Assembler

2013/9/29
Reference: Chapter7 in Propforth.html
asm_demo.f

How to use assembler
Assembler code
fl
build_BootOpt :rasm
- assembler statement -
;asm a_delay <-- a_delay is assembler-word's name

1. Copy/paste or Load asm.f inside ~/V5.5/CurrentRelease/Extensions/

2. Copy/paste assembler code to TeraTerm
(When using assembler-word, its assembler-list always must paste on source-code's
end)

3. As asm.f print out asm-source as 64Base-code, you paste this to source-code using
asm_word.

Caution;

Assembler for PropForth is a little different from PASM.

PAR-register don't use.

Data pass through stack same as forth-word.

When making assembler-word, you should not do "swap,tuck,over".

When out of assembler-word to kernel, data on stack should be one or nothing.
If you want data more than two, you should write asm-code to save in HUB-ram.

Assembler word"a_tick" return loop-ticks.

\ Delay 72ticks
__delay
mov cnt , #d59 4ticks using writable register[shadow register for cnt]
minumum is 5
If less than 5 this rollover at waicnt
add cnt , ecnt 4ticks
waitent cnt , #0 6ticks + 54ticks(72-18)

__delay_ret
ret 4ticks

Prop0 Cogb6 ok

1 ticks

88 Prop0 Cogb6 ok

2 ticks

168 Prop0 Cogb ok
10 ticks

808 Prop0 Cog6 ok
100 ticks

8008 Prop0 Cog6 ok
1000 ticks

80008 Prop0 Cogb6 ok

Measure overhead-time it takes to palce data on stack.
Refer 'timel,time2,........ time 1000

When 1 or 2 on stack, it takes d496 ticks.

When >3 on stack, it takes d368 ticks.

I have no idea why value is different.

Measure overhead-time on 'a_delay_1'

Assembler word"a_delayl" return delay-count-ticks for forth-kernel.
Since this ticks use forth-kernel, it include overhead-time for calling.
It' strange less than 8 a_delay_1.

Prop0 Cogb6 ok

delayl_1 delayl_2 delayl_3 delayl_4 delayl_5 delayl_6 delayl_7 delayl_8 delayl_9 delayl_10
352 432 512 592 672 752 832 912 992 1072 Prop0 Cog6 ok

delayl_20 delayl_30 delayl_40 delayl_50 delayl_60 delayl_70 delayl_80 delayl_90 delayl_100
delayl_500 delayl_1000

1872 2672 3472 4272 5072 5872 6672 7472 8272 40272 80272 Prop0 Cog6 ok

Each value include 80ticks * n. (n=1,2,... 1000)
So, overhead-time(It takes time when forth-kernel calling asm_word) is 272ticks.

Measure overhead-time on 'a_delay'

Assembler word"a_delay" return delay-count-ticks for forth-kernel.
Data on stack of "a_delay" is more than 9.

Prop0 Cogb6 ok

delay_9 delay_10 delay_11 delay_12 delay_13 delay_14 delay_15 delay_16 delay_17 delay_18
384 464 544 624 704 784 864 944 1024 1104 Prop0 Cog6 ok

delay_28 delay_38 delay_48 delay_58 delay_68 delay_78 delay_88 delay_98 delay_108 delay_508
delay_1008

1904 2704 3504 4304 5104 5904 6704 7504 8304 40304 80304 Prop0 Cog6 ok

Each value include 80ticks * n. (n=1,2,... 1000)
So, overhead-time(It takes time when forth-kernel calling asm_word) is 304ticks.

272ticks at "a_delayl"”, 304ticks at "a_delay"

304 — 272 = 32ticks

Difference from "a_delay" and "a_delayl" is only linstruction[sub $C_stTOS , # 8].
Why is different?

I have no idea.

Assembler word"a_pulse" output pulse.

This is often used for bit-mask of port
mov $C_treg3 , #1
shl $C_treg3 , $C_stTOS
\ Set pins to output
or dira , $C_treg3

Word'pulsel' output Hi-pulse(10usec) on PO.
Word'pulse2' output Hi-pulse(100usec) on PO.

