Adjust motor speed (steering) based on Line Follower input
5. Save Line Follower input
6. Go to Step 1

Contest Code Program Analysis

Line following contests are timed events, so this program allows for a controlled start and will stop when
the end of the track is detected. These are the two aspects that differentiate this program from the simple
line follower, so that is where the discussion will be focused.

To obtain a controlled start, the program uses a flag value stored in the Stamp’s EEPROM. After
download, the value at EEPROM location 0 (RstValue) is $FF. Before initializing, the program reads this
value, inverts all the bits, then writes it back. If the inverted value is greater than zero, the program runs,
otherwise it jumps to the label No_Run and stops in a low-power state.

The next time the Stamp is reset (by pressing the Reset button), the reset flag value is read and inverted
again. This time the inverted value will be $FF and the program will proceed to initialization and the BOE-
Bot will start.

Detection of the end of the course is fairly easy, but not trivial. Simple logic would dictate that a current
Line Follower value of %11111 with a previous reading of %00100 would indicate the end of the course.
While it does, this method is not always successful in application. If the BOE-Bot hits the end marker just
after a curve, the sensor array my not be centered on the course line and the end point will be missed.

This code, then, keeps a flag value called onCourse. After each reading, the value is checked to see if it
is %00100. If it is, the onCourse flag is set to Yes (true). Now, when the Line Follower returns %11111
the program checks to see if the BOE-Bot has been on the course. If yes, then the end has been found
and the motors are stopped.

Before shutting down, zero is written to the RstValue EEPROM location. This will allow the BOE-Bot to
start again when the Reset button is pressed.

This program uses the same steering control routines, but they have been made somewhat more
aggressive than those used in the simple line follower. The turning radius has been shortened to keep
the BOE-Bot closer to course center, reducing the time to move around the course. You may want to fine
tune the steering values to match the code to the particulars of the course to be run.

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 15

Listing 3

' -----[Title]--
'
' File...... LF_CONTEST.BS2
' Purpose... Line Follower contest code
' Author.... Parallax
' E-mail.... stamptech@parallaxinc.com

' { $STAMP BS2 }

' -----[Program Description]--
'
' This program is designed to run line follower contests where the BOE-Bot will
' start and stop on a "T" in the track. It implements a controlled start feature
' using the BOE Reset button. Pressing the Reset button starts the BOE-Bot.

' -----[Revision History]---
'
' 01 DEC 2001 - Version 1.0

' -----[I/O Definitions]--
'
LMotor CON 15 ' servo motor connections
RMotor CON 14

' -----[Constants]--
'
LEDon CON 0 ' LF LEDs are active low
LEDoff CON 1

WLine CON 0 ' white line on black field
BLine CON 1 ' black line on white field
LFmode CON BLine ' set for black line

MStop CON 750 ' motor stop
Speed100 CON 125 ' full speed
Speed075 CON 50 ' three-quarter speed
Speed050 CON 40 ' half speed

Yes CON 1
No CON 0

' -----[Variables]--
'
temp VAR Byte
ledPos VAR Nib ' LED position in lfBits
lfBits VAR Byte ' line follower input bits
lastBits VAR Byte ' last LF input
steer VAR Nib ' steering control
onCourse VAR Bit ' on course flag

' -----[EEPROM Data]--
'
RstValue DATA $FF ' $FF = no run

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 16

' -----[Initialization]---
'
Run_Check:
 READ RstValue, temp ' get reset value
 temp = ~temp ' invert bits
 WRITE RstValue, temp ' write inverted bits back
 IF (temp) THEN Initialize ' run if inverted > 0

No_Run:
 END ' low power mode

Initialize:
 PAUSE 500 ' allow hand to release
 OutL = %01111100 ' all LF LEDs off
 DirL = %01111100 ' make pins outputs

 lastBits = %00100 ' assume straight
 onCourse = No ' we haven't run course yet

' -----[Main Code]--
'
Main:
 GOSUB Read_Line_Follower ' read the Line Follower
 IF (lfBits <> %00100) THEN Check_End ' check for middle sensor
 onCourse = Yes ' -- has been on the course

Check_End:
 IF (lfBits <> %11111) THEN Steer_Robot ' keep steering if not at end
 IF (onCourse = No) THEN Straight ' still at start
 IF (lastBits <> %00000) THEN At_End ' verify end of course

Steer_Robot:
 steer = NCD lfBits ' get highest "on" bit
 BRANCH steer,[Off_Line, Hard_Right, Right, Straight, Left, Hard_Left]

Save_Last:
 lastBits = lfBits ' save last reading
 GOTO Main

At_End:
 PULSOUT LMotor, MStop ' stop motors
 PULSOUT RMotor, MStop
 Dirs = 0 ' turn off outputs
 WRITE RstValue, 0 ' run again after Reset press
 END

' -----[Subroutines]--
'
Read_Line_Follower:
 lfBits = 0 ' clear last reading
 FOR ledPos = 2 TO 6
 OutL.LowBit(ledPos) = LEDon ' turn the LED on
 PAUSE 1 ' allow sensor to read
 lfBits.LowBit(ledPos) = In9 ^ LFmode ' record the sensor reading
 OutL = OutL | %01111100 ' turn LEDs off
 NEXT
 lfBits = lfBits >> 2 ' shift bits to zero index
 RETURN

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 17

Off_Line:
 lfBits = lastBits ' get last known position
 GOTO Steer_Robot

Hard_Right:
 PULSOUT LMotor, MStop + Speed100 ' full speed on left
 PULSOUT RMotor, MStop + Speed100 ' reverse right motor
 GOTO Save_Last

Right:
 PULSOUT LMotor, MStop + Speed100 ' full speed on left
 PULSOUT RMotor, MStop
 GOTO Save_Last

Straight:
 PULSOUT LMotor, MStop + Speed100 ' both motors forward
 PULSOUT RMotor, MStop - Speed100
 GOTO Save_Last

Left:
 PULSOUT LMotor, MStop
 PULSOUT RMotor, MStop - Speed100 ' full speed on right
 GOTO Save_Last

Hard_Left:
 PULSOUT LMotor, MStop - Speed100 ' reverse left motor
 PULSOUT RMotor, MStop - Speed100 ' full speed on right
 GOTO Save_Last

Notes:

Parallax, Inc. • Parallax Line Follower (#29115) • 12/2001 Page 18

Making Tracks

This simplest way to construct a track for your Line Follower is with white art paper and a black, ¼”
(6 mm) wide felt tip marking pen. Select a heavy paper stock, one that is opaque, has a matte (non-
glossy) finish and is designed to take paint or pens (papers intended for watercolors work well). Draw
the line carefully, making sure that it is no wider than one IR sensor. If you prefer a white line on black
paper, you can use ¼” (6 mm) model striping tape to make the line.

For very large tracks, some robotics clubs use 1” white athletic tape on black photographers backdrop
paper. It may be necessary to make cuts in the tape on the insides of sharp corners. Be sure to burnish
the tape down flush so that it doesn’t interfere with the sensor array. Figure 7 shows a small practice
track made with black foam core and 1” athletic tape.

Figure 7: Practice Track

Troubleshooting

You may find that some track and environment combinations cause trouble for the Line Follower module.
Tracks that use a black line on white field that are lit with fluorescent lights or are affected by sunlight
can be troublesome. If adjusting the threshold pot does not solve the problem, you can make a skirt
from a 5/8” (16 mm) wide strip of black construction paper. Wrap the strip around the body of the
sensors and secure with cellophane tape.

Figure 8: Line Follower With Light Skirt

